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ABSTRACT
We offer a reference model for nested transactions at the level of mem-
ory accesses, and sketch possible hardware architecture designs that
implement that model. We describe both closed and open nesting.
The model is abstract in that it does not relate to hardware, such as
caches, but describes memory as seen by each transaction, memory
access conflicts, and the effects of commits and aborts. The hard-
ware sketches describe approaches to implementing the model using
bounded size caches in a processor with overflows to memory. In ad-
dition to a model that will support concurrency within a transaction,
we describe a simpler model we calllinear nesting. Linear nesting
supports only a single thread of execution in a transaction nest, but
may be easier to implement. While we hope that the model is a good
target to which to compile transactions from source languages, the
mapping from source constructs to nested transactional memory is
beyond the scope of the paper.

1. MOTIVATION
Recently there has been increased interest in incorporating some no-
tion of atomic actions in widely used modern programming languages,
particularly Java (see [7] for example). It is not our purpose here to
sing the praises of atomic actions; we take for granted that they are
desirable. However, for atomic actions to be adopted as an approach
for widespread use, several problems remain to be solved. Here we
begin to address one of those problems, scale, in two manifestations.

A number of previous authors have observed limitations of early
hardware transactional memory designs such as that of Herlihy and
Moss [9], namely that they do not support transactions of unbounded
size. In the part of this paper in which we offer architectural sketches,
we offer one approach to this issue as a contribution to the ongoing
discussion in the community as to how to solve this problem.

Our primary focus, however, is on a different scaling problem,
namely the need fornestingof transactions in large concurrent sys-
tems. Here are the primary reasons that nesting is essential:

1. Libraries will contain atomic actions, and user code or other li-
braries will need to group these within larger atomic actions.
Thus, one must be able tocomposecode that uses actions.
This can be accomplished in a simple way, as exemplified in
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the design of Harris and Fraser [7], by simply grouping all
nested actions within their enclosing top-level action. While
this “works”, it does not address the other reasons for nesting.

2. Large monolithic actions increase the volume of work that must
be done if a transaction needs to be rolled back. Closed nest-
ing [11, 12, 13] (discussed further below) at least partially ad-
dresses this concern. It allows each new portion of work to
be attempted, and possibly to fail, without necessarily abort-
ing work already accomplished. It can also be implemented so
as to allow a program to control its response to the abort of a
portion of work, e.g., to attempt the work in a different way.
(This can be particularly helpful in distributed systems: ifone
resource is unreachable or too busy, one can sometimes redirect
to a suitable alternate.)

Similarly, clients of opaque library code that suffer performance
penalties because of failing nested transactions in library code
may need some way to program around those performance bot-
tlenecks.

In summary, while grouping subtransactions into large mono-
lithic transactions is a correct response to supporting execution
of nested transactions, the performance and functionalityim-
plications of sub-transaction failure may be important enough
that programmers will expect to be able to program with sub-
transactions and respond to their failure.

3. Large monolithic transactions limit concurrency. Compared
with locking, transactions over the same objects improve con-
currency in two ways. One is that transactions can proceed con-
currently without conflict if they access different data, e.g., dif-
ferent fields of the same object or different objects. The other is
that transactions distinguish between reading and writing, and
concurrent reads do not conflict. Locks demand mutually ex-
clusive access even for reads.Open nestingis intended to im-
prove concurrency further. It can also be used (carefully!)as a
kind of “escape hatch” from the strictures of transactionalse-
mantics, if absolutely needed.

1.1 Closed Nesting
Space precludes extended discussion of nested transactions, but we
offer a quick summary here, which also serves to introduce terminol-
ogy. We use the model of Moss, as presented in [13]. A transaction
is eithertop-level, which is similar to a traditional non-nested transac-
tion, or is nested within aparent transaction. This nesting gives rise
to trees of transactions, on which we use family relationship terminol-
ogy, such as parent, child, ancestor, descendant, sibling,etc. We also
use the termsub-transactionfor a child. In this model, only transac-
tions with no current children can access data; such accesses are either
reads or writes. Transactions accumulate read and write sets, which



determine conflicts as well as what data need to be updated upon com-
mit. Logically, the (globally committed) data are not updated until a
top-level transaction commits. When a transaction reads a value, it
sees the value in its own read or write set (if there is one), otherwise
the value seen by its parent. A top-level transaction will see the latest
committed (globally committed) value.

A desired operation by a given transaction conflicts with an opera-
tion on the same datum by another transaction if: at least oneof the
accesses is a write, and neither transaction is an ancestor of the other.

When a nested transaction commits, its read and write sets are
unioned with those of its parent. When a top-level transaction com-
mits, its writes become permanent. When a transaction aborts, its read
and write sets (and associated tentatively written values)are simply
discarded.

It is possible to show that these rules lead to a semantics of nested
transactions in which a legal execution is equivalent to a serial execu-
tion of the committed transactions (only), in some order, i.e., serializ-
ability.

1.2 Open Nesting
Open nesting1 allows further increases in concurrency, by releasing
concrete resources earlier and applying conflict detection(and roll
back) at a higher level of abstraction. For example, transactions that
increment and decrement a shared integer would normally conflict,
since they write a shared datum. But, since increment and decrement
commute as abstract operations (assuming one is not observing the
actual value involved), they can be correctly implemented with open
nesting. An increment (say) would do read, add one, write. Theopen
nested action would be over and the updated field would not be part of
the parent transaction’s read or write set. However, if the parent later
aborted, we would need to run a compensating decrement to remove
the logical effect of the committed open nested action.

Other applications of open nesting include: highly concurrent in-
dexes and collection data structures (B-trees, hash tables, etc.), mem-
ory allocation and garbage collection primitives (including concurrent
garbage collectors), scheduler queue operations, and for coping with
“external” activities such as input/output.

The only difference between open and closed nesting in terms of a
read/write set execution model concerns what happens when atrans-
action commits. When an open transaction commits, we discard its
read set, and commit its writesat “top level” . We also remove the
written data elements from the read and write sets of all other trans-
actions. (Given the conflict rules, these can only be ancestors of the
committing transaction.)

We assume that additional mechanisms handle recording of any
necessary compensating actions, and applying them in case an an-
cestor transaction aborts. In practice, some of an open nested action’s
writes would update a list of compensating actions held by the action’s
parent. The details are more of a language and run-time systemdesign
issue than one of this model. Likewise, we assume additional mech-
anisms deal with expressing and checking abstract conflicts. These
will be similar to the lock tables of transaction managers. The locks
may be on somewhat abstract entities as opposed to language or mem-
ory objects, and one might choose to offer richer schemes of locking
modes. Again, some of an open nested action’s reads would be check-
ing this abstract lock table, and some of its writes would be updating
the table as necessary. These details properly belong at the language
and language implementation level.

It lies beyond the scope of this paper to consider how to stateor
prove some kind of serializability theorem about open nesting. (It is

1See [14], for example, for a description and justification ofopen nest-
ing (multi-level transaction) concurrency control and recovery, and a
proof of its correctness.

far from obvious how to claim equivalent execution, for example.)

2. NESTED ACTION EXECUTION MODEL
The descriptions above were intentionally brief and admittedly vague,
intended only to give a rough sense of what closed and open nest-
ing actually mean. We now describe a detailed model for executing
nested transactions, closed and open. Its purpose is partlyto definethe
semantics of nesting (as understood at the level of memory reads and
writes), and partly to be a standard against which to judge the correct-
ness of proposed hardware designs. We take correctness of this model
as a given—but as already pointed out, it stands in need of further
formal justification itself, such as a suitable serializability theorem.

2.1 System States
We describe execution in terms ofsystem statesand transitions from
one system state to another. A system state includes all the “globally
committed” memory state, plus memory state (read and write sets) for
each transaction currently live in the system.

Transactions:First, we assign each transaction a unique number,
a positive integer distinct from any other transaction currently in the
system. Transactions startlive, and may latercommitor abort, at
which time they are no longer represented in the system state. It turns
out to be convenient to use transaction number 0, but it is associated
with the globally committed state, not with any actual transaction. We
useT to designate the set of legal transaction numbers, including 0.

Every non-zero transactiont has a uniqueparent transaction, par-
ent(t), and the parent relationship is acyclic.Top-level transactions
are those whose parent is 0. Thechildren of transactiont are those
transactions whose parent ist. A transaction with no (live) children is
said to berunningand is allowed to (attempt to) issue memory reads
and writes.

Memory: The system’s memory state is a total map from memory
locationsL to memory valuesV. (One can also think of it as an array
indexed byL, etc.) We could extend this model to handle extension
and contraction of the available virtual memory addresses (e.g., as
performed bymmap andmunmap). There are interesting questions as
to the units to use forV, since it may be natural to do most processing
in terms of cache lines, but cache lines are generally ratherlarger than
the smallest addressable unit and thus using them forV can induce
false access conflicts.

System State:A system state is a subset ofΣ = T ×L×Boolean×
V such that no transaction has more than one entry for a given loca-
tion, and transaction 0 has an entry for every location. Theentries
include a value drawn fromV and a booleanwrittenflag. The written
flag indicates whether the transaction wrote, or only read, the value.

More formally,S⊂ Σ is a system state if:

∀l ∈ L : ∃v : (0, l , true,v) ∈ S

and

(t, l ,w,v) ∈ S∧ (t, l ,w′
,v′) ∈ S⇒ w = w′∧v = v′

An initial system statehas entries only for transaction 0, i.e., it consists
only of globally committed memory state.

2.2 Additional Useful Definitions
Here are a few extra definitions we find useful.

ancestors(t) = if t = 0 then{} else parent(t)∪ancestors(parent(t))

We likewise definedescendants(formal version omitted). The def-
initions of parent, ancestors, children, anddescendantsmake sense
only for states in which the transaction is live, and, forchildren and
descendants, may vary from state to state. We make the state explicit
as needed for precision.



We define theReadSet, WriteSet, andLocSetof transactiont in state
S∈ Σ:

ReadSet(S, t) = {l | (t, l , false,v) ∈ S}

WriteSet(S, t) = {l | (t, l , true,v) ∈ S}

LocSet(S, t) = ReadSet(S, t)∪WriteSet(S, t)

We define the value of locationl for transactiont in stateS:

ValueOf(S, t, l) =
if ∃(t, l ,w,v) ∈ S thenv else ValueOf(S,parent(S, t), l)

Note thatValueOf is well-defined because transaction 0 defines a
value for every location.

2.3 Allowed Reads and Writes
In stateS, transactiont can read locationl , notatedCanRead(S, t, l),
if for each(t ′, l ,w′

,v′) ∈ Sat least one of the following is true:

1. t ′ = t (myself), or

2. t ′ ∈ ancestors(S, t) (an ancestor’s value), or

3. w′ = false(the other action is a read).

Similarly, CanWrite(S, t, l) if for each(t ′, l ,w′
,v′) ∈ Sone of the fol-

lowing is true:

1. t ′ = t (myself), or

2. t ′ ∈ ancestors(S, t) (an ancestor’s value).

2.4 Effect of Reads and Writes
SupposeCanRead(S, t, l). Then if t readsl in stateS, we obtain a
new stateS′. If l ∈ LocSet(S, t), thenS′ = S. OtherwiseS′ = S∪
{(t, l , false,ValueOf(S, t, l))}. That is, if t already has a value forl ,
thenSis unchanged; otherwise,S′ consists ofSplus an entry showing
thatt has readValueOf(S, t, l) for locationl .

We make a minor modification to the effect of a read performed by
an opennested action: it setswritten to be true if any ancestor (i.e.,
any transaction) has written the value. That is, rather thanfalseabove,
an open nested action has:

∃(t ′, l , true,v′) ∈ S

Our purpose is to insure that when the open nested action commits, it
globally commits the latest value.2

SupposeCanWrite(S, t, l). Then if t writes valuev to l in stateS,
we obtain a new stateS′ = (S−old)∪{(t, l , true,v)}, where old =
{(t ′, l ′,w′

,v′) ∈ S | t ′ = t ∧ l ′ = l}. In words, a write deletes any
previous value for locationl and transactiont, replacing it with the
value written and a written flag that istrue.

Comment: If CanRead(S, t, l) (resp.CanWrite(S, t, l)) is false, but
the next actiont wants to perform is the read (write), then an imple-
mentation might delay the action, in hope that a conflicting transaction
will commit. This policy can deadlock. Alternatives are to abort either
the requesting transaction or all conflicting transactions.

2.5 Semantics of Commit and Abort
Supposet is open nestedand commits inS, which is allowed only if
t has no children inS. The new stateS′ = (S−oldt −oldw)∪new0,
where:

oldt = {(t ′, l ′,w′
,v′) ∈ S| t = t ′}

2Fine points such as these are exactly where we need a serializability
characterization and theorem, to verify that we have them right!

oldw = {(t ′, l ′,w′
,v′) ∈ S| l ′ ∈ WriteSet(S, t)}

new0 = {(0, l , false,v) | (t, l , true,v) ∈ S}

In words, when an open nested action commits, it updates the glob-
ally committed state for words thatt wrote, and forces drops fromall
transaction states of every wordwritten by t. The first effect is the
global commit effect of an open nested transaction. The second ef-
fect achieves the “breaking” of dependences induced by opennested
action commits.

Comment: We observe a fine point here: The exact definition of
what constitutes a “word”, i.e., the smallest separately writable unit
of memory state, matters. Using a larger unit (a wide cache line)
with closed nested actions will lead to false conflicts, which hurt per-
formance but not consistency. Using a large unit withopennested
actions actually changes behavior and can cause more valuesto com-
mit globally than otherwise would be. Thus, in the presence ofopen
nesting, each minimally writable unit (“word”) needs its own written
bit, even if the words are grouped into large units in a cache.

When an open or closed nested transactionaborts, which is allowed
only whent has no children, the new state simply drops all entries
associated with the aborting transactiont:

S′ = S−{(t ′, l ′,w′
,v′) ∈ S| t = t ′}

When a closed nested transactiont commits, which is allowed only
whent has no children, its parent “inherits” its state:

S′ = (S−old)∪new

where:

old = {(t ′, l ′,w′
,v′) ∈ S| t ′ = t ∨ (t ′ = parent(t)∧ l ′ ∈ LocSet(t))}

new = {(parent(t), l , l ∈ (WriteSet(t)∪WriteSet(parent(t))),v)
| (t, l ,w,v) ∈ S}

Here the expressionl ∈ (WriteSet(t)∪WriteSet(parent(t))) indicates
the conditions under which thewrittenflag will be true after the com-
mit, namely if eithert or its parent wrote the location.

2.6 Discussion of the Semantics
The locking and commit rules of this design correspond to those of
Moss [13] for closed nesting. To our knowledge, open nestinghas
never been described at this level, so we feel further discussion is
called for. If we consider open nesting as described in Moss,Griffeth,
and Graham [14] (MGG), it includes two things that glue together ef-
fects and meaning at different levels of abstraction. Fundamental to
the MGG model, the series of steps in an open nested action corre-
sponds to someabstractaction at the next higher level of abstraction.
For example, a low level read, modify, and write may implement the
abstract action“increment”. If the open nested action commits, the
higher level of abstraction undertakes an obligation: it must undo the
effects of the increment if the higher level action aborts. In this case, it
would undo the increment by running a decrement. If the wholeaction
aborts before the open nested action commits, then we just discard the
read and write sets of the nested action, etc.

How would this model of action undo look in our memory-level
model? As previously suggested, the higher level action will keep a
(private) list of undo actions it needs to perform if it will abort. The
open nested action on a given counterc adds a note to that undo list,
recording the need for a decrement ofc should the higher level action
abort. The actual steps of adding this note to the private undolist can
be part of the open nested action.3

3Here we are hoping that no concurrent action tries to add something



The second way in which the two levels are glued together is that
abstract operations require abstract concurrency control. This will
have to be explicit and is clearly more an issue of language and run-
time system design. Abstract locking code will examine a locking
data structure, within the open nested action. If the abstract operation
is ok to proceed, the open nested action simply proceeds. If it is not
ok to proceed, the action might abort or express a need to wait(a fea-
ture requiring further exploration, which we do not consider here). As
with updating the undo list, the open nested action updates the abstract
locking data structure. in the case of our increments and decrements,
there are no concurrency conflicts: the operations freely commute un-
der all circumstances, so there is no need to lock.

In all cases, that is for updates to the affected objects themselves,
for additions to the undo list, and for inspections and updates of ab-
stract locking data structures, when an open nested action commits it
is appropriate to commit its memory updates and to release its read
sets. It is as if it were a globally committed top-level transaction. The
model we give here does exactly that.

What the MGG model does not tell us very well is the most appro-
priate way to handle cases where a parent and open nested child access
some of the same memory words, particularly if these words can be
accessed by other transactions. Such accesses are in some sense “un-
structured”: they cross levels of abstraction and may tend to “break”
abstraction. The model here essentially removes dependenceedges
between past and future actions on updated memory words whenan
open nested action commits. This seems the best thing to do, since
one can always effectively induce more dependences by coding suit-
able abstract locks.

3. H/W SKETCH 1: USING CACHE
We first observe that the definition of the nested transactionexecution
model says nothing about caches. It concerns itself with theviewof
memory state that each transaction observes, and theeffectson mem-
ory state that the transaction has (if it commits). Logically, caching is
orthogonal to transaction semantics. However, since transaction state
(as opposed to memory state) is inherently ephemeral, and since it
arises from the issuing of reads and writes by running transactions,
it is natural to expect that transaction state (read and write sets) will
generally be cached. Further, “globally committed” state needs no
mention of transaction ids, which matches well with the notion of
main memory containing that state: it needs no additional tags, etc.,
associated with transactions. Caches naturally have address tags in ad-
dition to the data they contain, so it is natural to think of extending the
tags to include transaction ids (rather like address space ids in some
virtual memory translation schemes). Since we use transaction 0 to
represent committed data, it is easy for a cache with transaction tags
to hold such data. The overflow of transaction state to main memory
is less convenient, and requires a table probed by some combination
of hardware, firmware, or software.

3.1 Hardware and Memory Tables
Our first hardware sketch is simple, though perhaps somewhatunreal-
istic. It consists of three hardware tables (caches), plus overflow data
structures. The first table is a fully associative cache of transaction
state entries, which we call theTransaction Data Cache. Each entry
includes these fields, illustrated in Figure 1:

Transaction id: The id of the transaction to which this memory word
belongs. A 0 in this field indicates a globally committed value.

Address: The address of the memory word being cached.

to the list. If access conflicts on the list were common enoughto
warrant, the parent action could create a new list for each open nested
action it invokes, and thus avoid the conflicts.

Data: The actual data value.

Valid bit: Indicates whether the other fields are valid. An invalid en-
try is available for reuse.

Dirty bit: When set, indicates that this entry is not recorded in the
main memory overflow table. For transaction 0, this indicates
that the cached value may differ from that stored in memory.

Written bit: Indicates whether the value has been (logically) written
by the transaction.

Ancestor written bit: This caches the fact that some (non-0) ances-
tor of this transaction holds a written copy of this word.

Obtained-from transaction id: Indicates the transaction from which
we read this value (the youngest ancestor with an entry for it).

Writing transaction id: If some descendant (would have) read this
copy of the word, and has updated it, this field records the de-
scendant transaction’s id.

Reader count: The number of live descendants that have read this
copy of this word.

The first six fields are straightforward; the use of the remaining four
fields will become more clear as we go. The Writing transactionand
Reader count fields will never be used at the same time, so we can use
one bit in the field to indicate when it holds Writing transaction versus
when it holds Reader count.

Figure 1 illustrates the multiple entries for a single word (address
100). The transaction 0 entry holds the latest fully committed value.
There is an ancestor-to-descendant chain consisting of transactions
14, 16, 23, and 25. Transaction 25 has two subtransactions, 26 and
28. Transactions 16 and 25 have written values, which their children
/ descendants have read. All these entries are Valid, and we assume
no overflow so the Dirty bits are 1. The Written and Ancestor written
values should be obvious, aa well as the obtained-from transaction id
(From). The parent of a writer indicates the writing child (Wid); other
transactions give a reader count (Rcnt).

Writer/
Tid Addr Data V D W AW From RCount

0 100 532 1 1 0 0 0 0
14 100 532 1 1 0 0 0 W 16
16 100 178 1 1 1 0 14 R 1
23 100 178 1 1 0 1 16 W 25
25 100 393 1 1 1 1 23 R 2
26 100 393 1 1 0 1 25 R 0
28 100 393 1 1 0 1 25 R 0

Figure 1: Transaction Data Cache, Sketch 1

The second table consists of child-parent pairs for live transactions.
We call it theTransaction Parent Cachesince it provides the means to
discover the id of a transaction’s parent. In addition to thechild and
parent transaction ids, it provides aValid bit for each entry, aDirty
bit to indicate that the entry is not (yet) represented in memory tables,
and anOverflowedbit that indicates that the transaction has overflow
entries in memory, and anOpenbit to indicate whether the transaction
is open or closed nested (conventionallyclosedfor top-level transac-
tions and transaction 0). Figure 2 illustrates some parent cache entries,
for the transactions in Figure 1. We assume no overflows and that the
parent entries have not been written to memory tables.



Parent Child Valid Dirty OV Open
0 14 1 1 0 0

14 16 1 1 0 0
16 23 1 1 0 1
23 25 1 1 0 0
25 26 1 1 0 0
25 28 1 1 0 0

Figure 2: Transaction Parent Cache, Sketch 1

The last table summarizes overflows from the Transaction Data
Cache (first table) to memory, so we call it theOverflow Summary
Table. There are many ways it could be organized. For present pur-
poses, we consider it to be a bit vector indicating which hashcodes
have overflow entries, where a hash code is some hash of the address
of a word. The key point is that if the bit corresponding to the hash
code for a given address is 0, then there are no overflow entries for
that address. If the bit is 1, then some address with that hashcode
has an overflow entry (see Figure 3, which illustrates no particular sit-
uation). At additional cost we could maintain a vector of these bits
for each transaction as well, and cache some number of those vectors
to reduce probes to in-memory tables. There are many strategies and
we are not here advocating any particular one; Rajwar, Herlihy, and
Lai have explored some specific schemes [17]. Note that the novelty
of our proposal lies in its handling of nesting, not in that ithandles
overflows.

0 0 0 0 0 1 1 0 1 0 0 1 0 0 0 1

Figure 3: Overflow Summary Table, Sketch 1: One bit per hash
set

We envision that Transaction Data Cache overflows go into a hash
table in main memory, accessed by firmware or fast trap handlers.
The entries in main memory are chained by transaction id (so that
commit and abort can find efficiently all overflows pertainingto the
completing transaction) and by address (to make it easy to find other
entries for the same address).

The Transaction Parent Cache might overflow as well (we prefer
not to place an arbitrary bound on the number of transactions). If a
(live) transaction has no entry in the parent cache, then itsentry must
be in an overflow table in main memory. We further support the notion
of a transaction being flushed from the caches. In that case,all of its
data entries are in the main memory overflow table.

Optionally, we may prefer to use short transaction ids in thecaches
while allowing a larger space of transaction ids. This is similar to us-
ing address space ids for currently running processes, while allowing
a larger space of process ids. In that case, in addition to thetables
above, we need a mapping from short ids to long ids, to supportprob-
ing the main memory structures, which should use long ids. Using
short ids saves bits in the hardware, with the added complexity of oc-
casionally requiring the extra mapping step. From here on weassume
we are using short ids in the caches.

3.2 Using the Tables
It seems easiest to describe how to use the tables by sketching how
each interesting operation affects the them.

Creating a transaction: We obtain a free Transaction Parent Cache
entry and an unused (short) transaction id. These may be tasksin
themselves! Any clean parent cache entry can be dropped. To free a
dirty one, we must force the entry to the memory table, cleaning it.

We can then drop it.
We can imagine several ways to obtain a currently unused short

transaction id. One is to keep a bit vector of used/free shortids. A
priority encoder can then produce a free one, or indicate that they
are all in use. Alternatively, one can generate ids (e.g., randomly or
sequentially) and probe to see if the id is in use. If no short ids are
available, or probing fails to reveal a free one within some threshold
number of probes, then we evict (flush) a transaction from thecache.

To do that we first force to memory all dirty parent cache entries
that mention the transaction as child or parent, and then drop them.
Then we force to the data cache overflow table every dirty Transaction
Data Cache entry that mentions the transaction, i.e., the transaction’s
own entries and those that mention it as a writer or obtained-from
transaction. We then drop those entries from the data cache.Finally
we drop the short id from the short-to-long id map. We can thenuse
the short id for the new transaction.

Note that when we write a dirty parent cache entry to memory, ei-
ther or both transactions may not yet have long ids assigned.We as-
sign them from a counter of sufficient length to prevent wraparound
(or otherwise prevent duplicates), and update the short-to-long id map.
We further note that loading Transaction Data Cache entry orTrans-
actoin Parent Cache entry from memory may require allocating one
or more short ids.

Once we have the necessary transaction ids and a free parent cache
entry, we enter the (child, parent) pair into the parent cache, setting
the entry valid and dirty.

Reading a word: If the cache contains an entry for the issuing
transaction and address, we simply return the data of the entry. Other-
wise, we have adata cache miss. In the case of such a miss, we check
the Overflow Summary Table, and if it is possible for the entryto be in
the overflow area, we probe there. If we find no entry for the request-
ing transaction, we determine its parent and probe the parent, first in
the cache, and then in memory (if necessary). Assuming thereis no
conflict, and there is room in the cache for any new entries required,
here are the cases that arise:

• We find no entry at all:We obtain the value from (globally com-
mitted) main memory and create two entries for the data read,
one for transaction 0 and one for the reading transaction. The
transaction 0 entry is marked valid and not dirty. Its Written and
Ancestor written flags don’t matter (but it is probably simpler
if they are set to 0). Its Obtained-from id field does not matter.
We set its Reader count to 1. The reading transaction’s entry
we set to valid and dirty. We set Written and Ancestor written
to 0, Reader count to 0, and Obtained-from to (transaction) 0.

• We find an entry for some ancestor:If the entry is in the mem-
ory overflow table, it is probably easiest to pull it into the cache,
though one could access/update it in memory. We create a new
entry in the cache for the current transaction, using the data of
the entry we found. We set our new entry valid and dirty. We set
Ancestor written to 1 if either Written or Ancestor written are
1 in the ancestor. We set Written 1 if we just set Ancestor writ-
ten 1 and this is an open nested action. We set Reader count
to 0. (See the section onWriting a word , below, for further
discussion of the case where written becomes set.) Otherwise,
we increment Reader count of the ancestor’s entry. In any case,
we set Obtained-from to be the ancestor transaction.

• We find an entry for this transaction:We simply return the data.

Note:Whenever we change an ancestor’s Transaction Data Cache en-
try, we set Dirty to 1 in that entry (to show that it may differ from any
overflow table copy).

Freeing Transaction Data Cache entries:If we need a data cache
entry and none are available, we can drop any clean entry. We can



clean an entry by writing to overflow memory and insuring: (a)that
the entry’s hash code’s bit is set in the Overflow Summary Table; and
(b) the transaction’s Overflow bit is 1 in the Transaction Parent Cache.
As with creating a transaction, writing an entry to memory may in-
volving acquiring a long transaction id.

Determining conflicts with reads:When we are reading, if we find
no (non-0) ancestor entry, then there is no conflict. If we findan ances-
tor entry that contains a Reader count, there is also no conflict, If we
find an ancestor entry with a Writing transaction id, we conflict with
that writing transaction. (It cannot be us, or we would have found the
entry, and since we probe from younger to older ancestors, the writer
cannot be our ancestor. Hence it conflicts.)

Writing a word: If the cache contains a Written entry for the issu-
ing transaction and address, we simply update that entry. Otherwise,
we have more work to do. These are the cases, assuming free entries
as needed and no conflict:

• We find no entry at all:As for reading, we obtain the value from
(globally committed) main memory and create two entries for
the data, one for transaction 0 and one for the writing transac-
tion. We set up the transaction 0 entry as in the case of reading,
with the exception that instead of a Reader count, we indicate
the current transaction as the Writing transaction. The writing
transaction’s entry we set to valid and dirty. We set Writtento
1 and Ancestor written to 0, Reader count to 0, and Obtained-
from to (transaction) 0. We set the data field to have the new
value.

• We find an entry for some ancestor:We create a new entry in
the cache for the current transaction, setting its data fieldto the
value written, and marking the entry valid and dirty. We set
Ancestor written to 1 if either Written or Ancestor written are 1
in the ancestor. We set Written to 1. We set Reader count to 0.
We set the ancestor’s entry’s Writing transaction field to bethe
current transaction, and the current transaction’s Obtained-from
field to the ancestor.

• We find an unwritten entry for this transaction:We set Written
and Dirty to 1 and update the data field. We further find the
youngest ancestor with an entry for the same address, and set
its Writing transaction entry to be the current transaction.

Determining conflicts with writes:In these situations, there is no
conflict: (1) we have written the word already; (2) we have an un-
written entry andall our ancestors have Reader count 1 or record a
Writing transaction (we are the only reader and one or more ancestors
are writers); (3) we have no entry, our youngest ancestor (ifany) has
a Reader count of 0, and any further ancestors have a Reader count of
1 or record a Writing transaction.

In these situations there is a conflict: (1) we have an unwritten entry
and some ancestor has a Reader count greater than 1; (2) we have no
entry and our youngest ancestor has a Reader count greater than 0 or
records a Writing transaction.

Aborting a transaction: For each unwritten entry of the transac-
tion, decrement the Obtained-from transaction’s Reader count for this
entry. For each written entry of the transaction, set the Obtained-from
transaction’s Reader count to 0. Invalidate all entries of the aborting
transaction. If the transaction overflowed, process its overflowed en-
tries, updating Reader counts. If the parent cache entry is not dirty,
then remove it from the memory tables. Drop the transaction from the
parent cache.

Note that if Obtained-from transaction entries have been dropped
from the cache, we need to restore them or update them in the overflow
table.

Committing a top-level transaction: For each unwritten entry,
proceed as for aborting (transaction 0 will already have an equivalent

entry). For each written entry, restore the transaction 0 entry (if nec-
essary), and update its value. Mark the entry dirty and written, and set
its Reader count to 0. If the transaction has overflow entries, process
them then delete them. Delete the transaction’s parent cache entry,
including memory copy (if any).

Committing a closed nested transaction:For each entry, if the
parent has an entry, thenmergethe child and parent’s entries. This
means that the parent entry will have: Valid 1; Dirty 1; Written 1 iff
parent, child, or both have Written 1; the child’s data value. The parent
entry maintains its Ancestor written value and Obtained-from transac-
tion id. If the child was Written, set the parent’s Reader count to 0. If
the child was not Written, decrement the parent’s Reader count.

If there is no parent entry, then just change the Transactionid to
that of the parent.

Committing an open nested transaction: Proceed as for com-
mitting top-level transactions, with this difference for written entries:
Drop all other (non-0) transaction’s entries for the written entries. This
must include any entries that have overflowed.

3.3 Discussion
This scheme is undoubtedly complex. A key source of complexity
is the tracking of readers, writers, and obtained-from transactions,
whose purpose is to speed up conflict checks and commit and abort
processing. We must also provide for overflows, recording dirtiness,
etc. We did not expect a design as simple as that of Herlihy andMoss
[9], for example, but feel the need for something simpler than this.

3.4 Set Associative and Victim Caches
The preceding assumes a more or less fully associative cache.If we
(more realistically) use a set associative structure for the transaction
data cache, plus possibly a victim cache (with a restrictionnot to hold
more than one member of the same set), then we can simplify some
of the processing. In particular, we can obtain all cache entries for
the same address all at once, some in the set associative cache read
out buffer and one from probing the victim cache. We can handle the
common cases of conflict and no-conflict in hardware and kick the
rest out to firmware (as well as the overflow case). The logic may
be simplified if we impose an ordering on the items in a set, such
that ancestors will be in one direction and descendants in the other.
Working a victim cache entry in is less pleasant.

4. SKETCH 2: TAGGING ANCESTORS
Here is an approach that reduces the complexity of Sketch 1’stransac-
tion data cache. Sketch 2’s transaction data cache is similar to Sketch
1’s, but drops the Ancestor written bit, Obtained-from transaction id
field, Writing transaction id field, and Reader count. In their place it
has anAncestor bit, which indicates that this entry is for an ancestor
of the current transaction (or the current transaction itself). The no-
tion of current transaction was implicit in Sketch 1. We implied that a
processor acts on behalf of a current transaction at any given time. In
Sketch 2 we make this more explicit: a change in current transaction
will necessitate updating Ancestor bits.

For now, we assume associative access by transaction id, as well as
access by address.

4.1 Using the Tables
As before, we describe how each interesting operation affects the ta-
bles. Many steps are similar; we focus on the differences.

Creating a transaction: We obtain a free parent cache entry and
an unused (short) transaction id, and fill them in, as in Sketch 1.

Reading a word: If the cache contains an entry for the issuing
transaction and address, we simply return the data of the entry. If the
Overflow Summary Table indicates possible overflow entries,we trap



to firmware for memory table probing. The read has a conflict if there
is any entry for the same address where a non-ancestor has written the
word. This is now easy to check: address match, Ancestor bit 0,Writ-
ten bit 1. As before we probe from youngest to oldest ancestoruntil
we find an entry, and we fill in a new entry with the current transac-
tion id, address, and data. We set Valid to 1, Dirty to 1, Written to 0,
and Ancestor to 1. As before, if the current transaction is open nested,
and any ancestor has Written 1 (easily checked with an associative
access), we set Written 1. Unlike Sketch 1, there is no need tocreate
a transaction 0 entry if there is not one. (Sketch one uses it to record
readers and writers for conflict detection.)

Writing a word: If the cache contains a written entry for the is-
suing transaction and address, we simply update that entry.If the
Overflow Summary Table indicates a possible overflow entry, trap to
firmware. The write conflicts if there is any entry for the same word
for a non-ancestor, easy to check with associative matchingon this
address. We probe from youngest to oldest ancestor, and fill in the
new entry as when reading, but set Written to 1.

Aborting a transaction: We simply invalidate all Transaction Data
Cache entries for the transaction, trapping to firmware if the transac-
tion has overflowed. We clean up the Transaction Parent Cacheas in
Sketch 1.

Committing a top-level transaction: Drop unwritten entries of
this transaction, and merge written ones with the transaction 0 entry.
A merge in Sketch 2 has these effects: set parent Valid 1, Dirty 1,
Ancestor 1, Written to logical “or” of Written of the merged entries,
Data to the committing entry’s data. Note: a transaction 0 entry will
always have Ancestor 1 and Written 0.

Committing a closed nested transaction:For each entry of the
committing transaction, if the parent has an entry, merge entries. If
the parent has no entry, just change the transaction id to that of the
parent. Note that all Ancestor bits for the parent remain 1.

Committing an open nested transaction:Proceed as for commit-
ting a top-level transaction, but drop all (non-0) transaction entries for
Writtendata.

Switching transactions: When switching from one transaction to
another, other than creating and entering a sub-transaction, or com-
pleting (committing or aborting) a sub-transaction and returning to its
parent, we need to correct Ancestor bits. Suppose we are switching
from transactiont1 to t2. Let t be their youngest common ancestor
(which may be transaction 0). Fort1 and each ancestor oft1 younger
thant, we set the Ancestor bits of all its entries to 0. Fort2 and each of
its ancestors younger thant, we set the Ancestor bits to 1. Given asso-
ciative hardware, this will take time proportional to the tree distance
betweent1 andt2.

4.2 Illustration
We consider the the transaction situation of Figure 1 and show how it
would appear in this cache; see Figure 4. We assume that transaction
28 is the current transaction. Thus, in this case, only transaction 26 is
not current.

Tid Addr Data V D W Anc
0 100 532 1 1 0 1

14 100 532 1 1 0 1
16 100 178 1 1 1 1
23 100 178 1 1 0 1
25 100 393 1 1 1 1
26 100 393 1 1 0 0
28 100 393 1 1 0 1

Figure 4: Transaction Data Cache, Sketch 2

4.3 Discussion
This seems much simpler than Sketch 1. There are still some complex-
ities when committing nested actions, since the detailed steps depend
on whether there is a parent entry, etc. The essential difficulty is that it
appears that we need to iterate over the read and write sets. What we
need is a way to commit a transaction that updates all affected entries
in parallel (associatively). This leads to Sketch 3.

5. SKETCH 3: FAST COMMIT
We augment the Transaction Data Cache of Sketch 2 with some fields
to speed commit. The primary new field isWatched transaction, which
indicates a transaction we will watch. If it commits, then wetake spe-
cial action. If it aborts, we clear the Watched transaction field. We
also add back theObtained-from transactionfield.

Reading a word: The main effect we want here is for a closed
nested transaction read to be inherited by its parent on commit, but
only if the parent has no entry. We will use the Obtained-fromfield to
achieve this effect. For a read by an open nested action that results in
an unwritten entry, we set the Obtained-from field to 0.

Writing a word: We set the Obtained-from field as for a read. We
also set the Watched transaction field of the youngest ancestor, i.e., the
one from which we obtained the value. The value we put in the field
is the id of the current transaction. If the transaction is open nested,
we set the Watched field ofall ancestors.

Committing a transaction: Whenever we commit, we will broad-
cast across the cache the committing transaction’s id and its parent’s
id. Various cache entries take action according to how they match this
information. We first consider entries of the committing transaction.

For open nested actions, we drop unwritten entries and mutate writ-
ten entries to transaction 0. For closed nested actions, we mutate un-
written entries to the parent, unless the parent matches theObtained-
from field, in which case we drop the entry. For written entries we
always mutate them to the parent.

Here is how other entries are affected. Ancestors of an open action
that wrote will match in their Watched transaction field, andwill drop
their entries. The parent of a closed nested action will have the com-
mitting child’s id in its Watched transaction field, and willitself match
the parent id being broadcast, and will drop its entry. A non-parent an-
cestor of a committing nested action will match in the Watched trans-
action id, but the broadcast parent id will not match its own id. Its
response is to set its Watched transaction id to the broadcast parent id.

Aborting a transaction: In addition to invalidating the transac-
tion’s own entries, we set to 0 any Watched transaction field that
matches the aborting transaction. In the case of an aborted open nested
action, we need to reconstruct the previous Watched transaction en-
tries. This might be rather painful. If we want the abort case to run
faster, then as the open nested writes occur, we could flush ancestor
entries to main memory (perhaps via a buffer designed for thepur-
pose). If the open nested action commits, we’ll just drop theentries,
but if it aborts, we logically restore them.

Switching transactions: We need no additional logic.

5.1 Illustration
Again, in Figure 5, we show the cache for the situation of Figure 1.

5.2 Discussion: Set Associativity
This scheme seems definitely more workable. The biggest question is
the heavy use of associative logic, which tends to be bulky, slow, and
power hungry. Can we make common operations faster? Assuming
that commit and abort are rare compared to read and write, we offer a
modification that exploits the statistics. We keep parallelassociative
logic for transaction commit and abort. However, it need notcomplete
as fast as a read or write; it might take multiple cycles. For reading



Tid Addr Data V D W Watch From
0 100 532 1 1 0 16 0

14 100 532 1 1 0 16 0
16 100 178 1 1 1 0 0
23 100 178 1 1 0 25 16
25 100 393 1 1 1 0 23
26 100 393 1 1 0 0 25
28 100 393 1 1 0 0 25

Figure 5: Transaction Data Cache, Sketch 3

and writing, we organize the cache set associatively, perhaps with a
victim cache, so that all entries we need to examine and manipulate
can be read into buffers at once. We can then use a small amountof as-
sociative logic attached to those buffers to do the entry manipulations
needed for reading and writing.

6. LINEAR NESTING
Suppose we restrict the system a bit and allow only one descendant
of any given top-level transaction to be running at once. Thatis, we
disallow concurrencywithin a transaction, permitting only a single
leaf transaction for each top-level transaction. We still allow multiple
top-leveltransactions, each with one running subtransaction.

Given this restriction, the live tree under each top-level transaction
is linear, consisting of a single branch. This admits an interesting op-
timization: if an ancestor holds a value for a given address (read or
written), a descendant reading that address does not need toadd the
address to its read set. The reason is that conflicts can only bewith
(subtransactions of) other top-level transactions, and the parent’s entry
is good enough for detecting the conflict. Furthermore, if all the trans-
actions involved are closed nested, then the conflict will not resolve
at least until the ancestor completes—it will be to the end ofthe top-
level transaction if the value was written and none of the transactions
aborts. In the case of open nesting, an intervening commit will re-
move the conflict. In any case, there is no need for the subtransaction
to acquire a copy of the word unless it writes the word.

We can use the linear nesting and the read optimization to simplify
the cache logic. We encode transaction ids as a top-level transaction
id (Tid) plus a nesting level (Nest). Top-level transactions have a Nest
value of 1, their children have Nest value 2, etc. We reserve Nest value
0 for transaction 0 entries. Note that we no longer need a Transaction
Parent Cache, since parenthood is encoded directly in the Nest values.

In addition to Tid, Nest, Address, Data, Valid, Dirty, and Written
fields, our linear nesting cache design includes an additional field, the
Nested Write Stack(NWS), which is an array indicating which higher
nesting levels hold a write for this address. The NWS has limited
size, so when a given word has too many nested values, we force
overflowing ancestor entries to memory. We observe that cache entries
flushed to memory for a given Tid and Address can be organized as a
stack, simplifying the handling of overflowed entries.

Conflicts: Conflicting entries are simply those whose Tid is differ-
ent and whose mode (read/write) conflicts with the action we want to
perform. (We ignore transaction 0 entries in conflict detection.)

Reading a word: Assuming there is no conflict, we desire the value
held by the transaction with the same Tid and the largest value for
Nest. Such a value will be in the entry having the same Tid and Ad-
dress, and an empty NWS (i.e., it has no descendant entries and thus is
topmost). Because of the read optimization, we donot need to make
a copy of the value read, unless no ancestor holds the value. In that
case, we obtain the value from transaction 0, and create an entry with
our Tid and Nest, the appropriate Address and Data, and set itValid,

Dirty, and not Written. We set the NWS to be empty.
Writing a word: Again assuming no conflict, we need there to be

a value for the current transaction. If there is one, we simply update
it. Otherwise, we create an entry, filling in its fields as follows. Tid,
Nest, Address, and Data get the obvious appropriate values,and we
set Valid, Dirty, and Written. We push the writing Nest valueon each
ancestor’s NWS. If the oldest ancestor’s NWS overflows, we write it
to memory.

If there was no write entry for an ancestor (detected by the transac-
tion 0 entry having an empty NWS), we update the transaction 0entry
as follows: change the Tid to that of the writing transaction, and push
the Nest value of the writing transaction on the NWS. It is ok if there
is an ancestor that has only read the address in question. Ourpurpose
is to simplify dropping the transaction 0 entry if another value com-
mits to top level. At most one top-level transaction can be writing at a
time, so the Tid value will be unique, and the Nest value of 0 continues
to marl the entry as being fully committed.

Aborting a transaction: We invalidate all entries for the Tid and
Nest level. If the Nest value matches the top of an entry’s NWS,
that entry pops its NWS, discarding the NWS entry for the aborted
transaction. In the case of an entry with Nest value 0 (which is really
a transaction 0 value), we reset the Tid to 0.

Committing a transaction: If the committing transaction is top
level (Nest 1) or open, we invalidate all the transaction’s read set en-
tries, and set its write entries to Tid 0 and Nest 0 (i.e., committing
them to top level).

If the committing transaction is closed and not top-level, its entries,
both read and write, decrement their Nest value.

If the committing transaction is closed, its ancestors (including Nest
0) react as follows. If an entry’s NWS top value equals the commit-
ting transaction’s Nest value, then it is an ancestor entry.The ancestor
decrements its top NWS value. If the resulting value equals the an-
cestor’s own Nest value (i.e., if the ancestor is the parent of the com-
mitting transaction), it invalidates itself. If the decremented top value
equals the next value in the NWS, the ancestor pops its NWS.

If the committing transaction is open, its ancestors invalidate their
values for this address. The entries to invalidate are those that have
the committing transaction’s Nest level at the top of their NWS.

6.1 Illustration
In Figure 6, we show the linear nesting cache for the situation of Fig-
ure 1. Note the renumbering of the transactions (old numberslisted
under “Old” at the far right) and the omission of transaction26 (which
was concurrent with 28 and thus one or the other is not possible in lin-
ear nesting). Except for the old reader (14), the other transactions
that only read this address do not have entries. In the illustration we
assume that Nested Write Stacks hold 3 entries.

NWS
Tid Nest Addr Data V D W 0 1 2 Old

14 0 100 532 1 1 0 4 2 - 0
14 1 100 532 1 1 0 4 2 - 14
14 2 100 178 1 1 1 4 - - 16
14 4 100 393 1 1 1 - - - 25

Figure 6: Transaction Data Cache, Linear Nesting

Assuming transactions 14.4 and 14.3 are closed and 14.2 is open,
Figures 7, 8, and 9 show the situation after each commit.

7. RELATED WORK



NWS
Tid Nest Addr Data V D W 0 1 2 Old

14 0 100 532 1 1 0 3 2 - 0
14 1 100 532 1 1 0 3 2 - 14
14 2 100 178 1 1 1 3 - - 16
14 3 100 393 1 1 1 - - - 23

Figure 7: Linear Nesting Cache after 14.4 commits

NWS
Tid Nest Addr Data V D W 0 1 2 Old

14 0 100 532 1 1 0 2 - - 0
14 1 100 532 1 1 0 2 - - 14
14 2 100 393 1 1 1 - - - 16

Figure 8: Linear Nesting Cache after 14.3 commits

Transaction models and their implementations were initially devel-
oped for database and distributed systems, where they have received
extensive treatment [4]. Our models are inspired by these fundamen-
tal works, especially with respect to formalization of serializability
for nested transactions [2], concepts and applications of open nesting
[20], and synthesis of other extended transaction models [3]. There
has been significant recent interest in formalizing transaction seman-
tics within programming languages [19, 10].

Various forms of transactional memory have been proposed and
implemented since the hardware/software hybrid scheme of Herlihy
and Moss [9]. Software-based approaches [7, 21, 8, 18] can suffer
from poor performance in cases of high data contention with large-
scale concurrency.

There have been several recent hardware-based proposals. Some
proposals take existing programs coded to use mutual-exclusion locks
and execute them lock-free for improved concurrency while enforcing
transactional behavior, while hardware overflow causes explicit acqui-
sition of the mutual-exclusion lock [15, 16]. Other approaches execute
transactions speculatively in the cache but force non-speculative exe-
cution on overflow [6, 5]. Unbounded Transactional Memory (UTM)
attempts to solve the problem of transaction boundedness but suf-
fers from performance degradation in the normal case [1]. Virtual-
ized Transactional Memory (VTM) maintains the performance advan-
tage of hardware transactions, while also shielding programmers from
hardware resource limits [17]. None of these hardware schemes offer
comprehensive support for nested or open transactions.

8. CONCLUSION
Our intent has been to describe memory level (read/write) execution
semantics for closed and open nested transactions and to explore some
implementation strategies. While the resulting designs have more
associative logic than current caches, perhaps we are approaching
sketches worth the effort of more detailed hardware design and per-
formance/cost estimation. In any case, we have marked out atleast
one potentially interesting design point, namely linear nesting.

NWS
Tid Nest Addr Data V D W 0 1 2 Old

0 0 100 393 1 1 0 - - - 0

Figure 9: Linear Nesting Cache after 14.2 commits

Much remains to be done: detailed hardware design and evaluation;
design of language constructs and run-time support that maps onto this
model; a suitable serializability theorem justifying the model; incor-
poration with multiprocessor bus protocols (such as cache snooping,
etc.); and development of and comparison with alternatives. Such al-
ternatives include software-only designs, extending current software
transactional memory (STM) systems with nesting, and the possibility
of supporting nesting with essentially non-nested hardware support.

If linear nesting is deemed to be at the edge of achievable hardware
complexity, then we face the interesting question of what wereally
lose by restricting ourselves to linear nesting. Is it possible to finesse
concurrent subtransactions in software using linear nesting hardware?
For that matter, can we finesse nesting on non-nesting hardware? Pre-
sumably in either case we would design a simpler cache that, in com-
bination with software, could model the richer semantics. It is not
clear what “hooks” one needs to pull that off.
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