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1 Introduction

Labelled transition systems (LTSs) [23] are a fundamental model of concurrent
computation, which is widely used in light of its flexibility and applicability. In
particular, they are the prime model underlying Plotkin’s Structural Operational
Semantics [30] and, following Milner’'s pioneering work on CCS [25], are by now
the standard semantic model for various process description languages.

LTSs model processes by explicitly describing their states and their transitions from
state to state, together with the actions that produced them. Since this view of pro-
cess behaviours is very detailed, several notions of behavioural equivalence and
preorder have been proposed for LTSs. The aim of such behavioural semantics is to
identify those (states of) LTSs that afford the same “observations”, in some appro-
priate technical sense. The lack of consensus on what constitutes an appropriate no-
tion of observable behaviour for reactive systems has led to a large number of pro-
posals for behavioural equivalences for concurrent processes. (See the study [14],
where van Glabbeek presents the linear time-branching time spectrum—a lattice of
known behavioural equivalences and preorders over LTSs, ordered by inclusion.)

One of the criteria that has been put forward for studying the mathematical tractabil-
ity of the behavioural equivalences in the linear time-branching time spectrum is
that they afford elegant, finite equational axiomatizations over fragments of pro-
cess algebraic languages. Equationally based proof systems play an important role
in both the practice and the theory of process algebras. From the point of view of
practice, these proof systems can be used to perform system verifications in a purely
syntactic way, and form the basis of axiomatic verification tools like, e.g., PAM
[24]. From the theoretical point of view, complete axiomatizations of behavioural
equivalences capture the essence of different notions of semantics for processes in
terms of a basic collection of identities, and this often allows one to compare se-
mantics which may have been defined in very different styles and frameworks. A
review of existing complete equational axiomatizations for many of the behavioural
semantics in van Glabbeek’s spectrum is offered in [14]. The equational axiomati-
zations offeredbidemare over the language BCCSP, a common fragment of Mil-
ner's CCS [25] and Hoare’s CSP [20] suitable for describing finite synchronization
trees, and characterize the differences between behavioural semantics in terms of a
few revealing axioms.

The main omissions in this menagerie of equational axiomatizations for the be-
havioural semantics in van Glabbeek’s spectrum are axiomatizations for 2-nested
simulation semantics and possible futures semantics. The relation of 2-nested sim-
ulation was introduced by Groote and Vaandrager [17] as the coarsest equivalence
included in completed trace equivalence for which the tyft/tyxt format is a con-
gruence format. It thus characterizes the distinctions amongst processes that can
be made by observing their termination behaviour in program contexts that can be



built using a wide array of operators. (The interested reader is referogd it for
motivation and the basic theory of 2-nested simulation.) 2-nested simulation can be
decided over finite LTSs in time that is quadratic in their number of transitions
[34], and can be characterized by a single parameterized modal logic formula [26].
However, no equational axiomatization for it has ever been proposed, even for the
language BCCSP. Possible futures semantics, on the other hand, was proposed by
Rounds and Brookes in [32] as far back as 1981, and it affords an elegant modal
characterization in terms of a subset of Hennessy-Milner logic—in fact, since pos-
sible futures equivalence (respectively, preorder) coincides with-tiested trace
equivalence (resp. thenested trace preorder), the modal characterization of pos-
sible futures equivalence is a consequence of a more general, classic result due to
Hennessy and Milner (see [18, Theorem 2.2 and page 148]) that will find appli-
cation in the technical developments of this paper. As shown by Kannellakis and
Smolka in [22], the problem of deciding possible futures equivalence and all of the
othern-nested trace equivalences & 1) from [18] over finite state processes is
PSPACE-complete.

In this paper, we offer, amongst other results, a mathematical justification for the
lack of an equational axiomatization for the 2-nested simulation and possible fu-
tures equivalence and preorder even for the language of finite synchronization trees.
More precisely, we show that none of these behavioural relations admits a finite
(in)equational axiomatization over the language BCCSP. These negative results
hold in a very strong form. Indeed, we prove that no finite collection of inequa-
tions that are sound with respect to the 2-nested simulation preorder can prove all
of the inequalities of the form

CL2mECL2m+CLm (mz()) 7

which are sound with respect to the 2-nested simulation preorder. Similarly, we
establish a result to the effect that no finite collection of (in)equations that are sound
with respect to the possible futures preorder or equivalence can be used to derive
all of the sound inequalities of the form

a(a™ + a*) + aa® C aa®™ + a(a™ + a*™) (m>0) .

We then generalize these negative results to show that none ofriksted sim-
ulation or trace preorders and equivalences from [17,18]s(for 2) afford finite
equational axiomatizations over the language BCCSP.

The import of these results is not only that the equational theory ofithested
simulation and trace semantics is not finitely equationally axiomatizable, foe,

but neither is the collection of (in)equivalences that hold between BCCSP terms
over one action and without occurrences of variables. This state of affairs should
be contrasted with the elegant equational axiomatizations over BCCSP for most



of the other behavioural equivalences in the linear time-branching time spectrum
that are reviewed by van Glabbeek in [14]. Only in the case of additional, more
complex operators, such as iteration or parallel composition, or in the presence of
infinite sets of actions, are these equivalences known to lack a finite equational
axiomatization; see, e.g., [3,8,11,13,31,33]. Of special relevance for concurrency
theory are Moller’s results to the effect that the process algebras CCS and ACP
without the auxiliary left merge operator from [6] do not have a finite equational
axiomatization modulo bisimulation equivalence [27,28]. Fokkink and Luttik have
shown in [12] that the process algebra PA [7], which contains a parallel composi-
tion operator based on pure interleaving without communication and the left merge
operator, affords aw-complete axiomatization that is finite if so is the underlying
set of actions. AcetcEsik and In@lfsdottir [2] proved that there is no finite equa-
tional axiomatization that is-complete for the max-plus algebra of the natural
numbers, a result whose process algebraic implications are discussed in [1].

As shown in [17,18], the intersection of all of thenested simulation or trace
equivalences or preorders over image-finite labelled transition systems, and there-
fore over the language BCCSP, is bisimulation equivalence. Hennessy and Mil-
ner proved in [18] that bisimulation equivalence is axiomatized over the language
BCCSP by the four equations in Table 2. Thus, in light of the aforementioned
negative results, this fundamental behavioural equivalence, albeit finitely based
over BCCSP, is the intersection of sequences of relations that do not afford fi-
nite equational axiomatizations themselves. This observation begs the question of
whether bisimulation equivalence over BCCSP is the limit of some sequence of
finitely based behavioural equivalences that have been presented in the literature. In
op. cit Hennessy and Milner introduced an alternative sequence of relations that ap-
proximate bisimulation equivalence. These relations are based on a “bisimulation-
like” matching of thesingle stepshat processes may perform, whereastheested

trace equivalences require matchings of arbitrarily l@eguences of stepg/e

prove in this study that, unlike the-nested trace equivalences, these single-step
based approximations of bisimulation equivalence are all finitely axiomatizable
over the language BCCSP, provided that the set of actions is finite.

The paper is organized as follows. We begin by presenting preliminaries on the lan-
guage BCCSP, (in)equational logic, and the notions of behavioural equivalence and
preorder studied in this paper (Sect. 2). Our main results on the non-existence of
finite (in)equational axiomatizations for thenested simulation and trace equiv-
alence and preorder (for > 2) are the topic of Sects. 3-5. In Sect. 3 we prove
that the 2-nested simulation preorder has no finite inequational axiomatization over
the language BCCSP. Sect. 4 presents a non-finite axiomatizability result for the
possible futures preorder and equivalence. We then offer a general result to the ef-
fect that all of the othen-nested semantics considered in this study have no finite
(in)equational axiomatization (Sect. 5). The paper concludes with our proof of fi-
nite axiomatizability for the alternative approximations of bisimulation equivalence
introduced by Hennessy and Milner in [18] (Sect. 6).



The work reported in this paper extends and improves upon the results presented
in [4], where it was shown that 2-nested simulation semantics and the 3-nested
simulation preorder are not finitely based over the language BCCSP. The afore-
mentioned paper also offered conditional axiomatizations for the nested simulation
semantics. Since we have been unable to obtain similar results for the nested trace
semantics, we have decided to omit those conditional axiomatizations from this
presentation.

2 Preliminaries

We begin by introducing the basic definitions and results on which the technical
developments to follow are based.

2.1 Thelanguage BCCSP

The process algebra BCCSP is a basic formalism to express finite process be-
haviour. Its syntax consists of (process) terms that are constructed from a count-
ably infinite set of (process) variables (with typical elementg, ), a constano,

a binary operatos calledalternative compositionand unaryprefixingoperators

a, wherea ranges over some non-empty sebf atomic actionsWe shall use the
meta-variables, u, v to range over process terms, and write (¢) for the collec-

tion of variables occurring in the term

A process term iglosedif it does not contain any variables. Closed terms will be
typically denoted by, ¢, . Intuitively, closed terms represent completely specified
finite process behaviours, wheéd@loes not exhibit any behavioyr+ ¢ combines

the behaviours gf andq by offering an initial choice as to whether to behave like
either of these two terms, angh can execute action to transform intop. This
intuition for the operators of BCCSP is captured, in the style of Plotkin [30], by the
transition rules in Table 1. These transition rules give rise to transitions between
process terms. The operational semantics for BCCSP is thus given by the labelled
transition system [23] whose states are terms, and wHdsa#éelled transitions are
those that are provable using the rules in Table 1. Based on this labelled transition
system, we shall consider BCCSP terms modulo a range of behavioural equiva-
lences that will be introduced in Sect. 2.4.

A (closed) substitution is a mapping from process variables to (closed) BCCSP
terms. For every termand (closed) substitution, the (closed) term obtained by
replacing every occurrence of a variablén ¢ with the (closed) terna () will be
written o (t).



Table 1
Transition rules for BCCSP

a / a /
r—T Yy—Y a
ar — T

vty -—a  rty-——y

In the remainder of this paper, we let denote0, anda™! denotea(a™). Fol-

lowing standard practice in the literature on CCS and related languages, t@sling

will often be omitted from terms. Aerm over actioru is a BCCSP term that may

only contain occurrences of the prefixing operatof\We shall restrict our attention

to these terms in the technical developments presented in Section 5.) For example,
the terma™ is over actiom, for eachm > 0.

2.2 Inequational Logic

An axiom systens a collection of inequationsC « over the language BCCSP. An
inequationp C ¢ is derivable fromE, notationF F p C ¢, if it can be proven from
the axioms inE using the rules of inequational logic (viz. reflexivity, transitivity,
substitution and closure under BCCSP contexts):

tCuulo tCu tCu

C
b=t tCo o(t) Co(u) atgau(aeA)

tCu tCu
t+rCu+r r+tCr+u
Without loss of generality one may assume that substitutions happen first in inequa-
tional proofs, i.e., that the third rule may only be used wlell u) € E. In this
caser(t) C o(u) is called asubstitution instancef an axiom inE.

Equational logicis like inequational logic, but with the extra rule of symmetry:

tCu
wulCt

In equational logic, the formula C « is normally writtent ~ u. Without loss

of generality, one may assume that applications of symmetry happen first in equa-
tional proofs. Therefore we can see equational logic as a special case of inequa-
tional logic, namely by postulating that for each axiomAnalso its symmetric
counterpart is present ifi. In the remainder of this paper, we shall always tacitly
assume this property of equational axiom systems.

An example of an (equational) axiom system over the language BCCSP is given in
Table 2. As shown by Hennessy and Milner in [18], that axiom system is sound and
complete for bisimulation equivalence over the language BCCSP.



Table 2
Axioms for BCCSP

Al rt+y=~ytax

A2 (z+y)+zma+(y+2)
A3 r+r =z

A4 r+0=z

In the remainder of this paper, process terms are considered modulo associativity
and commutativity of +, and modulo absorption@§ummands. In other words,

we do not distinguish + v andwu + ¢, nor (¢ + u) + v andt + (u + v), nort + 0

andt. This is justified because all of the behavioural equivalences we consider
satisfy axioms Al, A2 and A4 in Table 2. In what follows, the symbowill

denote syntactic equality modulo axioms Al, A2 and A4. We useiramation

to see fhat, modulo the equations Al, A2 and A4, every BCCSP tdras the

form 3, x; + 3¢ ajt;, for some finite index sets, J, termsa,t; (j € J) and
variablesy; (i € I). The termsu;t; (j € J) and variables; (¢ € I) will be referred

to as thesummandsf ¢.

It is well-known (cf., e.g., Sect. 2 in [15]) that if an (in)equation relating two closed
terms can be proven from an axiom systéithen there is a closed proof for it.

In the proofs of some of our main results, it will be convenient to use a different
formulation of the notion of provability of an (in)equation from a set of axioms.
This we now proceed to define for the sake of clarity.

A contextC'[ ] is a closed BCCSP term with exactly one occurrence of a hple
in it. For every context”[ | and closed ternp, we write C'[p] for the closed term
that results by placing in the hole inC |. It is not hard to see that an inequation
p C ¢ is provable from an inequational axiom systdmiff there is a sequence
p1 E -+ C pi (K > 1) such that

® p=Drn,

® g = pg and

e p; =Clo(t)] C Clo(u)] = piy1 for some closed substitutian contextC| | and
pair of termst, w with ¢t C » an axiom inE (1 < i < k).

In what follows, we shall refer to sequences of the foriC - - - C p, asinequa-
tional derivations

For later use, note that, using axioms Al, A2 and A4 in Table 2, every context can
be proven equal either to one of the fob([ | + p)] or to one of the form | + p,



for some actiorb and closed BCCSP term

2.3 Traces of BCCSP Terms

The transition relations®- (a € A) naturally compose to determine the possible
effects that performing a sequence of actions may have on a BCCSP term.

Definition 1 For a sequence = a;---a; € A* (k > 0), and BCCSP terms ¢/,
we writet — ¢’ iff there exists a sequence of transitions

t=1tg = t; =2 ... B =4
If t = t" holds for some BCCSP tertf) thens is atraceof t. We writetraces(t)
for the set of traces of a term

The following lemma, whose proof is standard, relates the transitions of a term of
the formo () to those oft and those of the terms(z), with = a variable occurring
int.

Lemma 2 For every BCCSP term substitutions, and sequence of actiorsthe
following statements hold:

(1) if t = u for some termy, theno (t) = o (u);
(2) if o(t) = u for some term, then
(@) eithert = ¢’ for somet’ withu = o (#'),
(b) or there are sequences of actiofns s, with sy non-empty and = s; ss,
atermt’ and a variabler such that >~ x + ¢’ ando(z) = u.

2.4 Behavioural Semantics

Labelled transition systems describe the operational behaviour of processes in great
detail. In order to abstract from irrelevant information on the way processes com-
pute, a wealth of notions of behavioural equivalence or approximation have been
studied in the literature on process theory. A systematic investigation of these no-
tions is presented in [14], where van Glabbeek presents the so-called linear time-
branching time spectrum, a lattice of known behavioural equivalences over labelled
transition systems ordered by inclusion. In this study, we shall investigate a frag-
ment of the notions of equivalence and preorder frgm cit, together with the
family of the nested trace equivalences and preorders (see Definition 8). These we
now proceed to present.

Definition 3 A binary relation R between closed terms issemulationiff p R ¢
together withp - p’ imply that there is a transitiop — ¢’ withp’ R ¢'.



Groote and Vaandrager introduced in [17] a hierarchy-ofested simulation pre-
orders and equivalences for> 2. These are defined thus:

Definition 4 For n > 0, we define the relatiorx,, inductively over closed BCCSP
terms thus:

e p Syqgforall p,q,
e p S, qiff p R g for some simulatio? with R~! included inS,,.

The kernel ofS,, (i.e., the equivalencés, N (S,,)7 1) is denoted bys,,.

The relationS; is the well-knownsimulation preordef29]. The relations<, and

=, are the2-nested simulation preordend the2-nested simulation equivalence
respectively. Groote and Vaandrager have characterized 2-nested semantics as the
largest congruence with respect to the tyft/tyxt format of transition rules which is
included in completed trace semantics—see [17] for detalils.

In the remainder of this paper we shall sometimes use, instead of Definition 4, the
following more descriptive, fixed-point characterization of thaested simulation
preorder ¢ > 1).

Proposition 5 Letp, ¢ be closed BCCSP terms, and> 0. Thenp S, ¢ iff

(1) forall p - p' there is ag —* ¢’ withp’ S, ¢/, and
(2) ¢ Snp-

PROOF. We prove the two implications separately.

e (=) Assume thap S, ., q. By definition,p R ¢ with R a simulation and? !
included inS,,. Soifp - p/, theng - ¢/ with p’ R ¢/, which implies

/ C /
P —=nt19q -

Moreover, since? ! is included inS,,, it follows thatg <., p.

e (<) We definep R q iff

(1) forallp % p/ there is ay = ¢’ with p’ S,,1 ¢, and

2) ¢ Snp.
Suppose now that R q. If p — 7/, then by the definition oft we have; —* ¢/
with p’ 5,1 ¢. Since we have already proven the ‘only if’ implication, we may
conclude thap’ R ¢'. SoR is a simulation. Furthermore, by (2) abofe! is
included inS,,. Hence, we have that S, ¢, which was to be shown. [

Example 6 Letm > 1. Define, for eacn € IN, the closed BCCSP termsg and



g thus:

Po — a2m—10 9 — am—lo

Pn+1 = app + agy Gn+1 = QPpn -

By induction om: € IN and using Proposition 5, it is not hard to check that S,
¢n, and thus that,, S, p,.

The terms,, andg,, (n € IN) defined above will play a crucial role in the proof of
Theorem 38 to follow.

Possible futures semantics was introduced by Rounds and Brookes in [32], and is
defined thus:

Definition 7 Letp be a closed BCCSP term.pbssible futurefp is a pair (s, X),
where s is a sequence of actions and C A*, such thatp — p’ and X =
traces(p'), for somey’.

Two closed termg andq are related by thgossible futures preordérespectively,
possible futures equivalencevrittenp <pr ¢ (resp.,p =pr q), if each possible
future ofp is also a possible future of (resp., ifp and ¢ have the same possible
futures).

The last notions of semantics we shall consider in this paper are the families of the
n-nested trace equivalences and preorders.nFhested trace equivalences were
introduced by Hennessy and Milner in [18, p. 147] as a a tool to define bisimulation
equivalence [25,29].

Definition 8 For everyn > 0, the relations of:-nested trace equivalenagenoted
by =T, andn-nested trace preordedenoted by<®, are defined inductively over
closed BCCSP terms thus:

e p =} gandp < ¢ for everyp, ¢;

e p =1, ¢iff for every sequence of actionse A*:
- if p == p’ then there is &' such thaty — ¢’ andp’ = ¢/, and
- if ¢ = ¢ then there is @' such thatp —* p’ andp’ =7 ¢/;

o p =<, ¢iff for every sequence of actionss A*:
- if p = p/ then there is &/ such thaty —— ¢’ andp’ =7 ¢'.

Note that the relations-? and=1 are just trace equivalence (the equivalence that
equates two terms having the same traces—see [14,19]) and possible futures equiv-
alence, respectively, whereaq is the possible futures preorder. Moreover, it is
easy to see that, for every > 0, the equivalence relation? is the kernel of the
preorder<Z,

The following result is well-known—see, e.g., the references [17,18].

10



Proposition 9 For everyn > 0, the relationsS,,, <,,, =2 and <” are preserved
by the operators of BCCSP.

The relations we have previously defined over closed BCCSP terms are extended
to arbitrary BCCSP terms thus:

Definition 10 Let¢,u be BCCSP terms, and let be any ofS,,, =, =1 and
=<TI"(n > 0). The inequatiort C « is soundwith respect to<, writtent < u, iff
o(t) = o(u) for every closed substitutian

For instance, the inequation C y is sound with respect to all of theé-nested
semantics defined above. Examples of (in)equations that are sound with respect to
5, are those in Table 2 and

alx+y)Calx+y)+ax .

The following result collects some basic properties of nested simulation and nested
trace semantics that will be useful in the technical developments to follow.

Proposition 11 For all BCCSP termg,« andn > 0, the following statements
hold:

(1) ift S, u, thent S, u;
(2) ift <I., u, thent =1 u;
(3) if t S, u, thent =T 4,

PROOF. Statement (1) is due to Groote and Vaandrager in [17], and statement
(2) follows immediately from the definitions of the relations , and=!. We
therefore limit ourselves to presenting a proof of statement (3). To this end, observe,
first of all, that in light of Definition 10, it is sufficient to prove the claim for closed
BCCSP terms. Assume now thatS,, ¢, wherep, g are closed BCCSP terms. We
provep <1 ¢ by induction onn. This is trivial if n = 0. Suppose therefore that

p S, q. Lets be a sequence of actions.h and assume that—- p’ for some

p'. We aim at showing that — ¢’ for someg’ with p’ =1 ¢'.

Sincep 5,41 g andp — p/, using Proposition 5 and a simple induction on the
length ofs, we have thay -~ ¢’ for someq’ with p’ S, ¢'. By statement (1) of
the proposition, we may infer that <,, ¢’. The inductive hypothesis now yields
thatp’ <T ¢ <T p'. Since the relatior=7 is the kernel of<’, we may conclude
thatp’ = ¢/, which was to be shown. O

11



2.5 A Modal Characterization of Nested Trace Equivalence

In the proof of our main result in Sect. 5, we shall make use of the modal character-
ization of then-nested trace equivalences proposed by Hennessy and Milner in [18,
p. 148]. This we now introduce for the sake of completeness.

Definition 12 The setl of Hennessy-Milner formulaever alphabetA is defined
by the following grammar:

pu=T|oANp|¢|(a)p(ac A) .

Thesatisfaction relatiof= is the binary relation relating closed BCCSP terms and
Hennessy-Milner formulae defined by structural induction on formulae thus:

p = T, for every closed BCCSP term

pE w1 Apaiff p = andp | s,
p E g iffitis not the case thap = ¢, and

p = {(a)p iff p — p’ for somep’ such thaty’ |= .

As an immediate consequence of the characterization theorem for bisimulation
equivalence over image-finite labelled transitions systems shown by Hennessy and
Milner [18, Theorem 2.2], two closed BCCSP terms are bisimulation equivalent
if, and only if, they satisfy the same formulaen We now introduce a family of
sub-languages of that yield modal characterizations of thenested trace equiv-
alences for every, > 0.

Definition 13 For everyn > 0, we define the sel, of n-nested Hennessy-Milner
formulaeinductively thus:

e L, contains only the formulag and—T, and
e [, .1 is given by the following grammar

=T |eANp]|-p]|{a) - {a) (k>0,a1---a, € A"andy € L) .
The following result is due to Hennessy and Milner [18].

Theorem 14 Letp, ¢ be closed BCCSP terms, andet- 0. Thenp =7 ¢ iff p and
g satisfy the same formulae in the language

Remark 15 Note that, for every. > 0 and closed termg, ¢, if each formula in
L, satisfied by is also satisfied by, thenp andq satisfy the same formulae in the
language’,,. Indeed, assume that each formuladp satisfied by is also satisfied
by ¢, and thatg satisfiesp € £,,. Using the closure of,, with respect to negation,
we have thay (= —p, and therefore thap [~ —¢. It follows thatp satisfiesp,
which was to be shown.

12



Although tempting, it would therefore be incorrect to assume that, for every)
and closed terms, ¢, it holds thatp < ¢ iff each formula inZ,, satisfied by is
also satisfied by.

To obtain a modal characterization of thenested trace preorders, consider the
sub-languagesg\v1,, of £,, defined inductively thus:

e M, contains only the formulaé and—T, and
e M, ., is given by the following grammar

=T |lpAp|{ar) - {a) (k>0,a---a, € Aandy € L,,) .

Following the lines of the proof of Theorem 2.2 in [18], the interested reader will
have little trouble in establishing that

For everyn > 0 and closed terms, ¢, it holds thatp <! ¢ iff each formula in
M, satisfied by is also satisfied by.

2.6 Lengths, Norm and Depth of Terms

We now present some results on the relationships between the lengths of the com-
pleted traces, the depth and the norm of BCCSP terms that are related by the notions
of semantics considered in this paper. These will find important applications in the
proofs of our main results, and shed light on the nature of the identifications made
by the nested simulation and trace semantics.

Definition 16 A sequence € A* is acompleted tracef a termt iff + — ¢ holds
for some term’ without outgoing transitions. We writkengths(t) for the set of
lengths of the completed traces of a BCCSP term

Note thatlengths(t) is non-empty for each BCCSP tertn Moreover, the only
closed BCCSP term that has a completed trace of length00 (Recall that we
consider terms modulo absorption@summands.)

Definition 17 Thedepthand thenorm of a BCCSP ternt, denoted bydepth(t)
andnorm(t), are the lengths of the longest and of the shortest completed trace of
t, respectively.

The following lemma states the basic relations between the behavioural semantics
studied in this paper and the lengths, depth and norm of terms that will be needed
in the technical developments to follow.

Lemma 18 Let < be any of<”, =T =, and S, forn > 2. If t < u, then

(@) lengths(t) C lengths(u),

13



(b) depth(t) = depth(u),
(c) norm(t) > norm(u) and
(d) wvar(t) = var(u).

PROOF. In light of Proposition 11, it is sufficient to prove that the claims hold for
the possible futures preorder, viz. the relatigf.

We argue, first of all, that claims (a)—(c) hold wher? . To this end, note that,
by substitutingd for the variables irt andu, we obtain closed termsandqg with
lengths(t) = lengths(p) andlengths(u) = lengths(q). So it suffices to prove
claims (a)—(c) withp andgq in place oft andu, respectively. By Definition 10, we
have thap <7 ¢.

Assume now that € lengths(p). Then there are a sequences A* of lengthn
and a closed term’ with no outgoing transitions such that—— p’. Asp <71 ¢,
there is a closed tergi such thaty — ¢’ andp’ =7 ¢/. Recall thap’ =7 ¢’ if, and
only if, p’ and¢’ have the same traces. It therefore follows tfidtas no outgoing
transitions, and that € lengths(q), which was to be shown.

Claim (c) follows immediately from (a). To see that claim (b) holds, observe that if
p =T ¢ for closed BCCSP termpandgq, then, by Proposition 11(2p,andq have
the same non-empty finite sets of traces, and thus the same longest traces.

To prove claim (d), let,u be BCCSP terms such thatz? «. Assume, towards a
contradiction, that there is a variabtghat occurs in only one afandu. We shall
exhibit a closed substitution such thatdepth(o(t)) # depth(o(u)), contradicting
statement (b) of the lemma.

To this end, observe, first of all, that without loss of generality, we may assume that
x occurs int, say. Letm be a positive integer larger thafapth(t). By claim (b) of
the lemma, we have thaepth(t) = depth(u) < m also holds.
Consider now the closed substitutiethat maps: to o™, and all the other variables
to 0. Using structural induction, it is a simple matter to prove that
depth(o(t)) >m and
depth(o(u)) = depth(u) < m .

By statement (b) of the lemma, it follows thatt) <2 o(u) does not hold, contra-
dicting our assumption that=<?" v. O

Remark 19 Note thatlengths(t) = lengths(u) and norm(t) = norm(u) both
hold, ift =1 w.
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The restriction that: > 2 is necessary in the statement of Lemma 18(a) and (c). In
fact,aa + a =, aa, but

lengths(aa + a) = {1,2} € {2} = lengths(aa) and

norm(aa + a) < norm(aa) .

Statements (b) and (d) in Lemma 18 also hold=gr. In fact, it is not hard to see
that, for everyt, u, if t <7 u thendepth(t) < depth(u) andvar(t) C var(u).

3 Non-finite Axiomatizability of the 2-nested Simulation Preorder

In this section we prove that the 2-nested simulation preorder is not finitely inequa-
tionally axiomatizable. The following lemma will play a key role in the proof of
this statement.

Lemma 20 If p S5 a®™ 4 a™, then eithep S, a®™ or p Sy a®™ + a™.

PROOF. The casen = 0 is trivial; we therefore focus on the case > 0. We
note, first of all, that if; S, o* for somek > 0, then, by Lemma 18(a), has only
the completed trace”; clearly, this implies:* < ¢, and hence” <, q.

Consider now a transitiop — p’. Sincep S, a®™ + a™, eitherp’ S5 a®™~ ! or
p S, a™ 1. By Lemma 18(b)p has deptt2m. So there is at least one transition
p — p withp’ S, a®m 1,

If for all transitionsp —— p’ we havey’ S, a1, then it follows thap S, a®™,
and hence <, «?™. On the other hand, if there exists a transitipp™ p” with
p" Soa™ ! (and saa™ ! S, p”), then it follows that®™ + ™ S, p, and hence
p Sy a?™ + a™. 0

The idea behind our proof that the 2-nested simulation preorder is not finitely in-
equationally axiomatizable is as follows. Assume a finite inequational axiomatiza-
tion £ for BCCSP that is sound moduls.,. We show that, ifm is sufficiently
large, then, for all closed inequational derivatiori& C p; C --- C p, from E
with p, So a?™ +a™, we have thap, S, a?™. Sincea®™ +a™ %4 a®™, it follows

thata®>™ C a*™ + o™ cannot be derived fromy. However,a>”™ S, a®™ + a™.

The following lemma is the crux in the implementation of the aforementioned proof
idea.
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Lemma 21 Lett T u be sound modulgs,. Let m be greater than the depth
of t. Assume thaClo(u)] So a®™ + o™, for some closed substitution Then
Clo(t)] So a®™ impliesClo(u)] Sa a®™.

PROOF. Let C[o(t)] o a®™; we proveClo(u)] Sy a®™. SinceClo(u)] So
a®™+a™, itis sufficient to show that®™ + a™ £, Clo(u)]. In fact, if Clo(u)] S
a®m+a™ anda®™ +a™ Ao Clo(u)], by Lemma 20 it follows that’[o(u)] S, a®™,
which is to be shown. We prové™ +a™ %, C[o(u)] by distinguishing two cases,
depending on the form of the conteX{ |.

e Case 1Suppos&’|] is of the formC’[b([ ] + r)].
In this case, we shall prov€é™ +a™ %, Clo(u)] by arguing that™ ! %, ¢
holds for eacly’ such thatC[o(u)] —— ¢'. To this end, consider a transition

Clo(u)] —¢" .

Theng' = D[o(u)] for some contexD| |, and, because of the form of the context
C|], we may infer that

As o(t) S, o(u) by the soundness df C u with respect toS,, andp’ S,

¢’ by Proposition 9, Lemma 18(b) yields thgltand ¢’ have the same depth.
SinceClo(t)] S, a®™, it follows by Proposition 5 thap’ S, a*™~!. So by
Lemma 18(b), we have that

depth(p') = depth(¢') =2m — 1 .
As depth(a™ ') # 2m — 1, another application of Lemma 18(b) yields that

am—l 7%)2 q/ ]

Since this holds for all transitionS|o(u)] —— ¢/, anda®® + a™ % o™},
using Proposition 5 we may therefore conclude tH&t+ a™ %o Clo(u)].
e Case 2 Suppose’| ] is of the form[ ] + r.

In this case, we shall prové™ +a™ %, Clo(u)] by arguing that the norm of
Clo(u)] is larger thamm.

To this end, observe, first of all, that, asS, u by our assumptions, state-
ments (b) and (d) in Lemma 18 imply thétpth(t) = depth(u), and moreover
thatt andu contain exactly the same variables. We proceed with the proof by
distinguishing two cases, depending on whethenn (o (t)) = 0 or not.

- Casenorm(o(t)) = 0.
In this caset has the forn}_,.; =; for some finite index set, and variables

z; (1 € I) with norm(o(x;)) = 0 for eachi € I.

Sincet C u is sound with respect t&s,, statements (c)—(d) in Lemma 18
yield thatt = u modulo axiom A3. Since axiom A3 is sound with respect to
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S,, using Proposition 9 we may therefore conclude that
a®™ 4 a™ g a*™ S,y Clo(t)] S, Clo(u)]

which was to be shown.
- Casenorm(o(t)) > 0.

Sinceo(t) + r So a®™, Lemma 18(c) yields thatorm(o(t)) > 2m, and
eithernorm(r) > 2m or norm(r) = 0. By the soundness ofC « with respect
to S, and the assumption thavrm (o (t)) > 0, it follows thatdepth(o(t)) =
depth(o(u)) > 0. Henceo(u) # 0, and therefore we have thabrm (o (u)) >
0. Asco(u) +r Sy a®™ + a™, again using Lemma 18(c), we infer that

norm(o(u)) >m .

Sincedepth(t) < m andnorm(o(t)) > 2m, for each variable: € var(t) =
var(u) we havenorm(o(x)) > m.

By the facts thatlepth(u) = depth(t) < m andnorm(o(u)) > m, each
completed trace of (u) must become, after less tham transitions, a com-
pleted trace of ar(x) with € var(u). Since for allz € var(u) = var(t)
we havenorm(o(z)) > m, it follows thatnorm(o(u)) > m. Since moreover
norm(r) > 2m or norm(r) = 0, we havenorm(o(u) +r) > m. Asa®™ +a™
has normm, by Lemma 18(a) we may conclude thét* + a™ %, o(u) + r,
which was to be shown. O]

Remark 22 The inequatioruz C ax + o' is sound moduld=,. Howevera* %,
a* + a'. So the proviso in the statement of Lemma 21 tHat(u)] S, a®*™ + a™
cannot be omitted. (Note that + a' %, a* + a?.)

Theorem 23 BCCSP modulo the 2-nested simulation preorder is not finitely in-
equationally axiomatizable.

PROOF. Let E be a finite inequational axiomatization for BCCSP that is sound
moduloS,. Letm > max{depth(t) |t Cu € E}.

By Lemma 21, and using induction on the length of derivations, it follows that
if the closed inequation®” C r can be derived fron¥ andr S, a®™ + o™,
thenr S, a®™. As Lemma 18(c) yields that>™ + a™ %, a®™, it follows that
a’™ C a®™ + a™ cannot be derived front. Sincea®” Sy a®>™ + a™, we may

conclude thaf” is not complete moduld-.. O
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4 Possible Future Semantics is not Finitely Based

Throughout this section, we let be either the possible futures preorder, or possible
futures equivalence. Our order of business in this section will be to prove<that
has no finite (in)equational axiomatization over BCCSP. The idea behind the proof
of this claim is as follows. Assume that is a finite inequational axiomatization

for BCCSP that is sound modulg. We show that, ifn is sufficiently large, then,

for all closed inequationg C ¢ that can be derived frory' the following invariant
property holds:

If lengths(q) € {m + 1,2m + 1,3m + 1}, and there is @' such thatp —
P, norm(p') = m anddepth(p’) < 2m, then there is & such thaty % ¢/,
norm(q') = m anddepth(q") < 2m.

However, we shall exhibit a pair of closed terms that are related ,gnd do not
satisfy the above property. This will allow us to conclude thais not complete
with respect to<.

The following lemma characterizes some properties of the inequations that are
sound with respect tex that will be useful in the proof of the main result of this
section (Theorem 25 to follow).

Lemma 24 Let the axiom T « be sound modul&X. Lett = ¥;c;x; + Xjcja4t;
andu = ey + Xeerboug, and letr be a variable. Then

@ {zi|iel} C{y: | k€ K},and
(b) for eachy € J with z € war(t;) there is an/ € L such thata; = b, = €
var(ug) andvar(ug) C var(t;).

PROOF. Lett C u be sound modules, and letx be a variable. We prove the two
statements of the lemma separately.

e Proof of Claim (a) Assume, towards a contradiction, that the variable con-
tained in{x; | i € I}, butnotin{y, | £ € K}. We shall exhibit a closed
substitutions such tha () A o(u), contradicting our assumption that « is
sound modulox.

To this end, pick a positive integen > depth(t). Sincet T w is sound
modulo <, by Lemma 18(b) we have that > depth(u) also holds. Consider
the closed substitution that mapsr to «™, and all the other variables 1.
Sincex = z; for somei € I, we have thain € lengths(o(t)). On the other
hand,m & lengths(o(u)) because, as is not contained i{y; | k € K}, every
completed trace of (u) is either one ofu itself (and is thus shorter tham)
or hasa™ has a proper suffix (and is thus longer thah By Lemma 18(a), it
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follows thato () < o(u) does not hold, contradicting our assumption that «
is sound modulex.

e Proof of Claim (b) Assume, towards a contradiction, that there js@ J with
x € war(t;) such that, for eacli € L with a; = b, eitherz & wvar(u,) or
var(ug) € var(t;). We shall exhibit a closed substitutiensuch thatr(t) #3
o(u), contradicting our assumption thaft- « is sound modulex.

Let m be a positive integer larger thalapth(¢). Sincet C « is sound modulo
=, by Lemma 18(b) we have that > depth(u) also holds. Consider the closed
substitution mapping to «™, all of the variables not occurring in to «*™, and
all the other variables t0. Note thato(t) —- o(t;), by Lemma 2. Moreover,
sincex € var(t;) and

depth(t;) < depth(t) —1<m—2 ,
it is easy to see that
m < depth(o(t;)) <2m —2 . (1)

We claim that ifo(u) —= p, thendepth(o(t;)) # depth(p). This shows that
o(t) 27 o(u) because ng with o(u) —- p can have the same tracesds$;)
(see Remark 19), contradicting our assumption thatu is sound modulox.

To prove our claim, we consider the possible origins of a transitiar) 4,

P.

. Case 1o(u) — p becauser(y,) —- p, for somek € K. In this case, by
the definition ofs, we have thatlepth(p) € {m —1,2m — 1}. By (1), we may
infer thatdepth(o(t;)) # depth(p), as claimed.

. Case 2 0(u) — p because@ = o(u,) for somel € L such thate; = b,
and eitherz ¢ wvar(ug) or var(ug) € wvar(t;). In this case, by the definition
of o and using thatlepth(u) < m, we have thatlepth(p) is either smaller
thanm — 1 (if z & var(ue) and var(u,) C wvar(t;)) or larger tharm —
1 (if var(ue) € wvar(t;)). Again, by (1), we may infer thadepth(o(t;)) #
depth(p), as claimed.

This completes the proof. O

We are now in a position to prove the promised result to the effect that possible
futures semantics is not finitely based over the language BCCSP.

Theorem 25 BCCSP moduleX is not finitely (in)equationally axiomatizable.

PROOF. Let E be a finite inequational axiomatization for BCCSP that is sound
modulo=. Letm > max{depth(t), depth(u) | (t C u) € E}.

We have that
a[(am+a2m)+aa3m j aa2m+a(am+a3m)
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because both processes have the same possible futures. Nevertheless,
E  a(a™ 4 a®™) + aa®™ C aa®™ + a(a™ + a®™) .
This follows immediately from the following

Claim 26 Assume thatl + p C gq, lengths(q) C {m + 1,2m + 1,3m + 1}, and
there is ap’ such thatp — p’, norm(p’) = m and depth(p') < 2m. Then there is
aq such thayy — ¢/, norm(q') = m anddepth(q’) < 2m.

Proof of the claim Using induction on the length of inequational derivations, the

soundness of with respect to< and Lemma 18(a), it suffices to consider the case

thatp = C|o(t)] andg = Clo(u)] fora BCCSP context'] |, a closed substitutios,

and an axionft C u) € E. We proceed by distinguishing two sub-cases, depending
on the form of the context'] ].

e Case 1:Suppose&’| ] is of the formC'[b([ | + r)].
Let p’ be as in the statement of the claim. Thén= Do (t)] for some context
D] ], and, because of the form of the contéXt|, we may infer that

¢=Clo(u)] = ¢ = Dlo(u)] .

By the soundness off and the fact that< is preserved by the operators of
BCCSP (Proposition 9), we have that< ¢'. Therefore

norm(q’) < norm(p') = m anddepth(q') = depth(p’) < 2m

both hold by statements (b) and (c) in Lemma 18288m(q) > m+1 it follows
thatnorm(q') = m, and we are done.
e Case 2:Suppos&’| ] is of the form[ ] + r.
Lett = Xicrz; + Xjesa;t; andu = Yipegyr + Xoerbou,. Consider a transition
o(t) + r — p’ as in the statement of the claim. We distinguish three possible
cases, depending on the origin of this transition.
. Case 2.1Assume that — p'. Theng - p’ and we are done.
- Case 2.2Assume that(z;) — p’ for somei € I. By Lemma 24(a) and the
soundness of C u with respect to<, we have that; = y; for somek € K.
It follows thatg - p/, and we are done.
- Case 2.3Assume thap’ = o(t;) for somej € .J. As norm(o(t;)) = m and

depth(t;) < depth(t) <m ,

there must be a variable € var(t;) such thatl < norm(o(z)) < m. By
statement (b) in Lemma 24, there is @& L such thatu = b, * € var(uy)
andvar(u,) C var(t;). Takeq' = o(u,). Theng — ¢. Sincex € var(uy),
we have that

norm(q') < depth(uy) + norm(o(x)) < 2m .
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Considering that
lengths(q) C {m +1,2m +1,3m + 1} |

and thudengths(q') C {m,2m, 3m}, it must be the case thavrm(q’') = m.
As depth(o(t;)) < 2m by assumption, it follows thadepth(o(y)) < 2m
for eachy € war(t;). Sincevar(u,) C war(t;), this also holds for each

y € var(ug). As depth(u,) < depth(u) < m, this implies thatlepth(o(u,)) <
3m. Considering thatengths(q’) C {m,2m,3m}, we may conclude that
depth(q’) < 2m.

To sum up, we have proven that, also in this caset~ ¢/, norm(q') = m
anddepth(q') < 2m, which was to be shown. O

5 No Nested Semantics is Finitely Based

We now proceed to offer results to the effect that the language BCCSP modulo
=" or =, forn > 2, or <I or 5, forn > 3, is not finitely (in)equationally
axiomatizable. Rather than considering each of these behavioural relations in turn,
we offer a general proof of non-finite axiomatizability that applies to all of them at
once. The general strategy underlying such a proof is as follows. We prove that, for
eachn > 2, no finite collection of (in)equations that is sound with respectfo

(the coarsest relation amongsf, <,,, <., and<S,,,;) can prove all of the closed
inequations of the formp C ¢, with p andq BCCSP terms over actiom, that are
sound with respect &, (the finest relation amongst}, <, <. andS,,;1).

We remind the reader that! is possible futures equivalence, so the main result of
this section (Theorem 38) gives an alternative proof of non-finite axiomatizability
for this behavioural equivalence over BCCSP.

In the proof of this result, we shall make use of the modal characterization of the
relation=1" given in Theorem 14. More specifically, we shall show that, for each
n > 2 and finite axiom syster that is sound with respect te!, there is a formula

1, in the language’,, ., (see Definition 13) such that whenevémproves a closed
inequationp C ¢, with p andqg BCCSP terms over actian then, subject to some
technical conditions on the lengths of the completed traceg @fholds thatp
satisfiesy,, if, and only if, so doeg;. We shall, however, show that this property
does not hold for the inequatien <, p,, where the terms,, andg,, have been
defined in Example 6. This will allow us to conclude that the sound inequation
¢. C p, cannot be derived fronk, and thus that? is incomplete for=1, =,
<I  andS, .

The technical implementation of the above idea will be based upon an induction
on the length of the proof of closed inequations from the finite axiom sy#em
The crucial step in this proof will be to show that, subject to technical conditions,
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the aforementioned formula,, is satisfied either by both terms in a substitution
instance of an axiom irE' or by neither of them. This case will be tackled by
Lemma 37 to follow. We now introduce some technical notions, and preliminary
results, that will be used in the proof of this crucial lemma.

Definition 27 We call a substitutiom substantialf depth(o(x)) > 0 for all vari-
ablesz.

For reasons of technical convenience, in the proofs of our non-finite axiomatiz-
ability results presented in this section we will only allow for the use of closed
substantial substitutions in the rule of substitution. This does not limit the gen-
erality of those results because every finite inequational axiomatizatioan be
converted into a finite inequational axiomatizatibhsuch that the closed substitu-
tion instances of the axioms &f are the same as the closed substantial substitution
instances of the axioms @’ (when equating any closed subterm of depth 0 with
0). This is done by including irE’ any inequation that can be obtained from an
inequation in¥ by replacing all occurrences of any number of variable® by

Definition 28 Define thedepthsat which a subterm occurs in a BCCSP term as
follows:

e t occurs int at deptho,
e if v occurs int or u at depthd, thenv occurs int 4+ u at depthd,
e if v occurs int at depthd thenwv occurs inat (with a € A) at depthd + 1.

A BCCSP termt has aunique depth allocatioif no variable occurs int at two
different depths.

For example, the termr+x does not have a unique depth allocation, as the variable
x occurs both at depth 0 and at depth 1 in it, autt+ y does.

The following lemma describes the interplay between the depths at which variables
occur in a term, and the lengths of terms of the fora{t), for some substantial
substitutiono.

Lemma 29 For every BCCSP termandd > 0, the following statements hold:

(1) The termv occurs int at depthd if, and only if, there are a termx and a
sequence of actionsof lengthd such that —- v + w.

(2) Letx be a variable, and let be a substitution. For every > 0, if x occurs
in ¢t at depthd andn € lengths(o(z)) thend + n € lengths(o(t)).

PROOF. We prove the two statements separately. Recall that we consider equality
of terms modulo axioms Al, A2 and A4 in Table 2.
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e Proof of statement.MWe show the two implications separately.
- (=) By induction on the definition of the depths at whicloccurs int.
Assume that occurs int at depthd becauser = ¢t andd = 0. Then,
letting = denote the empty string, we have that

t—v=0v+0,

and we are done.

Assume thaw occurs int + ¢’ at depthd because) occurs int or ¢’ at
depthd. Suppose, without loss of generality, thadccurs int at depthd.
By induction, we have that there are a texrand a sequence of actions
of lengthd such that —*- v + u. If d is positive, we may immediately
conclude that + ¢ —*+ v 4 u. If d = 0, thent = v + u. It follows that
t+t s v+u+t, and we are done.

Assume that occurs inat (with a € A) at depthi+1 because occurs in
t at depthd. By induction we have that there are a texrand a sequence
of actionss of lengthd such that —- v 4. It follows thatat % v +u,
and we are done.

- («) Assume that there are a temmand a sequence of actiorsf lengthd
such that —- v + u. We prove that occurs int at depthd by induction on
d. Throughout the proof, we lét= >",.; z; + 3¢ s ajt;.

Base Cased = 0. Sincet —— v + u, we have that

t:in+Zajtj:v+u .
iel jeJ
This means that = >, z; + > ;¢ a;t; for somel’ C I'andJ’ C J.
Sincew occurs inv at depthO by the first clause of Definition 28, using
the second clause of Definition 28 we may conclude thatcurs int at
deptho0.
Inductive Stepd > 0. Since

t:in+Zajtji>v—l—u ,

il jed

ands is non-empty, we have that= a,s’ andt; ~% v + u, for some
J € J. By induction,v occurs int; at depthd — 1, and therefore imt; at
depthd. Using the second clause of Definition 28 we may conclude that
v occurs int at depthd.
e Proof of statement.2Assume that: occurs int at depthd, n € lengths(o(x))

for some substitutionr, andn is positive. Sincer occurs int at depthd, by

statement 1 of the lemma, we have that- x4 u for some sequence of actions

s of lengthd and termu. By Lemma 2, we have that

o(t) > oz +u) =oc(x) +ou) .

Asn € lengths(o(z)) by our assumptions;(x) =, v for some sequence of ac-
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tionss’ of lengthn and termv with no outgoing transitions. Since the lengthsof

is positive, it follows that () =<, v holds, and thus that+n € lengths(o(t)),
which was to be shown. O

Lemma 30 Let ¢ be a BCCSP term witldepth(t) < m, and leto be a closed
substantial substitution such thé&tngths(o(t)) C {n + m,n + 2m}, for some
n > 0. Thent has a unique depth allocation.

PROOF. Suppose a variable occurs at depthg, andd, in t. Let depth(o(x)) =
d. Sinceo is a substantial substitutiod s positive. Then, by Lemma 29(2) and the
proviso of Lemma 30, we have that

{dy +d,dy + d} C lengths(o(t)) C {n+m,n+2m} .

(The proof of the first inclusion uses that> 0.) As |d; — ds| < m holds by our
assumption thadepth(t) < m and Lemma 29(1), this implieg = d,. O

The proof above is the only one where we use that the substitutions are substantial.

Definition 31 For m,¢ > 0, define the operator ;,,a’ on closed BCCSP terms
recursively by

i (Zf:1aipz‘);m+1ae = Z?:lai(pﬁmag),
o (bp+q)0a’ =bp+q,

° O;OCLZ = CLKO.

Recall that we consider terms modulo associativity and commutativity of +, and
modulo absorption 00 summands. Hence any closed BCCSP term with depth 0
can be written a®. Thus, the operatay,a’ adds a sequence 6fa-transitions to
every state at depth. from which no transitions are possible.

In the remainder of this section, we shall tacitly assume, without loss of generality,
that a is the only action occurring in terms. This is justified because the closed
terms that we shall use in our proof of Theorem 38 to follow are over aatiand

it is easy to see that every closed inequational derivation from an axiom system that
is sound with respect te? proving an inequatiop C ¢, with p andq terms over
actiona, only uses terms over actien

Lemma 32 Let p be a closed BCCSP term, and tn,n > 0. If depth(p) <
n+m+ £ then

P (@)2)"(a)" ()T & purma’ E ((@)=)"(@)" T .
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PROOF. Note, first of all, that the following holds, for eaéhe IN and closed
BCCSP termy’:

(p = qNg = qgra’) & prpa > ()
We prove the lemma by induction en+ m.
e Casen+m =0.Then
pE-{(a)T <p=0 (asp is over action)
& pioa’ = (a)'T (becauselepth(p) < f) .
e Casen =0,m > 0.Then

pE ()" ()T <3 - qF (@™ '=(a)T)
&3¢ (pma’ -5 ¢ (@)™
Spma (@)™,

where the second equivalence follows by (2) and the inductive hypothesis, using
thatq’ = ¢;,,—1 a* anddepth(q) < m + £ — 1.
e Casen > 0. Then,

p = ((a)=)"(@)"~(a) T & 3q (p = q = ({a)=)""{a)"~(a) T)
3¢ (Pinrma’ = ¢ ((a)=)"Ha)"T)
& Pingm a’ [ ((@)2)"(a)" T,

where the second equivalence follows by (2) and the inductive hypothesis, using
thatq’ = ¢;nim—1 a* anddepth(q) < n+m+ £ — 1. O

The following example shows that in Lemma 32 the hypothésjgh(p) < n +
m + ¢ cannot be omitted.
Example 33 If £ > 0, thena™"* [~ (a)™—(a) T. On the other hand,

am+€;m aé _ am-i-f ): <a>m+£—|— )

Lemma 34 Leto be a closed substitution, and lebe a BCCSP term with a unique
depth allocation andiepth(t) < k. Leto’ be a closed substitution witlf (z) =
o(x);,_q a* whenever occurs at depthl in . Then

o'(t)=o(t)a" .

PROOF. We apply induction or.
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e Base Casek = 0. This base case is vacuous, since there is no term whose depth
is smaller than.

e Inductive Stepk > 0. We begin by proving that'(v) = o(v);, a’ for each
summana of ¢.

- Consider a summandof ¢. Sincex occurs at depth 0 in the definition ofo’
yields thato'(z) = o();;. a’.

- Consider a summang of t. Sinceo’(y) = o(y);x_._1 a’ for variablesy that
occur at deptl in u, anddepth(u) < k — 1, by induction we may infer that
o'(u) = o(u);x_1 a*. Henceo'(au) = a(o(u);_1 a*) = o(au); a’.

Sinceo’(v) = o(v);x a® holds for all summands of ¢, it follows thato’(t) =

o(t);r a*, which was to be shown. O

Remark 35 The assumption thatepth(t) be smaller thark in the statement of the
above lemma is necessary. Take, for instatce; 1,¢ = a + z ando(z) = a?.
Then, if/ is positive,

ot)a' =a™ +a* £a+ad=0(t) .
Note thatdepth(t) = 1.

Lemma 36 Leto be a closed substitution, and kgbe a BCCSP term with a unique
depth allocation,depth(t) < n + m and depth(c(t)) < n + m + ¢, for some
¢,m,n > 0. Leto’ be a closed substitution with (z) = o(z);+m_a a* Whenever
x occurs at depthl in ¢. Then

o(t) | (a)~)"(@)"=(a)T & o'(t) = (a)=)" (@)™ T .

PROOF. Sincedepth(t) < n + m, Lemma 34 yields that'(t) = o (t);n1m a’.
Sincedepth(o(t)) < n+ m+ ¢, Lemma 36 now follows directly from Lemma 32.
UJ

Note that the formulé(a)—)"(a)™ T is contained in the languagg, . ; that gives
a modal characterization of the equivaleneg, ,. (See Definition 13 and Theo-
rem 14.)

The following lemma will be a key ingredient in the proof of Theorem 38 to follow.
As mentioned previously, it will be used to show that, subject to technical condi-
tions, terms related by closed substantial substitution instances of axioms in a finite
axiom system that is sound for + 1)-nested trace equivalence, for> 1, either

both satisfy an appropriately chosen formula in the language or none of them
does.

Lemma 37 Lett,, ¢, be a pair of BCCSP terms witlfepth(t;) < m, fori = 1,2,
such that the equation, ~ t, is sound for(n + 1)-nested trace equivalence,
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for somen > 0. Furthermore, letc be a closed substantial substitution with
lengths(o(t;)) € {n+m, n+ 2m} fori =1,2. Then

o(ti) F ((@))"@)"~{a)T & a(ts) = ({a)7)"(@)" () T .

PROOF. Sincelengths(o(t;)) € {n +m, n+ 2m}, fori = 1,2, we have that
lengths(o(t; 4+ t2)) € {n+m, n+2m}

also holds. Thus, by Lemma 30, the tetin+ ¢, has a unique depth allocation.
Let o’ be a closed substitution with (z) = o(2);,1m_qa™"* wheneverr occurs
at depthd in ¢; + t5. Using Lemma 36 (withl = m + 1) for the vertical arrows,
and the soundness of ~ ¢, for :ZH and the modal characterization @ﬂH
(Theorem 14) for the horizontal one, we obtain

a(ty) = ((@)=)"(@)"~(a) T o(tz) = ({a)=)" (@)™ ~(a) T

) )
o'(t1) = ((a))"(a)*" 1T & o'(tz) k= ((a)=)"(a)*" T
This completes the proof of the lemma. O

After this sequence of preparatory lemmas, we are now ready to prove the promised
result to the effect that none of thenested simulation and trace equivalences (for

n > 2), and none of the:-nested simulation and trace preorders (ior 3) are
finitely based over BCCSP.

Theorem 38 BCCSP module=! or =,,, forn > 2, or <X or 5, forn > 3, is
not finitely (in)equationally axiomatizable.

PROOF. Let FE be a finite inequational axiomatization for BCCSP. Pick a positive
integerm such that

m > maxX{depth(t), depth(u) | (t T u) € E} .

Let p,, andg, be defined, for each € IN, as in Example 6. For ease of reference,
we recall that:

Po — a2m710 0 — amflo
Dn+1 = app + aqp Qn+1 = GPp

As argued in Example 6, for every> 1, we have thap,, S, ¢,,, and thus

dn E)(nJrl) Pn -
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Letyy = (a)™—(a)T andip,1 = (a)—1),. Note that the formula), is contained
in £,.1, for eachn > 1, and thaty, ., is the formula mentioned in the statement
of Lemma 37. By induction on > 1 one checks that, = ¢, butg, = —,.

We now proceed to use the fact that = ¢, butg, = —, to argue that the
inequationy, C p, cannot be proven from any finite set of equations that is sound
for =Z. To this end, suppose tht is sound for="" (which, by Proposition 11,

is certainly the case iF is sound fors,, jfﬂ or S,.1), wheren > 2. We
show thatE is incomplete forS,,; (and thus certainly fo=?, =, and <7,

by Proposition 11), becausé f ¢, T p,. This follows immediately from the
following:

Claim 39 Assume thall - p C g andlengths(q) C {n+m — 1, n+ 2m — 1}.
Then

PEY., & g, .

In fact, using this claim, we can show th&t ) ¢, C p,, as follows. Observe, first
of all, thatlengths(p,) is included in{n+m —1, n+2m —1}, for eachn € IN. (In
fact, lengths(p,) equals{n+m—1, n+2m—1}, for eachn > 1.) We have already
observed thap, | v, butg, = —,. Thus, by the above claim, the inequation
¢» C p, cannot be derived fromy.

Proof of the claimWe use induction on the length of the derivationpdf ¢ from

E. The cases of reflexivity and transitivity are trivial, using the soundnegsmth
respect to="" and that, by Lemma 18(a),=! ¢ impliesiengths(p) = lengths(q),

for eachn > 2. The case that C ¢ is a closed substantial substitution instance
of an axiom inE has been dealt with by Lemma 37. What remains to consider
is closure under contexts: if the claim holds for= ¢ it needs to be shown for
p+r C g+ r, for every closed BCCSP termover actionu, and forap C aq. The

first of these follows trivially by the observation that

p+rEY, iff pEY,orrEy, .

For the second, the soundnesgfieldsp =1 ¢. Using the modal characterization
of =L, and thaty),,_, is contained inC,,, we have that

p):@bn—l(:}q}:@bn—l .

Sincev,, = (a)—),_1, it follows that

ap}zwn<:>GQ}:¢n )

which was to be shown. O

Remark 40 If E contains the axiomz C az + a, which is sound fots,, we have
that £ + a*™ C a™ Y(a™™ + a). Asa™ 1 (a™™ + a) = 1, buta®™ (£ ¢y, the
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proof above, and the claim in particular, does not apply<th and ..

Indeed, three different proofs appear to be needed to establish all of our non-finite
axiomatizability results. In particular, the proofs of non-finite axiomatizability for
the possible futures and 2-nested simulation preorders are necessarily distinct, be-
cause if the set of action4 is a singleton, then there is a finite axiom system that

is sound for the possible futures preorder and complete for the 2-nested simulation
preorder. This we now proceed to show.

Assume that is the only action, and consider the axiom syst€ps that contains
the equations in Table 2, and the inequation

a(zr+y)Cax +ay . (3)

It is not too hard to see thdipr is sound for the possible futures preorder. In fact,
for all closed BCCSP terms ¢,

e the termsu(p + ¢) andap + ag have the same traces, and
e if ais the only action, thep + ¢ has the same set of traces as either q.

It follows that equation (3) is sound with respect to the possible futures preorder, if
a 1s the only action.

We shall now show thal'r is complete for the 2-nested simulation preorder over
the collection of closed BCCSP terms over actoiihe following lemma will play
a key role in the proof of this result.

Lemma 41 Letp, q be closed BCCSP terms over actiarAssume thadepth(p) <
depth(q). Then

EprFqCq+p .

PROOF. By induction on the sum of the “sizes” of the closed BCCSP tegms
We proceed by a case analysis on the fprmay take.

e Casep = 0. Inthis caseFpr F ¢ = g + p follows immediately from axiom A4
in Table 2.

o Casep = ap', for somep’. Assume thaty = 3, ; ag;, for some finite index set
J and closed termg; over action (j € J). Sincedepth(p) < depth(q) by our
assumptions, there is an indgxc J such thatdepth(p') < depth(q;). By the
inductive hypothesis, we have that

EprFq Cqgi+p .
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Hence,
EppFaq; T a(g; +7)

Cag;+ap”  (By(3)) .
The claim now follows using closure with respect to BCCSP contexts.
e Casep = p; + po, for somepy, p, different from0. Sincedepth(p) < depth(q)
by our assumptions, we havepth(p;) < depth(q) fori = 1, 2. By the inductive
hypothesis, we may infer that

Eppt-qCq+p; ,
for: =1,2. Thus,
EprtqEq+pEq+pi+p2,

which was to be shown. O

We are now ready to prove that the axiom syst@pz is complete for the 2-nested
simulation preorder over closed BCCSP terms over action

Theorem 42 Letp, ¢ be closed BCCSP terms over acti@nAssume that <, q.
Then
EprtEpEq .

PROOF. We prove the claim by induction on the depthpotetp = >,.; ap; and
q = ey aq;, for some finite index sets and.J and closed termg; (i € ) and
q; (j € J) over actiona. Note that, ap S ¢, the depth of; is equal to that of
(Lemma 18(b)).

Leti € I. Then, sincew S, ¢, there is an indey; such that; S, ¢;, (Proposi-
tion 5). Since the depth of; is smaller than that g, by our inductive hypothesis
it follows that the inequatiop; C g;, can be proven front'pr. Since this holds for
eachi € I, we have that
i€l
To conclude the proof, it suffices only to show that
Epp = Za% Cgqg.
el
To this end, note that, sincEpr is sound with respect to the possible futures
preorder, and the inequatignC >~,.; ag,, is derivable from it, the termg and

Yicr ag;, have the same depth (Lemma 18(b)). As previously obsepved ¢
also have the same depth. Write now

qzzaq]L+T )

el
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wherer is the sum of all the summands @fnot occurring in}_,c; ag;,. By the
previous observations, we have that

depth(r) < depth(q) = depth(>_ ag;,) .

il

Lemma 41 now yields that

Epp l_ZG’QjZ‘ Eza%+7“:q ;

el el

completing the proof. O

6 Finitely Based Approximations of Bisimulation Equivalence

The results presented in the previous sections show that none of the nested simu-
lation and trace equivalences afford finite equational axiomatizations over the lan-
guage BCCSP, even in the presence of a singleton action set. The only exceptions
to this rule are th@-nested and-nested simulation and trace equivalences, which
happen to be the universal relation, simulation and trace equivalence. Interestingly,
however, as shown in [17,18], the intersection of all of thaested simulation

or trace equivalences or preorders over image-finite labelled transition systems,
and therefore over the language BCCSP, is bisimulation equivalence. Hennessy
and Milner proved in [18] that bisimulation equivalence is axiomatized over the
language BCCSP by the equations in Table 2. It follows that this fundamental be-
havioural equivalence, albeit finitely based over BCCSP, is the limit of sequences
of relations that do not afford finite equational axiomatizations themselves. This is
by no means the only example from process theory of a “discontinuous” property
of a behavioural equivalence—i.e., of a property that “appears at the limit”, but
is not afforded by its finite approximations. Other examples of this phenomenon
may be found in, e.g., the study of decidability properties of behavioural equiva-
lences over classes of infinite state processes. For instance, as shown in [5,9,10],
bisimulation equivalence is decidable over the languages BPA and BPP, but none
of the other notions of behavioural equivalence in the linear time-branching time
spectrum is—see, e.g., the references [16,21].

It is a natural question to ask at this point whether bisimulation equivalence over
BCCSP is the limit of some sequence of finitely based behavioural equivalences
that have been presented in the literature. We shall now argue that this does hold,
provided that the set of actions is finite.

As stated in Sect. 2.4, the-nested trace equivalences were introduced in [18,
p. 147] as a a tool to define bisimulation equivalence [25,29pncit Hennessy

and Milner introduced another sequence of relations that approximate bisimulation
equivalence. These were defined thus:
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Definition 43 For everyn > 0, the relations= are defined inductively over
closed BCCSP terms thus:

e p =4 ¢foreveryp,q;

o p =3 qifffor every actiom € A:
- if p =% p’ then there is &/ such thaty % ¢’ andp’ =2 ¢/, and
- if ¢ =% ¢ then there is @' such thap - p’ andp’ =2 ¢'.

Note that, unlike the:-nested trace equivalenceg), the relations= explore the
behaviour of BCCSP terms only up to “depth As shown by Hennessy and Mil-

ner, over image-finite labelled transition systems, bisimulation equivalence is the
intersection of all of the relations”. Moreover, each of the-! is preserved by the
operators of Milner’s CCS, aralfortiori by those of BCCSP.

Our order of business will now be to offer a complete axiomatization of the relations
=4 over closed BCCSP terms. Ldt: denote the axiom system in Table 2. We shall
now show how to inductively construct a family of axiom systefis for n > 0,

with the following property:

Theorem 44 Let p, ¢ be closed BCCSP terms. Then=4 ¢ if, and only if, Az U
E,Fp=aq.

The axiom system&,,, for n > 0, will be finite, if so is the set of actiond. In
what follows we assume that the set of variable§us =, . . .}.

Definition 45 For eachn > 0, we define the axiom systéii) thus:

E():{ZL‘l %{L‘Q} and
Eppi={alt+xp43) malu+x,43) |a €A, (tru) € E,} .

Note that, ifA is a finite set set containing, sayactions, then the axiom system
E, containsk™ equations, for each > 0. Moreover, observe for later use that, for
eachn > 0, the axioms inF,, only use variables, . .., x, .

We shall now show that Theorem 44 does hold for the previously defined axiom
systemst,,. Since the soundness of each of the axiomgjrcan easily be shown

by induction oz, using the aforementioned congruence properties of the relations
=4, we shall limit ourselves to presenting a proof of the completeneds of £,

with respect to=2 over closed BCCSP terms. The following lemma will be useful
in such a proof.

Lemma 46 Letn > 0, and letp, g be closed BCCSP terms. Assume that) E,, -
p~q. Thendz U E,., F ap =~ aq, for each actioru € A.
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PROOF. AssumethatizUFE, F p =~ ¢, for some closed BCCSP termg;. Recall
that this means that there is a sequence: - - - ~ p; (k > 1) such that

® p=Dr,

® g =Py and

e p;, = Clo(t)] = Clo(u)] = p;41 for some closed substitutian contextC|[ | and
pair of termst, u with ¢t ~ v oru ~ t an axiom indz U F,, (1 <1i < k).

We prove thatdz U E,,.1 - ap = aq, for each actiom € A, by induction or¥.

e Base Casek = 1. In this case we have that= ¢. Thus the equatiop ~ ¢ is
provable fromAz, and so isip =~ aq.

e Inductive Stepk > 1. By the inductive hypothesis, the equation~ ap;_; IS
provable from the axiom systethz U F,, ;. Sinceap, = aq, to complete the
proof, we are therefore left to prove that

ArUE, 1 F apr1 = apy - (4)

To this end, recall that
+ pe-1 = Clo(t)] and
- pr = Clo(u)],
for some closed substitution, contextC[ | and pair of termg, v with ¢t ~ u
oru =~ t an axiom inAz U E,. In case an axiom fromiz or its symmetric
counterpart was used, (4) follows immediately from the rule of closure under
BCCSP contexts. The proof for the case when v is an axiom inE,, proceeds
by a case analysis on the form of the contéxi.
- Case 1Suppose&’| | is of the formC’[b([ | + r)], for some actiord and closed

termr.

In this case, it is sufficient to show that

Az U E, i F blo(t) +71) ~ blo(u) + 1)

as (4) will then follow by applying the rule of closure under BCCSP contexts
repeatedly.
To this end, letr’ be the closed substitution that maps variables to r,
and acts likes on all of the other variables. Using the axiomsdm U E,,, 4,
we have that

t+ xni3)) (BSzpys & var(t))
U+ Tpys)) (@SH(t+ xpis) = b(u+ xpi3) € Engr)
~b(o(u)+71) (8Sxnis & var(u)) ,

S
—~

which was to be shown.
- Case 2 Suppose”| | is of the form[ | 4 r, for some closed term
In this case, letting’’ be defined as above, and using the axiomd inU
E, .1, we have that
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apg_1~=a(o(t) +r)
~ U/<a(t + xn+3)) (ann+3 € Uar(t»
~o'(a(u+ z,e3)) (@Sa(t + Tpy3) = a(u+ Tp43) € Eyyr)
~a(o(u)+1r) (ASTni3 & var(u))

~apg ,

which was to be shown.
The remaining case, viz. when~ t an axiom inE,,, is similar. O

We are now ready to establish the completeneskaf £, with respect to=~ over
closed BCCSP terms, for eagh> 0.

The proof is by induction on. The base case is trivial since the equatiorn~ x,
can be used to prove every (closed) equation.

For the inductive step, assume that U E, is complete with respect te over
closed BCCSP terms, and that=2.; ¢ holds for closed terms, . We shall now
argue that the equatign~ ¢ can be derived from the axiom systeta U F,, ;.
Letp = >, aips andq = 3 ; b;q;, for some finite index setsand./ and closed
termsa;p; (i € I) andb;q; (j € J). Our order of business will now be to show that

AzUE, W Fprpt+qmq .

By symmetry, it is sufficient to show that the equatjon ¢ ~ ¢ is derivable from
Az UE, ;. To this end, let € I. Then, since =2, ¢, there is an indey; such
thata; = b;, andp; =2 ¢;.. Since the axiom systemz U E,, is complete with
respect to=:! by our inductive hypothesis, it follows that the equatign~ ¢;, can
be proven fromdz U E,,. By Lemma 46, the equatianp; ~ b;,q;, can be derived
from Az U E,, ;. As this holds for each indeke I, it follows thatp + ¢ =~ ¢ is
derivable fromAz U E,, 1, which was to be shown.

The proof of Theorem 44 is now complete.
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