Nested Transactional Memory:
Model and Preliminary Architecture Sketches

J. Eliot B. Moss
Department of Computer Science
University of Massachusetts, Amherst
Amherst, MA 01003-9264, USA

moss@cs.umass.edu

ABSTRACT

We offer a reference model for nested transactions at tieédémem-
ory accesses, and sketch possible hardware architectsigndehat
implement that model. We describe both closed and openngesti
The model is abstract in that it does not relate to hardwareh as
caches, but describes memory as seen by each transactiorgryne
access conflicts, and the effects of commits and aborts. Tk ha
ware sketches describe approaches to implementing thel msidg
bounded size caches in a processor with overflows to memogd-
dition to a model that will support concurrency within a tsantion,
we describe a simpler model we céifear nesting Linear nesting
supports only a single thread of execution in a transactest, rbut
may be easier to implement. While we hope that the model isod go
target to which to compile transactions from source langsaghe
mapping from source constructs to nested transactionalanera
beyond the scope of the paper.

1. MOTIVATION

Recently there has been increased interest in incorpgratime no-
tion of atomic actions in widely used modern programmingjlaages,
particularly Java (see [7] for example). It is not our pupbgre to
sing the praises of atomic actions; we take for granted tret are
desirable. However, for atomic actions to be adopted as proaph
for widespread use, several problems remain to be solvede We
begin to address one of those problems, scale, in two méatif@ss.

A number of previous authors have observed limitations ofyea
hardware transactional memory designs such as that ofhiyeahd
Moss [9], namely that they do not support transactions obunbed
size. In the part of this paper in which we offer architectsketches,
we offer one approach to this issue as a contribution to tlymiog
discussion in the community as to how to solve this problem.

Our primary focus, however, is on a different scaling prable
namely the need fonestingof transactions in large concurrent sys-
tems. Here are the primary reasons that nesting is essential

1. Libraries will contain atomic actions, and user code oepth
braries will need to group these within larger atomic action
Thus, one must be able womposecode that uses actions.

This can be accomplished in a simple way, as exemplified in

Permission to make digital or hard copies of all or part of thaknfor
personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage aatidbpies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

SCOOL '05,0ctober 16, 2005, San Diego, CA, USA.

Copyright 2005 ACM X-XXXXX-XX-X/XX/XX ... $5.00.

Antony L. Hosking
Department of Computer Science
Purdue University
West Lafayette, IN 47907, USA

hosking@cs.purdue.edu

the design of Harris and Fraser [7], by simply grouping all
nested actions within their enclosing top-level action. iM/h
this “works”, it does not address the other reasons for ngsti

2. Large monolithic actions increase the volume of work thasim
be done if a transaction needs to be rolled back. Closed nest-
ing [11, 12, 13] (discussed further below) at least pastiati-
dresses this concern. It allows each new portion of work to
be attempted, and possibly to fail, without necessarilyrabo
ing work already accomplished. It can also be implemented so
as to allow a program to control its response to the abort of a
portion of work, e.g., to attempt the work in a different way.
(This can be particularly helpful in distributed systemsorile
resource is unreachable or too busy, one can sometimescaedir
to a suitable alternate.)

Similarly, clients of opaque library code that suffer penfance
penalties because of failing nested transactions in ktxade

may need some way to program around those performance bot-
tlenecks.

In summary, while grouping subtransactions into large raono
lithic transactions is a correct response to supportinggien

of nested transactions, the performance and functionatity
plications of sub-transaction failure may be importantuegio
that programmers will expect to be able to program with sub-
transactions and respond to their failure.

3. Large monolithic transactions limit concurrency. Coneglr
with locking, transactions over the same objects improve co
currency in two ways. One is that transactions can proceed co
currently without conflict if they access different datay.edif-
ferent fields of the same object or different objects. Therathe
that transactions distinguish between reading and writimgl
concurrent reads do not conflict. Locks demand mutually ex-
clusive access even for read3pen nestings intended to im-
prove concurrency further. It can also be used (carefulig!p
kind of “escape hatch” from the strictures of transacticsel
mantics, if absolutely needed.

1.1 Closed Nesting

Space precludes extended discussion of nested transadtiohwe
offer a quick summary here, which also serves to introduceit®l-
ogy. We use the model of Moss, as presented in [13]. A traimsact
is eithertop-leve] which is similar to a traditional non-nested transac-
tion, or is nested within @arenttransaction. This nesting gives rise
to trees of transactions, on which we use family relatigmsiiminol-
ogy, such as parent, child, ancestor, descendant, silgiog\We also
use the ternsub-transactiorfor a child. In this model, only transac-
tions with no current children can access data; such accasseither
reads or writes. Transactions accumulate read and write wéich

determine conflicts as well as what data need to be updatedago-
mit. Logically, the (globally committed) data are not updhtetil a
top-level transaction commits. When a transaction readsl@ey it
sees the value in its own read or write set (if there is onégrtise
the value seen by its parent. A top-level transaction wil e latest
committed (globally committed) value.

A desired operation by a given transaction conflicts with pera-
tion on the same datum by another transaction if: at leasobitee
accesses is a write, and neither transaction is an ancéster other.

When a nested transaction commits, its read and write sets ar
unioned with those of its parent. When a top-level transactiom-
mits, its writes become permanent. When a transactionsbisrtead
and write sets (and associated tentatively written valaes)simply
discarded.

It is possible to show that these rules lead to a semanticesiéd
transactions in which a legal execution is equivalent toreakexecu-
tion of the committed transactions (only), in some order, Berializ-
ability.

1.2 Open Nesting

Open nestin§ allows further increases in concurrency, by releasing
concrete resources earlier and applying conflict detedgomnl roll
back) at a higher level of abstraction. For example, traias that
increment and decrement a shared integer would normallfticipn
since they write a shared datum. But, since increment ancfesnt
commute as abstract operations (assuming one is not obgehe
actual value involved), they can be correctly implementéth wpen
nesting. An increment (say) would do read, add one, write. Offen
nested action would be over and the updated field would noatiep
the parent transaction’s read or write set. However, if thiept later
aborted, we would need to run a compensating decrement toveem
the logical effect of the committed open nested action.

Other applications of open nesting include: highly conentrin-
dexes and collection data structures (B-trees, hash taitey mem-
ory allocation and garbage collection primitives (inchuglconcurrent
garbage collectors), scheduler queue operations, andfang with
“external” activities such as input/output.

The only difference between open and closed nesting in tefras o
read/write set execution model concerns what happens whans
action commits. When an open transaction commits, we disitar
read set, and commit its writed “top level”’. We also remove the
written data elements from the read and write sets of allrdtlaas-
actions. (Given the conflict rules, these can only be ancestothe
committing transaction.)

We assume that additional mechanisms handle recordingyof an
necessary compensating actions, and applying them in cas@-a
cestor transaction aborts. In practice, some of an operchastion’s
writes would update a list of compensating actions held bytttion’s
parent. The details are more of a language and run-time syksign
issue than one of this model. Likewise, we assume additioeahm
anisms deal with expressing and checking abstract conflithese
will be similar to the lock tables of transaction managerse Tdtks
may be on somewhat abstract entities as opposed to languageso
ory objects, and one might choose to offer richer schemesclifrig
modes. Again, some of an open nested action’s reads woulcdoi-c
ing this abstract lock table, and some of its writes would péating
the table as necessary. These details properly belong arigadge
and language implementation level.

It lies beyond the scope of this paper to consider how to state
prove some kind of serializability theorem about open nestilt is

1See [14], for example, for a description and justificationpén nest-
ing (multi-level transaction) concurrency control andaegry, and a
proof of its correctness.

far from obvious how to claim equivalent execution, for exden)

2. NESTEDACTIONEXECUTION MODEL

The descriptions above were intentionally brief and aduiijteague,
intended only to give a rough sense of what closed and opérn nes
ing actually mean. We now describe a detailed model for dkegu
nested transactions, closed and open. Its purpose is taddfinethe
semantics of nesting (as understood at the level of memadsrand
writes), and partly to be a standard against which to judgedmrect-
ness of proposed hardware designs. We take correctness ofdtel

as a given—but as already pointed out, it stands in need tidur
formal justification itself, such as a suitable serialifigbtheorem.

2.1 System States

We describe execution in terms gfstem stateand transitions from
one system state to another. A system state includes albtbbdlly
committed” memory state, plus memory state (read and weit $or
each transaction currently live in the system.

Transactions:First, we assign each transaction a unique number,
a positive integer distinct from any other transaction ently in the
system. Transactions stdite, and may lateicommitor abort, at
which time they are no longer represented in the system statens
out to be convenient to use transaction number 0, but it iscés®d
with the globally committed state, not with any actual t@tion. We
useT to designate the set of legal transaction numbers, inaju@in

Every non-zero transactidrhas a unigugarent transactionpar-
entt), and the parent relationship is acyclitop-level transactions
are those whose parent is 0. Ttigldren of transactiort are those
transactions whose parentisA transaction with no (live) children is
said to berunningand is allowed to (attempt to) issue memory reads
and writes.

Memory: The system’s memory state is a total map from memory
locationsL to memory value¥. (One can also think of it as an array
indexed byL, etc.) We could extend this model to handle extension
and contraction of the available virtual memory addresses.,(as
performed byrmap andnunmap). There are interesting questions as
to the units to use fov, since it may be natural to do most processing
in terms of cache lines, but cache lines are generally rédihger than
the smallest addressable unit and thus using thenV foan induce
false access conflicts.

System StateA system state is a subsetdf= T x L x Booleanx
V such that no transaction has more than one entry for a givasa lo
tion, and transaction O has an entry for every location. @igies
include a value drawn frod and a booleamrittenflag. The written
flag indicates whether the transaction wrote, or only rezelyalue.

More formally,S C X is a system state if:

VIl eL:3v:(0,l,truev) €S
and
t,1,wv) € SA(t,I,W,V) e Sm=w=w Av=V

An initial system statbas entries only for transaction 0, i.e., it consists
only of globally committed memory state.

2.2 Additional Useful Definitions

Here are a few extra definitions we find useful.
ancestorét) = if t = 0then{} else paren(t) Uancestorgparen(t))

We likewise definedescendantg§formal version omitted). The def-
initions of parent ancestorschildren anddescendantsnake sense
only for states in which the transaction is live, and, ¢bildren and
descendantsnay vary from state to state. We make the state explicit
as needed for precision.

We define th&ReadSetWriteSetandLocSebf transactiort in state
Se

ReadSdSt) = {I | (t,I,false V) € S}
WriteSetSt) = {I | (t,,true,v) € S}

LocSe(St) = ReadSé€sS t) UWriteSefS t)
We define the value of locatidrfor transactiort in stateS:

ValueOfSit,l) =
if 3(t,1,w,v) € Sthenv else ValueQfS paren{S;t),l)

Note thatValueOf is well-defined because transaction O defines a
value for every location.

2.3 Allowed Reads and Writes

In stateS, transactiort can read locatioh, notatedCanReadSit, 1),
if for each(t’,I,w,V') € Sat least one of the following is true:

1. t' =t (myself), or
2. t’ € ancestor§S t) (an ancestor’s value), or
3. W = false(the other action is a read).

Similarly, CanWritg S t, 1) if for each(t’,|,w/,v') € Sone of the fol-
lowing is true:

1. t/ =t (myself), or
2. t’ € ancestorgSt) (an ancestor’s value).

2.4 Effect of Reads and Writes

SupposeCanReadSit,l). Then ift readsl in stateS, we obtain a
new stateS. If | € LocSetSt), thenS = S OtherwiseS = SU
{(t,I,false ValueOfSit,l))}. Thatis, ift already has a value fdy
thenSis unchanged; otherwis8, consists oSplus an entry showing
thatt has read/alueOfSt, 1) for locationl.

We make a minor modification to the effect of a read performed b
anopennested action: it setaritten to be true if any ancestor (i.e.,
any transaction) has written the value. That is, rather talseabove,
an open nested action has:

J(t',1,true V) € S

Our purpose is to insure that when the open nested action @spim
globally commits the latest valife.

SupposeCanWritgSt,l). Then ift writes valuev to | in stateS,
we obtain a new statg = (S—old) U{(t,l,true,v)}, where old =
{1V, w,V) eS|t/ =t Al'’=1}. Inwords, a write deletes any
previous value for locatioh and transactiom, replacing it with the
value written and a written flag thattue.

Comment: If CanReadSt,|) (resp.CanWritgSt, 1)) is false, but
the next actiort wants to perform is the read (write), then an imple-
mentation might delay the action, in hope that a conflictrags$action
will commit. This policy can deadlock. Alternatives are toafeither
the requesting transaction or all conflicting transactions

2.5 Semantics of Commit and Abort

Supposé is open nesteénd commits irfS, which is allowed only if
t has no children ir8. The new stat& = (S— old; — oldy) U newy,
where:

oldy = {(t',I"',wW,V) e S|t =t"}

2Fine points such as these are exactly where we need a sabititiz
characterization and theorem, to verify that we have theimt'i

oldy = {(t',]’,W,V) € S|I" € WriteSetSt)}

newy = {(0,1,false V) | (t,I,true,v) € S}

In words, when an open nested action commits, it updatesltte g
ally committed state for words thatvrote, and forces drops frosil
transaction states of every wovditten by t. The first effect is the
global commit effect of an open nested transaction. The skefn
fect achieves the “breaking” of dependences induced by opsted
action commits.

Comment: We observe a fine point here: The exact definition of
what constitutes a “word”, i.e., the smallest separateliabte unit
of memory state, matters. Using a larger unit (a wide caahe) li
with closed nested actions will lead to false conflicts, aHicirt per-
formance but not consistency. Using a large unit vagennested
actions actually changes behavior and can cause more \taloem-
mit globally than otherwise would be. Thus, in the presencepei
nesting, each minimally writable unit (“word”) needs its owritten
bit, even if the words are grouped into large units in a cache.

When an open or closed nested transaaioorts which is allowed
only whent has no children, the new state simply drops all entries
associated with the aborting transaction

S=s—{{t',I''wW,V)eS|t=t}

When a closed nested transactia@ommits, which is allowed only
whent has no children, its parent “inherits” its state:

S = (S—old)Unew
where:

old = {(t',I’,w V) € S|t =tV (t' = paren{t) Al’ € LocSeft))}

new = {(paren(t),l,l € (WriteSeft) UWriteSefparen(t))), V)
| (t.1,w,v) € S}

Here the expressidne (WriteSeft) UWriteSefparen(t))) indicates
the conditions under which theritten flag will be true after the com-
mit, namely if eithett or its parent wrote the location.

2.6 Discussion of the Semantics

The locking and commit rules of this design correspond todtafs
Moss [13] for closed nesting. To our knowledge, open nestiag
never been described at this level, so we feel further dionss
called for. If we consider open nesting as described in M@siffeth,
and Graham [14] (MGG), it includes two things that glue tbgetef-
fects and meaning at different levels of abstraction. Forefdal to
the MGG model, the series of steps in an open nested actioa-cor
sponds to somabstractaction at the next higher level of abstraction.
For example, a low level read, modify, and write may impletrtae
abstract actiofiincrement”. If the open nested action commits, the
higher level of abstraction undertakes an obligation: ishundo the
effects of the increment if the higher level action abonsthis case, it
would undo the increment by running a decrement. If the whot®n
aborts before the open nested action commits, then we grsidi the
read and write sets of the nested action, etc.

How would this model of action undo look in our memory-level
model? As previously suggested, the higher level actiohkeiép a
(private) list of undo actions it needs to perform if it wibart. The
open nested action on a given courgexdds a note to that undo list,
recording the need for a decrementafhould the higher level action
abort. The actual steps of adding this note to the private listlcan
be part of the open nested actidn.

SHere we are hoping that no concurrent action tries to add $onge

The second way in which the two levels are glued together is tha Data: The actual data value.

abstract operations require abstract concurrency conffbis will
have to be explicit and is clearly more an issue of languageram-
time system design. Abstract locking code will examine &ilog
data structure, within the open nested action. If the abisti@eration
is ok to proceed, the open nested action simply proceedsisliiot
ok to proceed, the action might abort or express a need toavéga-
ture requiring further exploration, which we do not considere). As
with updating the undo list, the open nested action updhteatistract
locking data structure. in the case of our increments ancedsents,
there are no concurrency conflicts: the operations freatyoate un-
der all circumstances, so there is no need to lock.

In all cases, that is for updates to the affected objects skbres,
for additions to the undo list, and for inspections and upslatf ab-
stract locking data structures, when an open nested aaiomits it
is appropriate to commit its memory updates and to release#d
sets. Itis as if it were a globally committed top-level tracigon. The
model we give here does exactly that.

What the MGG model does not tell us very well is the most appro-
priate way to handle cases where a parent and open nestédctéss
some of the same memory words, particularly if these wordshea
accessed by other transactions. Such accesses are in ssae se
structured”: they cross levels of abstraction and may terftteak”
abstraction. The model here essentially removes dependetyzs
between past and future actions on updated memory words amen
open nested action commits. This seems the best thing tor® si
one can always effectively induce more dependences by gcdiit-
able abstract locks.

3. H/W SKETCH 1: USING CACHE

We first observe that the definition of the nested transaetkacution
model says nothing about caches. It concerns itself wittvitae of
memory state that each transaction observes, anefftbetson mem-
ory state that the transaction has (if it commits). Logicalsching is
orthogonal to transaction semantics. However, since it state
(as opposed to memory state) is inherently ephemeral, awoe #
arises from the issuing of reads and writes by running tictitsss,
it is natural to expect that transaction state (read ancevgets) will
generally be cached. Further, “globally committed” stageds no
mention of transaction ids, which matches well with the ootof
main memory containing that state: it needs no additiorgd,tatc.,
associated with transactions. Caches naturally have sslitirgs in ad-
dition to the data they contain, so it is natural to think dfeexing the
tags to include transaction ids (rather like address spicamisome
virtual memory translation schemes). Since we use traiosaftto
represent committed data, it is easy for a cache with traiosetags
to hold such data. The overflow of transaction state to main ongm
is less convenient, and requires a table probed by some oatids
of hardware, firmware, or software.

3.1 Hardware and Memory Tables

Ouir first hardware sketch is simple, though perhaps someyvinaal-
istic. It consists of three hardware tables (caches), plesflow data
structures. The first table is a fully associative cache afs@ation
state entries, which we call tAgansaction Data CacheEach entry
includes these fields, illustrated in Figure 1:

Transaction id: The id of the transaction to which this memory word
belongs. A 0 in this field indicates a globally committed \ealu

Address: The address of the memory word being cached.

to the list. If access conflicts on the list were common enotagh
warrant, the parent action could create a new list for eaein oested
action it invokes, and thus avoid the conflicts.

Valid bit: Indicates whether the other fields are valid. An invalid en-
try is available for reuse.

Dirty bit: When set, indicates that this entry is not recorded in the
main memory overflow table. For transaction 0, this indisate
that the cached value may differ from that stored in memory.

Written bit: Indicates whether the value has been (logically) written
by the transaction.

Ancestor written bit: This caches the fact that some (non-0) ances-
tor of this transaction holds a written copy of this word.

Obtained-from transaction id: Indicates the transaction from which
we read this value (the youngest ancestor with an entry)or it

Writing transaction id: If some descendant (would have) read this
copy of the word, and has updated it, this field records the de-
scendant transaction’s id.

Reader count: The number of live descendants that have read this
copy of this word.

The first six fields are straightforward; the use of the renmgjriour
fields will become more clear as we go. The Writing transactiod
Reader count fields will never be used at the same time, sonmvesea
one bitin the field to indicate when it holds Writing transantversus
when it holds Reader count.

Figure 1 illustrates the multiple entries for a single woaddress
100). The transaction O entry holds the latest fully committalue.
There is an ancestor-to-descendant chain consisting asacéinns
14, 16, 23, and 25. Transaction 25 has two subtransactiénan@
28. Transactions 16 and 25 have written values, which ttlidren
/ descendants have read. All these entries are Valid, andssterae
no overflow so the Dirty bits are 1. The Written and Ancestotteni
values should be obvious, aa well as the obtained-fromacios id
(From). The parent of a writer indicates the writing child {y; other
transactions give a reader countgm).

Writer/

Tid Addr Data V D W AW From RCount
0 100 532 1| 1| O 0 0 0
14| 100| 532 1| 1| O 0 0 W 16
16| 100 178 1| 1| 1 0 14 R1
23| 100| 178 1| 1| O 1 16 W 25
25| 100| 393 | 1| 1| 1 1 23 R2
26| 100| 393| 1| 1| O 1 25 RO
28| 100| 393| 1| 1| O 1 25 RO

Figure 1: Transaction Data Cache, Sketch 1

The second table consists of child-parent pairs for livesaations.
We call it theTransaction Parent Cach&nce it provides the means to
discover the id of a transaction’s parent. In addition tochi#d and
parent transaction ids, it providesvalid bit for each entry, @irty
bit to indicate that the entry is not (yet) represented in mgntables,
and anOverflowedbit that indicates that the transaction has overflow
entries in memory, and @penbit to indicate whether the transaction
is open or closed nested (conventionallysedfor top-level transac-
tions and transaction 0). Figure 2 illustrates some paaiteentries,
for the transactions in Figure 1. We assume no overflows aatdlie
parent entries have not been written to memory tables.

Parent Child Valid Dirty OV Open

0 14 1 1 0 0
14 16 1 1 0 0
16 23 1 1 0 1
23 25 1 1 0 0
25 26 1 1 0 0
25 28 1 1 0 0

Figure 2: Transaction Parent Cache, Sketch 1

The last table summarizes overflows from the Transaction Data
Cache (first table) to memory, so we call it tBwerflow Summary
Table There are many ways it could be organized. For present pur-
poses, we consider it to be a bit vector indicating which hasdes
have overflow entries, where a hash code is some hash of thesadd
of a word. The key point is that if the bit corresponding to tlaestn
code for a given address is 0, then there are no overflow srfbie
that address. If the bit is 1, then some address with that badé
has an overflow entry (see Figure 3, which illustrates ndq@a4ar sit-
uation). At additional cost we could maintain a vector ofsiadits
for each transaction as well, and cache some number of tlezsers
to reduce probes to in-memory tables. There are many steatagd
we are not here advocating any particular one; Rajwar, kierind
Lai have explored some specific schemes [17]. Note that theltyov
of our proposal lies in its handling of nesting, not in thahdndles
overflows.

[0J0[JOJOJO[1]I[0J1]O[OJI]O[OJO]1]

Figure 3: Overflow Summary Table, Sketch 1: One bit per hash
set

We envision that Transaction Data Cache overflows go intcsh ha
table in main memory, accessed by firmware or fast trap hesdle
The entries in main memory are chained by transaction id (&b th
commit and abort can find efficiently all overflows pertainbogthe
completing transaction) and by address (to make it easy doofiner
entries for the same address).

The Transaction Parent Cache might overflow as well (we prefer
not to place an arbitrary bound on the number of transagtioifis
(live) transaction has no entry in the parent cache, thesnitiy must
be in an overflow table in main memory. We further support tigom
of a transaction being flushed from the caches. In that edisef its
data entries are in the main memory overflow table.

Optionally, we may prefer to use short transaction ids incthes
while allowing a larger space of transaction ids. This is Einmb us-
ing address space ids for currently running processesewhdwing
a larger space of process ids. In that case, in addition tdatiies
above, we need a mapping from short ids to long ids, to sujpob:-
ing the main memory structures, which should use long idsndJs
short ids saves bits in the hardware, with the added contplekbc-
casionally requiring the extra mapping step. From here oasgeme
we are using short ids in the caches.

3.2 Using the Tables

It seems easiest to describe how to use the tables by skgtobin
each interesting operation affects the them.

Creating a transaction: We obtain a free Transaction Parent Cache
entry and an unused (short) transaction id. These may be itasks
themselves! Any clean parent cache entry can be droppedegaf
dirty one, we must force the entry to the memory table, cleguiti.

We can then drop it.

We can imagine several ways to obtain a currently unused shor
transaction id. One is to keep a bit vector of used/free sdert A
priority encoder can then produce a free one, or indicate tiey
are all in use. Alternatively, one can generate ids (e.gdaely or
sequentially) and probe to see if the id is in use. If no shdstadre
available, or probing fails to reveal a free one within sofmeshold
number of probes, then we evict (flush) a transaction fronctohe.

To do that we first force to memory all dirty parent cache estri
that mention the transaction as child or parent, and thep tirem.
Then we force to the data cache overflow table every dirty Bretitn
Data Cache entry that mentions the transaction, i.e., #ms#ction’s
own entries and those that mention it as a writer or obtafnamt-
transaction. We then drop those entries from the data cdghally
we drop the short id from the short-to-long id map. We can thesn
the short id for the new transaction.

Note that when we write a dirty parent cache entry to memaxy, e
ther or both transactions may not yet have long ids assigiWedas-
sign them from a counter of sufficient length to prevent wrapad
(or otherwise prevent duplicates), and update the shddrgid map.
We further note that loading Transaction Data Cache entirams-
actoin Parent Cache entry from memory may require allogatime
or more short ids.

Once we have the necessary transaction ids and a free paodwt ¢
entry, we enter the (child, parent) pair into the parent eacletting
the entry valid and dirty.

Reading a word: If the cache contains an entry for the issuing
transaction and address, we simply return the data of tig édther-
wise, we have data cache misdn the case of such a miss, we check
the Overflow Summary Table, and if it is possible for the etdrige in
the overflow area, we probe there. If we find no entry for theiestt
ing transaction, we determine its parent and probe the pefnest in
the cache, and then in memory (if necessary). Assuming there
conflict, and there is room in the cache for any new entriesired,
here are the cases that arise:

e We find no entry at allWe obtain the value from (globally com-
mitted) main memory and create two entries for the data read,
one for transaction 0 and one for the reading transaction. The
transaction 0 entry is marked valid and not dirty. Its Writsend
Ancestor written flags don’t matter (but it is probably siepl
if they are set to 0). Its Obtained-from id field does not nratte
We set its Reader count to 1. The reading transaction’s entry
we set to valid and dirty. We set Written and Ancestor written
to 0, Reader count to 0, and Obtained-from to (transaction) O

We find an entry for some ancestdirthe entry is in the mem-

ory overflow table, it is probably easiest to pull it into treche,
though one could access/update it in memory. We create a new
entry in the cache for the current transaction, using tha dft

the entry we found. We set our new entry valid and dirty. We set
Ancestor written to 1 if either Written or Ancestor writterea

1 in the ancestor. We set Written 1 if we just set Ancestor-writ
ten 1 and this is an open nested action. We set Reader count
to 0. (See the section dWriting a word , below, for further
discussion of the case where written becomes set.) Otherwis
we increment Reader count of the ancestor’s entry. In arg, cas
we set Obtained-from to be the ancestor transaction.

e \We find an entry for this transactioie simply return the data.

Note: Whenever we change an ancestor’s Transaction Data Cache en-
try, we set Dirty to 1 in that entry (to show that it may diffeoifn any
overflow table copy).

Freeing Transaction Data Cache entries:we need a data cache
entry and none are available, we can drop any clean entry. aWe c

clean an entry by writing to overflow memory and insuring: t{ggt
the entry’s hash code’s bit is set in the Overflow Summary&eadohd
(b) the transaction’s Overflow bit is 1 in the TransactiondPaCache.
As with creating a transaction, writing an entry to memoryyna

volving acquiring a long transaction id.

Determining conflicts with readdVhen we are reading, if we find
no (non-0) ancestor entry, then there is no conflict. If we inéinces-
tor entry that contains a Reader count, there is also no cyriflwe
find an ancestor entry with a Writing transaction id, we caehflvith
that writing transaction. (It cannot be us, or we would hawad the
entry, and since we probe from younger to older ancestagsyther
cannot be our ancestor. Hence it conflicts.)

Writing a word: If the cache contains a Written entry for the issu-
ing transaction and address, we simply update that enther@tse,
we have more work to do. These are the cases, assuming fressentr
as needed and no conflict:

e We find no entry at allAs for reading, we obtain the value from
(globally committed) main memory and create two entries for
the data, one for transaction 0 and one for the writing transa
tion. We set up the transaction 0 entry as in the case of rgadin
with the exception that instead of a Reader count, we indicat
the current transaction as the Writing transaction. Theingit
transaction’s entry we set to valid and dirty. We set Writien
1 and Ancestor written to 0, Reader count to 0, and Obtained-
from to (transaction) 0. We set the data field to have the new
value.

We find an entry for some ancestdile create a new entry in
the cache for the current transaction, setting its data tieelde
value written, and marking the entry valid and dirty. We set
Ancestor written to 1 if either Written or Ancestor writtereal

in the ancestor. We set Written to 1. We set Reader count to 0.
We set the ancestor’s entry’s Writing transaction field taHse
current transaction, and the current transaction’s Obthfrom

field to the ancestor.

We find an unwritten entry for this transactiowe set Written
and Dirty to 1 and update the data field. We further find the

entry). For each written entry, restore the transactiontfy€if nec-
essary), and update its value. Mark the entry dirty and erjtand set
its Reader count to 0. If the transaction has overflow entpescess
them then delete them. Delete the transaction’s parentecewstry,
including memory copy (if any).

Committing a closed nested transaction:For each entry, if the
parent has an entry, thenergethe child and parent’s entries. This
means that the parent entry will have: Valid 1; Dirty 1; Wit iff
parent, child, or both have Written 1; the child’s data valliee parent
entry maintains its Ancestor written value and ObtainexfAftransac-
tion id. If the child was Written, set the parent’s Readerrtda 0. If
the child was not Written, decrement the parent’s Reademtcou

If there is no parent entry, then just change the Transadtido
that of the parent.

Committing an open nested transaction: Proceed as for com-
mitting top-level transactions, with this difference foritten entries:
Drop all other (non-0) transaction’s entries for the writeatries. This
must include any entries that have overflowed.

3.3 Discussion

This scheme is undoubtedly complex. A key source of complexit
is the tracking of readers, writers, and obtained-from daations,
whose purpose is to speed up conflict checks and commit artl abo
processing. We must also provide for overflows, recordimtindiss,
etc. We did not expect a design as simple as that of HerlihyMosbs

[9], for example, but feel the need for something simplenttias.

3.4 Set Associative and Victim Caches

The preceding assumes a more or less fully associative c#che.
(more realistically) use a set associative structure ferttansaction
data cache, plus possibly a victim cache (with a restriatioirto hold
more than one member of the same set), then we can simplifg som
of the processing. In particular, we can obtain all cacheiesnfor

the same address all at once, some in the set associative iesadh
out buffer and one from probing the victim cache. We can hattoé
common cases of conflict and no-conflict in hardware and Kiek t
rest out to firmware (as well as the overflow case). The logic may

youngest ancestor with an entry for the same address, and sete simplified if we impose an ordering on the items in a sethsuc

its Writing transaction entry to be the current transaction

Determining conflicts with writesln these situations, there is no
conflict: (1) we have written the word already; (2) we have an u
written entry andall our ancestors have Reader count 1 or record a
Writing transaction (we are the only reader and one or motestors
are writers); (3) we have no entry, our youngest ancestanfi) has
a Reader count of 0, and any further ancestors have a Readwgrafo
1 or record a Writing transaction.

In these situations there is a conflict: (1) we have an urevrigntry
and some ancestor has a Reader count greater than 1; (2) eaedmav
entry and our youngest ancestor has a Reader count greated thr
records a Writing transaction.

Aborting a transaction: For each unwritten entry of the transac-
tion, decrement the Obtained-from transaction’s Readantdor this
entry. For each written entry of the transaction, set thea®@bt-from
transaction’s Reader count to 0. Invalidate all entrieshefdborting
transaction. If the transaction overflowed, process itsftoveed en-
tries, updating Reader counts. If the parent cache entrptislinty,
then remove it from the memory tables. Drop the transactiom the
parent cache.

Note that if Obtained-from transaction entries have beeppezd
from the cache, we need to restore them or update them in éréaw
table.

Committing a top-level transaction: For each unwritten entry,
proceed as for aborting (transaction 0 will already havecanvalent

that ancestors will be in one direction and descendantseirother.
Working a victim cache entry in is less pleasant.

4. SKETCH 2: TAGGING ANCESTORS

Here is an approach that reduces the complexity of Sketdhatisac-
tion data cache. Sketch 2’s transaction data cache is sitisketch
1's, but drops the Ancestor written bit, Obtained-from saction id
field, Writing transaction id field, and Reader count. In thpéce it
has anAncestor bit which indicates that this entry is for an ancestor
of the current transaction (or the current transactiorif)ts&@he no-
tion of current transaction was implicit in Sketch 1. We imedithat a
processor acts on behalf of a current transaction at any givee. In
Sketch 2 we make this more explicit: a change in current &etien
will necessitate updating Ancestor bits.

For now, we assume associative access by transaction iclbasv
access by address.

4.1 Using the Tables

As before, we describe how each interesting operationtaftbe ta-
bles. Many steps are similar; we focus on the differences.
Creating a transaction: We obtain a free parent cache entry and
an unused (short) transaction id, and fill them in, as in $kétc
Reading a word: If the cache contains an entry for the issuing
transaction and address, we simply return the data of thig. éhthe
Overflow Summary Table indicates possible overflow entriestrap

to firmware for memory table probing. The read has a conflittafe
is any entry for the same address where a non-ancestor rHsewvinie
word. This is now easy to check: address match, Ancestor trid;
ten bit 1. As before we probe from youngest to oldest ancesttr
we find an entry, and we fill in a new entry with the current teams
tion id, address, and data. We set Valid to 1, Dirty to 1, Wrnitto O,
and Ancestor to 1. As before, if the current transaction enapested,
and any ancestor has Written 1 (easily checked with an ags@i
access), we set Written 1. Unlike Sketch 1, there is no neetkttte
a transaction 0 entry if there is not one. (Sketch one usesédord
readers and writers for conflict detection.)

Writing a word: If the cache contains a written entry for the is-
suing transaction and address, we simply update that etitrithe
Overflow Summary Table indicates a possible overflow entap to
firmware. The write conflicts if there is any entry for the sanw@dv
for a non-ancestor, easy to check with associative matobimthis
address. We probe from youngest to oldest ancestor, and fitle
new entry as when reading, but set Written to 1.

Aborting a transaction: We simply invalidate all Transaction Data
Cache entries for the transaction, trapping to firmwaredfttansac-
tion has overflowed. We clean up the Transaction Parent Cazre
Sketch 1.

Committing a top-level transaction: Drop unwritten entries of
this transaction, and merge written ones with the transadientry.
A merge in Sketch 2 has these effects: set parent Valid 1y Dirt
Ancestor 1, Written to logical “or” of Written of the mergedtees,
Data to the committing entry’s data. Note: a transaction tbyewmill
always have Ancestor 1 and Written 0.

Committing a closed nested transaction:For each entry of the
committing transaction, if the parent has an entry, mergaemn If
the parent has no entry, just change the transaction id toofitae
parent. Note that all Ancestor bits for the parent remain 1.

Committing an open nested transaction:Proceed as for commit-
ting a top-level transaction, but drop all (non-0) trangacentries for
Writtendata.

Switching transactions: When switching from one transaction to
another, other than creating and entering a sub-transaaiocom-
pleting (committing or aborting) a sub-transaction andmatg to its
parent, we need to correct Ancestor bits. Suppose we aretsmgt
from transactiort; toto. Lett be their youngest common ancestor
(which may be transaction 0). Forand each ancestor tf younger
thant, we set the Ancestor bits of all its entries to 0. Eoand each of
its ancestors younger thanwe set the Ancestor bits to 1. Given asso-
ciative hardware, this will take time proportional to thedrdistance
betweert; andts.

4.2 lllustration

We consider the the transaction situation of Figure 1 and/dtaw it
would appear in this cache; see Figure 4. We assume thaattzons
28 is the current transaction. Thus, in this case, only tictisa26 is
not current.

Tid Addr Data V D W Anc
0 100 532| 1| 1 0 1
14 100 532| 1| 1 0 1
16 100| 178 1| 1 1 1
23 100| 178 1| 1 0 1
25 100 393| 1| 1 1 1
26 100 393 | 1| 1 0 0
28| 100| 393| 1| 1| O 1

Figure 4: Transaction Data Cache, Sketch 2

4.3 Discussion

This seems much simpler than Sketch 1. There are still somelegmp
ities when committing nested actions, since the detailepisstiepend
on whether there is a parent entry, etc. The essential diffi@that it
appears that we need to iterate over the read and write sétat Wé
need is a way to commit a transaction that updates all affemi&ies
in parallel (associatively). This leads to Sketch 3.

5. SKETCH 3: FAST COMMIT

We augment the Transaction Data Cache of Sketch 2 with sofds fie
to speed commit. The primary new fieldMatched transactigrwhich
indicates a transaction we will watch. If it commits, thentake spe-
cial action. If it aborts, we clear the Watched transactietdfi We
also add back th®btained-from transactiofield.

Reading a word: The main effect we want here is for a closed
nested transaction read to be inherited by its parent on éprbat
only if the parent has no entry. We will use the Obtained-ffaaid to
achieve this effect. For a read by an open nested actiondbalts in
an unwritten entry, we set the Obtained-from field to 0.

Writing a word: We set the Obtained-from field as for a read. We
also set the Watched transaction field of the youngest amcest, the
one from which we obtained the value. The value we put in thd fiel
is the id of the current transaction. If the transaction isropested,
we set the Watched field afl ancestors.

Committing a transaction: Whenever we commit, we will broad-
cast across the cache the committing transaction’s id anghitent’s
id. Various cache entries take action according to how thetcinthis
information. We first consider entries of the committingisaction.

For open nested actions, we drop unwritten entries and enwiat:
ten entries to transaction 0. For closed nested actions, wtatenun-
written entries to the parent, unless the parent matcheSiteined-
from field, in which case we drop the entry. For written erstnee
always mutate them to the parent.

Here is how other entries are affected. Ancestors of an ogtiona
that wrote will match in their Watched transaction field, avill drop
their entries. The parent of a closed nested action will hagecbm-
mitting child’s id in its Watched transaction field, and wilelf match
the parent id being broadcast, and will drop its entry. A panent an-
cestor of a committing nested action will match in the Watttrans-
action id, but the broadcast parent id will not match its odn fts
response is to set its Watched transaction id to the brobagaeent id.

Aborting a transaction: In addition to invalidating the transac-
tion’s own entries, we set to 0 any Watched transaction fie#t t
matches the aborting transaction. In the case of an abgudreested
action, we need to reconstruct the previous Watched trénsaen-
tries. This might be rather painful. If we want the abort caseun
faster, then as the open nested writes occur, we could fluststor
entries to main memory (perhaps via a buffer designed fomptire
pose). If the open nested action commits, we'll just dropehgies,
but if it aborts, we logically restore them.

Switching transactions: We need no additional logic.

5.1 lllustration
Again, in Figure 5, we show the cache for the situation of Fegu

5.2 Discussion: Set Associativity

This scheme seems definitely more workable. The biggest quésti
the heavy use of associative logic, which tends to be bulaw,sand
power hungry. Can we make common operations faster? Asgumin
that commit and abort are rare compared to read and writeffeea
modification that exploits the statistics. We keep paralbdociative
logic for transaction commit and abort. However, it needaaohplete

as fast as a read or write; it might take multiple cycles. Eading

Tid Addr Data V D W Watch From

0 100 532 1| 1| O 16 0
14| 100| 532 1| 1| O 16 0
16| 100| 178 1| 1| 1 0 0
23| 100 178 1| 1| O 25 16
25| 100 393 1| 1| 1 0 23
26| 100 393 1| 1| O 0 25
28| 100| 393 1| 1| O 0 25

Figure 5: Transaction Data Cache, Sketch 3

and writing, we organize the cache set associatively, psrkath a
victim cache, so that all entries we need to examine and mkaig
can be read into buffers at once. We can then use a small ammicast
sociative logic attached to those buffers to do the entryipudations
needed for reading and writing.

6. LINEAR NESTING

Suppose we restrict the system a bit and allow only one ddsc¢n
of any given top-level transaction to be running at once. Thawve
disallow concurrencyithin a transaction, permitting only a single
leaf transaction for each top-level transaction. We silitvamultiple
top-leveltransactions, each with one running subtransaction.

Given this restriction, the live tree under each top-lexahsaction
is linear, consisting of a single branch. This admits an egtng op-
timization: if an ancestor holds a value for a given addresad or
written), a descendant reading that address does not neltitthe
address to its read set. The reason is that conflicts can onkjtbe
(subtransactions of) other top-level transactions, aag#rent’s entry
is good enough for detecting the conflict. Furthermore) ithe trans-
actions involved are closed nested, then the conflict willresolve
at least until the ancestor completes—it will be to the entheftop-
level transaction if the value was written and none of thedaations
aborts. In the case of open nesting, an intervening comntiitrevi
move the conflict. In any case, there is no need for the sutzrcdion
to acquire a copy of the word unless it writes the word.

We can use the linear nesting and the read optimization tpligjm
the cache logic. We encode transaction ids as a top-leveddcdion
id (Tid) plus a nesting leveNes). Top-level transactions have a Nest
value of 1, their children have Nest value 2, etc. We resera Malue
0 for transaction O entries. Note that we no longer need asaGiion
Parent Cache, since parenthood is encoded directly in thevdkies.

In addition to Tid, Nest, Address, Data, Valid, Dirty, and itém
fields, our linear nesting cache design includes an additi@eld, the
Nested Write StaofNWS), which is an array indicating which higher
nesting levels hold a write for this address. The NWS has dichit
size, so when a given word has too many nested values, we force
overflowing ancestor entries to memory. We observe thatractries
flushed to memory for a given Tid and Address can be organized a
stack, simplifying the handling of overflowed entries.

Conflicts: Conflicting entries are simply those whose Tid is differ-
ent and whose mode (read/write) conflicts with the action \watwo
perform. (We ignore transaction 0 entries in conflict detecy

Reading a word: Assuming there is no conflict, we desire the value
held by the transaction with the same Tid and the largestevidu
Nest. Such a value will be in the entry having the same Tid add A
dress, and an empty NWS (i.e., it has no descendant entdebasis
topmost). Because of the read optimization, wendbneed to make
a copy of the value read, unless no ancestor holds the vatuthat
case, we obtain the value from transaction 0, and createtanweith
our Tid and Nest, the appropriate Address and Data, and galidt,

Dirty, and not Written. We set the NWS to be empty.

Writing a word: Again assuming no conflict, we need there to be
a value for the current transaction. If there is one, we sinpidate
it. Otherwise, we create an entry, filling in its fields asduals. Tid,
Nest, Address, and Data get the obvious appropriate vaduneswe
set Valid, Dirty, and Written. We push the writing Nest vatreeach
ancestor’s NWS. If the oldest ancestor's NWS overflows, wigevitr
to memory.

If there was no write entry for an ancestor (detected by tresgic-
tion 0 entry having an empty NWS), we update the transactiemt§/
as follows: change the Tid to that of the writing transactiamd push
the Nest value of the writing transaction on the NWS. It isfakére
is an ancestor that has only read the address in questiorpu@pose
is to simplify dropping the transaction O entry if anothelueacom-
mits to top level. At most one top-level transaction can biging at a
time, so the Tid value will be unique, and the Nest value ofiticnes
to marl the entry as being fully committed.

Aborting a transaction: We invalidate all entries for the Tid and
Nest level. If the Nest value matches the top of an entry's NWS
that entry pops its NWS, discarding the NWS entry for the tdabr
transaction. In the case of an entry with Nest value 0 (wtgateally
a transaction 0 value), we reset the Tid to 0.

Committing a transaction: If the committing transaction is top
level (Nest 1) or open, we invalidate all the transactior&d set en-
tries, and set its write entries to Tid O and Nest O (i.e., catmg
them to top level).

If the committing transaction is closed and not top-levslentries,
both read and write, decrement their Nest value.

If the committing transaction is closed, its ancestord(iding Nest
0) react as follows. If an entry’s NWS top value equals the imitm
ting transaction’s Nest value, then it is an ancestor effing ancestor
decrements its top NWS value. If the resulting value equadsan-
cestor’s own Nest value (i.e., if the ancestor is the parétiteocom-
mitting transaction), it invalidates itself. If the decrented top value
equals the next value in the NWS, the ancestor pops its NWS.

If the committing transaction is open, its ancestors &tk their
values for this address. The entries to invalidate are thusehave
the committing transaction’s Nest level at the top of thei/sl.

6.1 |lllustration

In Figure 6, we show the linear nesting cache for the sitnatid-ig-
ure 1. Note the renumbering of the transactions (old numistesi
under “Old” at the far right) and the omission of transac@én(which
was concurrent with 28 and thus one or the other is not passithin-
ear nesting). Except for the old reader (14), the other tctitses
that only read this address do not have entries. In therdltish we
assume that Nested Write Stacks hold 3 entries.

NWS
[Tid [Nest| Addr [Data]| V] D[W |[0[1]2] Old |
14 O] 100] 532 1| 1] 0]4[2] - 0
14 1 100 532| 1| 1 042 - 14
14 2 100 178 | 1| 1 114 -] - 16
14 4 100 393 | 1| 1 1 - -] - 25

Figure 6: Transaction Data Cache, Linear Nesting

Assuming transactions 14.4 and 14.3 are closed and 14.2is op
Figures 7, 8, and 9 show the situation after each commit.

7. RELATED WORK

NWS
[Tid [Nest| Addr [Data] V] D[W |0[1]2] Old |
14] 0] 100] 532 1] 1] 0]3[2]-] o0
14| 1| 100| 532 1| 1] 0|32 -| 14
4] 2| 100| 178 1| 1| 1|3 | -|-| 16
14| 3| 100| 393 1] 1| 1| -] -] - 23

Figure 7: Linear Nesting Cache after 14.4 commits

NWS
[Tid [Nest| Addr [Data] V [D [W 0] 1] 2] Old]
14 O 100| 532 1| 1| 02| -/| - 0
14 1 100 532 | 1| 1| 0| 2| -] - 14
14 2 100 393 | 1| 1| 1| -} -] - 16

Figure 8: Linear Nesting Cache after 14.3 commits

Transaction models and their implementations were ihjtidével-

oped for database and distributed systems, where they bag&ed
extensive treatment [4]. Our models are inspired by thesdgmen-
tal works, especially with respect to formalization of aérability

for nested transactions [2], concepts and applicationpehmesting
[20], and synthesis of other extended transaction modélsTBere
has been significant recent interest in formalizing tratisaseman-
tics within programming languages [19, 10].

Various forms of transactional memory have been proposed an

implemented since the hardware/software hybrid schemeeolitty
and Moss [9]. Software-based approaches [7, 21, 8, 18] cfer su
from poor performance in cases of high data contention veithe-
scale concurrency.

There have been several recent hardware-based proposate So

proposals take existing programs coded to use mutual-grcllocks
and execute them lock-free for improved concurrency whifeweing
transactional behavior, while hardware overflow causekag@cqui-
sition of the mutual-exclusion lock [15, 16]. Other apprioasexecute
transactions speculatively in the cache but force nontgptiece exe-
cution on overflow [6, 5]. Unbounded Transactional Memor{ §U)
attempts to solve the problem of transaction boundednessuu
fers from performance degradation in the normal case [1jtu®i-
ized Transactional Memory (VTM) maintains the performartesa-
tage of hardware transactions, while also shielding prognars from
hardware resource limits [17]. None of these hardware sekeasfier
comprehensive support for nested or open transactions.

8. CONCLUSION

Our intent has been to describe memory level (read/writeg@tion
semantics for closed and open nested transactions anditvs@zpme
implementation strategies. While the resulting designgehaore
associative logic than current caches, perhaps we are agpng
sketches worth the effort of more detailed hardware desighper-
formance/cost estimation. In any case, we have marked daast
one potentially interesting design point, namely lineastimg.

[Tid [Nest| Addr [Data]| V[D [W
[0] O] 100] 393] 1] 1]

Oid |
0]

o
'
'

Figure 9: Linear Nesting Cache after 14.2 commits

Much remains to be done: detailed hardware design and ¢iaiua
design of language constructs and run-time support thas owto this
model; a suitable serializability theorem justifying thedel; incor-
poration with multiprocessor bus protocols (such as caobepng,
etc.); and development of and comparison with alternatigesh al-
ternatives include software-only designs, extendingesursoftware
transactional memory (STM) systems with nesting, and theipitisy
of supporting nesting with essentially non-nested harevwsapport.

If linear nesting is deemed to be at the edge of achievabtnze
complexity, then we face the interesting question of whatreadly
lose by restricting ourselves to linear nesting. Is it palssio finesse
concurrent subtransactions in software using linear mgs$tardware?
For that matter, can we finesse nesting on non-nesting hae@virre-
sumably in either case we would design a simpler cache thatm-
bination with software, could model the richer semanticsis Inot
clear what “hooks” one needs to pull that off.

9. ACKNOWLEDGMENTS

This material is based upon work supported by the Nationar®ei
Foundation under grant number CCR-0085792. Any opinions fi
ings, conclusions, or recommendations expressed in thisriabare
those of the authors and do not necessarily reflect the viéwlseo

NSF. The model presented here was developed as part of an ongo-

ing collaboration with Bradley Kuszmaul, Charles Leisergsiteon
Stupp, and James Sukha. We particularly acknowledge the \l
our discussions with them on the semantics of open nestidgten
concept of linear nesting.

10. REFERENCES

[1] C.S. Ananian, K. Asanovic, B. C. Kuszmaul, C. E. Leiserson, and
S. Lie. Unbounded transactional memoryRrmceedings of the
International Symposium on High Performance Computer Architect
pages 316-327. IEEE Computer Society, 2005.

C. Beeri, P. A. Bernstein, and N. Goodman. A model for carency in

nested transactions systeddsACM, 36(2):230-269, Apr. 1989.

P. Chrysanthis and K. Ramamritham. Synthesis of extendedaction

models using ACTAACM Trans. Database Sys19(3):450-491, 1994.

J. Gray and A. Reuteilransaction Processing: Concepts and

TechniquesData Management Systems. Morgan Kaufmann, 1993.

L. Hammond, B. D. Carlstrom, V. Wong, B. Hertzberg, M. Chen,

C. Kozyrakis, and K. Olukotun. Programming with transactiona

coherence and consistency (TCC)FAroceedings of the ACM

International Conference on Architectural Support for Prograimg

Languages and Operating Systemwslume 39, pages 1-13, Nov. 2004.

L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D. Davis,

B. Hertzberg, M. K. Prabhu, H. Wijaya, C. Kozyrakis, and K. aitun.

Transactional memory coherence and consistendyrdneedings of the

International Symposium on Computer Architecim@ume 32, pages

102-113, Dec. 2004.

T. Harris and K. Fraser. Language support for lightweighbgactions.

In Proceedings of the ACM Conference on Object-Oriented

Programming Systems, Languages, and Applicafieolsime 38, pages

388-402, Nov. 2003.

M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer, lllo8ware

transactional memory for dynamic-sized data structureBrdeedings

of the Annual ACM Symposium on Principles of Distributed Computing

pages 92-101, 2003.

[9] M. Herlihy and J. E. B. Moss. Transactional memory: Architeatu
support for lock-free data structures.Rnoceedings of the International
Symposium on Computer Architectupages 289-300, 1993.

[10] S. Jagannathan and J. Vitek. Optimistic concurrency seasaior
transactions in coordination languagesCioordination Models and
Languagesvolume 2949 of_ecture Notes in Computer Scienpages
183-198, 2004.

[11] J. E. B. MossNested Transactions: An Approach to Reliable
Distributed ComputingPhD thesis, Massachusetts Institute of

2

13

[4

5

6

[7

8

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Technology, Cambridge, MA, Apr. 1981. Also published as MIT
Laboratory for Computer Science Technical Report 260.

J. E. B. Moss. Nested transactions: An approach to reliablekuistd
computing. InProceedings of the Second Symposium on Reliability in
Distributed Software and Database Systepages 33-39, Pittsburgh,
PA, July 1982. IEEE.

J. E. B. MossNested Transactions: An Approach to Reliable
Distributed ComputingM.I.T. Press, Cambridge, MA, 1985.

J. E. B. Moss, N. D. Griffeth, and M. H. Graham. Abstraction in
recovery management. Proceedings of the 1986 ACM SIGMOD
International Conference on Management of Dgdages 72—-83,
Washington, D.C., May 198&CM SIGMOD Record 13 (June 1986).
R. Rajwar and J. R. Goodman. Speculative lock elisionbkmg highly
concurrent multithreaded execution.Rmoceedings of the International
Symposium on Microarchitectyrpages 294-305. ACM/IEEE, 2001.
R. Rajwar and J. R. Goodman. Transactional lock-free i@t of
lock-based programs. Froceedings of the ACM International
Conference on Architectural Support for Programming Langsaayed
Operating Systemsolume 37, pages 5-17, Oct. 2002.

R. Rajwar, M. Herlihy, and K. K. Lai. Virtualizing transtienal

memory. InProceedings of the International Symposium on Computer
Architecture pages 494-505, 2005.

N. Shavit and D. Touitou. Software transactional membry
Proceedings of the Annual ACM Symposium on Principles of
Distributed Computingpages 204-213, 1995.

J. Vitek, S. Jagannathan, A. Welc, and A. L. Hosking. A senganti
framework for designer transactions. In D. E. Schmidt, editor,
Proceedings of the European Symposium on Programmiigme

2986 ofLecture Notes in Computer Scienpages 249—-263, 2004.

G. Weikum and H.-J. Schelconcepts and Applications of Multilevel
Transactions and Open Nested Transactigrages 515-553. Morgan
Kaufmann, 1992.

A. Welc, S. Jagannathan, and A. L. Hosking. Transactionalitars for
concurrent objects. In M. Odersky, edit®roceedings of the European
Conference on Object-Oriented Programmirglume 3086 of ecture
Notes in Computer Sciengeages 519-542. Springer-Verlag, 2004.

