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Abstract. Many state-of-the-art methods in object recognition extract
features from an image and encode them, followed by a pooling step and
classification. Within this processing pipeline, often the encoding step is
the bottleneck, for both computational efficiency and performance. We
present a novel assignment-based encoding formulation. It allows for the
fusion of assignment-based encoding and sparse coding into one formu-
lation. We also use this to design a new, very efficient, encoding. At the
heart of our formulation lies a quantization into a set of k-sparse vectors,
which we denote as sparse quantization. We design the new encoding as
two nested, sparse quantizations. Its efficiency stems from leveraging bit-
wise representations. In a series of experiments on standard recognition
benchmarks, namely Caltech 101, PASCAL VOC 07 and ImageNet, we
demonstrate that our method achieves results that are competitive with
the state-of-the-art, and requires orders of magnitude less time and mem-
ory. Our method is able to encode one million images using 4 CPUs in a
single day, while maintaining a good performance.

1 Introduction

Recent research has led to important progress in visual object recognition and
classification. Many state-of-the-art object recognition schemes consist of a feed-
forward architecture, usually divided into feature extraction, feature encoding,
spatial pooling, and a classifier [1,2,3]. Recently, sophisticated encoding and pool-
ing schemes have allowed for learning the different blocks in the pipeline [4,5].

Feature encoding is one of the most intriguing blocks in a feed-forward archi-
tecture. Encoding aims at partitioning the feature descriptor space into infor-
mative regions, in order to both generalize towards intra-class variances and dis-
criminate between different categories. Many authors pointed out the significant
influence feature encoding has on object recognition performance, and stressed
the need for encodings with better generalization properties [6,7]. The trend has
been to introduce refined encodings that certainly generalize better and thus
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achieve higher levels of performance, but that come at the cost of increasing
computational complexity. Indeed, feature encoding can be orders of magnitude
more demanding than feature extraction and pooling, and it can become the
bottleneck of the whole pipeline. For real-time and large scale applications, it is
therefore crucial to design efficient feature encoding methods.

In the literature, one finds a plethora of feature encoding techniques. One
of the most popular is assignment-based coding (AC). AC encodes a feature
by assigning it to one or more codebook entries. When combined with aver-
age pooling, this corresponds to Bag-of-Words (BoW) [8,9]. Although simple in
principle, it can be computationally demanding, since it requires the calculation
of distances between the descriptors and the codebook entries. In particular,
its computational cost increases with the size of the codebook and the number
of patches [10]. Therefore, several methods were devised to speed up the BoW
approach, e.g. [11,12,13].

Sparse coding has emerged as a powerful alternative to AC, showing better re-
sults than AC, especially, when combined with max-pooling [2,14,15,16]. In terms
of efficiency, however, sparse coding optimizes a convex problem of the size of the
codebook length, which makes it comparably slow. Locality-constrained linear
encoding (LLC) [17] is an approximation of sparse coding, which speeds it up
without a significant loss in performance. The current state-of-the-art in visual
classification makes use of super-vector coding [18] and Fisher encoding [19],
cf. [3]. Yet, both methods are memory-demanding. Using compression methods,
e.g. [19], the Fisher kernel can be made tractable for large-scale applications,
but the need for decompression before classification reduces the efficiency again.

In this paper, we focus on AC because it is a promising compromise in terms
of speed and performance [6]. We introduce a new formulation for AC, and from
that, we design a new efficient feature encoding scheme. At the heart of our
formulation lies a quantization into a set of k-sparse vectors, which we denote as
sparse quantization. It offers a novel viewpoint of AC, which, although algorith-
mically equivalent to AC, it allows for the unification of AC and sparse coding.
In fact, our formulation allows for the design of a new efficient encoding. We coin
it ‘Nested Sparse Quantization’ (NSQ), which consists of two feature encodings,
in a nested architecture. We first encode the features, and the result is then fed
to another feature encoder. Both encoders follow the novel formulation of AC.
The first one is instantiated in a way that it is very fast to execute, and since it
is build from a hard assignment encoder, it yields a binary vector. The second
encoder is fed with this binary vector and thus also becomes very efficient to
compute.

In the experimental part, we compare NSQ to state-of-the-art methods for
object recognition. As we show on various datasets, i.e., Caltech 101, PASCAL
VOC 07 and ImageNet, our method demands orders of magnitude less time and
memory than those previous approaches, while achieving competitive levels of
performance. For instance, it is able to encode one million images in less than
24 hours using one laptop of 4 CPUs and 6GB of disk.
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2 Preliminaries

In this section, we introduce the mathematical tools that we use in the rest of
the paper, i.e., quantization, sparsity and sparse quantization. All proofs can be
found in the Supplementary Material.

Quantization. Let x ∈ R
q be a vector, and B ∈ R

q×m the so called codebook
matrix with m entries bi ∈ R

q, i.e., B = [b1 . . .bm].

Definition 1. Quantization is a mapping of a vector x into its closest vector of
the codebook {bi|i = 1, . . . ,m}, which we denote as x̂� = argminx̂∈{bi} ‖x̂−x‖2.
The purpose of quantization is to reduce the cardinality of the representation
space. x has an infinite set of possible values, and when mapped to the code-
book, it is restricted to a finite set of possible vectors. In general, the cost of
computing a quantization is O(mj), where j represents the cost of computing
a single distance. In practice, the most common used is the squared Euclidean
distance, which is expensive since it implies 2q float operations, and yields a
total cost of O(mq).

Sparsity. A vector α is k-sparse when it has at most k non-zero entries,
i.e., ‖x‖0 ≤ k. Let R

m
k be the space of k-sparse vectors in R

m, which is
R

m
k = {α ∈ R

m : ‖α‖0 ≤ k}. Sparsity is a highly non-linear model [20]. Observe
that the the sum of two k-sparse vectors does not necessarily result in another
k-sparse vector, since their non-zero entries might not coincide. Thus, the result
is no longer in R

m
k . We also introduce the subset of binary vectors in R

m
k , which

is the set of vectors with k ones and (m − k) zeros. Let {0, 1}mk = B
m
k be the

space of binary k-sparse vectors, Bm
k = {α ∈ B

m : ‖α‖0 = k}, where B
m
k is a

subset of Rm
k , i.e., Bm

k ⊂ R
m
k , and it is composed of a finite amount of elements,

in particular, its cardinality is |Bm
k | = (

m
k

)
.

( 1 0 1 )

( 0 1 1 )

( 1 1 0 )

Fig. 1. Representation of B
3
2 (left) and R

3
2 (right) space with the input vector x in

green, and the codification error vector (x̂− x) in red
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Sparse Quantization. We consider the particular case of the quantization when
the codebook is the set of k-sparse vectors.

Definition 2. Sparse Quantization is a quantization into the codebook B = R
q
k.

The formulation for the sparse quantization of x ∈ R
q is

x̂� = arg min
x̂∈R

q
k

‖x̂− x‖2. (1)

For brevity, we use the term Sparse Quantization (SQ), but to be more precise, it
should be called quantization into the codebook R

q
k. Interestingly, sparse quanti-

zation can be done in a more efficient way than a quantization into an arbitrary
codebook. In the following Proposition, we show that SQ can be achieved with
a sorting algorithm, and it does not require the computation of the distances to
the codebook entries. The Proposition shows only the case for the codebook B

q
k,

which is what we use in our approach. The derivation for sparse quantization in
the case where the codebook is the set R

q
k can be found in the Supplementary

Material. We assume that x ∈ R
q
+, and that x is normalized to 1. In all cases

where we use the Proposition this is true.

Proposition 1. Let x̂� = argminx̂∈B
q
k
‖x̂ − x‖2 be the quantization into B

q
k of

x ∈ R
q
+, ‖x‖22 = 1. We can obtain x̂� by

x̂�
i =

{
1 if i ∈ k-Highest(x)
0 otherwise

, (2)

where k-Highest(x) is the set of dimensions indices that indicate which are the
k highest values in the vector x.

Proposition 1 shows that the sparse quantization can be done with a sorting algo-
rithm of the set {xi}, and selecting the k highest values. It has a computational
cost of O(q), in contrast to a general quantization, which has a cost of O(mq),
where in practicem � q. In Figure 1, we show an example of sparse quantization
in B

3
2 and in R

3
2. We plot an input vector x in green, and the quantization error

in red. Also, we show all
(
3
2

)
= 3 possible vectors for B3

2.

3 A New Formulation of Assignment-Based Coding

In this section, we introduce a new framework for Assignment-based Coding
(AC), which is based on the principles of sparse quantization. Additionally, we
show the relation to Sparse Coding.

3.1 Assignment-Based Coding Revisited

We first review AC and its main variants and identify some common terminology
in the literature. This will serve as the basis for our new formulation that we
introduce in the subsequent section.
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Let x ∈ R
q
+ be the vector of a patch descriptor, which has been normalized,

and B ∈ R
q×m the codebook matrix with m entries bi ∈ R

q. AC aims at
encoding x by selecting the codebook entries bi with minimum distance to x.
Such codebook entries are called the k-Nearest Neighbors (k-NN) of x. k is the
number of selected codebook entries, and it is a predefined constant.

Vector quantization (VQ) is the simplest AC method. It only selects a single
codebook entry, which is the closest to x, with the so called 1-NN. It is in fact a
quantization, since it maps x into a codebook entry. Let α ∈ R

m be the vector
that encodes the assignment. In VQ, αi is set to 1 when it is the element of the
codebook that is used to quantize x, and the rest is set to 0.

VQ has been extended to the popular hard-assignment (HA), which assigns
more than one codebook entry to x, e.g. [12]. In this case, there are 1s placed
in the elements of α that correspond to the k-NN codebook entries, i.e.,

αi =

{
1 if i ∈ k-NN(x,B)
0 otherwise

. (3)

k-NN(x,B) is the set that indicates which k codebook entries are closest to x.
According to Definition 1, HA is not a quantization anymore but an assignment,
because more than one vector of the codebook is assigned to x. In the case of
quantization, x is always represented with only a single codebook vector.

In HA, α results in a binary vector with k ones and (m− k) zeros. Thus, the
α’s obtained are k-sparse vectors, which are in B

m
k . In particular, α is in B

m
k

when using HA, and in B
m
1 for VQ.

There exists also the soft version of HA, denoted as soft-assignment (SA) [6]1.
In this case, instead of indicating the k-NN with 1s, α contains some notion of
the relative distance to the selected codebook entries, and becomes

αi =

{
exp(−βd(x,bi)) if i ∈ k-NN(x,B)
0 otherwise

. (4)

d(x,y) is a given distance function, β a learned constant, and d(x,bi) is the
distance between x and bi. Thus, SA codifies a patch descriptor x with a k-
sparse α in R

m
k . Note that when β = 0 we recover HA, and α ∈ B

m
k .

AC and other codings are usually the computational bottleneck of the patch-
based image classification, cf. [3]. Typically, the cost of coding scales with the
number of visual words, the number of patch descriptors and the dimensionality
of these descriptors. This can make the coding an order of magnitude slower
than the patch description. The reason is mainly because the encoding requires
computing the distances between the patch descriptor and all the codebook
entries.

In the following sections, we introduce a new formulation for AC, that also
leads up to a very efficient quantization scheme.

1 In [6], α is normalized such that ‖α‖22 = 1. In this paper, for the sake of simplicity
in the encoding block, we assume it is the pooling stage that normalizes α. Note
also that in this paper we refer to SA for what [6] calls Localized SA.
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3.2 AC as a Sparse Quantization

We now introduce a new view of AC based on a non-linear mapping of x, which
we denote as φ : Rq → R

m.

Definition 3. Let φ(x) be the following mapping:

φ(x) =
1

Z
[exp(−βd(x,b1)) . . . exp(−βd(x,bm))], (5)

where β is a learned constant and d(a, b) a given distance. Z normalizes the
vector, and {b} parametrize the mapping.

Observe that in AC, B denotes the codebook matrix, but in our new formu-
lation it is used to parametrize the mapping φ(x). In the following Proposition,
we rewrite HA as a sparse quantization of φ(x) (section 2). We show this fact
for SA as well as the proof in the Supplementary Material.

Proposition 2. Let α� ∈ B
m
k be the result of Hard Assignment in (3). Then,

the same α� can be obtained through the following sparse quantization of φ(x):

α� = arg min
α∈B

m
k

||α− φ(x)||22. (6)

Proposition 2 shows that HA is a sparse quantization of φ(x) into the codebook
B
m
k . HA is formulated as a non-linear transformation φ(x), which uses B, and

then the resulting vector is quantized into B
m
k . This is in contrast to how HA has

been usually interpreted. Previous HA formulations used α in order to indicate
to which codebook entries x is assigned. Both formulations obtain the same
coding results, and have the same computational complexity. However, in the
next subsection we show that Proposition 2 is able to fuse Assignment-based
Coding and Sparse Coding into a single formulation. Also, we show that we can
use the new formulation to design a very efficient codification.

3.3 A Formulation for Sparse Coding and AC

When considering AC as a sparse quantization, we can analyze its relation
to sparse coding. Sparse coding is the following coding scheme [21]: α� =
argminα∈R

m
k
||Cα−x||22, whereC ∈ R

q×m is the codebook used in sparse coding.

It is usually relaxed in the following way α� = argminα∈Rm ||Cα−x||22+λ‖α‖1,
where λ‖α‖1 is the convex sparsity regularization term of α ∈ R

m
k , and it can

be tuned to enforce different degrees of sparsity. Note that in [15] it was already
shown that Sparse Coding can be seen as an extension of VQ; however, their
formulation does not extend to AC in general.

The general formulation for Sparse Coding and Assignment-based Codings is:

α� = arg min
α∈R

m
k

||Cα− φ(x)||22, (7)

where φ(x) represents a mapping from the original q-dimensional vector x to
a space with a possibly different dimension, such as m in the earlier definition.
We now recover Sparse Coding by just setting φ(x) = x, and we recover AC by
setting C to be the identity matrix Im×m.
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4 Nested Sparse Quantization

In this section, we introduce an efficient encoding built upon the new formulation
of HA in Proposition 2. It consists of two sparse quantizations placed in a nested
architecture, coined nested sparse quantization (NSQ). We define NSQ as the
following optimization problem:

α = arg min
α∈B

m
k

‖α− φ(x̂)‖2, (8)

where x̂ = arg min
x̂∈B

m′
k′

‖x̂− θ(x)‖2, (9)

where (8) is the outer sparse quantization and (9) is the inner sparse quantiza-
tion, respectively. The parameters in the inner quantization are m′, k′ and the
mapping θ(x), and they are not necessarily the same as in the outer quantiza-
tion. The inner quantization results in the binary x̂, as a result of the sparse
quantization into B

m
k . The mapping in the inner quantization θ(x) has the real-

valued x as input, whereas the outer mapping φ(x̂) gets the vector x̂ ∈ B
m′
k′ as

input, which is a binary vector.

4.1 Implementation Advantages

Observe that the input to the outer quantization has a finite amount of possible
values, because it receives one of the entries of the inner codebook. This allows to
use a look up table for the outer quantization, by memorizing the quantization
of all entries of the inner codebook. However, in practice, the cardinality of the
inner codebook is huge. In NSQ, the outer quantization is a mapping from a

set of
(
m′
k′
)
elements to

(
m
k

)
possible outputs, where in practice

(
m′
k′
) � (

m
k

)
and

they are too high to be memorized in a look up table.
Indeed, the advantage of NSQ results from an appropriately chosen nesting

of two different quantizations. The inner quantization turns real-valued vectors

x into one of the
(
m′

k′
)
possible binary vectors x̂, and the non-linear mapping

should be simple not to overload the system. The outer quantization starts from
a vector in the set Bm′

k′ , which are binary vectors, and can therefore be used to
very efficiently deploy a more complex mapping φ(x̂).

Inner Quantization. For the inner quantization, we use the most efficient and
simplistic mapping possible, which is θ(x) = x; that is, the mapping θ(x) does
not apply any transformation on x. Thus, the inner quantization in Eq. (9)
directly quantizes the input x into the k′-sparse codebook for that step, without
any previous non-linear mapping. It becomes

x̂ = arg min
x̂∈B

q

k′
‖x̂− x‖2, (10)

where m′ is equal to q, and k′ is the only parameter to be set. As stated in
Proposition 1, optimizing this problem is equivalent to computing the k′-Highest
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Algorithm 1. Nested Sparse Quantization

Input: x ∈ R
q
+, B̂ ∈ B

q×m
k′

Output: α
x̂← Set k′ highest values of x to 1 and the rest to 0
foreach i = {1, . . . ,m} do

φi(x̂) =
∑q

j=1(x̂j � b̂ij)

end
α← Set k highest values of φ(x̂) to 1 and the rest to 0

values in {xi}. This implies selecting the k′ elements of x with the highest values,
which has a computational cost of O(q). One could investigate alternatives to
θ(x) = x to improve on the classification results, but this would reduce the speed
again and is therefore not studied in this paper.

Outer Quantization. The outer quantization now gets the binary output of the
inner quantization as its input, which is a vector in B

m′
k′ . The use of binary vectors

allows to reduce the complexity by using fast bit-wise comparisons, which most
modern CPUs handle with dedicated instructions [22,23]. Thus, we can afford
applying a more sophisticated mapping φ. Recall that the computational cost of
such φ(x̂) still is O(mj), with j the cost of computing the distance. We can reduce
the cost j by the very fact that x̂ is binary. Thus, the mapping is the same as in
(5) but changing the distance function to a Hamming distance, d̂(x̂, b̂i). Recall

that the b̂i are parameters used in the definition of the non-linear mapping, and
do not correspond neither to the codebook vectors of the inner quantization nor
to the codebook vectors of the outer quantization. In our case, these are obtained
by piping a total of m vectors bi through the inner quantization, thus yielding
those b̂i.

Next, the mapping φ(x̂) can be further simplified by dropping the expo-
nential functions, given the equivalence of argminα with the mapping φ(x̂) =
1
Z [d̃(x̂, b̂1) . . . d̃(x̂, b̂m)]. Now, suppose we take d̃(x̂, b̂i) =

∑q
j=1(x̂j � b̂ij),

where � is the negation of the exclusive OR operator (nxor). It returns 1 if both
elements are equal, and 0 otherwise. This is again very efficient to compute.

In Algorithm 1 we depict the implementation of NSQ, which highlights the
simplicity and efficiency of the method.

4.2 Discussion

Quantization vs. recognition accuracy At this point the reader may object that
NSQ adds an extra quantization step in the feature encoding procedure, and
that quantization errors may grow worse, leading to a deteriorated performance.
Yet, in recognition, quantization should also allow for sufficient generalization.
In the next section, we show that recognition performance is not impaired, but
that the speed goes up dramatically.

Relation of the Inner Quantization to Binary Embeddings and Hashing. NSQ
is not to be confused with Binary Embeddings or Hashing-based methods. The
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goal of the inner quantization is a first step of feature encoding, and it is not de-
signed to be a fast nearest neighbor extractor nor a fast distance approximator.
In fact, in the experiments we show that NSQ is not a good nearest neighbor
approximator. Hashing-based methods tackle fast distance computation rather
than feature encoding, and have been typically used to speed up image retrieval
in large-scale databases [24,25,26,27]. The binarizations used by these methods
range from thresholding linear combinations of input features to solving opti-
mization problems. These have a negligible cost in image retrieval, but not when
applied to feature encoding. For example, in Locality Sensing Hashing (LSH)
the binary embedding is hn(x) = T (rTx), where r is a projection vector, and
T (·) is a threshold function. Hashing uses L different N -dimensional embedding
functions h(x) of an image signature x, and thus, the cost of computing h(x)
is O(LNq). Hashing is typically used in applications where the cost O(LNq) is
negligible compared to the cost of searching the nearest-neighbors, because this
search might be among hundreds of thousands of elements. However, in feature
encoding, the time of computing h(x) is not negligible anymore, because the
nearest neighbor search is only among thousands of elements (the size of the
codebook), and in addition, h(x) is computed for each patch. In contrast, the
inner quantization of NSQ obtains the binary x̂ at a cheap cost O(q). Further-
more, the binary embeddings generate each bit independently of the others [26],
which is different from NSQ, in which the output bits are dependent since only
k of them are 1.

5 Experiments

In this section, we report experiments on different datasets, namely Cal-
tech101 [28], PASCAL VOC 2007 [29] and ImageNet [30]. In none of them we
use flipped or blurred images to extend the training set.

Caltech 101. It contains 102 different classes with about 50 images per class. We
use 3 random splits of 30 images per class for training and the rest for testing,
and evaluate it with the average classification accuracy across all classes. We
resize the image to have a maximum of 300 pixels per dimension.

PASCAL VOC 2007. It consists of a total of 9,963 images with 20 different
object classes. Half of the dataset is used for training and the other half for
testing. The evaluation is based on the mean average precision (mAP) across all
classes.

ImageNet. We create a new dataset taking a subset of 1, 065, 687 images of
ImageNet. This subset contains images of 909 different classes that do not overlap
in the synset. We randomly split this subset into two halfs, one for training and
one for testing, maintaining the proportion of images per class. For evaluation,
we report the average classification accuracy across all classes. Note that we do
not use the protocol of taking the 5 highest scores per image and keeping the
best. We resize the image to have a maximum of 300 pixels per dimension.



Nested Sparse Quantization for Efficient Feature Coding 753

5.1 Implementation Details

Patch Descriptors. We use SIFT [31] extracted from patches on a regular grid,
at different scales. In Caltech 101 and ImageNet they are extracted at every 8
pixels and at the scales of 16, 32 and 48 pixels diameter. In VOC07, SIFT is
sampled at each 4 pixels and at the scales of 12, 24 and 36 pixels diameter.

Feature Encoding. Apart from comparing NSQ and HA, we also report results
with LLC [17] and the Super Vector method [18]. We found that for all settings
k = 5 is the optimal, except for the combination of HA, max-pooling and linear
SVM, which is k = 10. In NSQ, k′ = 25 for the inner quantization (see discussion
in 5.2 for those choices).

Codebook Generation. The codebook B is typically built with a learning algo-
rithm either unsupervised [8,9] or supervised [13]. Recently, Coates and Ng [7]
showed that a similar performance can be achieved by randomly picking a set
of patches as codebook entries. We compared a codebook obtained using k-
means clustering versus building it taking random patches from the training set.
Tallying with the observations in [7], compared to k-means clustering, random
selection considerably reduces the training time but does not lower the perfor-
mance for large codebooks. For the methods that are not AC, like LLC or Super
Vector, we learned the vocabularies as specified for each of them.

(a) (b) (c)

Fig. 2. Influence of the parameter k and the vocabulary size in Caltech 101. (a) Com-
parison of performance and time between NSQ and HA when varying the size of the
codebook. (b) Accuracy and (c) Time when varying the inner and outer quantization
parameters.

Pooling. We use in all datasets spatial pyramids. In Caltech 101 and ImageNet
we divide the image in 4×4, 2×2 and 1×1 regions, yielding 21 different regions,
and in VOC07, 3 × 1, 2 × 2 and 1 × 1 regions, yielding 8 regions. We use max-
pooling because it has been shown to systematically outperform other types of
pooling. In the case of NSQ and HA, the max-pooling results in a binary vector,
which is the descriptor of the whole image, which we do not normalize.

Classification. For Caltech 101 and VOC07, we use a linear one versus rest SVM
classifier for each class with the parameter C of the SVM set to 1000. In Caltech
101, we also report results using the RB-χ2 kernel, exp{−βχ2}, setting β to the
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Table 1. Quantitative Results on Caltech 101. The time and memory measurements
are for one image. We refer to HA{k′,k} for the HA with NSQ, and HA{k} for the stan-
dard, in which we indicate the k and k′ parameters of the outer and inner quantizations,
respectively.

Method Time per Image 1 CPU (sec) Memory
Coding Pool Kernel Acc. (%) Feature Coding Kernel (Bytes)

NSQ

HA{25,10} Max Linear 74.2 ± .7 0.27 ± .11 0.17 ± .05 − 21K
HA{20,5} Max Linear 73.7 ± .3 0.27 ± .11 0.15 ± .05 − 21K

HA{20,5} Max RB-χ2 72.0 ± .6 0.27 ± .11 0.15 ± .05 .02 21K

HA{20,5} Sum RB-χ2 71.6 ± .3 0.27 ± .11 0.17 ± .07 2.10 672K

Standard

HA{10} Max Linear 74.6 ± .6 0.27 ± .11 2.78 ± .9 − 21K
HA{5} Max Linear 74.2 ± .1 0.27 ± .11 2.75 ± .9 − 21K

HA{5} Max RB-χ2 73.4 ± .9 0.27 ± .11 2.75 ± .9 .02 21K

HA{5} Sum RB-χ2 72.1 ± .4 0.27 ± .11 2.78 ± .9 2.10 672K
LLC Max Linear 76.1 ± .7 0.27 ± .11 2.95 ± .9 − 672K
SV Max Linear 76.9 ± .9 0.27 ± .11 1.52 ± .9 − 10752K

Other
features

HA [6] Max Linear 73.3 ± .6 − − − −
SA [6] Max Linear 74.2 ± .8 − − − −

LLC [17] Max Linear 73.4 ± − − − − −
FK [3] Max Linear 77.8 ± .6 − − − −

mean of the pairwise distances in the training data. Before computing the χ2

distance, the features are normalized with the 	1-norm. When the image descrip-
tor is binary, the RB-χ2 kernel can be computed efficiently using dedicated CPU
instructions [22,23]. In ImageNet we use as classifier an approximated nearest
neighbor that takes a maximum of 400 random examples per class.

Computational Evaluation. We use CPUs at 3.07GHz with the SSE4.1 instruc-
tion set, that enables fast popcnt instructions for bit strings.

5.2 Results

Performance Evaluation. In Table 1 we report results in Caltech 101. We show
the results for NSQ in combination with different SVM kernels and pooling
schemes. We do the same for HA, and we also include a comparison with LLC
and Super Vector. We use a codebook of 8, 192 entries for all methods except for
Super Vector for which we use 1, 024, since it achieves the compromise between
accuracy and efficiency. LLC and Super Vector perform better than the others,
as was reported in previous papers. However, their coding consumes much more
memory and time than NSQ. The performance of NSQ is only 2.7% less than the
best competing method which is Super Vector, but NSQ requires 500 times less
memory than Super Vector and is about 10 times faster, and is 20 times faster
than other methods that use the same codebook size. In Table 2 we summarize
the results in VOC07. We use a codebook size of 16, 258 entries. NSQ obtains a
30 times speed up, while only degrading 2% in performance.

In both tables we also provide the state-of-the-art methods in the literature.
Even though they obtain better performance than our method, these techniques
come at a far higher computational cost, as seen in the previous comparisons.
We did not reproduce results of SA because it was already observed by [6] that
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Table 2. PASCAL VOC 2007 classification results. The average score provides the
per-class average. The time and memory measurements are for one image, using a single
CPU.

A
e
ro

p
la
n
e

B
ic
y
c
le

B
ir
d

B
o
a
t

B
o
tt
le

B
u
s

C
a
r

C
a
t

C
h
a
ir

C
o
w

D
in
n
in
g
T
a
b
le

D
o
g

H
o
rs
e

M
o
to

rb
ik
e

P
e
rs
o
n

P
o
tt
e
d
P
la
n
t

S
h
e
e
p

S
o
fa

T
ra

in

T
V
/
M

o
n
it
o
r

A
v
e
r
a
g
e

F
e
a
tu

r
e

T
im

e

C
o
d
in

g
T
im

e

M
e
m

o
r
y

NSQ 67 56 41 66 21 56 72 55 41 48 42 37 71 65 78 21 45 53 71 51 52.87 0.85 0.86 42K
HA 67 56 44 66 22 57 75 56 44 50 43 37 74 69 78 24 46 56 74 51 54.54 0.85 21.22 42K

LLC 69 58 46 70 21 60 74 57 43 52 44 42 73 68 81 24 48 57 72 52 55.56 0.85 23.81 1344K
LLC [17] 75 65 51 71 29 69 79 62 54 49 52 44 77 67 84 31 45 53 79 54 59.30 − − −
SV [18] 79 72 55 74 34 72 83 64 57 53 63 49 81 72 85 36 46 60 83 59 64.00 − − −

SA only outperforms HA by less than 1%. Also, note that in VOC07 there is a
gap between the performance of LCC reported by [17] and the LCC using our
descriptors. According to [3], this can be explained by the fact that [17] extend
the training set by blurring and flipping the images, and we do not.

Influence of the Parameters. In Figure 2a, we compare time and accuracy when
changing the codebook size for NSQ and HA. Up to a certain point, the larger
the codebook, the better the accuracy becomes. Interestingly, the computational
time for HA explodes when increasing the codebook size, while in NSQ the
increase is negligible compared to HA.

We analyze the accuracy and time performance of our method when changing
the quantization parameters. We use the first split of Caltech 101 to show the
results. In Figures 2b and 2c, we compare the accuracy of our method when
changing the k parameter for the inner quantization and the outer quantization,
and keeping the codebook size at 8, 192. We see a peak of performance: When
the inner k is around 20 and 35 and the outer k is around 10 and 16. In the
right plot we analyze the time when changing this parameters, also keeping the
codebook at size 8, 192. The lower both k are, the less time classification takes.
The best compromise between time and performance is using k′ = 25 for the
inner quantization, and k = 10 for the outer.

Influence of the Quantization Error. We analyze the impact of having more
quantization error due to the inner quantization. We use Caltech 101 to show
results using 8, 192 codebook entries. In Figure 3a, we show that the quanti-
zation error of the inner quantization does not have a clear relation with the
classification accuracy. The accuracy is maximal for k′ at 20 and 35, and the
quantization error has its minimum around 45. Moreover, we show the percent-
age of equal activated elements of α in NSQ and in HA using the same B, in
Figure 3b. Around 90% of the nearest neighbors are different. This shows that
NSQ is a new encoding and not an approximate nearest-neighbor.

ImageNet in a Laptop in one Day. We introduce a new benchmark to test the
efficiency of the encodings. We used ImageNet with restrictions on time and
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NSQ HA
Time Dataset
Features 17h 21m 17h 21m
Coding 6h 54m 7h 9m
Total 24h 18m 24h 30m
SizeDataset 5.4GB 700MB
Acc.Top-1 20.01% 16.6%

(a) (b) (c)

Fig. 3. (a) Quantization error of the inner quantization vs k′, in Caltech 101. (b)
Evaluation of the inner quantization as a nearest neighbor on Caltech 101 changing k
and k′. (c) Quantitative results on ImageNet. To fulfill the time constraints, NSQ uses
a codebook of 2, 048 and HA of 256 .

memory, and only let the image encoding algorithms run about 24 hours on a
laptop of 4 CPUs. We compared our method with HA with max pooling in which
we adjusted the parameters to fulfill the requirements. With NSQ we were able
to use a codebook of 2, 048 entries, and in HA only of 256. In Figure 3b the
results are summarized. In this benchmark, we outperform HA because in the
same amount of time NSQ can use a larger codebook, which is crucial to have
good classification performance. The reported results are of the same order of
magnitude as reported in [32], though a direct comparison is not possible because
we use a different subset of ImageNet. The state-of-the-art for this dataset is
reported by [33], but the computational effort of this method is huge compared
to ours.

6 Conclusion

We investigated efficient encoding schemes for object recognition and presented
a novel encoding formulation that allows to fuse sparse coding and assignment-
based coding. We proposed a very efficient encoding algorithm called Nested
Sparse Quantization (NSQ), which is based on two nested quantizations. The
implementation of NSQ is very simple, and can virtually be incorporated ev-
erywhere where assignment-based coding schemes are employed, but higher effi-
ciency and more compact representations are demanded, e.g. real-time and large
scale recognition problems. This potential was corroborated by our experiments
on the Caltech 101, PASCAL VOC 07 and ImageNet benchmarks.
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