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1 Introduction

Labelled transition systems (LTSs) [23] are a fundamental model of concurrent
computation, which is widely used in light of its flexibility and applicability. In
particular, they are the prime model underlying Plotkin’s Structural Operational
Semantics [30] and, following Milner’s pioneering work on CCS [25], are by now
the standard semantic model for various process description languages.

LTSs model processes by explicitly describing their states and their transitions from
state to state, together with the actions that produced them. Since this view of pro-
cess behaviours is very detailed, several notions of behavioural equivalence and
preorder have been proposed for LTSs. The aim of such behavioural semantics is to
identify those (states of) LTSs that afford the same “observations”, in some appro-
priate technical sense. The lack of consensus on what constitutes an appropriate no-
tion of observable behaviour for reactive systems has led to a large number of pro-
posals for behavioural equivalences for concurrent processes. (See the study [14],
where van Glabbeek presents the linear time-branching time spectrum—a lattice of
known behavioural equivalences and preorders over LTSs, ordered by inclusion.)

One of the criteria that has been put forward for studying the mathematical tractabil-
ity of the behavioural equivalences in the linear time-branching time spectrum is
that they afford elegant, finite equational axiomatizations over fragments of pro-
cess algebraic languages. Equationally based proof systems play an important role
in both the practice and the theory of process algebras. From the point of view of
practice, these proof systems can be used to perform system verifications in a purely
syntactic way, and form the basis of axiomatic verification tools like, e.g., PAM
[24]. From the theoretical point of view, complete axiomatizations of behavioural
equivalences capture the essence of different notions of semantics for processes in
terms of a basic collection of identities, and this often allows one to compare se-
mantics which may have been defined in very different styles and frameworks. A
review of existing complete equational axiomatizations for many of the behavioural
semantics in van Glabbeek’s spectrum is offered in [14]. The equational axiomati-
zations offeredibidemare over the language BCCSP, a common fragment of Mil-
ner’s CCS [25] and Hoare’s CSP [20] suitable for describing finite synchronization
trees, and characterize the differences between behavioural semantics in terms of a
few revealing axioms.

The main omissions in this menagerie of equational axiomatizations for the be-
havioural semantics in van Glabbeek’s spectrum are axiomatizations for 2-nested
simulation semantics and possible futures semantics. The relation of 2-nested sim-
ulation was introduced by Groote and Vaandrager [17] as the coarsest equivalence
included in completed trace equivalence for which the tyft/tyxt format is a con-
gruence format. It thus characterizes the distinctions amongst processes that can
be made by observing their termination behaviour in program contexts that can be
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built using a wide array of operators. (The interested reader is referred toop. cit. for
motivation and the basic theory of 2-nested simulation.) 2-nested simulation can be
decided over finite LTSs in time that is quadratic in their number of transitions
[34], and can be characterized by a single parameterized modal logic formula [26].
However, no equational axiomatization for it has ever been proposed, even for the
language BCCSP. Possible futures semantics, on the other hand, was proposed by
Rounds and Brookes in [32] as far back as 1981, and it affords an elegant modal
characterization in terms of a subset of Hennessy-Milner logic—in fact, since pos-
sible futures equivalence (respectively, preorder) coincides with the2-nested trace
equivalence (resp. the2-nested trace preorder), the modal characterization of pos-
sible futures equivalence is a consequence of a more general, classic result due to
Hennessy and Milner (see [18, Theorem 2.2 and page 148]) that will find appli-
cation in the technical developments of this paper. As shown by Kannellakis and
Smolka in [22], the problem of deciding possible futures equivalence and all of the
othern-nested trace equivalences (n ≥ 1) from [18] over finite state processes is
PSPACE-complete.

In this paper, we offer, amongst other results, a mathematical justification for the
lack of an equational axiomatization for the 2-nested simulation and possible fu-
tures equivalence and preorder even for the language of finite synchronization trees.
More precisely, we show that none of these behavioural relations admits a finite
(in)equational axiomatization over the language BCCSP. These negative results
hold in a very strong form. Indeed, we prove that no finite collection of inequa-
tions that are sound with respect to the 2-nested simulation preorder can prove all
of the inequalities of the form

a2mv a2m + am (m ≥ 0) ,

which are sound with respect to the 2-nested simulation preorder. Similarly, we
establish a result to the effect that no finite collection of (in)equations that are sound
with respect to the possible futures preorder or equivalence can be used to derive
all of the sound inequalities of the form

a(am + a2m) + aa3mv aa2m + a(am + a3m) (m ≥ 0) .

We then generalize these negative results to show that none of then-nested sim-
ulation or trace preorders and equivalences from [17,18] (forn ≥ 2) afford finite
equational axiomatizations over the language BCCSP.

The import of these results is not only that the equational theory of then-nested
simulation and trace semantics is not finitely equationally axiomatizable, forn ≥ 2,
but neither is the collection of (in)equivalences that hold between BCCSP terms
over one action and without occurrences of variables. This state of affairs should
be contrasted with the elegant equational axiomatizations over BCCSP for most
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of the other behavioural equivalences in the linear time-branching time spectrum
that are reviewed by van Glabbeek in [14]. Only in the case of additional, more
complex operators, such as iteration or parallel composition, or in the presence of
infinite sets of actions, are these equivalences known to lack a finite equational
axiomatization; see, e.g., [3,8,11,13,31,33]. Of special relevance for concurrency
theory are Moller’s results to the effect that the process algebras CCS and ACP
without the auxiliary left merge operator from [6] do not have a finite equational
axiomatization modulo bisimulation equivalence [27,28]. Fokkink and Luttik have
shown in [12] that the process algebra PA [7], which contains a parallel composi-
tion operator based on pure interleaving without communication and the left merge
operator, affords anω-complete axiomatization that is finite if so is the underlying
set of actions. Aceto,́Esik and Inǵolfsdóttir [2] proved that there is no finite equa-
tional axiomatization that isω-complete for the max-plus algebra of the natural
numbers, a result whose process algebraic implications are discussed in [1].

As shown in [17,18], the intersection of all of then-nested simulation or trace
equivalences or preorders over image-finite labelled transition systems, and there-
fore over the language BCCSP, is bisimulation equivalence. Hennessy and Mil-
ner proved in [18] that bisimulation equivalence is axiomatized over the language
BCCSP by the four equations in Table 2. Thus, in light of the aforementioned
negative results, this fundamental behavioural equivalence, albeit finitely based
over BCCSP, is the intersection of sequences of relations that do not afford fi-
nite equational axiomatizations themselves. This observation begs the question of
whether bisimulation equivalence over BCCSP is the limit of some sequence of
finitely based behavioural equivalences that have been presented in the literature. In
op. cit. Hennessy and Milner introduced an alternative sequence of relations that ap-
proximate bisimulation equivalence. These relations are based on a “bisimulation-
like” matching of thesingle stepsthat processes may perform, whereas then-nested
trace equivalences require matchings of arbitrarily longsequences of steps. We
prove in this study that, unlike then-nested trace equivalences, these single-step
based approximations of bisimulation equivalence are all finitely axiomatizable
over the language BCCSP, provided that the set of actions is finite.

The paper is organized as follows. We begin by presenting preliminaries on the lan-
guage BCCSP, (in)equational logic, and the notions of behavioural equivalence and
preorder studied in this paper (Sect. 2). Our main results on the non-existence of
finite (in)equational axiomatizations for then-nested simulation and trace equiv-
alence and preorder (forn ≥ 2) are the topic of Sects. 3–5. In Sect. 3 we prove
that the 2-nested simulation preorder has no finite inequational axiomatization over
the language BCCSP. Sect. 4 presents a non-finite axiomatizability result for the
possible futures preorder and equivalence. We then offer a general result to the ef-
fect that all of the othern-nested semantics considered in this study have no finite
(in)equational axiomatization (Sect. 5). The paper concludes with our proof of fi-
nite axiomatizability for the alternative approximations of bisimulation equivalence
introduced by Hennessy and Milner in [18] (Sect. 6).
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The work reported in this paper extends and improves upon the results presented
in [4], where it was shown that 2-nested simulation semantics and the 3-nested
simulation preorder are not finitely based over the language BCCSP. The afore-
mentioned paper also offered conditional axiomatizations for the nested simulation
semantics. Since we have been unable to obtain similar results for the nested trace
semantics, we have decided to omit those conditional axiomatizations from this
presentation.

2 Preliminaries

We begin by introducing the basic definitions and results on which the technical
developments to follow are based.

2.1 The language BCCSP

The process algebra BCCSP is a basic formalism to express finite process be-
haviour. Its syntax consists of (process) terms that are constructed from a count-
ably infinite set of (process) variables (with typical elementsx, y, z), a constant0,
a binary operator+ calledalternative composition, and unaryprefixingoperators
a, wherea ranges over some non-empty setA of atomic actions. We shall use the
meta-variablest, u, v to range over process terms, and writevar(t) for the collec-
tion of variables occurring in the termt.

A process term isclosedif it does not contain any variables. Closed terms will be
typically denoted byp, q, r. Intuitively, closed terms represent completely specified
finite process behaviours, where0 does not exhibit any behaviour,p + q combines
the behaviours ofp andq by offering an initial choice as to whether to behave like
either of these two terms, andap can execute actiona to transform intop. This
intuition for the operators of BCCSP is captured, in the style of Plotkin [30], by the
transition rules in Table 1. These transition rules give rise to transitions between
process terms. The operational semantics for BCCSP is thus given by the labelled
transition system [23] whose states are terms, and whoseA-labelled transitions are
those that are provable using the rules in Table 1. Based on this labelled transition
system, we shall consider BCCSP terms modulo a range of behavioural equiva-
lences that will be introduced in Sect. 2.4.

A (closed) substitution is a mapping from process variables to (closed) BCCSP
terms. For every termt and (closed) substitutionσ, the (closed) term obtained by
replacing every occurrence of a variablex in t with the (closed) termσ(x) will be
writtenσ(t).
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Table 1
Transition rules for BCCSP

x
a−→ x′

x+ y
a−→ x′

y
a−→ y′

x+ y
a−→ y′

ax
a−→ x

In the remainder of this paper, we leta0 denote0, andam+1 denotea(am). Fol-
lowing standard practice in the literature on CCS and related languages, trailing0’s
will often be omitted from terms. Aterm over actiona is a BCCSP term that may
only contain occurrences of the prefixing operatora. (We shall restrict our attention
to these terms in the technical developments presented in Section 5.) For example,
the termam is over actiona, for eachm ≥ 0.

2.2 Inequational Logic

An axiom systemis a collection of inequationst v u over the language BCCSP. An
inequationp v q is derivable fromE, notationE ` p v q, if it can be proven from
the axioms inE using the rules of inequational logic (viz. reflexivity, transitivity,
substitution and closure under BCCSP contexts):

t v t
t v u u v v

t v v

t v u

σ(t) v σ(u)

t v u

at v au
(a ∈ A)

t v u

t+ r v u+ r

t v u

r + t v r + u
.

Without loss of generality one may assume that substitutions happen first in inequa-
tional proofs, i.e., that the third rule may only be used when(t v u) ∈ E. In this
caseσ(t) v σ(u) is called asubstitution instanceof an axiom inE.

Equational logicis like inequational logic, but with the extra rule of symmetry:

t v u

u v t
.

In equational logic, the formulat v u is normally writtent ≈ u. Without loss
of generality, one may assume that applications of symmetry happen first in equa-
tional proofs. Therefore we can see equational logic as a special case of inequa-
tional logic, namely by postulating that for each axiom inE also its symmetric
counterpart is present inE. In the remainder of this paper, we shall always tacitly
assume this property of equational axiom systems.

An example of an (equational) axiom system over the language BCCSP is given in
Table 2. As shown by Hennessy and Milner in [18], that axiom system is sound and
complete for bisimulation equivalence over the language BCCSP.
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Table 2
Axioms for BCCSP

A1 x+ y ≈ y + x

A2 (x+ y) + z ≈ x+ (y + z)

A3 x+ x ≈ x

A4 x+ 0 ≈ x

In the remainder of this paper, process terms are considered modulo associativity
and commutativity of +, and modulo absorption of0 summands. In other words,
we do not distinguisht + u andu + t, nor (t + u) + v andt + (u + v), nor t + 0
and t. This is justified because all of the behavioural equivalences we consider
satisfy axioms A1, A2 and A4 in Table 2. In what follows, the symbol= will
denote syntactic equality modulo axioms A1, A2 and A4. We use asummation∑
i∈{1,...,k} ti to denotet1 + · · · + tk, where the empty sum represents0. It is easy

to see that, modulo the equations A1, A2 and A4, every BCCSP termt has the
form

∑
i∈I xi +

∑
j∈J ajtj, for some finite index setsI, J , termsajtj (j ∈ J) and

variablesxi (i ∈ I). The termsajtj (j ∈ J) and variablesxi (i ∈ I) will be referred
to as thesummandsof t.

It is well-known (cf., e.g., Sect. 2 in [15]) that if an (in)equation relating two closed
terms can be proven from an axiom systemE, then there is a closed proof for it.

In the proofs of some of our main results, it will be convenient to use a different
formulation of the notion of provability of an (in)equation from a set of axioms.
This we now proceed to define for the sake of clarity.

A contextC[ ] is a closed BCCSP term with exactly one occurrence of a hole[ ]
in it. For every contextC[ ] and closed termp, we writeC[p] for the closed term
that results by placingp in the hole inC[ ]. It is not hard to see that an inequation
p v q is provable from an inequational axiom systemE iff there is a sequence
p1 v · · · v pk (k ≥ 1) such that

• p = p1,
• q = pk and
• pi = C[σ(t)] v C[σ(u)] = pi+1 for some closed substitutionσ, contextC[ ] and

pair of termst, u with t v u an axiom inE (1 ≤ i < k).

In what follows, we shall refer to sequences of the formp1 v · · · v pk asinequa-
tional derivations.

For later use, note that, using axioms A1, A2 and A4 in Table 2, every context can
be proven equal either to one of the formC[b([ ] + p)] or to one of the form[ ] + p,

7



for some actionb and closed BCCSP termp.

2.3 Traces of BCCSP Terms

The transition relations a−→ (a ∈ A) naturally compose to determine the possible
effects that performing a sequence of actions may have on a BCCSP term.

Definition 1 For a sequences = a1 · · · ak ∈ A∗ (k ≥ 0), and BCCSP termst, t′,
we writet s−→ t′ iff there exists a sequence of transitions

t = t0
a1−→ t1

a2−→ · · · ak−→ tk = t′ .

If t s−→ t′ holds for some BCCSP termt′, thens is a traceof t. We writetraces(t)
for the set of traces of a termt.

The following lemma, whose proof is standard, relates the transitions of a term of
the formσ(t) to those oft and those of the termsσ(x), with x a variable occurring
in t.

Lemma 2 For every BCCSP termt, substitutionσ, and sequence of actionss, the
following statements hold:

(1) if t s−→ u for some termu, thenσ(t)
s−→ σ(u);

(2) if σ(t)
s−→ u for some termu, then

(a) eithert s−→ t′ for somet′ with u = σ(t′),
(b) or there are sequences of actionss1, s2 with s2 non-empty ands = s1s2,

a termt′ and a variablex such thatt
s1−→ x+ t′ andσ(x)

s2−→ u.

2.4 Behavioural Semantics

Labelled transition systems describe the operational behaviour of processes in great
detail. In order to abstract from irrelevant information on the way processes com-
pute, a wealth of notions of behavioural equivalence or approximation have been
studied in the literature on process theory. A systematic investigation of these no-
tions is presented in [14], where van Glabbeek presents the so-called linear time-
branching time spectrum, a lattice of known behavioural equivalences over labelled
transition systems ordered by inclusion. In this study, we shall investigate a frag-
ment of the notions of equivalence and preorder fromop. cit., together with the
family of the nested trace equivalences and preorders (see Definition 8). These we
now proceed to present.

Definition 3 A binary relationR between closed terms is asimulationiff p R q
together withp a−→ p′ imply that there is a transitionq a−→ q′ with p′ R q′.
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Groote and Vaandrager introduced in [17] a hierarchy ofn-nested simulation pre-
orders and equivalences forn ≥ 2. These are defined thus:

Definition 4 For n ≥ 0, we define the relation⊂→n inductively over closed BCCSP
terms thus:

• p ⊂→0 q for all p, q,
• p ⊂→n+1 q iff p R q for some simulationR withR−1 included in ⊂→n.

The kernel of⊂→n (i.e., the equivalence⊂→n ∩ ( ⊂→n)−1) is denoted by�n.

The relation⊂→1 is the well-knownsimulation preorder[29]. The relations⊂→2 and
�2 are the2-nested simulation preorderand the2-nested simulation equivalence,
respectively. Groote and Vaandrager have characterized 2-nested semantics as the
largest congruence with respect to the tyft/tyxt format of transition rules which is
included in completed trace semantics—see [17] for details.

In the remainder of this paper we shall sometimes use, instead of Definition 4, the
following more descriptive, fixed-point characterization of then-nested simulation
preorder (n ≥ 1).

Proposition 5 Letp, q be closed BCCSP terms, andn ≥ 0. Thenp ⊂→n+1 q iff

(1) for all p a−→ p′ there is aq a−→ q′ with p′ ⊂→n+1 q
′, and

(2) q ⊂→n p.

PROOF. We prove the two implications separately.

• (⇒) Assume thatp ⊂→n+1 q. By definition,p R q with R a simulation andR−1

included in ⊂→n. So if p a−→ p′, thenq a−→ q′ with p′ R q′, which implies

p′ ⊂→n+1 q
′ .

Moreover, sinceR−1 is included in⊂→n, it follows thatq ⊂→n p.
• (⇐) We definep R q iff
(1) for all p a−→ p′ there is aq a−→ q′ with p′ ⊂→n+1 q

′, and
(2) q ⊂→n p.

Suppose now thatp R q. If p a−→ p′, then by the definition ofRwe haveq a−→ q′

with p′ ⊂→n+1 q
′. Since we have already proven the ‘only if’ implication, we may

conclude thatp′ R q′. SoR is a simulation. Furthermore, by (2) aboveR−1 is
included in ⊂→n. Hence, we have thatp ⊂→n+1 q, which was to be shown. �

Example 6 Letm ≥ 1. Define, for eachn ∈ IN, the closed BCCSP termspn and
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qn thus:

p0 = a2m−10 q0 = am−10

pn+1 = apn + aqn qn+1 = apn .

By induction onn ∈ IN and using Proposition 5, it is not hard to check thatpn
⊂→n

qn, and thus thatqn
⊂→n+1 pn.

The termspn andqn (n ∈ IN) defined above will play a crucial role in the proof of
Theorem 38 to follow.

Possible futures semantics was introduced by Rounds and Brookes in [32], and is
defined thus:

Definition 7 Letp be a closed BCCSP term. Apossible futureof p is a pair (s,X),
wheres is a sequence of actions andX ⊆ A∗, such thatp s−→ p′ andX =
traces(p′), for somep′.

Two closed termsp andq are related by thepossible futures preorder(respectively,
possible futures equivalence), written p �PF q (resp.,p =PF q), if each possible
future ofp is also a possible future ofq (resp., ifp and q have the same possible
futures).

The last notions of semantics we shall consider in this paper are the families of the
n-nested trace equivalences and preorders. Then-nested trace equivalences were
introduced by Hennessy and Milner in [18, p. 147] as a a tool to define bisimulation
equivalence [25,29].

Definition 8 For everyn ≥ 0, the relations ofn-nested trace equivalence, denoted
by =T

n , andn-nested trace preorder, denoted by�Tn , are defined inductively over
closed BCCSP terms thus:

• p =T
0 q andp �T0 q for everyp, q;

• p =T
n+1 q iff for every sequence of actionss ∈ A∗:

· if p s−→ p′ then there is aq′ such thatq s−→ q′ andp′ =T
n q
′, and

· if q s−→ q′ then there is ap′ such thatp s−→ p′ andp′ =T
n q
′;

• p �Tn+1 q iff for every sequence of actionss ∈ A∗:
· if p s−→ p′ then there is aq′ such thatq s−→ q′ andp′ =T

n q
′.

Note that the relations=T
1 and=T

2 are just trace equivalence (the equivalence that
equates two terms having the same traces—see [14,19]) and possible futures equiv-
alence, respectively, whereas�T2 is the possible futures preorder. Moreover, it is
easy to see that, for everyn ≥ 0, the equivalence relation=T

n is the kernel of the
preorder�Tn .

The following result is well-known—see, e.g., the references [17,18].
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Proposition 9 For everyn ≥ 0, the relations⊂→n,�n, =T
n and�Tn are preserved

by the operators of BCCSP.

The relations we have previously defined over closed BCCSP terms are extended
to arbitrary BCCSP terms thus:

Definition 10 Let t, u be BCCSP terms, and let� be any of ⊂→n, �n, =T
n and

�Tn (n ≥ 0). The inequationt v u is soundwith respect to�, written t � u, iff
σ(t) � σ(u) for every closed substitutionσ.

For instance, the inequationx v y is sound with respect to all of the0-nested
semantics defined above. Examples of (in)equations that are sound with respect to
⊂→2 are those in Table 2 and

a(x+ y)v a(x+ y) + ax .

The following result collects some basic properties of nested simulation and nested
trace semantics that will be useful in the technical developments to follow.

Proposition 11 For all BCCSP termst, u and n ≥ 0, the following statements
hold:

(1) if t ⊂→n+1 u, thent�n u;
(2) if t �Tn+1 u, thent =T

n u;
(3) if t ⊂→n u, thent �Tn u.

PROOF. Statement (1) is due to Groote and Vaandrager in [17], and statement
(2) follows immediately from the definitions of the relations�Tn+1 and =T

n . We
therefore limit ourselves to presenting a proof of statement (3). To this end, observe,
first of all, that in light of Definition 10, it is sufficient to prove the claim for closed
BCCSP terms. Assume now thatp ⊂→n q, wherep, q are closed BCCSP terms. We
provep �Tn q by induction onn. This is trivial if n = 0. Suppose therefore that
p ⊂→n+1 q. Let s be a sequence of actions inA, and assume thatp s−→ p′ for some
p′. We aim at showing thatq s−→ q′ for someq′ with p′ =T

n q
′.

Sincep ⊂→n+1 q andp s−→ p′, using Proposition 5 and a simple induction on the
length ofs, we have thatq s−→ q′ for someq′ with p′ ⊂→n+1 q

′. By statement (1) of
the proposition, we may infer thatp′ �n q

′. The inductive hypothesis now yields
thatp′ �Tn q′ �Tn p′. Since the relation=T

n is the kernel of�Tn , we may conclude
thatp′ =T

n q
′, which was to be shown. �
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2.5 A Modal Characterization of Nested Trace Equivalence

In the proof of our main result in Sect. 5, we shall make use of the modal character-
ization of then-nested trace equivalences proposed by Hennessy and Milner in [18,
p. 148]. This we now introduce for the sake of completeness.

Definition 12 The setL of Hennessy-Milner formulaeover alphabetA is defined
by the following grammar:

ϕ ::= > | ϕ ∧ ϕ | ¬ϕ | 〈a〉ϕ (a ∈ A) .

Thesatisfaction relation|= is the binary relation relating closed BCCSP terms and
Hennessy-Milner formulae defined by structural induction on formulae thus:

• p |= >, for every closed BCCSP termp,
• p |= ϕ1 ∧ ϕ2 iff p |= ϕ1 andp |= ϕ2,
• p |= ¬ϕ iff it is not the case thatp |= ϕ, and
• p |= 〈a〉ϕ iff p a−→ p′ for somep′ such thatp′ |= ϕ.

As an immediate consequence of the characterization theorem for bisimulation
equivalence over image-finite labelled transitions systems shown by Hennessy and
Milner [18, Theorem 2.2], two closed BCCSP terms are bisimulation equivalent
if, and only if, they satisfy the same formulae inL. We now introduce a family of
sub-languages ofL that yield modal characterizations of then-nested trace equiv-
alences for everyn ≥ 0.

Definition 13 For everyn ≥ 0, we define the setLn of n-nested Hennessy-Milner
formulaeinductively thus:

• L0 contains only the formulae> and¬>, and
• Ln+1 is given by the following grammar

ϕ ::= > | ϕ ∧ ϕ | ¬ϕ | 〈a1〉 · · · 〈ak〉ψ (k ≥ 0, a1 · · · ak ∈ A∗ andψ ∈ Ln) .

The following result is due to Hennessy and Milner [18].

Theorem 14 Letp, q be closed BCCSP terms, and letn ≥ 0. Thenp =T
n q iff p and

q satisfy the same formulae in the languageLn.

Remark 15 Note that, for everyn ≥ 0 and closed termsp, q, if each formula in
Ln satisfied byp is also satisfied byq, thenp andq satisfy the same formulae in the
languageLn. Indeed, assume that each formula inLn satisfied byp is also satisfied
by q, and thatq satisfiesϕ ∈ Ln. Using the closure ofLn with respect to negation,
we have thatq 6|= ¬ϕ, and therefore thatp 6|= ¬ϕ. It follows thatp satisfiesϕ,
which was to be shown.
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Although tempting, it would therefore be incorrect to assume that, for everyn ≥ 0
and closed termsp, q, it holds thatp �Tn q iff each formula inLn satisfied byp is
also satisfied byq.

To obtain a modal characterization of then-nested trace preorders, consider the
sub-languagesMn ofLn defined inductively thus:

• M0 contains only the formulae> and¬>, and
• Mn+1 is given by the following grammar

ϕ ::= > | ϕ ∧ ϕ | 〈a1〉 · · · 〈ak〉ψ (k ≥ 0, a1 · · · ak ∈ A∗ andψ ∈ Ln) .

Following the lines of the proof of Theorem 2.2 in [18], the interested reader will
have little trouble in establishing that

For everyn ≥ 0 and closed termsp, q, it holds thatp �Tn q iff each formula in
Mn satisfied byp is also satisfied byq.

2.6 Lengths, Norm and Depth of Terms

We now present some results on the relationships between the lengths of the com-
pleted traces, the depth and the norm of BCCSP terms that are related by the notions
of semantics considered in this paper. These will find important applications in the
proofs of our main results, and shed light on the nature of the identifications made
by the nested simulation and trace semantics.

Definition 16 A sequences ∈ A∗ is acompleted traceof a termt iff t s−→ t′ holds
for some termt′ without outgoing transitions. We writelengths(t) for the set of
lengths of the completed traces of a BCCSP termt.

Note thatlengths(t) is non-empty for each BCCSP termt. Moreover, the only
closed BCCSP term that has a completed trace of length 0 is0. (Recall that we
consider terms modulo absorption of0-summands.)

Definition 17 Thedepthand thenorm of a BCCSP termt, denoted bydepth(t)
andnorm(t), are the lengths of the longest and of the shortest completed trace of
t, respectively.

The following lemma states the basic relations between the behavioural semantics
studied in this paper and the lengths, depth and norm of terms that will be needed
in the technical developments to follow.

Lemma 18 Let� be any of�Tn , =T
n ,�n, and ⊂→n, for n ≥ 2. If t � u, then

(a) lengths(t) ⊆ lengths(u),

13



(b) depth(t) = depth(u),
(c) norm(t) ≥ norm(u) and
(d) var(t) = var(u).

PROOF. In light of Proposition 11, it is sufficient to prove that the claims hold for
the possible futures preorder, viz. the relation�T2 .

We argue, first of all, that claims (a)–(c) hold whent �T2 u. To this end, note that,
by substituting0 for the variables int andu, we obtain closed termsp andq with
lengths(t) = lengths(p) and lengths(u) = lengths(q). So it suffices to prove
claims (a)–(c) withp andq in place oft andu, respectively. By Definition 10, we
have thatp �T2 q.

Assume now thatn ∈ lengths(p). Then there are a sequences ∈ A∗ of lengthn
and a closed termp′ with no outgoing transitions such thatp s−→ p′. As p �T2 q,
there is a closed termq′ such thatq s−→ q′ andp′ =T

1 q
′. Recall thatp′ =T

1 q
′ if, and

only if, p′ andq′ have the same traces. It therefore follows thatq′ has no outgoing
transitions, and thatn ∈ lengths(q), which was to be shown.

Claim (c) follows immediately from (a). To see that claim (b) holds, observe that if
p �T2 q for closed BCCSP termsp andq, then, by Proposition 11(2),p andq have
the same non-empty finite sets of traces, and thus the same longest traces.

To prove claim (d), lett, u be BCCSP terms such thatt �T2 u. Assume, towards a
contradiction, that there is a variablex that occurs in only one oft andu. We shall
exhibit a closed substitutionσ such thatdepth(σ(t)) 6= depth(σ(u)), contradicting
statement (b) of the lemma.

To this end, observe, first of all, that without loss of generality, we may assume that
x occurs int, say. Letm be a positive integer larger thandepth(t). By claim (b) of
the lemma, we have thatdepth(t) = depth(u) < m also holds.

Consider now the closed substitutionσ that mapsx toam, and all the other variables
to 0. Using structural induction, it is a simple matter to prove that

depth(σ(t))≥m and
depth(σ(u)) = depth(u) < m .

By statement (b) of the lemma, it follows thatσ(t) �T2 σ(u) does not hold, contra-
dicting our assumption thatt �T2 u. 2

Remark 19 Note thatlengths(t) = lengths(u) and norm(t) = norm(u) both
hold, if t =T

2 u.

14



The restriction thatn ≥ 2 is necessary in the statement of Lemma 18(a) and (c). In
fact,aa+ a�1 aa, but

lengths(aa+ a) = {1, 2} 6⊆ {2} = lengths(aa) and

norm(aa+ a) < norm(aa) .

Statements (b) and (d) in Lemma 18 also hold for=T
1 . In fact, it is not hard to see

that, for everyt, u, if t �T1 u thendepth(t) ≤ depth(u) andvar(t) ⊆ var(u).

3 Non-finite Axiomatizability of the 2-nested Simulation Preorder

In this section we prove that the 2-nested simulation preorder is not finitely inequa-
tionally axiomatizable. The following lemma will play a key role in the proof of
this statement.

Lemma 20 If p ⊂→2 a
2m + am, then eitherp�2 a

2m or p�2 a
2m + am.

PROOF. The casem = 0 is trivial; we therefore focus on the casem > 0. We
note, first of all, that ifq ⊂→2 a

k for somek ≥ 0, then, by Lemma 18(a),q has only
the completed traceak; clearly, this impliesak ⊂→2 q, and henceak �2 q.

Consider now a transitionp a−→ p′. Sincep ⊂→2 a
2m + am, eitherp′ ⊂→2 a

2m−1 or
p′ ⊂→2 a

m−1. By Lemma 18(b),p has depth2m. So there is at least one transition
p

a−→ p′ with p′ ⊂→2 a
2m−1.

If for all transitionsp a−→ p′ we havep′ ⊂→2 a
2m−1, then it follows thatp ⊂→2 a

2m,
and hencep �2 a

2m. On the other hand, if there exists a transitionp a−→ p′′ with
p′′ ⊂→2 a

m−1 (and soam−1 ⊂→2 p
′′), then it follows thata2m + am ⊂→2 p, and hence

p�2 a
2m + am. �

The idea behind our proof that the 2-nested simulation preorder is not finitely in-
equationally axiomatizable is as follows. Assume a finite inequational axiomatiza-
tion E for BCCSP that is sound modulo⊂→2. We show that, ifm is sufficiently
large, then, for all closed inequational derivationsa2m v p1 v · · · v pk from E
with pk

⊂→2 a
2m+am, we have thatpk �2 a

2m. Sincea2m+am 6 ⊂→2 a
2m, it follows

thata2m v a2m + am cannot be derived fromE. However,a2m ⊂→2 a
2m + am.

The following lemma is the crux in the implementation of the aforementioned proof
idea.

15



Lemma 21 Let t v u be sound modulo⊂→2. Let m be greater than the depth
of t. Assume thatC[σ(u)] ⊂→2 a2m + am, for some closed substitutionσ. Then
C[σ(t)]�2 a

2m impliesC[σ(u)]�2 a
2m.

PROOF. Let C[σ(t)] �2 a2m; we proveC[σ(u)] �2 a2m. SinceC[σ(u)] ⊂→2

a2m+am, it is sufficient to show thata2m+am 6 ⊂→2 C[σ(u)]. In fact, ifC[σ(u)] ⊂→2

a2m+am anda2m+am 6 ⊂→2 C[σ(u)], by Lemma 20 it follows thatC[σ(u)]�2 a
2m,

which is to be shown. We provea2m+am 6 ⊂→2 C[σ(u)] by distinguishing two cases,
depending on the form of the contextC[ ].

• Case 1: SupposeC[ ] is of the formC ′[b([ ] + r)].
In this case, we shall provea2m+am 6 ⊂→2 C[σ(u)] by arguing thatam−1 6 ⊂→2 q

′

holds for eachq′ such thatC[σ(u)]
a−→ q′. To this end, consider a transition

C[σ(u)]
a−→ q′ .

Thenq′ = D[σ(u)] for some contextD[ ], and, because of the form of the context
C[ ], we may infer that

C[σ(t)]
a−→ p′ = D[σ(t)] .

As σ(t) ⊂→2 σ(u) by the soundness oft v u with respect to⊂→2, andp′ ⊂→2

q′ by Proposition 9, Lemma 18(b) yields thatp′ and q′ have the same depth.
SinceC[σ(t)] �2 a2m, it follows by Proposition 5 thatp′ ⊂→2 a2m−1. So by
Lemma 18(b), we have that

depth(p′) = depth(q′) = 2m− 1 .

As depth(am−1) 6= 2m− 1, another application of Lemma 18(b) yields that

am−1 6 ⊂→2 q
′ .

Since this holds for all transitionsC[σ(u)]
a−→ q′, anda2m + am

a−→ am−1,
using Proposition 5 we may therefore conclude thata2m + am 6 ⊂→2 C[σ(u)].
• Case 2: SupposeC[ ] is of the form[ ] + r.

In this case, we shall provea2m +am 6 ⊂→2 C[σ(u)] by arguing that the norm of
C[σ(u)] is larger thanm.

To this end, observe, first of all, that, ast ⊂→2 u by our assumptions, state-
ments (b) and (d) in Lemma 18 imply thatdepth(t) = depth(u), and moreover
that t andu contain exactly the same variables. We proceed with the proof by
distinguishing two cases, depending on whethernorm(σ(t)) = 0 or not.
· Casenorm(σ(t)) = 0.

In this case,t has the form
∑
i∈I xi for some finite index setI, and variables

xi (i ∈ I) with norm(σ(xi)) = 0 for eachi ∈ I.
Sincet v u is sound with respect to⊂→2, statements (c)–(d) in Lemma 18

yield thatt = u modulo axiom A3. Since axiom A3 is sound with respect to
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�2, using Proposition 9 we may therefore conclude that

a2m + am 6 ⊂→2 a
2m �2 C[σ(t)]�2 C[σ(u)] ,

which was to be shown.
· Casenorm(σ(t)) > 0.

Sinceσ(t) + r �2 a
2m, Lemma 18(c) yields thatnorm(σ(t)) ≥ 2m, and

eithernorm(r) ≥ 2m or norm(r) = 0. By the soundness oft v uwith respect
to ⊂→2, and the assumption thatnorm(σ(t)) > 0, it follows thatdepth(σ(t)) =
depth(σ(u)) > 0. Henceσ(u) 6= 0, and therefore we have thatnorm(σ(u)) >
0. Asσ(u) + r ⊂→2 a

2m + am, again using Lemma 18(c), we infer that

norm(σ(u)) ≥ m .

Sincedepth(t) < m andnorm(σ(t)) ≥ 2m, for each variablex ∈ var(t) =
var(u) we havenorm(σ(x)) > m.

By the facts thatdepth(u) = depth(t) < m andnorm(σ(u)) ≥ m, each
completed trace ofσ(u) must become, after less thanm transitions, a com-
pleted trace of aσ(x) with x ∈ var(u). Since for allx ∈ var(u) = var(t)
we havenorm(σ(x)) > m, it follows thatnorm(σ(u)) > m. Since moreover
norm(r) ≥ 2m or norm(r) = 0, we havenorm(σ(u) + r) > m. Asa2m + am

has normm, by Lemma 18(a) we may conclude thata2m + am 6 ⊂→2 σ(u) + r,
which was to be shown. �

Remark 22 The inequationax v ax + a1 is sound modulo⊂→2. However,a4 6�2

a4 + a1. So the proviso in the statement of Lemma 21 thatC[σ(u)] ⊂→2 a
2m + am

cannot be omitted. (Note thata4 + a1 6 ⊂→2 a
4 + a2.)

Theorem 23 BCCSP modulo the 2-nested simulation preorder is not finitely in-
equationally axiomatizable.

PROOF. Let E be a finite inequational axiomatization for BCCSP that is sound
modulo ⊂→2. Letm > max{depth(t) | t v u ∈ E}.

By Lemma 21, and using induction on the length of derivations, it follows that
if the closed inequationa2m v r can be derived fromE and r ⊂→2 a2m + am,
thenr �2 a

2m. As Lemma 18(c) yields thata2m + am 6 ⊂→2 a
2m, it follows that

a2m v a2m + am cannot be derived fromE. Sincea2m ⊂→2 a
2m + am, we may

conclude thatE is not complete modulo⊂→2. �
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4 Possible Future Semantics is not Finitely Based

Throughout this section, we let� be either the possible futures preorder, or possible
futures equivalence. Our order of business in this section will be to prove that�
has no finite (in)equational axiomatization over BCCSP. The idea behind the proof
of this claim is as follows. Assume thatE is a finite inequational axiomatization
for BCCSP that is sound modulo�. We show that, ifm is sufficiently large, then,
for all closed inequationsp v q that can be derived fromE the following invariant
property holds:

If lengths(q) ⊆ {m + 1, 2m + 1, 3m + 1}, and there is ap′ such thatp a−→
p′, norm(p′) = m anddepth(p′) ≤ 2m, then there is aq′ such thatq a−→ q′,
norm(q′) = m anddepth(q′) ≤ 2m.

However, we shall exhibit a pair of closed terms that are related by�, and do not
satisfy the above property. This will allow us to conclude thatE is not complete
with respect to�.

The following lemma characterizes some properties of the inequations that are
sound with respect to� that will be useful in the proof of the main result of this
section (Theorem 25 to follow).

Lemma 24 Let the axiomt v u be sound modulo�. Let t = Σi∈Ixi + Σj∈Jajtj
andu = Σk∈Kyk + Σ`∈Lb`u`, and letx be a variable. Then

(a) {xi | i ∈ I} ⊆ {yk | k ∈ K}, and
(b) for eachj ∈ J with x ∈ var(tj) there is an` ∈ L such thataj = b`, x ∈

var(u`) andvar(u`) ⊆ var(tj).

PROOF. Let t v u be sound modulo�, and letx be a variable. We prove the two
statements of the lemma separately.

• Proof of Claim (a): Assume, towards a contradiction, that the variablex is con-
tained in{xi | i ∈ I}, but not in{yk | k ∈ K}. We shall exhibit a closed
substitutionσ such thatσ(t) 6� σ(u), contradicting our assumption thatt v u is
sound modulo�.

To this end, pick a positive integerm > depth(t). Sincet v u is sound
modulo�, by Lemma 18(b) we have thatm > depth(u) also holds. Consider
the closed substitutionσ that mapsx to am, and all the other variables to0.
Sincex = xi for somei ∈ I, we have thatm ∈ lengths(σ(t)). On the other
hand,m 6∈ lengths(σ(u)) because, asx is not contained in{yk | k ∈ K}, every
completed trace ofσ(u) is either one ofu itself (and is thus shorter thanm)
or hasam has a proper suffix (and is thus longer thanm). By Lemma 18(a), it
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follows thatσ(t) � σ(u) does not hold, contradicting our assumption thatt v u
is sound modulo�.

• Proof of Claim (b): Assume, towards a contradiction, that there is aj ∈ J with
x ∈ var(tj) such that, for each̀ ∈ L with aj = b` eitherx 6∈ var(u`) or
var(u`) 6⊆ var(tj). We shall exhibit a closed substitutionσ such thatσ(t) 6�T2
σ(u), contradicting our assumption thatt v u is sound modulo�.

Letm be a positive integer larger thandepth(t). Sincet v u is sound modulo
�, by Lemma 18(b) we have thatm > depth(u) also holds. Consider the closed
substitution mappingx to am, all of the variables not occurring intj to a2m, and
all the other variables to0. Note thatσ(t)

aj−→ σ(tj), by Lemma 2. Moreover,
sincex ∈ var(tj) and

depth(tj) ≤ depth(t)− 1 ≤ m− 2 ,

it is easy to see that

m ≤ depth(σ(tj)) ≤ 2m− 2 . (1)

We claim that ifσ(u)
aj−→ p, thendepth(σ(tj)) 6= depth(p). This shows that

σ(t) 6�T2 σ(u) because nop with σ(u)
aj−→ p can have the same traces asσ(tj)

(see Remark 19), contradicting our assumption thatt v u is sound modulo�.
To prove our claim, we consider the possible origins of a transitionσ(u)

aj−→
p.
· Case 1: σ(u)

aj−→ p becauseσ(yk)
aj−→ p, for somek ∈ K. In this case, by

the definition ofσ, we have thatdepth(p) ∈ {m− 1, 2m− 1}. By (1), we may
infer thatdepth(σ(tj)) 6= depth(p), as claimed.
· Case 2: σ(u)

aj−→ p becausep = σ(u`) for some` ∈ L such thataj = b`
and eitherx 6∈ var(u`) or var(u`) 6⊆ var(tj). In this case, by the definition
of σ and using thatdepth(u) < m, we have thatdepth(p) is either smaller
thanm − 1 (if x 6∈ var(u`) and var(u`) ⊆ var(tj)) or larger than2m −
1 (if var(u`) 6⊆ var(tj)). Again, by (1), we may infer thatdepth(σ(tj)) 6=
depth(p), as claimed.

This completes the proof. �

We are now in a position to prove the promised result to the effect that possible
futures semantics is not finitely based over the language BCCSP.

Theorem 25 BCCSP modulo� is not finitely (in)equationally axiomatizable.

PROOF. Let E be a finite inequational axiomatization for BCCSP that is sound
modulo�. Letm > max{depth(t), depth(u) | (t v u) ∈ E}.

We have that
a(am + a2m) + aa3m � aa2m + a(am + a3m)
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because both processes have the same possible futures. Nevertheless,

E 6 ` a(am + a2m) + aa3m v aa2m + a(am + a3m) .

This follows immediately from the following

Claim 26 Assume thatE ` p v q, lengths(q) ⊆ {m + 1, 2m + 1, 3m + 1}, and
there is ap′ such thatp a−→ p′, norm(p′) = m anddepth(p′) ≤ 2m. Then there is
a q′ such thatq a−→ q′, norm(q′) = m anddepth(q′) ≤ 2m.

Proof of the claim. Using induction on the length of inequational derivations, the
soundness ofE with respect to� and Lemma 18(a), it suffices to consider the case
thatp = C[σ(t)] andq = C[σ(u)] for a BCCSP contextC[ ], a closed substitutionσ,
and an axiom(t v u) ∈ E. We proceed by distinguishing two sub-cases, depending
on the form of the contextC[ ].

• Case 1:SupposeC[ ] is of the formC ′[b([ ] + r)].
Let p′ be as in the statement of the claim. Thenp′ = D[σ(t)] for some context
D[ ], and, because of the form of the contextC[ ], we may infer that

q = C[σ(u)]
a−→ q′ = D[σ(u)] .

By the soundness ofE and the fact that� is preserved by the operators of
BCCSP (Proposition 9), we have thatp′ � q′. Therefore

norm(q′) ≤ norm(p′) = m anddepth(q′) = depth(p′) ≤ 2m

both hold by statements (b) and (c) in Lemma 18. Asnorm(q) ≥ m+1 it follows
thatnorm(q′) = m, and we are done.

• Case 2:SupposeC[ ] is of the form[ ] + r.
Let t = Σi∈Ixi + Σj∈Jajtj andu = Σk∈Kyk + Σ`∈Lb`u`. Consider a transition
σ(t) + r

a−→ p′ as in the statement of the claim. We distinguish three possible
cases, depending on the origin of this transition.
· Case 2.1:Assume thatr a−→ p′. Thenq a−→ p′ and we are done.
· Case 2.2:Assume thatσ(xi)

a−→ p′ for somei ∈ I. By Lemma 24(a) and the
soundness oft v u with respect to�, we have thatxi = yk for somek ∈ K.
It follows thatq a−→ p′, and we are done.
· Case 2.3:Assume thatp′ = σ(tj) for somej ∈ J . As norm(σ(tj)) = m and

depth(tj) < depth(t) < m ,

there must be a variablex ∈ var(tj) such that1 ≤ norm(σ(x)) ≤ m. By
statement (b) in Lemma 24, there is an` ∈ L such thata = b`, x ∈ var(u`)
andvar(u`) ⊆ var(tj). Takeq′ = σ(u`). Thenq a−→ q′. Sincex ∈ var(u`),
we have that

norm(q′) ≤ depth(u`) + norm(σ(x)) < 2m .
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Considering that

lengths(q) ⊆ {m+ 1, 2m+ 1, 3m+ 1} ,

and thuslengths(q′) ⊆ {m, 2m, 3m}, it must be the case thatnorm(q′) = m.
As depth(σ(tj)) ≤ 2m by assumption, it follows thatdepth(σ(y)) ≤ 2m

for eachy ∈ var(tj). Sincevar(u`) ⊆ var(tj), this also holds for each
y ∈ var(u`). As depth(u`) < depth(u) < m, this implies thatdepth(σ(u`)) <
3m. Considering thatlengths(q′) ⊆ {m, 2m, 3m}, we may conclude that
depth(q′) ≤ 2m.

To sum up, we have proven that, also in this case,q
a−→ q′, norm(q′) = m

anddepth(q′) ≤ 2m, which was to be shown. 2

5 No Nested Semantics is Finitely Based

We now proceed to offer results to the effect that the language BCCSP modulo
=T
n or�n, for n ≥ 2, or �Tn or ⊂→n, for n ≥ 3, is not finitely (in)equationally

axiomatizable. Rather than considering each of these behavioural relations in turn,
we offer a general proof of non-finite axiomatizability that applies to all of them at
once. The general strategy underlying such a proof is as follows. We prove that, for
eachn ≥ 2, no finite collection of (in)equations that is sound with respect to=T

n

(the coarsest relation amongst=T
n ,�n,�Tn+1 and ⊂→n+1) can prove all of the closed

inequations of the formp v q, with p andq BCCSP terms over actiona, that are
sound with respect to⊂→n+1 (the finest relation amongst=T

n ,�n,�Tn+1 and ⊂→n+1).
We remind the reader that=T

2 is possible futures equivalence, so the main result of
this section (Theorem 38) gives an alternative proof of non-finite axiomatizability
for this behavioural equivalence over BCCSP.

In the proof of this result, we shall make use of the modal characterization of the
relation=T

n given in Theorem 14. More specifically, we shall show that, for each
n ≥ 2 and finite axiom systemE that is sound with respect to=T

n , there is a formula
ψn in the languageLn+1 (see Definition 13) such that wheneverE proves a closed
inequationp v q, with p andq BCCSP terms over actiona, then, subject to some
technical conditions on the lengths of the completed traces ofq, it holds thatp
satisfiesψn if, and only if, so doesq. We shall, however, show that this property
does not hold for the inequationqn

⊂→n+1 pn, where the termspn andqn have been
defined in Example 6. This will allow us to conclude that the sound inequation
qn v pn cannot be derived fromE, and thus thatE is incomplete for=T

n , �n,
�Tn+1 and ⊂→n+1.

The technical implementation of the above idea will be based upon an induction
on the length of the proof of closed inequations from the finite axiom systemE.
The crucial step in this proof will be to show that, subject to technical conditions,
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the aforementioned formulaψn is satisfied either by both terms in a substitution
instance of an axiom inE or by neither of them. This case will be tackled by
Lemma 37 to follow. We now introduce some technical notions, and preliminary
results, that will be used in the proof of this crucial lemma.

Definition 27 We call a substitutionσ substantialif depth(σ(x)) > 0 for all vari-
ablesx.

For reasons of technical convenience, in the proofs of our non-finite axiomatiz-
ability results presented in this section we will only allow for the use of closed
substantial substitutions in the rule of substitution. This does not limit the gen-
erality of those results because every finite inequational axiomatizationE can be
converted into a finite inequational axiomatizationE ′ such that the closed substitu-
tion instances of the axioms ofE are the same as the closed substantial substitution
instances of the axioms ofE ′ (when equating any closed subterm of depth 0 with
0). This is done by including inE ′ any inequation that can be obtained from an
inequation inE by replacing all occurrences of any number of variables by0.

Definition 28 Define thedepthsat which a subterm occurs in a BCCSP term as
follows:

• t occurs int at depth0,

• if v occurs int or u at depthd, thenv occurs int+ u at depthd,

• if v occurs int at depthd thenv occurs inat (with a ∈ A) at depthd+ 1.

A BCCSP termt has aunique depth allocationif no variable occurs int at two
different depths.

For example, the termax+x does not have a unique depth allocation, as the variable
x occurs both at depth 0 and at depth 1 in it, butax+ y does.

The following lemma describes the interplay between the depths at which variables
occur in a termt, and the lengths of terms of the formσ(t), for some substantial
substitutionσ.

Lemma 29 For every BCCSP termt andd ≥ 0, the following statements hold:

(1) The termv occurs int at depthd if, and only if, there are a termu and a
sequence of actionss of lengthd such thatt s−→ v + u.

(2) Let x be a variable, and letσ be a substitution. For everyn > 0, if x occurs
in t at depthd andn ∈ lengths(σ(x)) thend+ n ∈ lengths(σ(t)).

PROOF. We prove the two statements separately. Recall that we consider equality
of terms modulo axioms A1, A2 and A4 in Table 2.
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• Proof of statement 1. We show the two implications separately.
· (⇒) By induction on the definition of the depths at whichv occurs int.

Assume thatv occurs int at depthd becausev = t andd = 0. Then,
letting ε denote the empty string, we have that

t
ε−→ v = v + 0 ,

and we are done.
Assume thatv occurs int + t′ at depthd becausev occurs int or t′ at
depthd. Suppose, without loss of generality, thatv occurs int at depthd.
By induction, we have that there are a termu and a sequence of actionss
of lengthd such thatt s−→ v + u. If d is positive, we may immediately
conclude thatt + t′

s−→ v + u. If d = 0, thent = v + u. It follows that
t+ t′

ε−→ v + u+ t′, and we are done.
Assume thatv occurs inat (with a ∈ A) at depthd+1 becausev occurs in
t at depthd. By induction we have that there are a termu and a sequence
of actionss of lengthd such thatt s−→ v+u. It follows thatat as−→ v+u,
and we are done.

· (⇐) Assume that there are a termu and a sequence of actionss of lengthd
such thatt s−→ v + u. We prove thatv occurs int at depthd by induction on
d. Throughout the proof, we lett =

∑
i∈I xi +

∑
j∈J ajtj.

Base Case: d = 0. Sincet ε−→ v + u, we have that

t =
∑
i∈I

xi +
∑
j∈J

ajtj = v + u .

This means thatv =
∑
i∈I′ xi +

∑
j∈J ′ ajtj for someI ′ ⊆ I andJ ′ ⊆ J .

Sincev occurs inv at depth0 by the first clause of Definition 28, using
the second clause of Definition 28 we may conclude thatv occurs int at
depth0.
Inductive Step: d > 0. Since

t =
∑
i∈I

xi +
∑
j∈J

ajtj
s−→ v + u ,

ands is non-empty, we have thats = ajs
′ andtj

s′−→ v + u, for some
j ∈ J . By induction,v occurs intj at depthd− 1, and therefore inajtj at
depthd. Using the second clause of Definition 28 we may conclude that
v occurs int at depthd.

• Proof of statement 2. Assume thatx occurs int at depthd, n ∈ lengths(σ(x))
for some substitutionσ, andn is positive. Sincex occurs int at depthd, by
statement 1 of the lemma, we have thatt

s−→ x+u for some sequence of actions
s of lengthd and termu. By Lemma 2, we have that

σ(t)
s−→ σ(x+ u) = σ(x) + σ(u) .

Asn ∈ lengths(σ(x)) by our assumptions,σ(x)
s′−→ v for some sequence of ac-
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tionss′ of lengthn and termv with no outgoing transitions. Since the length ofs′

is positive, it follows thatσ(t)
ss′−→ v holds, and thus thatd+n ∈ lengths(σ(t)),

which was to be shown. �

Lemma 30 Let t be a BCCSP term withdepth(t) < m, and letσ be a closed
substantial substitution such thatlengths(σ(t)) ⊆ {n + m,n + 2m}, for some
n ≥ 0. Thent has a unique depth allocation.

PROOF. Suppose a variablex occurs at depthsd1 andd2 in t. Let depth(σ(x)) =
d. Sinceσ is a substantial substitution,d is positive. Then, by Lemma 29(2) and the
proviso of Lemma 30, we have that

{d1 + d, d2 + d} ⊆ lengths(σ(t)) ⊆ {n+m,n+ 2m} .

(The proof of the first inclusion uses thatd > 0.) As |d1 − d2| < m holds by our
assumption thatdepth(t) < m and Lemma 29(1), this impliesd1 = d2. �

The proof above is the only one where we use that the substitutions are substantial.

Definition 31 For m, ` ≥ 0, define the operator ;ma
` on closed BCCSP terms

recursively by

• (Σk
i=1aipi);m+1a

` = Σk
i=1ai(pi;ma

`),

• (bp+ q);0a
` = bp+ q,

• 0;0a
` = a`0.

Recall that we consider terms modulo associativity and commutativity of +, and
modulo absorption of0 summands. Hence any closed BCCSP term with depth 0
can be written as0. Thus, the operator;ma` adds a sequence of` a-transitions to
every state at depthm from which no transitions are possible.

In the remainder of this section, we shall tacitly assume, without loss of generality,
that a is the only action occurring in terms. This is justified because the closed
terms that we shall use in our proof of Theorem 38 to follow are over actiona, and
it is easy to see that every closed inequational derivation from an axiom system that
is sound with respect to�T1 proving an inequationp v q, with p andq terms over
actiona, only uses terms over actiona.

Lemma 32 Let p be a closed BCCSP term, and let`,m, n ≥ 0. If depth(p) <
n+m+ ` then

p |= (〈a〉¬)n〈a〉m¬〈a〉> ⇔ p;n+ma
` |= (〈a〉¬)n〈a〉m+`> .

24



PROOF. Note, first of all, that the following holds, for eachk ∈ IN and closed
BCCSP termq′:

∃q (p
a−→ q ∧ q′ = q;k a

`) ⇔ p;k+1a
` a−→ q′. (2)

We prove the lemma by induction onn+m.

• Case: n+m = 0. Then

p |= ¬〈a〉> ⇔ p = 0 (asp is over actiona)

⇔ p;0 a
` |= 〈a〉`> (becausedepth(p) < `) .

• Case: n = 0,m > 0. Then

p |= 〈a〉m¬〈a〉>⇔∃q (p
a−→ q |= 〈a〉m−1¬〈a〉>)

⇔∃q′ (p;m a`
a−→ q′ |= 〈a〉m+`−1>)

⇔ p;m a
` |= 〈a〉m+`> ,

where the second equivalence follows by (2) and the inductive hypothesis, using
thatq′ = q;m−1 a

` anddepth(q) < m+ `− 1.
• Case: n > 0. Then,

p |= (〈a〉¬)n〈a〉m¬〈a〉>⇔∃q (p
a−→ q 6|= (〈a〉¬)n−1〈a〉m¬〈a〉>)

⇔∃q′ (p;n+m a
` a−→ q′ 6|= (〈a〉¬)n−1〈a〉m+`>)

⇔ p;n+m a
` |= (〈a〉¬)n〈a〉m+`> ,

where the second equivalence follows by (2) and the inductive hypothesis, using
thatq′ = q;n+m−1 a

` anddepth(q) < n+m+ `− 1. 2

The following example shows that in Lemma 32 the hypothesisdepth(p) < n +
m+ ` cannot be omitted.

Example 33 If ` > 0, thenam+` 6|= 〈a〉m¬〈a〉>. On the other hand,

am+`;m a
` = am+` |= 〈a〉m+`> .

Lemma 34 Letσ be a closed substitution, and lett be a BCCSP term with a unique
depth allocation anddepth(t) < k. Let σ′ be a closed substitution withσ′(x) =
σ(x);k−d a

` wheneverx occurs at depthd in t. Then

σ′(t) = σ(t);k a
` .

PROOF. We apply induction onk.
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• Base Case: k = 0. This base case is vacuous, since there is no term whose depth
is smaller than0.

• Inductive Step: k > 0. We begin by proving thatσ′(v) = σ(v);k a
` for each

summandv of t.
· Consider a summandx of t. Sincex occurs at depth 0 int, the definition ofσ′

yields thatσ′(x) = σ(x);k a
`.

· Consider a summandau of t. Sinceσ′(y) = σ(y);k−e−1 a
` for variablesy that

occur at depthe in u, anddepth(u) < k − 1, by induction we may infer that
σ′(u) = σ(u);k−1 a

`. Henceσ′(au) = a(σ(u);k−1 a
`) = σ(au);k a

`.
Sinceσ′(v) = σ(v);k a

` holds for all summandsv of t, it follows thatσ′(t) =
σ(t);k a

`, which was to be shown. 2

Remark 35 The assumption thatdepth(t) be smaller thank in the statement of the
above lemma is necessary. Take, for instance,k = 1, t = a + x andσ(x) = a2.
Then, if` is positive,

σ(t);1 a
` = a`+1 + a2 6= a+ a2 = σ′(t) .

Note thatdepth(t) = 1.

Lemma 36 Letσ be a closed substitution, and lett be a BCCSP term with a unique
depth allocation,depth(t) < n + m and depth(σ(t)) < n + m + `, for some
`,m, n ≥ 0. Letσ′ be a closed substitution withσ′(x) = σ(x);n+m−d a

` whenever
x occurs at depthd in t. Then

σ(t) |= (〈a〉¬)n〈a〉m¬〈a〉> ⇔ σ′(t) |= (〈a〉¬)n〈a〉m+`> .

PROOF. Sincedepth(t) < n + m, Lemma 34 yields thatσ′(t) = σ(t);n+m a
`.

Sincedepth(σ(t)) < n+m+ `, Lemma 36 now follows directly from Lemma 32.
�

Note that the formula(〈a〉¬)n〈a〉m+`> is contained in the languageLn+1 that gives
a modal characterization of the equivalence=T

n+1. (See Definition 13 and Theo-
rem 14.)

The following lemma will be a key ingredient in the proof of Theorem 38 to follow.
As mentioned previously, it will be used to show that, subject to technical condi-
tions, terms related by closed substantial substitution instances of axioms in a finite
axiom system that is sound for(n + 1)-nested trace equivalence, forn ≥ 1, either
both satisfy an appropriately chosen formula in the languageLn+2 or none of them
does.

Lemma 37 Let t1, t2 be a pair of BCCSP terms withdepth(ti) < m, for i = 1, 2,
such that the equationt1 ≈ t2 is sound for(n + 1)-nested trace equivalence,
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for somen ≥ 0. Furthermore, letσ be a closed substantial substitution with
lengths(σ(ti)) ⊆ {n+m, n+ 2m} for i = 1, 2. Then

σ(t1) |= (〈a〉¬)n〈a〉m¬〈a〉> ⇔ σ(t2) |= (〈a〉¬)n〈a〉m¬〈a〉> .

PROOF. Sincelengths(σ(ti)) ⊆ {n+m, n+ 2m}, for i = 1, 2, we have that

lengths(σ(t1 + t2)) ⊆ {n+m, n+ 2m}

also holds. Thus, by Lemma 30, the termt1 + t2 has a unique depth allocation.
Let σ′ be a closed substitution withσ′(x) = σ(x);n+m−d a

m+1 wheneverx occurs
at depthd in t1 + t2. Using Lemma 36 (with̀ = m + 1) for the vertical arrows,
and the soundness oft1 ≈ t2 for =T

n+1 and the modal characterization of=T
n+1

(Theorem 14) for the horizontal one, we obtain

σ(t1) |= (〈a〉¬)n〈a〉m¬〈a〉> σ(t2) |= (〈a〉¬)n〈a〉m¬〈a〉>

m m

σ′(t1) |= (〈a〉¬)n〈a〉2m+1> ⇔ σ′(t2) |= (〈a〉¬)n〈a〉2m+1>

This completes the proof of the lemma. �

After this sequence of preparatory lemmas, we are now ready to prove the promised
result to the effect that none of then-nested simulation and trace equivalences (for
n ≥ 2), and none of then-nested simulation and trace preorders (forn ≥ 3) are
finitely based over BCCSP.

Theorem 38 BCCSP modulo=T
n or�n, for n ≥ 2, or �Tn or ⊂→n, for n ≥ 3, is

not finitely (in)equationally axiomatizable.

PROOF. LetE be a finite inequational axiomatization for BCCSP. Pick a positive
integerm such that

m > max{depth(t), depth(u) | (t v u) ∈ E} .

Let pn andqn be defined, for eachn ∈ IN, as in Example 6. For ease of reference,
we recall that:

p0 = a2m−10 q0 = am−10

pn+1 = apn + aqn qn+1 = apn

As argued in Example 6, for everyn ≥ 1, we have thatpn
⊂→n qn, and thus

qn
⊂→(n+1) pn .

27



Let ψ1 = 〈a〉m¬〈a〉> andψn+1 = 〈a〉¬ψn. Note that the formulaψn is contained
in Ln+1, for eachn ≥ 1, and thatψn+1 is the formula mentioned in the statement
of Lemma 37. By induction onn ≥ 1 one checks thatpn |= ψn but qn |= ¬ψn.

We now proceed to use the fact thatpn |= ψn but qn |= ¬ψn to argue that the
inequationqn v pn cannot be proven from any finite set of equations that is sound
for =T

n . To this end, suppose thatE is sound for=T
n (which, by Proposition 11,

is certainly the case ifE is sound for�n, �Tn+1 or ⊂→n+1), wheren ≥ 2. We
show thatE is incomplete for⊂→n+1 (and thus certainly for=T

n , �n and�Tn+1

by Proposition 11), becauseE 6 ` qn v pn. This follows immediately from the
following:

Claim 39 Assume thatE ` p v q and lengths(q) ⊆ {n + m − 1, n + 2m − 1}.
Then

p |= ψn ⇔ q |= ψn .

In fact, using this claim, we can show thatE 6 ` qn v pn as follows. Observe, first
of all, thatlengths(pn) is included in{n+m−1, n+2m−1}, for eachn ∈ IN. (In
fact,lengths(pn) equals{n+m−1, n+2m−1}, for eachn ≥ 1.) We have already
observed thatpn |= ψn but qn |= ¬ψn. Thus, by the above claim, the inequation
qn v pn cannot be derived fromE.

Proof of the claim. We use induction on the length of the derivation ofp v q from
E. The cases of reflexivity and transitivity are trivial, using the soundness ofE with
respect to=T

n and that, by Lemma 18(a),p =T
n q implies lengths(p) = lengths(q),

for eachn ≥ 2. The case thatp v q is a closed substantial substitution instance
of an axiom inE has been dealt with by Lemma 37. What remains to consider
is closure under contexts: if the claim holds forp v q it needs to be shown for
p+ r v q + r, for every closed BCCSP termr over actiona, and forap v aq. The
first of these follows trivially by the observation that

p+ r |= ψn iff p |= ψn or r |= ψn .

For the second, the soundness ofE yieldsp =T
n q. Using the modal characterization

of =T
n , and thatψn−1 is contained inLn, we have that

p |= ψn−1 ⇔ q |= ψn−1 .

Sinceψn = 〈a〉¬ψn−1, it follows that

ap |= ψn ⇔ aq |= ψn ,

which was to be shown. �

Remark 40 If E contains the axiomax v ax+a, which is sound for⊂→2, we have
thatE ` a2m v am−1(am+1 + a). Asam−1(am+1 + a) |= ψ1 but a2m 6|= ψ1, the
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proof above, and the claim in particular, does not apply to�T2 and ⊂→2.

Indeed, three different proofs appear to be needed to establish all of our non-finite
axiomatizability results. In particular, the proofs of non-finite axiomatizability for
the possible futures and 2-nested simulation preorders are necessarily distinct, be-
cause if the set of actionsA is a singleton, then there is a finite axiom system that
is sound for the possible futures preorder and complete for the 2-nested simulation
preorder. This we now proceed to show.

Assume thata is the only action, and consider the axiom systemEPF that contains
the equations in Table 2, and the inequation

a(x+ y)v ax+ ay . (3)

It is not too hard to see thatEPF is sound for the possible futures preorder. In fact,
for all closed BCCSP termsp, q,

• the termsa(p+ q) andap+ aq have the same traces, and
• if a is the only action, thenp+ q has the same set of traces as eitherp or q.

It follows that equation (3) is sound with respect to the possible futures preorder, if
a is the only action.

We shall now show thatEPF is complete for the 2-nested simulation preorder over
the collection of closed BCCSP terms over actiona. The following lemma will play
a key role in the proof of this result.

Lemma 41 Letp, q be closed BCCSP terms over actiona. Assume thatdepth(p) ≤
depth(q). Then

EPF ` q v q + p .

PROOF. By induction on the sum of the “sizes” of the closed BCCSP termsp, q.
We proceed by a case analysis on the formp may take.

• Casep = 0. In this case,EPF ` q ≈ q + p follows immediately from axiom A4
in Table 2.

• Casep = ap′, for somep′. Assume thatq =
∑
j∈J aqj, for some finite index set

J and closed termsqj over actiona (j ∈ J). Sincedepth(p) ≤ depth(q) by our
assumptions, there is an indexj ∈ J such thatdepth(p′) ≤ depth(qj). By the
inductive hypothesis, we have that

EPF ` qj v qj + p′ .
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Hence,

EPF ` aqj v a(qj + p′)

v aqj + ap′ (By (3)) .

The claim now follows using closure with respect to BCCSP contexts.
• Casep = p1 + p2, for somep1, p2 different from0. Sincedepth(p) ≤ depth(q)

by our assumptions, we havedepth(pi) ≤ depth(q) for i = 1, 2. By the inductive
hypothesis, we may infer that

EPF ` q v q + pi ,

for i = 1, 2. Thus,

EPF ` q v q + p2 v q + p1 + p2 ,

which was to be shown. �

We are now ready to prove that the axiom systemEPF is complete for the 2-nested
simulation preorder over closed BCCSP terms over actiona.

Theorem 42 Let p, q be closed BCCSP terms over actiona. Assume thatp ⊂→2 q.
Then

EPF ` p v q .

PROOF. We prove the claim by induction on the depth ofp. Let p =
∑
i∈I api and

q =
∑
j∈J aqj, for some finite index setsI andJ and closed termspi (i ∈ I) and

qj (j ∈ J) over actiona. Note that, asp ⊂→2 q, the depth ofq is equal to that ofp
(Lemma 18(b)).

Let i ∈ I. Then, sincep ⊂→2 q, there is an indexji such thatpi
⊂→2 qji (Proposi-

tion 5). Since the depth ofpi is smaller than that ofp, by our inductive hypothesis
it follows that the inequationpi v qji can be proven fromEPF . Since this holds for
eachi ∈ I, we have that

EPF ` p v
∑
i∈I

aqji .

To conclude the proof, it suffices only to show that

EPF `
∑
i∈I

aqji v q .

To this end, note that, sinceEPF is sound with respect to the possible futures
preorder, and the inequationp v ∑

i∈I aqji is derivable from it, the termsp and∑
i∈I aqji have the same depth (Lemma 18(b)). As previously observed,p andq

also have the same depth. Write now

q =
∑
i∈I

aqji + r ,
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wherer is the sum of all the summands ofq not occurring in
∑
i∈I aqji. By the

previous observations, we have that

depth(r) ≤ depth(q) = depth(
∑
i∈I

aqji) .

Lemma 41 now yields that

EPF `
∑
i∈I

aqji v
∑
i∈I

aqji + r = q ,

completing the proof. �

6 Finitely Based Approximations of Bisimulation Equivalence

The results presented in the previous sections show that none of the nested simu-
lation and trace equivalences afford finite equational axiomatizations over the lan-
guage BCCSP, even in the presence of a singleton action set. The only exceptions
to this rule are the0-nested and1-nested simulation and trace equivalences, which
happen to be the universal relation, simulation and trace equivalence. Interestingly,
however, as shown in [17,18], the intersection of all of then-nested simulation
or trace equivalences or preorders over image-finite labelled transition systems,
and therefore over the language BCCSP, is bisimulation equivalence. Hennessy
and Milner proved in [18] that bisimulation equivalence is axiomatized over the
language BCCSP by the equations in Table 2. It follows that this fundamental be-
havioural equivalence, albeit finitely based over BCCSP, is the limit of sequences
of relations that do not afford finite equational axiomatizations themselves. This is
by no means the only example from process theory of a “discontinuous” property
of a behavioural equivalence—i.e., of a property that “appears at the limit”, but
is not afforded by its finite approximations. Other examples of this phenomenon
may be found in, e.g., the study of decidability properties of behavioural equiva-
lences over classes of infinite state processes. For instance, as shown in [5,9,10],
bisimulation equivalence is decidable over the languages BPA and BPP, but none
of the other notions of behavioural equivalence in the linear time-branching time
spectrum is—see, e.g., the references [16,21].

It is a natural question to ask at this point whether bisimulation equivalence over
BCCSP is the limit of some sequence of finitely based behavioural equivalences
that have been presented in the literature. We shall now argue that this does hold,
provided that the set of actions is finite.

As stated in Sect. 2.4, then-nested trace equivalences were introduced in [18,
p. 147] as a a tool to define bisimulation equivalence [25,29]. Inop. cit. Hennessy
and Milner introduced another sequence of relations that approximate bisimulation
equivalence. These were defined thus:
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Definition 43 For everyn ≥ 0, the relations=A
n are defined inductively over

closed BCCSP terms thus:

• p =A
0 q for everyp, q;

• p =A
n+1 q iff for every actiona ∈ A:

· if p a−→ p′ then there is aq′ such thatq a−→ q′ andp′ =A
n q
′, and

· if q a−→ q′ then there is ap′ such thatp a−→ p′ andp′ =A
n q
′.

Note that, unlike then-nested trace equivalences=T
n , the relations=A

n explore the
behaviour of BCCSP terms only up to “depthn”. As shown by Hennessy and Mil-
ner, over image-finite labelled transition systems, bisimulation equivalence is the
intersection of all of the relations=A

n . Moreover, each of the=A
n is preserved by the

operators of Milner’s CCS, anda fortiori by those of BCCSP.

Our order of business will now be to offer a complete axiomatization of the relations
=A
n over closed BCCSP terms. LetAx denote the axiom system in Table 2. We shall

now show how to inductively construct a family of axiom systemsEn, for n ≥ 0,
with the following property:

Theorem 44 Let p, q be closed BCCSP terms. Thenp =A
n q if, and only if,Ax ∪

En ` p ≈ q.

The axiom systemsEn, for n ≥ 0, will be finite, if so is the set of actionsA. In
what follows we assume that the set of variables is{x1, x2, . . .}.

Definition 45 For eachn ≥ 0, we define the axiom systemEn thus:

E0 = {x1 ≈ x2} and
En+1 = {a(t+ xn+3) ≈ a(u+ xn+3) | a ∈ A, (t ≈ u) ∈ En} .

Note that, ifA is a finite set set containing, say,k actions, then the axiom system
En containskn equations, for eachn ≥ 0. Moreover, observe for later use that, for
eachn ≥ 0, the axioms inEn only use variablesx1, . . . , xn+2.

We shall now show that Theorem 44 does hold for the previously defined axiom
systemsEn. Since the soundness of each of the axioms inEn can easily be shown
by induction onn, using the aforementioned congruence properties of the relations
=A
n , we shall limit ourselves to presenting a proof of the completeness ofAx ∪ En

with respect to=A
n over closed BCCSP terms. The following lemma will be useful

in such a proof.

Lemma 46 Letn ≥ 0, and letp, q be closed BCCSP terms. Assume thatAx∪En `
p ≈ q. ThenAx ∪ En+1 ` ap ≈ aq, for each actiona ∈ A.
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PROOF. Assume thatAx∪En ` p ≈ q, for some closed BCCSP termsp, q. Recall
that this means that there is a sequencep1 ≈ · · · ≈ pk (k ≥ 1) such that

• p = p1,
• q = pk and
• pi = C[σ(t)] ≈ C[σ(u)] = pi+1 for some closed substitutionσ, contextC[ ] and

pair of termst, u with t ≈ u or u ≈ t an axiom inAx ∪ En (1 ≤ i < k).

We prove thatAx ∪ En+1 ` ap ≈ aq, for each actiona ∈ A, by induction onk.

• Base Case: k = 1. In this case we have thatp = q. Thus the equationp ≈ q is
provable fromAx , and so isap ≈ aq.

• Inductive Step: k > 1. By the inductive hypothesis, the equationap ≈ apk−1 is
provable from the axiom systemAx ∪ En+1. Sinceapk = aq, to complete the
proof, we are therefore left to prove that

Ax ∪ En+1 ` apk−1 ≈ apk . (4)

To this end, recall that
· pk−1 = C[σ(t)] and
· pk = C[σ(u)],
for some closed substitutionσ, contextC[ ] and pair of termst, u with t ≈ u
or u ≈ t an axiom inAx ∪ En. In case an axiom fromAx or its symmetric
counterpart was used, (4) follows immediately from the rule of closure under
BCCSP contexts. The proof for the case whent ≈ u is an axiom inEn proceeds
by a case analysis on the form of the contextC[ ].
· Case 1: SupposeC[ ] is of the formC ′[b([ ] + r)], for some actionb and closed

termr.
In this case, it is sufficient to show that

Ax ∪ En+1 ` b(σ(t) + r) ≈ b(σ(u) + r)

as (4) will then follow by applying the rule of closure under BCCSP contexts
repeatedly.

To this end, letσ′ be the closed substitution that maps variablexn+3 to r,
and acts likeσ on all of the other variables. Using the axioms inAx ∪ En+1,
we have that

b(σ(t) + r)≈σ′(b(t+ xn+3)) (asxn+3 6∈ var(t))
≈σ′(b(u+ xn+3)) (asb(t+ xn+3) ≈ b(u+ xn+3) ∈ En+1)
≈ b(σ(u) + r) (asxn+3 6∈ var(u)) ,

which was to be shown.
· Case 2: SupposeC[ ] is of the form[ ] + r, for some closed termr.

In this case, lettingσ′ be defined as above, and using the axioms inAx ∪
En+1, we have that
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apk−1≈ a(σ(t) + r)

≈σ′(a(t+ xn+3)) (asxn+3 6∈ var(t))
≈σ′(a(u+ xn+3)) (asa(t+ xn+3) ≈ a(u+ xn+3) ∈ En+1)
≈ a(σ(u) + r) (asxn+3 6∈ var(u))
≈ apk ,

which was to be shown.
The remaining case, viz. whenu ≈ t an axiom inEn, is similar. �

We are now ready to establish the completeness ofAx ∪En with respect to=A
n over

closed BCCSP terms, for eachn ≥ 0.

The proof is by induction onn. The base case is trivial since the equationx1 ≈ x2

can be used to prove every (closed) equation.

For the inductive step, assume thatAx ∪ En is complete with respect to=A
n over

closed BCCSP terms, and thatp =A
n+1 q holds for closed termsp, q. We shall now

argue that the equationp ≈ q can be derived from the axiom systemAx ∪ En+1.
Let p =

∑
i∈I aipi andq =

∑
j∈J bjqj, for some finite index setsI andJ and closed

termsaipi (i ∈ I) andbjqj (j ∈ J). Our order of business will now be to show that

Ax ∪ En+1 ` p ≈ p+ q ≈ q .

By symmetry, it is sufficient to show that the equationp + q ≈ q is derivable from
Ax ∪ En+1. To this end, leti ∈ I. Then, sincep =A

n+1 q, there is an indexji such
that ai = bji andpi =A

n qji. Since the axiom systemAx ∪ En is complete with
respect to=A

n by our inductive hypothesis, it follows that the equationpi ≈ qji can
be proven fromAx ∪ En. By Lemma 46, the equationaipi ≈ bjiqji can be derived
from Ax ∪ En+1. As this holds for each indexi ∈ I, it follows thatp + q ≈ q is
derivable fromAx ∪ En+1, which was to be shown.

The proof of Theorem 44 is now complete.
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