
Nested sampling applied in Bayesian room-acoustics decay
analysisa)

Tomislav Jasa
Thalgorithm Research, Toronto, Ontario, L4X 1B1, Canada

Ning Xiangb)

Graduate Program in Architectural Acoustics, School of Architecture, Rensselaer Polytechnic Institute, Troy,
New York 12180

(Received 15 December 2011; revised 31 August 2012; accepted 10 September 2012)

Room-acoustic energy decays often exhibit single-rate or multiple-rate characteristics in a wide

variety of rooms/halls. Both the energy decay order and decay parameter estimation are of practical

significance in architectural acoustics applications, representing two different levels of Bayesian

probabilistic inference. This paper discusses a model-based sound energy decay analysis within a

Bayesian framework utilizing the nested sampling algorithm. The nested sampling algorithm is

specifically developed to evaluate the Bayesian evidence required for determining the energy decay

order with decay parameter estimates as a secondary result. Taking the energy decay analysis in

architectural acoustics as an example, this paper demonstrates that two different levels of inference,

decay model-selection and decay parameter estimation, can be cohesively accomplished by the nested

sampling algorithm. VC 2012 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4754550]

PACS number(s): 43.60.Uv, 43.55.Br, 43.55.Mc, 43.60.Pt [ZHM] Pages: 3251–3262

I. INTRODUCTION

Bayesian methods have been utilized in a wide range of

acoustics applications1–16 with increasing attention being

given to the task of performing Bayesian model selection. A

few of the most recent applications of Bayesian model selec-

tion can be found in such acoustics applications as room-

acoustics energy decay analysis1 and geo-acoustics inver-

sion,2,3 where the model selection problems are tackled sepa-

rately from that of parameter estimation. The major

challenge in Bayesian model selection is the efficient calcula-

tion of the Bayesian evidence used to rank competing

models. Xiang and Goggans1 utilized marginalization of the

acoustic model along with an assumption on the form of the

posterior distribution which works well for many single-slope

and double-slope decays; however, once the decay model is

of third or higher order, or the second-slope decay is signifi-

cantly low in level, these assumption can cease to be valid.1,4

Battle et al.3 accomplished model selection for geo-acoustics

inversion problems using an importance sampling algorithm,

the success of which depends critically on proper choice of

the importance sampling distribution. In recent work by

Xiang et al.4 and Dettmer and Dosso,5 Bayesian model selec-

tion applied to room-acoustic decay order estimation, room

acoustics energy decay analysis, and geo-acoustic inversion

problems was solved using the Bayesian information crite-

rion (BIC). The BIC is based on the assumption that the pos-

terior probability distribution is well approximated by a

multivariate Gaussian probability distribution. Analysis of

experimental multiple-rate energy decay data has indicated

that the asymptotic approximation assumed by the BIC is

critically sensitive to the maximum posterior estimation.

Dettmer and Dosso2 have recently applied the annealed im-

portance sampling algorithm to model selection in the context

of geo-acoustical inversion, which indicates a requirement

for more elaborate model selection algorithms in the acous-

tics community. This paper applies the nested sampling algo-

rithm proposed by Skilling17,18 to Bayesian room-acoustics

energy decay analysis. The paper presents the nested sam-

pling algorithm as a numerical implementation of the Leb-

esgue integral as originally proposed by Jasa and Xiang12 in

order to provide acousticians an alternative understanding

of the nested sampling algorithm’s theoretical foundation.

This paper is organized as follows: Section II presents a

brief introduction to sound energy decay analysis and demon-

strate how this specific architectural acoustics application

requires a model-based data analysis. Section III outlines the

two levels of inference that are required for decay model

selection and decay parameter estimation, and cohesively for-

mulates both decay model selection and decay parameter esti-

mation using Bayesian probability theory. Sections IV and V

derive the nested sampling algorithm in detail, in the context

of Bayesian model selection and Bayesian parameter estima-

tion. Section VI discusses experimental results using experi-

mentally measured data in the form of acoustical room

impulse responses and subsequent Schroeder decay functions.

Section VII discusses possible extensions to the nested sam-

pling algorithm in the context of Bayesian model selection

and Bayesian parameter estimation.

II. MODEL-BASED BAYESIAN INFERENCE

Sound energy decays often exhibit multiple-rate charac-

teristics in a wide variety of enclosures which results in alter-

native parametric models (with each model corresponding to
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a given number of decay slopes) competing with each other

in order to explain the experimental data. This model-based

analysis is used to formulate the two levels of inference

within Bayesian framework and should prove beneficial to a

broad audience of acoustic scientists.

A generalized linear parametric model with s exponen-

tial decay terms,

Hs ¼ GsAs; 1 � s � M; (1)

is expected to describe the data D in the form of a Schroeder

decay function,19 with M representing the number of com-

peting models under consideration. Both data D and the

model Hs are column vectors of K elements, representing the

(normalized) sound energy decays. Gs is a K � ðsþ 1Þ ma-

trix, with the jth column of Gs ¼ ½GðsÞkj � given by

G
ðsÞ
kj ðT

ðsÞ
j ; tkÞ¼

�
tK� tk for j¼ 0

e�ð13:8�tkÞ=T
ðsÞ
j for j¼ 1;2;…;

(2)

where 0 � k < K. Time constant tK represents the upper

limit of Schroeder’s integration and 0 � j � s. The variable

tk represents discrete times. Column vector As ¼ ½AðsÞ0 ;A
ðsÞ
1 ;

…;A
ðsÞ
s �Tr

contains sþ 1 linear coefficients (Tr denotes a

matrix transpose), while column vector Ts ¼ ½TðsÞ1 ; T
ðsÞ
2 ;…;

T
ðsÞ
s �Tr

contains s decay time parameters to be determined. The

validity of this model for estimating the energy decay parame-

ters in acoustically coupled spaces has been experimentally

verified in Refs. 20 and 21, especially when tK is large. Each

parametric model Hs contains parameters As and Ts. They are

summarized by parameter vector ws ¼ ½As;Ts�Tr
, and the

parametric model is denoted as HsðwsÞ with 1 � s � M for

ease of the following discussion. The subscript s of ws and the

superscript (s) of parameters A
ðsÞ
j and T

ðsÞ
j is the decay order;

namely, the decay model contains s different exponential

decay terms with s different decay times.

III. TWO LEVELS OF BAYESIAN INFERENCE

Bayesian probabilistic inference encompasses both pa-

rameter estimation, which can be considered as the first level

of inference, and model selection, which can be considered

the second level of inference.1,22,23 Focusing on model selec-

tion first is scientifically logical, as a poor model can give

misleading results no matter how accurately the model pa-

rameters themselves have been estimated.

A. Model selection: The second level of inference

Selecting a model that fits the data best is a poor method

for model selection as a more complex model can always fit

the data either equally well or better, but may generalize

poorly or lead to over-fitting of data.22,23 In practice an inves-

tigator posses sufficient domain knowledge in order to focus

on a finite number of parametric models, all of which describe

the data reasonably well. This fact is incorporated into the

background information I. Bayesian model selection applies

Bayes’ theorem to a competing set of models Hs given the

data, D, and the background information, I, by the relation

pðsjDÞ ¼ pðsÞpðDjsÞ
pðDÞ ; (3)

while pushing any interest in model parameter values into the

background. While the background information I should be ex-

plicitly given on the right side of solidus ð�jIÞ of each probabilis-

tic quantity, it is omitted for simplifying notations throughout

this paper. Model Hs is also specified by s throughout this paper

for simplicity, but still bearing in mind that s in the following

also represents the decay model in Eq. (1) via Eq. (2). Bayes’

theorem in the form of Eq. (3) represents how one’s prior

knowledge about model Hs, expressed by prior probability p(s),
is updated in presence of the data D. Quantity pðDjsÞ represents

the probability that the given model Hs generates the data, and

is termed the marginal likelihood or evidence of the data in the

context of the model selection. Probability pðsjDÞ on the left-

hand side of the equation is the posterior probability of the

model Hs given the data, representing the updated knowledge

about the model after the data become available. When compar-

ing two competing models, the posterior ratio or so called Bayes

factor24 between two different models fHi;Hjg,
pðijDÞ
pðjjDÞ ¼

pðiÞ
pðjÞ

pðDjiÞ
pðDjjÞ ; (4)

can be determined as the quantity pðDÞ cancels out. Note that

the Bayes factor only ranks the models under consideration

against each other; it cannot rule out the fact that there may be

a much better model that has not been considered in the analy-

sis. The model selection problem investigated in this paper

will be one which can be incorporated in the background infor-

mation I: Looking only within a specified set U of competing

models fH1;…;HMg, which model is most preferred by the

data, and how strongly is it supported by the data relative to

the competing alternatives in the set.25 Upon the presence of

the data, only one model among the competing model set will

be selected. The first ratio on the right-hand side in Eq. (4),

termed the prior ratio, represents the degree of one’s initial

belief on how much model Hi would have been preferred over

model Hj before the data were acquired, while the second ratio

on the right-hand side of Eq. (4), termed the marginal likeli-
hood ratio or evidence ratio, measures how much the data pre-

fer the model Hi over Hj. Assigning equal prior probability

among the models results in a logarithmic Bayes factor

log
pðijDÞ
pðjjDÞ

� �
¼ logðpðDjiÞÞ � logðpðDjjÞÞ: (5)

Equation (5) indicates that the marginal likelihood or evi-

dence pðDjsÞ plays a central role in Bayesian model selec-

tion. The second level of Bayesian inference intrinsically

embodies Occam’s razor in a quantitative way by penalizing

over-parameterized models, assigning them larger probabil-

ities only if the complexity of the data justifies the additional

complication of the model. The result is a concise model that

provides a good fit to the data.26 A detailed discussion on the

quantitative implementation of Occam’s razor or the princi-

ple of parsimony is given in recent Refs. 22 and 27.

B. Parameter estimation: The first level of inference

Parameter estimation, as the first level of Bayesian in-

ference, applies Bayes’ theorem to the parameter vector ws

and the data D given a specific model Hs(ws)
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pðwsjD; sÞ ¼
pðwsjsÞpðDjws; sÞ

pðDjsÞ : (6)

Bayes’ theorem used in this problem represents how one’s

prior knowledge about parameters ws given the specific

model Hs(ws) and the background information I, as

expressed by prior probability pðwsjsÞ, are updated in the

presence of data D. The background information I specifies

that one model Hs in Eq. (1) is given via model selection

which approximates the data D such that the residual error

vector e between the data D and the model Hs,

e ¼ D�Hs; (7)

is finitely bounded. Probability pðDjws; sÞ expresses the like-

lihood that the parameter set ws associated with the given

model Hs generates the data D. It is therefore termed the

likelihood function and can also be written as

LðwsÞ ¼ pðDjws; sÞ: (8)

The likelihood function LðwsÞ for the sound energy decay

analysis has been well discussed in previous publica-

tions,14,21 it is the probability of the residual error e. The

background information I states that the only available infor-

mation about the error e2 is that it corresponds to a finite but

unknown bounded value which implies a finite variance r2.

If the finite amount of error could not be warranted, the

model is obviously wrong and has to be reestablished within

the current problem at hand. Taking the finite variance of the

error as the only information regarding the error statistics,

application of the principle of maximum entropy results in a

Gaussian probability density function for e,27

Lðws; rÞ ¼ ð
ffiffiffiffiffiffiffiffi
2pr
p

Þ�K
exp

�E

r2

� �
; (9)

with

E ¼ eTre

2
; (10)

and the unspecified variance r2. The maximum entropy prin-

ciple also leads to logical independence of ek in the residual

error vector e, which has been used to multiply the probabil-

ities for each data point according to the product rule. This

assignment is not the same as if the residual error is taken to

be Gaussian white. The maximum-entropy assignment of a

Gaussian likelihood function follows from the finite variance

of the error and the fact that no further information about the

residual errors is available.27

The notation Lðws; rÞ emphasizes that the finite error

variance r2 is unspecified when applying the maximum en-

tropy principle. In the parameter estimation problem, the

variance r2 is a nuisance parameter, being necessary for the

probability assignment, but of no interest for the relevant pa-

rameter values. The integral over all possible values of r by

assigning a Jeffreys prior25 is another important tool within

the Bayesian framework, termed marginalization. The mar-

ginalization results in14

LðwsÞ ¼ C
K

2

� �
ð2pEÞ�K=2

2
; (11)

where Cð�Þ is the gamma function.

Probability pðwsjD; sÞ on the left-hand side of Eq. (6) is

the posterior probability of the parameters ws, representing

the updated knowledge about the parameters once the data

become available. The integral over the entire parameter

space results inð
ws

pðwsjD; sÞ dws ¼ 1: (12)

An integration over the entire parameter space on both sides

of Eq. (6), along with Eq. (8) yields

pðDjsÞ ¼ Zs ¼
ð

ws

LðwsÞpðwsÞ dws; (13)

where pðwsÞ ¼ pðwsjsÞ for simplicity. Quantity pðDjsÞ in the

denominator on the right-hand side of Eq. (6), now defined

by Eq. (13), is exactly the same as the marginal likelihood in

Eq. (3) and plays a central role in model selection. Equation

(6) can then be expressed as

pðwsjD; sÞ
posterior|fflffl{zfflffl}

� Zs

evidence
zfflffl}|fflffl{ ¼ pðwsÞ

prior|{z}
� LðwsÞ

likelihood
zfflfflffl}|fflfflffl{ : (14)

The quantity Zs ¼ pðDjsÞ is known as the evidence for

model Hs in the context of Bayesian model selection.22 The

logarithm of the evidence logðZsÞ is often presented in the

context of Bayes factors as discussed in Sec. III A. Equation

(14) states the logical relations among the quantities of the

Bayesian inference: Prior probability pðwsÞ and the likeli-

hood function LðwsÞ are the inputs, while the posterior prob-

ability distribution pðwsjD; sÞ and the evidence Zs are the

outputs of the Bayesian inference.17

IV. SIMPLE FUNCTIONS AND NESTED SAMPLING

Nested sampling, proposed by Skilling,17 provides an

algorithm for estimating the evidence Zs in addition to deter-

mining the decay parameter estimates, thus solving the two

levels of Bayesian inference.

Evaluating the evidence Zs by numerical integration can

be problematic due to difficulty in determining an efficient

partition of the (typically multi-dimensional) model parame-

ter space. A uniformly fine partition of the parameter space

will be required unless the location, shape, and size of the

posterior probability distribution is known a priori. Monte

Carlo integration methods such as importance sampling28

remove the need to define a uniform partition of the parame-

ter space and instead rely on defining sampling distributions

which, in effect, partition the parameter space in an efficient

way. The difficulty with these methods is in defining appro-

priate sampling distributions which can be especially

challenging for high dimensional posterior probability dis-

tributions. Annealing methods such as thermodynamic
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integration29 and annealed importance sampling30 use the

form of the posterior probability distribution itself to define

sampling distributions. The difficulty with annealing meth-

ods is defining an efficient temperature schedule. Nested

sampling avoids annealing and instead focuses on partition-

ing of the range of the likelihood function. Partitioning the

range as opposed to the domain of a function in order to

determine the integral is well established in the mathemati-

cal literature through the theory of Lebesgue integration.31

Interpreting nested sampling as a statistical approximation of

a Lebesgue integral as done by Jasa and Xiang12 opens the

possibility of a large body of existing research to be applied

in the analysis and possible extension of the algorithm.

A. Simple functions and Lebesgue integration

A starting point of the Lebesgue integral is to define the

integral for simple functions which take on only a finite num-

ber of values over the domain and approximate the integral

for the distribution by a limit of such integrals.31 An ordered

partition of the range of the likelihood function LðwsÞ,

0 ¼ L0 < � � � < Ln; (15)

defines the sequence of nested sets

1 � Xn � � � � � X0 ¼ X; (16)

where

Xi ¼ fwsjLðwsÞ > Lig; (17)

X ¼ fwsjLðwsÞ > 0g ¼ ws; (18)

1 ¼ the null set: (19)

Using the nested sets, Xn � � � � � X0 ¼ X, construct a

sequence of disjoint sets

A0;…;An; (20)

where

Ai ¼ Xi \ �Xiþ1 for 0 � i � n� 1

Xn for i ¼ n;

�
(21)

with �Xiþ1 denoting the complement of Xiþ1 [see Fig. 1(b)

where L(ws) is defined for a one-dimensional parameter

space ws]. The simple function SnðwsÞ is then defined by

SnðwsÞ ¼
Xn

i¼0

Li1Ai
ðwsÞ; (22)

where 1XðwsÞ is the indicator function for any set

1 � X � X

1XðwsÞ ¼
1 if ws 2 X
0 otherwise;

�
(23)

an example of which is shown in Fig. 1(a) where L(ws) is

defined for a one-dimensional parameter space ws.

Given the prior probability distribution pðwsÞ, the mea-

sure lðXiÞ, or probability P½Xi� of a set Xi is given by

lðXiÞ ¼ P½Xi� ¼
ð

Xi

pðwsÞdws; (24)

with

lðAiÞ ¼
lðXiÞ � lðXiþ1Þ if 0 � i � n� 1

lðXiÞ i ¼ n;

�
(25)

and

lðXÞ ¼ 1; (26)

lð1Þ ¼ 0 (27)

by the properties of measures.31 The integral of SnðwsÞ is

defined by the finite sumð
ws

SnðwsÞ dl ¼
Xn

i¼0

LilðAiÞ: (28)

The final step of the simple function approximation is to

quantify the relationship between

Xn

i¼0

LilðAiÞ (29)

and the Bayesian evidence

Zs ¼
ð

ws

LðwsÞpðwsÞ dws: (30)

If the size n of the ordered partition 0 ¼ L0 < � � � < Ln

increases such that SnðwsÞ converges to LðwsÞ in a point-

wise, monotonically increasing manner, the integral of the

simple function will converge to the evidence Zs in a monot-

onically increasing manner as is shown in Appendix A

FIG. 1. Construction of the simple function SnðwsÞ ¼ Rn
i¼1Li1Ai

ðwsÞ along

with sets X0;X1;X2, and A0;A1;A2 for the likelihood function LðwsÞ given

the ordered partition L0 < L1 < L2.
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(along with definitions for monotonic and point-wise mono-

tonic convergence) resulting in the approximation

Zs �
Xn

i¼0

LilðAiÞ: (31)

As the range of L(ws) is one-dimensional regardless of the

dimensionality of the parameter space ws, the computational

cost in Eq. (31) scales linearly in n assuming that l(Ai) is

known, which allows for fine partitions of the range of L(ws) to

be computationally tractable. This benefit is tempered by the

realization that exact determination of the measure lðAiÞ
requires the evaluation of an integral over a potentially high

dimensional parameter space ws. The utility of using the simple

function approximation to efficiently estimate the evidence Zs

will depend on the algorithm chosen to define 0¼ L0 < � � �<
Ln along with estimates of l(Ai). Nested sampling, presented in

Sec. IV B, is one such algorithm.

B. Nested sampling

The nested sampling algorithm is an iterative process

where the input at each iteration i is given by

(i) The prior probability distribution pðwsÞ,
(ii) likelihood Li, which defines the set Xi as given by

Eq. (17).

For each iteration:

(i) Generate r(i) independent random samples w1
s ;…;w

rðiÞ
s

from the constrained prior probability distribution

pC
Xi
ðwsÞ ¼ pðwsÞ � 1Xi

ðwsÞ: (32)

(ii) Create a list of samples w1
s ;…;w

ðrðiÞÞ
s , from

w1
s ;…;w

rðiÞ
s which are ordered by likelihood such that

Lð1Þ < � � �< LðrðiÞÞ, where LðiÞ ¼ LðwðiÞs Þ and vi
s ¼ w

ð1Þ
s .

The output of each iteration i consists of

(i) The likelihood Liþ1 ¼ Lð1Þ which defines the set

Xiþ1 ¼ Xð1Þ as given by Eq. (17),

(ii) sample vi
s ¼ w

ð1Þ
s , with w

ð1Þ
s being the sample with the

lowest likelihood value within iteration i.

An example of a nested sampling iteration is shown in Fig. 2.

Starting with L0 ¼ 0, the nested sampling algorithm

when iterated n times, will produce an ordered partition 0 ¼
L0 < � � � < Ln of L(ws). An important property of the nested

sampling algorithm is the ability to estimate the measures

lðXiÞ: as w1
s ,…,w

rðiÞ
s are randomly generated at every itera-

tion, the likelihood values Li, the sets Xi and measures lðXiÞ
produced by the Nested Sampling algorithm are random or

stochastic in nature, i.e., lðXnÞ,…,lðX0Þ are random varia-

bles. The joint probability density function for

lðXnÞ;…; lðX0Þ is given by

flðXnÞ;…;lðX0Þðln;…;l0Þ¼
Yn

j¼1

flðXjÞjlðXj�1ÞðljÞ
" #

flðX0Þðl0Þ;

(33)

with

flðXjÞjlðXj�1ÞðljÞ

¼
rðjÞ

lðXj�1Þ
lj

lðXj�1Þ

� �rðjÞ�1

if 0 � lj � lðXj�1Þ

0 otherwise;

8><
>:

(34)

as shown in Appendix B, and

flðX0Þðl0Þ ¼ dðl0 � 1Þ; (35)

which signifies that lðX0Þ ¼ lðXÞ ¼ 1.

C. Expected values and nested sampling

Using the probability density function

flðXnÞ;…;lðX0Þðln;…; l0Þ; (36)

one can calculate the expected value

hg½lðXnÞ;…; lðX0Þ�i ¼
ð

�l
gð�lÞflðXnÞ;…;lðX0Þð�lÞ d�l;

(37)

where gð•Þ is a function of the measures lðXnÞ;…; lðX0Þ
and �l ¼ ln;…; l0.

The expectation of Eq. (37) can be quantified by Monte

Carlo estimates

�g ¼ 1

m

Xm

j¼1

gð�ljÞ; (38)

and

varð�gÞ ¼ 1

m� 1

Xm

j¼1

ðgð�ljÞ � �gÞ2; (39)

where sample �lj is drawn from flðXnÞ;…;lðX0Þðln;…; l0Þ as

follows: Set l0 ¼ 1.

FIG. 2. Given the set Xi with associated likelihood Li, rðiÞ ¼ 2 samples

w
ð1Þ
s ,w

ð2Þ
s are generated from the constrained prior probability distribution

pC
Xi
ðwsÞ which are sorted by likelihood such that Li < Lð1Þ < Lð2Þ, where

LðjÞ ¼ LðwðjÞs Þ. The nested sampling algorithm assigns Liþ1 ¼ Lð1Þ;
Xiþ1 ¼ Xð1Þ.
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For 1 � k � n do

(i) Generate r(k) random numbers u1;…; urðkÞ from the

uniform distribution U½0; lk�1�.
(ii) Create an ordered list uð1Þ;…; uðrðkÞÞ from u1;…; urðkÞ.
(iii) Set lk ¼ uðrðkÞÞ.

end

Set �lj ¼ ðln;…; l0Þ.
The result in a stochastic estimate of the expectation

given by

hg½lðXnÞ;…; lðX0Þ�i � �g6
ffiffiffiffiffiffiffiffiffiffiffiffiffi
varð�gÞ

p
: (40)

An important special case of the expectation

hg½lðXnÞ;…; lðX0Þ�i is the evaluation of the evidence Zs. In

this case, one chooses

g½lðXnÞ;…;lðX0Þ� ¼
Xn�1

i¼0

Li� ½lðXiÞ � lðXiþ1Þ�

þ Ln� lðXnÞ (41)

¼
Xn

i¼0

Li � lðAiÞ (42)

Note that approximations of Zs using g½lðXnÞ;…; lðX0Þ�
[defined by Eq. (41)], and quantified by Monte Carlo esti-

mates [as in Eqs. (38) and (39)] are stochastic in nature, i.e.,

Zs

stochastic|fflfflffl{zfflfflffl}
�
Xn

i¼0

Li

deterministic
zfflfflfflfflffl}|fflfflfflfflffl{� lðAiÞ

stochastic|fflfflffl{zfflfflffl}
; (43)

examples of which will be given in Sec. VI. Other functions

gð•Þ can be defined for Bayesian parameter estimation,

examples of which will be given in Sec. V.

D. Determining the nested sampling parameters

The nested sampling algorithm requires the specification of

the number of nested sampling iterations n, as well as the num-

ber of samples r(i) drawn at every iteration i. Examining how

changes in n and r(i) influence the resulting ordered partition

0 ¼ L0 < � � � < Ln and distribution flðXnÞ;…;lðX0Þðln;…; l0Þ
is important in determining the utility of the nested sampling

algorithm in order to approximate the evidence Zs.

Increasing n alone does not result in a point-wise mono-

tonic convergence of SnðwsÞ to LðwsÞ. Thus n!1 alone is

not a sufficient condition for the nested sampling algorithm

to estimate the evidence Zs exactly [even assuming that

l(Ai) can be determined without error]. Letting rðiÞ ! 1
results in an exhaustive sampling of pC

Xi
ðwsÞ at each iteration

i, which in turn generates a dense ordered partition

0 ¼ L0 < � � � < Ln. Thus the combined conditions

rðiÞ ! 1, n!1, n>max[r(i)] will result in the nested

sampling algorithm defining SnðwsÞ which has point-wise

monotonic convergence to LðwsÞ.
Consider the approximate value for the measure

log½lðXnÞ� � �
Xn�1

i¼0

1

rðiÞ6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn�1

i¼0

1

rðiÞ

� �2

vuut ; (44)

after n iterations of the nested sampling algorithm which is

derived in Appendix D. The relation

lim
rðiÞ!1

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn�1

i¼0

1

rðiÞ

� �2

vuut ¼ 0; (45)

implies that r(i)!1 results in an exact estimate for

log½lðXnÞ�, and as such r(i)!1, n!1; n > max½rðiÞ�
are sufficient conditions for the Nested Sampling algorithm

to produce an exact estimate of the evidence Zs. A drawback

of increasing r(i) is that

lim
rðiÞ!1

log½lðXiÞ� � lim
rðiÞ!1

�
Xn�1

i¼0

1

rðiÞ ¼ 0; (46)

which implies that

lðXnÞ � 1 ¼ lðX0Þ: (47)

Thus large values for r(i) result in a slow reduction in the

volume or measure of the parameter space at each iteration,

with a trade off of increasing accuracy in assigning the meas-

ures lðXnÞ. As discussed in Sec. IV, typical likelihood func-

tions are concentrated in small volumes or measures of the

parameter space. An optimal choice for r(i) will result in a

fast reduction in the measure of the parameter space at each

iteration i which quickly isolates the dominant region of the

likelihood function in addition to constructing a sufficiently

dense ordered partition 0 ¼ L0 < � � � < Ln, which will esti-

mate the evidence Zs to a required degree of accuracy. The

ability to use small values for r(i) in practice results in nested

sampling being a viable algorithm useful for estimating the

evidence Zs as will be shown in Sec. VI.

Given Eq. (44) and assuming that r(i) have been deter-

mined for 0� i� n, a robust stopping criteria would be to

choose a value of n for a fixed log(d) such that

�
Xn�1

i¼0

1

rðiÞ < logðdÞ; (48)

where 0< d< 1 would represent an upper bound on the

remaining measure or volume of the parameter space which

to explore. One would then perform m additional iterations

until

Lnþm � lðXnþmÞ < �; (49)

for a fixed value of �. This combined stopping criteria will

be less susceptible to errors due to plateaus in the likelihood

function as a predefined measure or volume of the parameter

space is always explored, although as with any numerical

algorithm choosing an optimal stopping criteria will likely

be problem-specific.

E. Implementation details

Efficiently generating samples w1
s ;…;w

rðiÞ
s from

pC
Xi
ðwsÞ is key to implementing the nested sampling
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algorithm. The presence of high dimensional parameter

spaces ws in many acoustics applications suggests that a

Markov Chain Monte Carlo (MCMC) approach to generate

the samples would be the best candidate. Choosing an appro-

priate proposal distribution is crucial to efficient sampling

with MCMC. As the volume logðlðXiÞÞ is reduced by an ap-

proximate factor of �1/r(i) with each iteration i of the nested

sampling algorithm, using a fixed MCMC proposal distribu-

tion for all iterations will likely prove inefficient. A heuristic

approach which scales the log-volume of MCMC proposal

distribution by a factor of �1/r(i) at each iteration i will

potentially improve MCMC sampling efficiency. The slice

sampling MCMC algorithm14,32 which has the ability to

automatically tune a proposal distribution in order to correct

for cases where scaling may lead to inefficient sampling,

seems particularly suited for nested sampling.12 Any MCMC

approach used will be problematic in that the samples

w1
s ;…;w

rðiÞ
s generated will be dependent (although the de-

pendence between samples can be minimized by choosing

samples which are uncorrelated). As the proofs in the

Appendixes rely on independent samples w1
s ;…;w

rðiÞ
s using

a MCMC approach violates the assumptions at the heart of

the nested sampling algorithm. While MCMC sampling (and

slice sampling, in particular) cannot generate the required in-

dependent samples w1
s ;…;w

rðiÞ
s , it is likely to be the only

feasible approach in higher dimensional parameter spaces

ws. As such, the samples generated from a MCMC approach

are used as if they were independent.

V. PARAMETER ESTIMATION BY NESTED SAMPLING

Parameter estimates can be determined through the

moments of the posterior distribution, which can be defined

by the expected values

hhðwsÞi ¼

ð
ws

hðwsÞLðwsÞpðwsÞ dwsð
ws

LðwsÞpðwsÞ dws

: (50)

Given samples fv0
s ;…; vn

sg generated by the nested sampling

algorithm, let hi ¼ hðvi
sÞ. Define the function

g½lðXnÞ;…; lðX0Þ�

¼

Xn

i¼0

hiLilðAiÞ

Xn

i¼0

LilðAiÞ

(51)

¼

Pn�1

i¼0

hiLi½lðXiÞ � lðXiþ1Þ� þ hnLnðXnÞ

Pn�1

i¼0

Li½lðXiÞ � lðXiþ1Þ� þ LnlðXnÞ
: (52)

As in the case of the simple function approximation to the

evidence Zs one has

g½lðXnÞ;…; lðX0Þ� � hhðwsÞi (53)

(by a simple change in the proof given in Appendix A), from

which it follows that g½lðXnÞ;…; lðX0Þ� and the nested sam-

ples fv0
s ;…; vn

sg can provide an estimate of hhðwsÞi, and

solve the Bayesian parameter estimation problem. Important

examples of g½lðXnÞ;…; lðX0Þ� include defining estimates

of the mean values of the kth parameter ŵk
s using

hi ¼ hðvi
sÞ ¼ �ik

s ; (54)

and defining estimates of the jth row, kth column of the co-

variance matrix hĈi ¼ hĈjki using

hi ¼ hðvi
sÞ ¼ ðvrj

s � ŵj
sÞðvr k

s � ŵk
sÞ: (55)

As discussed in Sec. IV C, parameter estimates will be sto-

chastic in nature and can be qualified by Monte Carlo

approximations given by Eqs. (38) and (39). Given a covari-

ance matrix, the individual variance r2
j and the standard

deviations rj of the jth decay parameter can be determined

by calculating eigenvalues of the co-variance matrix hĈi as

discussed in Ref. 20. The inter-relationship between decay

parameters is measured by the cross-correlation coefficient

cccðj; kÞ ¼ Ĉjk=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ĈjjĈkk

q
: (56)

VI. EXPERIMENTAL RESULTS

This section presents an experimental example which is

carried out in a one-eighth scale model of two coupled

acoustic spaces in order to illustrate the application of the

nested sampling algorithm in acoustical measurements.

When given in the original scale, the primary room which

contains a dodecahedral sound source measures 7.2 m

� 6.32 m� 4.88 m, while the secondary room measures

7.2 m� 9.76 m� 7.6 m. An aperture (opening area) with size

of 7.2 m� 0.6 m couples the primary room with the second-

ary room. The interior surfaces of two rooms are treated to

feature diffuse reflections. The measurement of the room

impulse response in the primary room is accomplished using

maximum-length sequences where the measured data is

bandpass filtered at 1 kHz (octave band).

Prior to any acoustic measurements, little prior informa-

tion is available to determine whether the energy decay func-

tion D in this frequency band supports a single-slope model

or a multiple-slope model. The prior information is such that

the energy decays in closed/separated rooms (single-space

cases) should be well characterized by a single (natural)

reverberation time for each room, respectively, since most

interior surfaces are featured with highly diffusively reflect-

ing materials to create diffuse sound fields. In each of the

separated rooms, the sound energy decays are most likely

expected to exhibit single-rate decay characteristics. When

the separated rooms are coupled to each other by the aper-

ture, one would not expect that the number of decay slopes

would be greater than three. At this stage, there is no prior

information as to what decay rates are present. This specific

data analysis task exemplifies a typical application of both

the first level and the second level of Bayesian inference:
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Which of the expected three models, the single-slope, the

double-slope, or the triple-slope decay model do the data

support? At this inference level, values of the decay rates are

not of interest at all until the specific model is identified. To

highlight the competing nature of the expected decay mod-

els, Fig. 3 illustrates the normalized Schroeder decay curves

via an experimentally measured room impulse response

using the scale-model coupled-rooms. Both the second order

(s¼ 2) and the third order (s¼ 3) decay models seem to

describe the experimental data well, where the third decay

order model seems to improve the curve-fitting slightly.

The nested sampling algorithm was applied to the exper-

imental data using the first (s¼ 1), second (s¼ 2), and third

(s¼ 3) order decay models. The prior distribution used for

each model is given in Table I with the algorithm parameters

r(i)¼ 8 and 293 iterations for all three models. The results of

the nested sampling algorithm applied to the second order

decay (s¼ 2) model are used for illustrative purposes.

From Eq. (48) it was determined that 293 iterations of the

nested sampling algorithm would reduce the volume of the

unexplored parameter space of the posterior probability den-

sity function by a factor of 1 � 10�15 which was deemed

adequate based on prior experience with energy decay distri-

butions. Figure 4(a) shows the log likelihood log(Li) for each

iteration i of the nested sampling algorithm. The log(Li) val-

ues in Fig. 4(a) climb from ca. �1240 neper at the i¼ 1st iter-

ation of the algorithm up to ca. 1500 neper at the i¼ 125th

iteration, at which point log(Li) remains relatively constant, as

is shown in Fig. 4(b). Two hundred samples ð�l1;…; �l200Þ
were generated from the probability density function

flðXnÞ;…;lðX0Þðln;…; l0Þ (57)

following the procedure described in Sec. IV C. Each sample

�lt for 1 � t � 200 represents a sequence of measures

½lðX0Þ;…; lðX293Þ�; (58)

given 293 iterations of the nested sampling algorithm (as an

example, samples �l10 and �l25 are shown as a plot of

log½lðXiÞ� for each iteration i in Fig. 5). The function

g½lðXnÞ;…; lðX0Þ� ¼
X292

i¼0

Li � ½lðXiÞ � lðXiþ1Þ�

þ L293 � lðX293Þ (59)

was calculated for each sample �lt using the Li values. The

collected set of g½lðXnÞ;…; lðX0Þ� values for the samples �lt

are plotted in a histogram, shown in Fig. 6(c), and represent a

Monte Carlo approximation of the pair distribution function

for the nested sampling estimate of logðZsÞ. The estimate of

logðZsÞ was quantified by Monte Carlo approximations given

FIG. 3. (Color online) Experimentally measured Schroeder decay curves

compared with the double-slope and triple-slope decay model curves, along

with decomposed exponential decay-slopes, the noise term, and turning

points. (a) Comparison with the double-slope decay model. (b) Comparison

with the triple-slope decay model.

TABLE I. Uniform prior parameters for three different decay models.

Model A0 A1 T1 (s) A2 T2 (s) A3 T3 (s)

1st order Min 1E - 7 0.01 0.1 — — — —

Max 1E - 5 0.1 1.0 — — — —

2nd order Min 1E - 7 0.01 0.1 0.001 0.4 — —

Max 1E - 5 0.1 1.0 0.05 2.5 — —

3rd order Min 1E - 7 0.01 0.1 0.001 0.4 0.0001 0.6

Max 1E - 5 0.1 1.0 0.05 2.5 0.005 3.5

FIG. 4. (Color online) Log likelihood logðLiÞ values increasing with itera-

tion i using a double slope (s¼ 2) decay model defined using experimentally

measured data as described in Sec. VI. (a) Entire course of logðLiÞ for itera-

tions 1 � i � 293. (b) Magnified segment of logðLiÞ between iterations

125 � i � 293.
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by Eqs. (38) and (39) with a mean value of 1475.5 neper and

variance 2.55 neper, also shown in Fig. 6(c).

The procedure described in the previous paragraph was

applied to the first order (s¼ 1) and third order (s¼ 3) decay

models using the parameters given in Tables I. The resulting

histograms representing estimates of logðZsÞ of each model

are superimposed in Fig. 6(a) and shown individually in

Figs. 6(b)–6(d). Figure 6(a) shows a sufficient separation in

the histograms to assume that the nested sampling algorithm

was successful in discriminating between the three models.

The mean value of logðZsÞ estimate for the second order

(s¼ 2) decay model is approximately 25 neper higher than

that of the single order (s¼ 1) model. When increasing the

decay order to three (s¼ 3), the mean value of the logðZsÞ
estimate declines significantly to a value of approximately

925 neper. Occam’s razor, implicitly encapsulated in the

Bayesian evidence has successfully penalized the over-

parameterized third order (s¼ 3) decay model. After ranking

the three decay models, the second-slope model survives

from the competing alternatives. The decay parameters and

covariance matrix given the second order (s¼ 2) model were

then estimated using Eqs. (54) and (55). The mean values of

the parameter and covariance matrix estimates were deter-

mined by Monte Carlo approximation given by Eq. (38).

The error bars for parameter estimates were calculated from

the estimated covariance matrix. The parameter estimates

and error bars for the second order (s¼ 2) model are shown

in Table II.

VII. SUMMARY AND FUTURE WORK

This paper has demonstrated that the nested sampling algo-

rithm can successfully discriminate the number of energy

decays present in acoustically coupled spaces within the Bayes-

ian framework. Estimating the number of energy decays is an

example of two levels of Bayesian inference often encountered

in the architectural acoustics practice: decay order estimation,

being a model selection problem corresponding to the higher

(2nd) level of inference, and decay parameter estimation, being

parameter estimation problem corresponding to the 1st level of

inference. The brief formulation of the two levels of Bayesian

inference following a top-down approach (from the higher level

to the lower level) is presented in Sec. III which discusses the

importance of the Bayesian evidence Zs.

This paper presents the basics of the Lebesgue integral

in Sec. IV A through the simple function approximation and

then demonstrates how the simple function approximation

can define a numerical algorithm which can be used in order

to evaluate the Bayesian evidence Zs. Separating the concept

of the simple function approximation from the nested sam-

pling algorithm allows for an alternative view toward under-

standing the theoretical basis of the nested sampling

algorithm which may allow acousticians to apply or extend

the algorithm to other problem domains.

A topic of future research is to explore alternative meth-

ods to nested sampling which have been developed in order

to estimate measures or volumes of sets (see Dyer et al.,33

for example) which could be used with the simple function

approximation described in Sec. IV A.

The experimental example demonstrates the function of

Occam’s razor within the Bayesian framework by penalizing

the over-parameterized (three-slope) model while choosing the

FIG. 5. (Color online) log½lðXiÞ� values for samples �l10 and �l25 decreasing

with iteration i calculated for a double slope (s¼ 2) decay model defined

using experimentally measured data as described in Sec. VI. Each sample

�l10 and �l25 represents a sequence of measures ½lðX0Þ;…; lðX293Þ� for the

293 iterations of the nested sampling algorithm.

FIG. 6. Superimposed histograms of estimates for logðZsÞ each generated

from 200 samples �lt applied to the single-slope (s¼ 1), double-slope

(s¼ 2), and triple-slope (s¼ 3) decay model evaluated from an acoustically

measured Schroeder decay function in a coupled-volume system described

in Sec. VI.

TABLE II. Mean values for decay parameter estimates and error bars for

the double slope (s¼ 2) model evaluated from an acoustically measured

Schroeder decay function in a coupled-volume system described in Sec. VI.

Double-slope parameters

A0(dB) �62.01

A1(dB) �5.15 (61.9E - 4)a

T1(s) 0.369 (62.1E - 4)

A2(dB) �14.91 (61.1E - 4)a

T2(s) 0.947 (62.9E - 3)

adA1,dA2: listed linearly.
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second order model over the simpler first order model. While

evaluating the Bayesian evidence Zs, the nested samples are

all stored in memory, and a straightforward calculation allows

for these samples to be used for decay parameter estimation.

An important open problem of the nested sampling algo-

rithm is how to choose values of r(i). The experimental

example in Sec. VI used a fixed value for r(i) for all itera-

tions which is likely to be a non-optimal approach. The

authors believe that choosing r(i) optimally will not be a

simple task. Similar to many numerical algorithms, the

selection of r(i) involves a tradeoff between computational

efficiency and accuracy of the algorithm as discussed in Sec.

IV E. In order to reduce the amount of user tuning required,

an adaptive approach to choosing r(i) is one possible area of

future research.
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APPENDIX A: SIMPLE FUNCTION AND LEBESGUE
INTEGRATION

For completeness this appendix outlines the concept of

the simple function and Lebesgue integration, interested

readers are refereed to the text by Dudley31 for detailed

explanations of the notation and terminology used.

Definition: Given a sequence an : N! R and b 2 R. If

limn!1 an ¼ b and an � b for all n, then an converges to b
in a monotonic manner denoted by an " b.

Definition: Given a simple function Sn : Rm ! R and

f : Rm ! R. If limn!1 SnðxÞ ¼ f ðxÞ for all x, and SnðxÞ
� f ðxÞ for all x and n, then SnðxÞ converges to f(x) in a

point-wise monotonic manner denoted by SnðxÞ " f ðxÞ.
Theorem 1: Given ðRn;B; lÞ, where B are Borel sets,

and l a measure. Let f : Rn ! R be a measurable function
such that f ðxÞ 	 0. For any sequence of measurable func-
tions fn : Rn ! R such that f ðxÞ 	 0 and fnðxÞ " f ðxÞ one
has

Ð
fnðxÞ dl "

Ð
fnðxÞ dl.

Proof: See Ref. 31. �

Theorem 2: Given ðRn;BÞ, dx, where B are Borrel sets,
and dx a Lebesgue measure. Let p : Rn ! R be a measura-
ble function such that pðxÞ 	 0 and define lðXÞ
¼
Ð

1XðxÞpðxÞ dx for X � B. For any measurable function
L : Rn ! R such that LðxÞ 	 0, and a sequence of simple
functions SnðxÞ such that 0 � SnðxÞ " LðxÞ one hasÐ

SnðxÞ dl "
Ð

LðxÞpðxÞ dx.

Proof:

ð
SnðxÞ dl ¼

Xn

i¼0

LilðAiÞ ¼
Xn

i¼0

Li

ð
1Ai
ðxÞpðxÞ dx

(A1)

¼
ð 	Xn

i¼0

Li1Ai
ðxÞ



pðxÞ dx (A2)

¼
ð

SnðxÞpðxÞ dx: (A3)

Now

SnðxÞ " LðxÞ ) SnðxÞpðxÞ " LðxÞpðxÞ: (A4)

Thus, by Theorem 1ð
SnðxÞ dl ¼

ð
SnðxÞpðxÞ dx "

ð
LðxÞpðxÞ dx; (A5)

which implies

Xn

i¼0

LilðAiÞ "
ð

LðxÞpðxÞ dx: (A6)

�

APPENDIX B: NESTED SAMPLING AND MEASURES
OF SETS

Consider the set Xi ¼ fwsjLðwsÞ > Lig as shown in 7(a)

with measure li ¼ lðXiÞ. Define a function l: L(ws)! [0,1]

with l(Li)¼ lðXiÞ as shown in Fig. 7(b). A random sample

w1
s generated from pC

Xi
ðwsÞ defines the random variables

L1 ¼ Lðw1
s Þ and l1 ¼ lðL1Þ as shown in Figs. 7(c) and 7(d).

The cumulative density function for the measure l1 is given

by

Fl1jli
ðaÞ ¼ P½l1 � ajl1 � li� (B1)

FIG. 7. Given the set Xi, the associated likelihood Li and measure lðXiÞ are

shown in (a). Generate a sample w1
s from the constrained prior probability

distribution pC
Xi
ðwsÞ as shown in (b). From sample w1

s with the associated

likelihood value L1, one has L1 	 Li;X1 � Xi, and lðX1Þ < lðXiÞ as shown

in (b). The shaded region on the horizontal axis defines values for which

lðX1Þ � a along with a corresponding shaded region on the horizontal axis

which defines values for which L1 	 l�1ðaÞ.
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¼

0 if a < 0

P½l1 � a�
P½l1 � li�

if 0 � a � li

1 if a > li;

8>><
>>: (B2)

where P½A� denotes the probability of the event A. As l(�) is

a monotonically decreasing function, the inverse function

l�1(�) is well defined which results in

P½l1 � a�
P½l1 � li�

¼ P½L1 > l�1ðaÞ�
P½L1 > Li�

; (B3)

as shown in Fig. 7(d). Given

P½L1 > l�1ðaÞ� ¼ l�1ðlðaÞÞ ¼ a; (B4)

P½L1 > Li� ¼ li; (B5)

the cumulative density function and probability density func-

tions are given by

Fl1jli
ðaÞ ¼

0 if a < 0
a

li

if 0 � a � li

1 if a > li;

8>><
>>: (B6)

Fl1jli
ðaÞ ¼

1

li

if 0 � a � li

0 otherwise;

8<
: (B7)

which implies that l1 is (by definition) a uniformly distrib-

uted random variable U[0, li]. Thus generating a sample w1
s

from pC
Xi
ðwsÞ is equivalent to generating a sample l1 from

the uniform distribution U[0, li].

Let w1
s ,…,w

rðiÞ
s be a set of independent samples ran-

domly generated pC
Xi
ðwsÞ, which define independent random

variables l1¼lðX1Þ;…; lrðiÞ ¼ lðXrðiÞÞ generated from the

uniform distribution U[0, li]. Define an ordered list

lðrðiÞÞ < � � � < lð1Þfrom the set l1;…; lrðiÞ. The random vari-

able lð1Þ is an order statistic34 with probability density

function

flð1Þjli
ðaÞ ¼ rðiÞfl1jli

ðaÞ½Fl1jli
ðaÞ�rðiÞ�1: (B8)

Substituting Eqs. (B6) and (B7) into Eq. (B8) results in

flð1Þjli
ðaÞ ¼

rðiÞ
li

a

li

� �rðiÞ�1

if 0 � a � li

0 otherwise;

8><
>: (B9)

with

hlogðlð1ÞjliÞi ¼ logðliÞ �
1

rðiÞ ; (B10)

varflogðlð1ÞÞjlig ¼ logðliÞ þ
1

rðiÞ

� �2

: (B11)

APPENDIX C: VOLUME REDUCTION FACTOR

The reduction in the volume of the parameter space X
after n iterations of nested sampling is given by a factor of

lðXnÞ ¼
Yn�1

i¼0

lðXiþ1Þ
lðXiÞ

; (C1)

or

log½lðXnÞ� ¼
Xn�1

i¼0

log½lðXiþ1Þ� � log½lðXiÞ�: (C2)

From Eqs. (B10) and (B11) in Appendix B,

hlog½lðXnÞ�i ¼ �
Xn�1

i¼0

1

rðiÞ (C3)

and

var log½lðXnÞ�f g ¼
Xn�1

i¼0

1

rðiÞ

� �2

: (C4)

Using Eqs. (C3) and (C4), the probability density func-

tion of log½lðXnÞ� can be approximated (using a form of the

Lindeberg central limit theory) by the normal density

N �
Xn�1

i¼0

1

rðiÞ ;
Xn�1

i¼0

1

rðiÞ

� �2

8<
:

9=
;: (C5)

which results in

log½lðXnÞ� � �
Xn�1

i¼0

1

rðiÞ6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn�1

i¼0

1

rðiÞ

� �2

:

vuuut (C6)
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