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ABSTRACT 

A new type of transactions for higher level applf- 
cation programing in systems with databases is 
introduced. These so-called 'nested transactions 
with multiple commit points' support operations 
over multiple applications either atomically, fn- 
dependent, or in a combination of both. Further- 
more, it is strictly distinguished between trans- 
actions as units of work and transactions as a 
part of so-called 'conaft spheres' and 'backout 
spheres', which provides more generality and 
flexibility than existing models. 

INTRODUCTION 

A transaction is a partially ordered set of actions 
that logically belong together. Transactions are 
either executed completely and correctly or they 
leave the system as if they had never existed. 
Since from a user's point of view transactions 
abstractfromfaflure handling andsynchronization, 
most future systems will be transaction oriented. 

Future applications will also be less monolythic 
than today's applications. Assume a system that 
contains transaction-oriented (distributed) appli- 
cation systems like a database system, a calendar 
system, a document storage system, and an elec- 
tronic mail service (which can also be interpre- 
ted as a local service, that puts a message in a 
user's private mailbox). Then there might be 
users that just access only one of the applfca- 
tion systems, but there might also be users that 
want to run more complex applications. Such com- 
plex applications might require higher level 
transactions that enable atomic updates over mul- 
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tiple application systems, however, there will 
also be applications permitting an independent 
updating of the various application data. 

As an example for an atomic update over multiple 
applications assume an user that wants to arrange 
a meeting; for this purpose the appropriate date 
of the meeting will be entered into the calendar 
system and be distributed to all participants 
using the mail service. If the user wants to be 
sure that the calendar system only contains dates 
distributed to the users and the users only re- 
ceive dates included in the calendar system, he 
has to use an atomic update facility. 

As an example for an independent updating over 
multiple applications assume an user that enters 
some new business data into the database and then 
prepares a business report based on the database. 
Then it might not be necessary to update the data- 
base and the document storage system atomically. 
However, there might be various reasons for fn- 
cludfng both activities into the same transac- 
tion, for instance if the document may only be 
prepared after the dat? was entered into the data 
base, and if it is more efficient to use some 
output of the first activity as an input for the 
second activity. Nevertheless it might not be 
necessary to keep all database locks (provided 
that locking is used) until the document has been 
prepared and stored away. Note that the use of 
two separate transactions in .this case could be 
less efficient, since additional bookkeeping as 
well as an additional output/input of intermedi- 
ate results might be necessary. 

Of course there might be even higher level acti- 
vities built on top of our two example applica- 
tions, i.e. an activity where a meeting has to be 
scheduled and where additionally all participants 
must be supplied with business reports. In this 
case we might have atomic as well as independent 
updates over multiple applications. 

In this .paper principles will be discussed for 
structuring transactions in a centralized environ- 
ment (an extension of our approach to a distri- 
buted environment is given in a separate paper 
/WaB4/), that support atomic as well as indepen- 
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dent updates over multiple applications. Indepen- 
dent updating means, that there are different 
commit points for the different applications, i.e. 
differents points of time where the updates become 
available to the general community of users. Hence, 
we also speak of transactions with multiple commit 
points. In /Li83/ (but not in earlier versions of 
thispaper) so-called "nested top actions' are 
discussed, which also perform independent updates, 
however, there is no detailed discussion of the 
various consequences of this approach. 

Our approach of structuring transactions leads to 
a generalized form of nested transactions. In 
comparison with earlier proposals our model pro- 
vides the following advantages: 

It is more general than any other model, i.e. 
existing models can be shown as being special 
cases of our model. 
The notion of backout spheres permits a general 
representation of backout dependencies which is 
important for handling conversational transac- 
tions, which are not handled in other models 
(e.g. /Mo81/). 
The notion of comnit spheres supports both ato- 
mic and independent updates over multiple app- 
lications and is independent of the notion of 
backout spheres, a feature not supported by any 
other models. 
The proposed locking scheme, which is based on 
two-phase locking is more flexible than the 
schemes proposed earlier for nested transac- 
tions (e.g. /Mo81, Mo82, Mu83/). 

The remainder of the paper is organized as fol- 
lows. At first we will give a model of our over- 
all system. In this context our generalized model 
of nested transactions will be defined and the 
various protocols for synchronization, back out, 
and commit will be given. Then some implementa- 
tion problems will be discussed. Finally, our 
approach will be compared with other proposals. 

SYSTEM MODEL AND DEFINITIONS 

Our system consists of application systems (or 
for short: applications) and transactions. 

An application consists of data elements and a 
nonempty set of functions for retrieving, mani- 
pulating, and controlling the data elements. A 
data element is a basic data item accessed di- 
rectly by the application or a higher level data 
element that is provided by some other applica- 
tion. A basic data item may be accessed directly 
by multiple applications. 

Our system supports the construction of higher 
level applications on top of existing applications. 
Each application interface can be used by end 
users as well as by higher level applications. 

Generally, a transaction can be defined as a par- 
tially ordered set ot actions that logically be- 
long together and that posse‘ss"the atomicity pro- 
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perty. The definition of the term transaction in 
our system depends on the level of abstraction: 
- From an end user's point of view a transaction 

is a partially ordered set of requests to an 
application system (we use the more general 
notion of a partially ordered set, i.e. paral- 
lel programs, even if often only totally ordered 
sets, i.e. sequential programs, are supported). 

- From an application system's point of view, a 
transaction consists of a set of internal ope- 
rations, a set of "sub"-transactions executed 
on lower level application systems and a prece- 
dence structure defining a partial order over 
the elements of these two sets. 

So transactions in our system are in fact nested 
transactions. However, as will be seen later on, 
we will use a much more generalized structuring 
of nested transactions than earlier proposals, 
e.g. /Mo81, Mu83, Al83/. 

In our model 'of a centralized system two types of 
failures can occur: 
- Processor failures. A processor is defined as 

an abstract entity consisting of the physical 
processor and the system software. It is assumed 
that such a processor shows a so-called fail- 
stop behaviour (for a discussion of failstop 
processors see /Sc83/1, i.e: in the case of a 
failure the processor stops immediately, no 
garbled outputs will be produced. The contents 
of the volatile memory are lost if a processor 
fails. This class of failures includes all fai- 
lures that require a restart of the system 
such as failures of the physical processor, of 
the operating system, etc. 

- Logical application failures. It is assumed 
that all logical failures can be detected and 
that they cause the affected application to 
stop. Examples of such failures are the viola- 
tion of integrity constraints or deadlocks. No 
other applications are affected by such failu- 
res, no memory is lost. 

With each transaction executed by an application 
system two states are associated: 
- Volatile state. The volatile state is presented 

by the values of all variables kept in the main 
storage. The volatile state is lost during each 
processor failure. 

- Stable state. The stable state is presented by 
the data stored on stable storage /La79/. 
Stable storage is assumed to survive each pro- 
cessor failure. 

The overall structure of our system can be given 
as a set of cycle-free directed graphs with the 
applications as the nodes. An arc from applica- 
tion aI to application a2 means that application 
aI is built directly on top of a2, i.e. aI is a 
user of the services of a2. If a new application 
is added to the system, a new node is added to 
one of the graph: with arcs leading to all lower 
level applications which are utilized by this new 
application. Since multiple higher level applica- 
tions may utilize the same lower level application, 
the directed graphs are not trees. The various 
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graphs may be unconnected, since there might be 
sets of applications, which do not utilize mem- 
bers of other sets. An example of such an appli- 
cation graph is given in Fig. 1. Note, that even 
applications at various levels of abstraction may 
share the same data elements. 

Fig.1: An Application Graph 

Within our graph structured system, users (end 
users or higher level applications) may select 
any application to work with, no matter at what 
point of the graph the application is located. 
For each application, the user wants to work 
with, he must start a separate transaction. How- 
ever, an end user may work with multiple applica- 
tions at a time by constructing a higher level 
transaction on top of all these separate trans- 
actions. In this higher level transaction it can 
be decided whether the lower level transactions 
are executed independently or whether they commit 
together (i.e. whether they are committed at the 
same point of time or not). This means, the user 
is permitted to extend the system provided graph 
structure temporarily with his own private appli- 
cations. An example of such an extension is given 
in Fig. 2, where a user has added a private 
application P on top of the applications H and G 
of Fig. 1. 

Fig.2: An Extended Application Graph 

Each application ai utilized by the end user may 
start 'child' transactions on an application ak 
if there is an arc that leads directly from ai to 
ak. If within such a nesting hierarchy two appli- 
cations create child transactions on the same 
lower level application, then they start different 
child transactions. This means that the nesting 
hierarchy of transactions in our system forms a 
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tree structure. An example is shown is Fig. 3, 
where a user has created a transaction on its 
private application P, which in turn has created 
one child transaction on application H and two 
child transactions on application G etc. Note, 
nothing is said about whether child transactions 
exist at the same time or not. 

t 
1 Tllll on El - ,&I 

Fig. 3: A Nested Transaction 

In the remainder of the paper we will use the 
following terminology: 
- The transaction at the root of a nestina tree 

is called top level transaction. 
- If a transaction Ti has created a transaction 

Tk, then Tk is the child transaction of Ti and 
Ti is the parent transaction of Tk (we will 
also use the-terms parent and child). 

- All transactions on the pathorn the top level 
transaction to a transaction Ti are ancestors 
of Ti (of course excluding Ti itself). 

- All transactions that belong to the subtree of 
which Ti is the root are the descendants of 
Ti (again excluding Ti itself). 

So far we have only defined, that nested transac- 
tions are used in our system, however, nothing 
has been specified concerning synchronization, 
commitment and backing out of the transactions at 
the various levels of our graph structure. Before 
we will define the semantics of creating a child 
transaction more precisely, we will informally 
discuss several aspects of the relationship be- 
tween parent and child transactions. 

NESTING TRANSACTIONS 

In this chapter it will be discussed how the 
transactions in our system should be nested. 
Attributes will be defined, that determine the 
various ways a child transaction can be created 
by a parent transaction. 

A) The Interface Aspect 

Applications generally provide their users with 
two types of interfaces (in the following an user 
is always a higher level application, otherwise 
the term end user will be used): 
- 'Single-request'-interfaces. In this case there 

are two interactlon points between the user and 
the application. The first interaction is needed 
to hand over the complete query or update re- 
quest to the application, the second is needed 
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to return the result or some status value back 
to the user. Between these two points the 
application is responsible for controlling the 
processing of the user's request. An example 
for an application with such an interface is a 
data base system with a stand-alone SEQUEL- 
interface. 

- 'Conversational' interfaces. In this case the 
user issues a seauence of reauests to the aoo- 
lication and then' decides whether to commit'& 
to abort the corresponding transaction. During 
this conversation the control changes between 
the user and the application, each time the 
user issues an request, the application is res- 
ponsible for generating an answer, each time 
the application has issued a response, the 
user is responsible to tell the application 
what to do next. An example for an application 
with a conversational interface would be a 
data base system with a 'next-tuple'-interface. 

To understand the difference between these two 
interfaces, we have to consider the consequences 
for the backout behaviour of the complete system, 
i.e. the system consisting of an application and 
its user (user means either an end user or an 
higher level application). Between two calls both 
the application and the user have to remember 
their previous state, i.e. the application must 
know what for instance 'next' means in a 'next- 
tuple'-call and the user must know that a deli- 
vered tuple is the next to the tuple delivered 
before. The usual implementation technique is to 
keep the state information of both the application 
and the user in volatile storage and to change 
this state incrementally after each interaction. 

If an application fails logically, it must back 
out at least to the previous stable state. In the 
case of a conversational interface the state of 
the user strongly depends on the state of the 
application. Since the user will usually not be 
able to reconstruct an arbitrary previously vola- 
tile state, he must also back out to an earlier 
stable state, which of course must be synchronized 
with the stable state to which the application 
has backed out. In the case of a single-request 
interface the backing out of the application does 
not require the backing out of the user. If the 
user backs out, then the application must back out 
as well independent of the type of the interface. 

So far we have only spoken about the interactions 
between an user and an application. In fact, any- 
thing done in our system is relatedtotransactions. 
So we have to reformulate the above statements in 
terms of transactions. If we replace 'user' by 
'parent transaction' and 'application' by 'child 
transaction', we can say: a parent transaction 
may interact with its child transactions either 
via a single-request or via a conversational 
interface. 

This leads to the concept of backout spheres. A 
backout sohere includes one or more transactions. 
The backout of a transaction of a given backout 
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sphere always implies the backing out of all 
other transactions in this backout sphere as well. 
The transactions of a backout sphere form a tree 
structure, which must be a connected part of the 
original transaction tree. 

In the case of a conversational interface nor- 
mally both the user and the application will 
belong to the same backout sphere, in the case of 
a single-request interface the application will 
normally belong to a separate backout sphere 
which is an inner sphere of its user's backout 
sphere (see also the concept of sphere-of-control 
in /Da73/ and the discussion in /MoBl/). Clearly, 
not only technical reasons will influence the de- 
cision whether two transactions will be included 
in the same backout sphere or not. If, in the 
case that a child fails, the parent should have 
the chance to create some other child for proces- 
sing its requests elsewhere, then the parent and 
the child must be in different backout spheres. 

Fig. 4 shows the nested transaction of Fig. 3 with 
possible backout spheres. Note, that although TI21 
and T122 belong to different backout spheres they 
can be backed out together, if such a dependency 
is realized in their parent transaction T12. 

0 

--w--H 
a a -m- - 

Fig. 4: A Nested Transaction with Backout Spheres 

If all nodes belonging to the same backout sphere 
are put together into one node, then this again 
results in a tree structure, a tree of backout 
spheres. In this tree each backout sphere bk that 
is a child of a backout sphere bi, is an inner 
sphere of bk. Fig. 5a shows the corresponding 
tree of backout spheres. The backout sphere 82 is 
an inner sphere of Bl and the spheres B3 and 84 
are inner spheres of 82. An alternate, nested 
representation is given in Fig. 5b. Backout of 
the outer sphere implies the backout of the inner 
spheres but not vice versa. 

102. ov!r TI2 1 
Bl B2 

l.El 

r 

Fig. 5: Backout Spheres, 
a) Tree Representation, b) Nested Representati,on 
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In our model a child transaction can be created 
in both ways, either as part of the backout sphere 
of its parent transaction or as part of a new, 
separate backout sphere. The selected alternative 
is specified by the parent transaction as an attri- 
bute value in the corresponding creation command 
(BACKOUT, if a new backout sphere is created, 
NOBACKOUT, if the parent's sphere is extended). 

BI The Dependency Aspect 

As already discussed in the first chapter of this 
paper it might be useful to permit that updates 
on different applications commit independently, 
even if they have been initialized under the same 
top level transaction. Our philosophy is, that a 
child transaction which is permitted to commit 
its updates independently of its parent transac- 
tion should be handled as a totally different 
transaction with the following exceptions: 
- Input and output data are exchanged directly 

with the parent transaction. 
- Child and parent transaction may belong to the 

same backout sphere. 
The latter is necessary mainly because the inter- 
face may be conversational, i.e. the control may 
switch multiple times between parent and child. 
Clearly, if the child transaction has committed, 
the parent transaction must 
- either be able to remember the cotmnitment and 

the committed child's output even after a re- 
start (i.e. by writing the necessary informa- 
tion into stable storage) 

- or it should be a desired fact, that the com- 
mitted child transaction is executed again 
after a restart of its parent. 

The latter might make sense, for instance, if a 
child transaction is started in order to write 
some statistical information about the caller into 
some data base (e.g. for bookkeeping reasons). If 
the parent is restarted after a processor failure, 
this could be considered as a different execution 
which makes it necessary to write the statistical 
information again. 

Since in our system both should be supported, 
independent child transactions as well as child 
transactions that commit in coincidence with 
their parent, we require that each time a child 
transaction is created, it must be specified 
whether the child is independent (COMMIT) or not 
(NOCOMMIT). It should be clear, that a transaction 
may start multiple independent child transactions, 
that nevertheless can conmnit all at the same time 
(if the parent acts as a coordinator during the 
commitment of these child transactions). 

The corresponding concept to backout spheres is 
the concept of conwnit spheres. A commit sphere 
includes one or more transactions. The commitment 
of each of these transactions is only possible if 
all other transactions of this commit sphere also 
conmnit. The transactions of a commit sphere form 
a tree structure, which is a connected part of the 
original transaction tree. Fig. 6 shows the trans- 
action of Fig. 3 with a possible arrangement of 
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conmnit spheres. In our model the arrangement of 
a transaction's commit spheres may be different 
from the arrangement of its backout spheres. The 
problems that are caused by this fact will be 
discussed in a later chapter of this paper. 

-,--A 

lpi&E-i ;ffIms$ 
--L- - --/ 
Fig. 6: A Nested.TraGaction with Comnit Spheres 

Fig. 7a shows the corresponding tree of commit 
spheres. The cornnit spheres C2 and C3 are inner 
spheres of Cl and the sphere C4 is an inner 
sphere of C2. The alternate nested representation 
is given Fig. 7b. Conmnitment of the outer sphere 
implies commitment of the inner sphere but not 
vice versa. 

Cl over Tl Tll 
Tllll,- T12: and'T 

I I I 

Jzl 

Cl c2 l3I-l 

Fig. 7: Comnit Spheres, 
a) Tree Representation, b) Nested Representation 

C) The Synchronization Aspect 

In the context of normal transactions, i.e. tran- 
sactions without internal parallelism, synchroni- 
zation always means synchronization against other 
transactions. Nested transactions permit inter- 
nal parallelism or concurrency, such that syn- 
chronization might also be necessary within a 
transaction. Two types of internal concurrency 
can occur in our model of nested transactions. 
- Concurrency between a transaction and its an- 

cestors and descendants. This happens if such 
transactions are executed in parallel and do 
access the same data elements. For a better 
understanding we have to consider, that the re- 
quest sent from a parent transaction to one of 
its child transactions can be issued in two 
ways, in form of either a synchronous call or 
an asynchronous call. In the first case, the 
transaction, that has called one of its child 
transactions, does not proceed in its own pro- 
cessing until the result of the call has been 
returned. In the latter case, the parent trans- 
action does proceed in its own processing and 
then fetches the returned results at some later 
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point of time. Obviously, concurrency between 
parent and child can only occur in the latter 
case. If a child is called synchroneously, then 
it is possible to permit, that it accesses data 
elements already locked by its parent, if the 
parent was called synchronously as well, then 
the child may also access data elements locked 
by its grandparent and so on (provided that 
synchronization is based on locking as discus- 
sed in a later chapter). The same might be 
possible if the parent could guarantee that it 
does not access certain data elements during 
asynchronous activities. 

- Concurrency between children. This type of con- 
currency can occur between children that have 
at least one ancestor in common (parent or 
grandparent or grandgrandparent,...), but where 
no one of the children is an ancestor of any 
other of the children. As in /Mo81, Mu831 we 
adopt the philosophy, that such children should 
by synchronized against each other. 

Each time a child transaction is created, an attri- 
bute value must be passed to the child indicating 
whether it must synchronize against its parent 
(SYNC) or not (NOSYNC). In the latter case it may 
use the locks of its parent (provided that both 
lock at the same level of abstraction). Additio- 
nally, the child must be informed whether its 
parent was called synchronously and if so, whether 
its grandparent . . . and so on. In fact, as will 
be seen later on, information is forwarded about 
the complete transaction path from the top level 
transaction to the concerning child. Since a 
fixed strategy is used for handling concurrency 
between children, no information must be passed 
to a child about sisters and brothers. 

We do not require that NOSYNC is only used in the 
case of a synchronous call, i.e. a parent trans- 
action can also decide to execute unsynchronized 
child transactions asynchronously if it is sure 
that no interference can occur. The parent trans- 
action must also take care, that a child created 
in parallel with other children is either created 
SYNC or does not interfere with the other children 
when accessing objects locked by its parent (note, 
that children are only synchronized against each 
other on objects where they are required to set 
their own locks). 

D) Relationships between Parent and Child 

So far we have defined, that the three attributes 
are necessary to describe the relationship bet- 
ween parent and child transactions. However, it 
is still not quite clear whether all combinations 
of the attribute values are really necessary. In 
theory, eight combinations are possible which 
will be discussed in the following: 
- COMMIT, BACKOUT, SYNC. A call with these attri- 

bute values creates an independent child trans- 
action with its own backout sphere. This child 
transaction may not use locks held by its pa- 
rent. If this would be permitted in a case 
where both principally request the same locks, 
then the child transaction could update a data 

Proceedings of the Tenth International 

Conference on Very Large Data Bases. 

element already updated by its parent, such 
that the later update, which depends on the 
first would be committed first. To avoid such 
anomalies, in the above mentioned case COMMIT 
should always imply SYNC. 

- COMMIT, BACKOUT, NOSYNC. This combination makes 
sense in the case where it is clear that the 
child will not request the same locks as its 
parent. One case of special interest is a system 
where synchronization takes place at different 
levels of abstraction (see for instance /We84/). 
Assume a parent transaction setting locks at 
the record level and a child transaction setting 
locks at the page level. Now, if a record is 
updated, itwill be locked by the parent, whereas 
the child, which performs the physical update, 
will lock the corresponding page. When the 
child has finished the updating, it can commit 
and unlock the page such it can be used by 
other transactions. The record remains locked 
by the parent such that no update anomalies can 
occur (of course, if the parent backs out, a new 
child transaction must be created to compensate 
the effects at the page level; this will be dis- 
cussed again in a later chapter of this paper). 
Obviously, this is an example of the combination 
COMMIT/NOSYNC that makes practical sense. 

- COMMIT, NOBACKOUT, SYNC. A child transaction 
created with these attributes is independent, 
but does not possess its own backout sphere. If 
such a child fails, its parent must backout as 
well, if it commits successfully, its parent 
should take the proper measurements in order to 
remember this commitment. So if the parent 
fails after the commitment, it must either de- 
sire a further execution of the committed child 
or be able to avoid a restart. Under this combi- 
nation of attribute values, the child transac- 
tion must synchronize against its parent. 

- COMMIT, NOBACKOUT, NOSYNC. The child may commit 
independently but not backout. As in the second 
combination, synchronization against its parent 
is not required. 

- NOCOMMIT, BACKOUT, SYNC. The created child com- 
mits together with its parent, possesses its 
own backout sphere and must synchronize against 
its parent. A backout of the child does not 
require a backout of its parent, however, the 
backout of the parent implies the backout of 
the child (more details to be given later on). 

- NOCOMMIT, BACKOUT, NOSYNC. The same as above, 
however, the child must ,lot be synchronized 
against its parent and may usi the locks of its 
parent (if on the same level of abstraction). 

- NOCOMMIT, NOBACKOUT, SYNC. The created child 
commits and backs out together with its parent, 
it must synchronize against its parent. 

- NOCOMMIT, NOBACKOUT, NOSYNC. The same as above, 
however, no extra synchronization is necessary 
for data elements accessed by both the parent 
and the child. 

This shows, that all eight possible combinations 
make sense. In the case of distributed transac- 
tions there would be one additional attribute 
(values: LOCAL, REMOTE) and sixteen combinations 
would make sense /Wa84/. 
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PROTOCOLS 

In this chapter a locking protocol will be des- 
cribed that provides the suitable synchronization 
between and within transactions. Additionally, 
the protocols will be described for initiating, 
canmitting and aborting transactions and child 
transactions. 

The locking protocol we use is a consistent two- 
phase locking protocol /Es76/, resources must be 
locked before they are accessed, all locks are 
held until commitment such that a transaction 
cannot set new locks after the first unlocking 
has occurred. The protocol is in several aspects 
similar to the one described in /Mo81/, however, 
our proposal provides more flexibility and is 
also suitable for child transactions that commit 
independently and permits a more efficient passing 
of locks between child transactions (in /Mo81/ 
child transactions must pass locks explicitly via 
their next common ancestor). 

Since the purpose of this paper is to discuss 
transaction structuring rather than transaction 
synchronization, we will present a rather simple 
method for synchronization. We will assume that 
all locks are set on the page level and that the 
only lock modes are SHARED and EXCLUSIVE in their 
usual meaning /Es76/. For a discussion of more 
general lock modes and locking at various level 
of abstraction the interested reader is referred 
to the literature e.g. /Ko83, Sc83, We84/ but also 
to a shott discussion given in a later chapter of 
this paper. 

A transaction can either hold a lock or retain a 
lock. 'Holding a lock' is defined in its 
iiiZ%ng, 'retaining a lock' is defined as in 
/Mo81/. A child transaction that holds a lock and 
finishes its processing (a more precise definition 
of 'finish' is given later on) converts its locks 
from 'held' to 'retained'. A retained lock can be 
locked by any other transaction in the same commit 
sphere but not by a transaction of a different 
commit sphere. If a transaction Tl sets a lock L 
(starts to hold a lock) retained by another sub- 
transaction T2, then the association between T2 
and L stops (now T2 neither holds nor retains L). 

In order to enable a transaction to determine 
whether the holder or retainer of a lock belongs 
to the same commit sphere, the ID (identifier) of 
a transaction consists of two parts: 
- The first part consists of the unique ID of the 

top level transaction (unique within the con- 
text of all other top level transactions in the 
system) plus the concatenated numbers of the 
transaction's other ancestors. For this purpose 
each transaction numbers its children consecu- 
tively in the order 1, 2, . . . . (see for in- 
stance the numbering in the example of Fig.3). 
This part is similar to the IDS used in /Li84/. 

- The second part contains for each ancestor the 
values of the three binary attributes concerning 
synchronization and comit and backout spheres. 
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Now a transaction is able to determine whether 
some other tansaction that holds or retains a 
lock belongs to the same conunit sphere or not. 

The protocol for a transaction T, that requests 
lock on a data element D is given in Fig. 8: 

a 

L k held by ancestor and all 
tF&sactions between this 
ancestor and the requesting 
transaction were created with 
NO.SY NC? A 

yes 

Access the data element directly if 
the same or a weaker locking mode is 
needed. If a stronger mode is needed 
then convert the current mode to the 
needed (wait if necessary). 

no 

transaction of the 

Fig. 8: Lock i ng protocol 

In /Mo81/ a similar locking scheme was proposed, 
however, children are not permitted to use the 
locks of their ancestors and locks that are 
passed from child to child are forwarded along 
a path via a common ancestor. In a later proposal 
/Mo82/ no locks are retained, but children may 
use the locks of their ancestors. Our proposal 
includes both methods, supports a direct passing 
of locks from child to child and supports multiple 
commit spheres. 

I 
. c 

Set lock in the requested 
1 

mode, set the status to 
held and add the holder's 
ID to the lock table. 
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The scheme of /Mo81/ was shown to be correct with 
respect to serializability in /Be83/. To show the 
correctness of our proposal we have to show three 
things: 
- The notion of multiple commit spheres for one 

nested transaction does not influence our lock- 
ing scheme. In fact, concerning synchronization 
each commit sphere is handled as a separate 
transaction, such that we can consider the 
locking scheme as if we had several transac- 
tions with single commit spheres. 

- Our passing of locks between children can be 
mapped to the passing of locks in /Mo81/. In 
fact, in our proposal the IDS of the retainer 
and the new holder of a lock contain enough 
information that permits to look for common 
ancestors. Only if such a common ancestor is 
found in the same commit sphere, the lock can 
be converted. Hence, the semantics are the same 
in both proposals, however our passing seems to 
be more efficient to implement (a similar scheme 
as ours is used in /Li84/). 

- The use of locks of the parent does not violate 
serializability. If a child is called synchro- 
nously and if it accesses the same elements as 
its parent, then this is absolutely the same as 
if the parent itself had performed this access. 
If the child is called asynchronously it accesses 
not the same data elements as its parent, no 
concurrency exists. So if the parent transaction 
uses SYNC and NOSYNC properly, then nothing 
wrong can occur. 

Of course, as the scheme proposed in /Mo81/, our 
locking scheme is subject to deadlock, however, a 
detection algorithm similar to the one discussed 
in /Mo81/ would be suitable for our system as 
well. 

Before we can define the various protocols for 
creating, committing, and backing out transac- 
tions, we have to add some details about the 
maintenance of transaction states. For the pur- 
pose of robustness we require the maintenance of 
a transaction state table (TST) in stable stora- 

ge. This table contains two entries for each 
transaction in the system, the transaction's ID 
(including the creation attributes of its ance- 
stors as described above) and the transaction's 
current state. 

Al Creation of Transactions 

When a new top level transaction is created a 
unique identifier is generated and stored in the 
TST tog,ether with the status ACTIVE. 

When a transaction creates a child, then the ID 
of this child is composed out of the parent's ID, 
the attribute values defining the relationship 
between child and parent, and a number that uni- 
quely identifies this child within the set of all 
children of its parent. The creation of a child 
with NOBACKOUT extends the parent's backout 
sphere, whereas the creation of a child with 
NOCOMMIT extends the parent's commit sphere. 
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B) Finishing and Preparing Child Transactions 

When a child has completed its execution it 
either 'finishes' or 'finishes and prepares'. To 
finish means to convert all locks from held to 
retained. To 'finish and prepare' means to con- 
vert the locks and to write all updates into 
stable storage. A child that finishes, prepares 
separately at a later point of time (on request 
of its parent). We have made this distinction for 
efficiency reasons. If for instance the same data 
element is subsequently updated by several des- 
cendants of the same top level transaction, we do 
not require that the changes must be stabilized 
after each update. Of course, if one of the later 
updaters backs out, this might have the effect, 
that already finished updaters must back out as 
well. Our locking strategy guarantees that all 
such updaters belong to the same commit sphere. 

Each transaction can only finish (finish and pre- 
pare, prepare) if all its descendants have finished 
(finished and prepared, prepared) as well. A 
transaction that has finished forwards the IDS of 
all its dependent descendants to its parent. A 
transaction that has finished changes its stable 
state to FINISH, if it has finished and prepared 
(prepared), the state is changed to PREPARED. 

C) Committing Transactions 

As already indicated in a previous chapter, all 
transactions belonging to the same commit sphere 
commit atomically together. The commitment of an 
inner sphere can be done earlier than the commit- 
ment of an outer sphere, the commitment of an 
outer sphere implies the commitment of its inner 
spheres (if not already done). Note that commit- 
ment also might cause a backout sphere to shrink. 

The coordinator of the commitment writes a commit 
record into stable storage and then issues a 
commit command for all transactions in the sphere 
to be committed. The coordinator is either the 
top level transaction or the parent that has 
created the independent child that is the highest 
ranking transaction in its sphere to be committed. 

D) Backing Out Transactions 

Backing out is arranged in the same way as the 
commitment, i.e. a coordinator sends the backout 
commands to the transactions to be backed out. 
The transactions of a backout sphere are either 
backed out because of a logical error, during 
restart after a processor failure, or because of 
a unilateral decision of the coordinator. Note 
that if finishing and preparing is done separa- 
tely , the backout of transactions of one backout 
sphere may imply the backing out of transactions 
of some other backout sphere as well. 

Backing out also means that the data is restored 
to a previous state. If we assume, that each time 
a data element is updated, a new version is crea- 
ted, that is written into stable storage when the, 

Singapore, August, 1984 

168 



corresponding transaction prepares, then we always 
have the appropriate earlier states. Other tech- 
niques for doing so are well known and will not 
be discussed in this paper. 

E) Commands 

In our system the following commands can be used 
for handling transactions (TA stands for trans- 
action): 

CREATE-TA (CHILD-ID) returns (STATUS). Remem- 
ber, that the CHILD-ID contains the PARENT-ID 
as well as all needed attribute values, STATUS 
returns whether the call was successfully per- 
formed or not. 
FINISH-TA (CHILD-ID) returns (STATUS). 
PREPARE-TA (CHILD-ID) returns (STATUS). 
COMMIT-TA (CHILD-ID) returns (STATUS). 
BACKOUT-TA (CHILD-ID) returns (STATUS). 
REQUEST (CHILD-ID,TASK) returns (RESULT,STATUS). 
TASK describes the function the child should 
perform, RESULT includes the returned data. 

Additionally these elements can be used in cer- 
tain combinations. For a transaction consisting 
of just one request with a separate ccmmit the 
combination CREATE-REQUEST-FINISH-PREPARE-TA can 
be used in order to reduce the number of context 
switches in an implementation and the number of 
state changes of the child transaction. If the 
interactions between parent and child are conver- 
sational, then several REQUEST-TA would be sent 
separately. FINISH-PREPARE-TA would cause the 
corresponding child to finish and prepare as des- 
cribed above. 

An interesting combination is the following: 
CREATE-REQUEST-FINISH-PREPARE-COMMIT-TA (models 
the single-request interface discussed earlier) 
reduces the interaction between parent and child 
to a minimum. The important characteristic of 
this case is, that a child needs never to wait 
for its parent. This is important in the context 
of deadlocks (see also in the next chapter). 

We have called the above primitives 'conmnands' 
for two reasons: 
- Any action a child performs is only done on re- 

quest of its parent. Ifthechild fails logically, 
a corresponding code will be returned to its 
parent, which then can give the BACKOUT-command. 

- We do not want to enforce a special implementa- 
tion by calling the primitives 'calls' or 'mes- 
sages'. Of course, asynchronous message passing 
would provide the highest flexibility, however, 
other implementations are possible as well. 

F) Interdependencies between Commit Spheres and 
Backout Spheres 

Since comnit and backout spheres are defined in- 
dependently, two transactions may belong to the 
same commit sphere but to different backout 
spheres and vice versa. In the following the 
various types of interdependencies will be discus- 
sed that may occur between an arbitrary parent 
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transaction PT and one of its child transactions, 
say CT. The discussion Is based on the assumption, 
that whenever PT tells CT to cornnit, then the 
effects of CT will never be compensated whatever 
happens. An extension of our model that additio- 
nally supports the opposite strategy, i.e. that 
compensation may be possible, is discussed later 
on (in the context of transaction structures for 
layered applications with synchronisation at 
multiple levels of abstraction). It should be 
clear, that CT only performs actions on request 
from PT. 

Before the discussion can be started, it is neces- 
sary to remember the various stable states of a 
transaction: 
- ACTIVE: The processing is in progess, updates 

may already have been done. 
- FINISHED: The processing phase is finished, 

however, the updates may still be in volatile 
memory and are not available for transactions 
in other commit spheres. FINISHED can only be 
reached from state ACTIVE. 

- PREPARED: Similar to FINISHED, but all updates 
have been transferred to stable storage. PRE- 
PARED can be reached from state FINISHED or 
directly from ACTIVE. 

- COMMIT: This state can only be reached via the 
state PREPARED. Its meaning is, that actions 
can be taken to make the updates available for 
transactions in other comnit spheres. 

- BACKOUT: This state can be reached directly 
from the states ACTIVE, FINISHED, and PREPARED. 
'It's meaning is, that actions must be taken to 
undo all the transaction's updates. 

- UNKNOWN: This state can be reached via COMMIT 
and via BACKOUT, it is also the state of each 
transaction before it enters the state ACTIVE. 
UNKNOWN is an implicit state, i.e. all trans- 
actions not explicitly noted to be in one of 
the previous five states, are assumed to be in 
the state UNKNOWN. 

In principle, four types of interdependencies 
between PT and CT are possible: 
- PT and CT belong to the same commit sphere as 

well as to the same backout sphere. This is the 
trivial case, where either both cornnit or both 
backout. 

- PT and CT belong to the same cormnit sphere but 
to different backout spheres. If PT commits 
L",fF"sH;;;t)erthen CT must commit !backoutI as 

as long as PT is in the state 
ACTIVE, CT may'be backed out independently of PT. 
When PT enters the state FINISHED, then CT must 
be prepared as well and CT may only backout on 
request of PT. To understand this strategy, it 
must be considered, that when PT is in the state 
FINISHED, it has already left its processing 
phase and hence is not able to redo the original 
requests to CT any more. So, in the latter case 
the only possibility to restart CT would be to 
restart PT. 

- PT and CT belong to different cornnit spheres 
and to different backout spheres. CT may be com- 
mitted and backed out independently on request 
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of PT as long as PT is in the state 'ACTIVE. 
Additionally, if PT backs out before issuing 
the COMMIT-command to CT, CT must back out as 
well, since in this case no one would exist any 
more for telling CT what to do. If, however, PT 
backs out after having issued the corresponding 
COMMIT-command, it has no effects on CT, no 
matter whether a pure COMMIT-command or a com- 
bination of commands including COMMIT was used. 
Since CT was created in a different COMMIT- 
sphere PT must issue the COMMIT-command before 
leaving the ACTIVE-phase (otherwise it would 
not have made sense to run CT in a separate 
commit sphere). 

- PT and CT belong to different commit spheres 
but to the same backout sphere. This case is 
similar to the previous case with the exception, 
that a backing out of CT always enforces PT to 
back out as well. 

Note, that we do not permit that CT commits later 
than PT (provided, that PT commits at all). Of 
course, it would technically be possible, that PT 
just tells CT what to do and to commit before CT 
has finished. However, in this case there would 
be no possibility for detecting a failure of CT. 

If we also want to permit compensation in our 
model, i.e. that transactions might be backed out 
after commit, then anything would be the same as 
above, with the exception, that the backout seman- 
tics of a parent transaction would be different. 
As discussed earlier, in this case a backing out 
parent transaction must create new child trans- 
actions for compensating the effects of earlier 
child transactions. So, the above strategies are 
also suitable for systems with synchronization at 
various levels of abstraction. 

G) Restart 

Since backout and commit spheres can overlap, a 
restart takes place in two phases: 
- In the first phase all transactions are checked 

for commitment. As indicated in a previous 
chapter, the coordinator of a commitment writes 
a commit record into stable storage before 
issuing the commit command. After restart for 
each commit sphere it is checked whether the 
commit record was already written before the 
crash. If this is the case, the transactions in 
the corresponding commit sphere may commit. Re- 
member, that commitment might cause backout 
spheres to shrink. 

- In the second phase all other transactions not 
in the state PREPARED are backed out and re- 
started. If the time between crash and restart 
was too long all transactions can be backed out 
(e.g. on request from the enduser). 

IMPLEMENTATION 

Due to space limitations we are not able to give 
a complete description of the implementation of 
the above concepts, however, we will discuss a 
few more important questions: 
- Should any application use its own transaction 
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management? In theory this might be possible, 
provided that all private transaction managers 
understand the same language. In practice this 
solution would be rather inefficient: 
-- Each new application would require the re- 

implementation of practically the same set 
of management functions. 

-- During a restart complex interactions bet- 
ween the various transaction managers would 
be necessary in order to coordinate their 
actions. 

For these reasons we favor a solution where 
all application use a common so-called trans- 
action kernel (the design of a very basic 
kernel was for instance discussed in /Ro84/). 

- Can the various applications use their own 
locking and scheduling strategies? At a first 
sight, this question seems to be answerable in 
the same way as the previous, especially, since 
the handling of deadlocks in a decentraliced 
environment is considerably more complex than 
in case of a centralized lock management. How- 
ever, it has been demonstrated, that concur- 
rency can be increased if more semantic infor- 
mation is used for scheduling (see for instance 
Sc83/) and semantic information is only avail- 
able in the application system itself. Our 
opinion is, that this is still a subject of 
further research, however, it might be a good 
idea to follow the concept of the transaction 
kernel in /Ro84/ and to include the basic pri- 
mitives in a kernel, but to let all strategies 
and hence the semantics in the application. Of 
course, it must be guaranteed, that each appli- 
cation provides the same scheduling strategy 
or that some global deadlock detection and 
handling mechanism exists. 

A further interesting question is, whether it 
would be possible to integrate existing applica- 
tions systems, i.e. a database system into a 
structured application system. The main problem 
is, that an existing system is in most cases 
something like a black box, i.e. we are not quite 
sure about its scheduling strategies etc. So if a 
higher level transaction starts a child transac- 
tion in this existing system, then this can lead 
to deadlock situations. 

A deadlock can exist if there is the possibility 
of a circular wait. Assume two transactions Tl 
and T2 belonging to the same higher level appli- 
cation aI. Assume further that both create a child 
on the lower level application a2, then, if both 
use private schedulers, aI might schedule T2 after 
Tl and a2 might schedule Tl after T2. Now, if Tl 
waits for a response from its child in a2 and 
T2's child waits for the next request from T2, 
then a deadlock could occur in this situation. 

If, however, transactions in aI only use calls of 
the type CREATE-REQUEST-FINISH-PREPARE-COMMIT-TA 
for running child transactions in a2, then, as 
already mentioned earlier, no deadlock can occur. 
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CONCLUSION 

Nested transactions with multiple commit points 
have been presented as a general method for 
structuring- advanced database oriented applica- 
tions in a centralized environment. Because of 
space limitations the version of this concept for 
distributed database applications is discussed in 
a separate paper JWa84J. The main differences of 
the distributed version are: 

Child transactions can execute at local as well 
as at remote sites, hence, a fourth attribute 
with the values LOCAL and REMOTE is necessary 
in order to describe the relationship between 
parent and child transactions. 
Applications can be distributed over multiple 
sites of a network, hence we have a further 
nesting of transactions within an application. 
The sites of a network can fail independently 
and hence also the transactions of a distri- 
buted nesting hierachy. Hence, the protocols 
for commitment and recovery are more complex 
than in the centralized case. Additionally, the 
orphan problem must be considered. An orphan is 
a child transaction, whose parent transaction 
has backed out without being able to inform the 
child (see also JA183, Li84Jl. 

The proposed model of nested transactions is more 
general than any existing proposal. Without con- 
sidering distribution aspects, the existing mo- 
dels can be modelled in our concept as follows: 

The proposal in JMo81J included the attribute 
values BACKOUT, NOCOMMIT, SYNC. A latter propo- 
sal of the same author JMo81J included NOSYNC 
instead of SYNC. The proposals are not suitable 
for conversational interfaces. 
The ARGUS system JLi83, Li84J additionally sup- 
ports COMMIT. 
In /Mu831 the nested transactions of the LOCUS 
system are presented. The parent/child relation- 
ship is described by either BACKOUT, NOCOMMIT, 
SYNC (the normal call of a child transaction in 
LOCUS) or NOBACKOUT, NOCOMMIT, SYNCJASYNC (a 
child transaction call based on the 'fork'-pri- 
mitive of the underlying operating system). The 
first type of call is not suitable for conver- 
sational interfaces. 
In JA183J a more general model was presented 
for transactions over arbitrary objects, how- 
ever. it does not include the attribute value 
COMMIT. 
In JWe84J a system with synchronization at mul- 
tiple levels of abstraction is discussed, which 
supports the combination COMMIT, BACKOUT, NO- 
SYNC. 

Our proposal supports the construction of trans- 
actions with arbitrary internal parallelism. 
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