
NESTED TRANSACTIONS WITH MULTIPLE COMMIT POINTS:
AN APPROACH TO THE STRUCTURING OF ADVANCE0 DATABASE APPLICATIONS

Bernd Walter

University of Stuttgart
Azenbergstr. 12, D-7000 Stuttgart-l

Federal Republic of Germany

ABSTRACT

A new type of transactions for higher level applf-
cation programing in systems with databases is
introduced. These so-called 'nested transactions
with multiple commit points' support operations
over multiple applications either atomically, fn-
dependent, or in a combination of both. Further-
more, it is strictly distinguished between trans-
actions as units of work and transactions as a
part of so-called 'conaft spheres' and 'backout
spheres', which provides more generality and
flexibility than existing models.

INTRODUCTION

A transaction is a partially ordered set of actions
that logically belong together. Transactions are
either executed completely and correctly or they
leave the system as if they had never existed.
Since from a user's point of view transactions
abstractfromfaflure handling andsynchronization,
most future systems will be transaction oriented.

Future applications will also be less monolythic
than today's applications. Assume a system that
contains transaction-oriented (distributed) appli-
cation systems like a database system, a calendar
system, a document storage system, and an elec-
tronic mail service (which can also be interpre-
ted as a local service, that puts a message in a
user's private mailbox). Then there might be
users that just access only one of the applfca-
tion systems, but there might also be users that
want to run more complex applications. Such com-
plex applications might require higher level
transactions that enable atomic updates over mul-

Permission to copy without fee all or part of this mater&xl & gmnted
provided that the copies atv not made or distributed for direct commercbl
advantage, the VLDE copyright nodce and the tttle of the publicatton and its
date appear, and notlec ir given that copyhg & by permksion of the Very Large
Data Baw Endowment. To copy otherwise, or to republish. rqulrcs a /et
and/or special permission from the Endowment.

Proceedlngr of the Tenth International
Conference on Very Large Data gases.

tiple application systems, however, there will
also be applications permitting an independent
updating of the various application data.

As an example for an atomic update over multiple
applications assume an user that wants to arrange
a meeting; for this purpose the appropriate date
of the meeting will be entered into the calendar
system and be distributed to all participants
using the mail service. If the user wants to be
sure that the calendar system only contains dates
distributed to the users and the users only re-
ceive dates included in the calendar system, he
has to use an atomic update facility.

As an example for an independent updating over
multiple applications assume an user that enters
some new business data into the database and then
prepares a business report based on the database.
Then it might not be necessary to update the data-
base and the document storage system atomically.
However, there might be various reasons for fn-
cludfng both activities into the same transac-
tion, for instance if the document may only be
prepared after the dat? was entered into the data
base, and if it is more efficient to use some
output of the first activity as an input for the
second activity. Nevertheless it might not be
necessary to keep all database locks (provided
that locking is used) until the document has been
prepared and stored away. Note that the use of
two separate transactions in .this case could be
less efficient, since additional bookkeeping as
well as an additional output/input of intermedi-
ate results might be necessary.

Of course there might be even higher level acti-
vities built on top of our two example applica-
tions, i.e. an activity where a meeting has to be
scheduled and where additionally all participants
must be supplied with business reports. In this
case we might have atomic as well as independent
updates over multiple applications.

In this .paper principles will be discussed for
structuring transactions in a centralized environ-
ment (an extension of our approach to a distri-
buted environment is given in a separate paper
/WaB4/), that support atomic as well as indepen-

Singapore, August, 1994

161

dent updates over multiple applications. Indepen-
dent updating means, that there are different
commit points for the different applications, i.e.
differents points of time where the updates become
available to the general community of users. Hence,
we also speak of transactions with multiple commit
points. In /Li83/ (but not in earlier versions of
thispaper) so-called "nested top actions' are
discussed, which also perform independent updates,
however, there is no detailed discussion of the
various consequences of this approach.

Our approach of structuring transactions leads to
a generalized form of nested transactions. In
comparison with earlier proposals our model pro-
vides the following advantages:

It is more general than any other model, i.e.
existing models can be shown as being special
cases of our model.
The notion of backout spheres permits a general
representation of backout dependencies which is
important for handling conversational transac-
tions, which are not handled in other models
(e.g. /Mo81/).
The notion of comnit spheres supports both ato-
mic and independent updates over multiple app-
lications and is independent of the notion of
backout spheres, a feature not supported by any
other models.
The proposed locking scheme, which is based on
two-phase locking is more flexible than the
schemes proposed earlier for nested transac-
tions (e.g. /Mo81, Mo82, Mu83/).

The remainder of the paper is organized as fol-
lows. At first we will give a model of our over-
all system. In this context our generalized model
of nested transactions will be defined and the
various protocols for synchronization, back out,
and commit will be given. Then some implementa-
tion problems will be discussed. Finally, our
approach will be compared with other proposals.

SYSTEM MODEL AND DEFINITIONS

Our system consists of application systems (or
for short: applications) and transactions.

An application consists of data elements and a
nonempty set of functions for retrieving, mani-
pulating, and controlling the data elements. A
data element is a basic data item accessed di-
rectly by the application or a higher level data
element that is provided by some other applica-
tion. A basic data item may be accessed directly
by multiple applications.

Our system supports the construction of higher
level applications on top of existing applications.
Each application interface can be used by end
users as well as by higher level applications.

Generally, a transaction can be defined as a par-
tially ordered set ot actions that logically be-
long together and that posse‘ss"the atomicity pro-

Proceedlngr ot the Tenth International
Conference on Very Large Data Base&

perty. The definition of the term transaction in
our system depends on the level of abstraction:
- From an end user's point of view a transaction

is a partially ordered set of requests to an
application system (we use the more general
notion of a partially ordered set, i.e. paral-
lel programs, even if often only totally ordered
sets, i.e. sequential programs, are supported).

- From an application system's point of view, a
transaction consists of a set of internal ope-
rations, a set of "sub"-transactions executed
on lower level application systems and a prece-
dence structure defining a partial order over
the elements of these two sets.

So transactions in our system are in fact nested
transactions. However, as will be seen later on,
we will use a much more generalized structuring
of nested transactions than earlier proposals,
e.g. /Mo81, Mu83, Al83/.

In our model 'of a centralized system two types of
failures can occur:
- Processor failures. A processor is defined as

an abstract entity consisting of the physical
processor and the system software. It is assumed
that such a processor shows a so-called fail-
stop behaviour (for a discussion of failstop
processors see /Sc83/1, i.e: in the case of a
failure the processor stops immediately, no
garbled outputs will be produced. The contents
of the volatile memory are lost if a processor
fails. This class of failures includes all fai-
lures that require a restart of the system
such as failures of the physical processor, of
the operating system, etc.

- Logical application failures. It is assumed
that all logical failures can be detected and
that they cause the affected application to
stop. Examples of such failures are the viola-
tion of integrity constraints or deadlocks. No
other applications are affected by such failu-
res, no memory is lost.

With each transaction executed by an application
system two states are associated:
- Volatile state. The volatile state is presented

by the values of all variables kept in the main
storage. The volatile state is lost during each
processor failure.

- Stable state. The stable state is presented by
the data stored on stable storage /La79/.
Stable storage is assumed to survive each pro-
cessor failure.

The overall structure of our system can be given
as a set of cycle-free directed graphs with the
applications as the nodes. An arc from applica-
tion aI to application a2 means that application
aI is built directly on top of a2, i.e. aI is a
user of the services of a2. If a new application
is added to the system, a new node is added to
one of the graph: with arcs leading to all lower
level applications which are utilized by this new
application. Since multiple higher level applica-
tions may utilize the same lower level application,
the directed graphs are not trees. The various

Singapore, August, 1984

162

graphs may be unconnected, since there might be
sets of applications, which do not utilize mem-
bers of other sets. An example of such an appli-
cation graph is given in Fig. 1. Note, that even
applications at various levels of abstraction may
share the same data elements.

Fig.1: An Application Graph

Within our graph structured system, users (end
users or higher level applications) may select
any application to work with, no matter at what
point of the graph the application is located.
For each application, the user wants to work
with, he must start a separate transaction. How-
ever, an end user may work with multiple applica-
tions at a time by constructing a higher level
transaction on top of all these separate trans-
actions. In this higher level transaction it can
be decided whether the lower level transactions
are executed independently or whether they commit
together (i.e. whether they are committed at the
same point of time or not). This means, the user
is permitted to extend the system provided graph
structure temporarily with his own private appli-
cations. An example of such an extension is given
in Fig. 2, where a user has added a private
application P on top of the applications H and G
of Fig. 1.

Fig.2: An Extended Application Graph

Each application ai utilized by the end user may
start 'child' transactions on an application ak
if there is an arc that leads directly from ai to
ak. If within such a nesting hierarchy two appli-
cations create child transactions on the same
lower level application, then they start different
child transactions. This means that the nesting
hierarchy of transactions in our system forms a

Proceedings of the Tenth International

Conference on Very Large Data Bases.

tree structure. An example is shown is Fig. 3,
where a user has created a transaction on its
private application P, which in turn has created
one child transaction on application H and two
child transactions on application G etc. Note,
nothing is said about whether child transactions
exist at the same time or not.

t
1 Tllll on El - ,&I

Fig. 3: A Nested Transaction

In the remainder of the paper we will use the
following terminology:
- The transaction at the root of a nestina tree

is called top level transaction.
- If a transaction Ti has created a transaction

Tk, then Tk is the child transaction of Ti and
Ti is the parent transaction of Tk (we will
also use the-terms parent and child).

- All transactions on the pathorn the top level
transaction to a transaction Ti are ancestors
of Ti (of course excluding Ti itself).

- All transactions that belong to the subtree of
which Ti is the root are the descendants of
Ti (again excluding Ti itself).

So far we have only defined, that nested transac-
tions are used in our system, however, nothing
has been specified concerning synchronization,
commitment and backing out of the transactions at
the various levels of our graph structure. Before
we will define the semantics of creating a child
transaction more precisely, we will informally
discuss several aspects of the relationship be-
tween parent and child transactions.

NESTING TRANSACTIONS

In this chapter it will be discussed how the
transactions in our system should be nested.
Attributes will be defined, that determine the
various ways a child transaction can be created
by a parent transaction.

A) The Interface Aspect

Applications generally provide their users with
two types of interfaces (in the following an user
is always a higher level application, otherwise
the term end user will be used):
- 'Single-request'-interfaces. In this case there

are two interactlon points between the user and
the application. The first interaction is needed
to hand over the complete query or update re-
quest to the application, the second is needed

Singapore, August, 1994

163

to return the result or some status value back
to the user. Between these two points the
application is responsible for controlling the
processing of the user's request. An example
for an application with such an interface is a
data base system with a stand-alone SEQUEL-
interface.

- 'Conversational' interfaces. In this case the
user issues a seauence of reauests to the aoo-
lication and then' decides whether to commit'&
to abort the corresponding transaction. During
this conversation the control changes between
the user and the application, each time the
user issues an request, the application is res-
ponsible for generating an answer, each time
the application has issued a response, the
user is responsible to tell the application
what to do next. An example for an application
with a conversational interface would be a
data base system with a 'next-tuple'-interface.

To understand the difference between these two
interfaces, we have to consider the consequences
for the backout behaviour of the complete system,
i.e. the system consisting of an application and
its user (user means either an end user or an
higher level application). Between two calls both
the application and the user have to remember
their previous state, i.e. the application must
know what for instance 'next' means in a 'next-
tuple'-call and the user must know that a deli-
vered tuple is the next to the tuple delivered
before. The usual implementation technique is to
keep the state information of both the application
and the user in volatile storage and to change
this state incrementally after each interaction.

If an application fails logically, it must back
out at least to the previous stable state. In the
case of a conversational interface the state of
the user strongly depends on the state of the
application. Since the user will usually not be
able to reconstruct an arbitrary previously vola-
tile state, he must also back out to an earlier
stable state, which of course must be synchronized
with the stable state to which the application
has backed out. In the case of a single-request
interface the backing out of the application does
not require the backing out of the user. If the
user backs out, then the application must back out
as well independent of the type of the interface.

So far we have only spoken about the interactions
between an user and an application. In fact, any-
thing done in our system is relatedtotransactions.
So we have to reformulate the above statements in
terms of transactions. If we replace 'user' by
'parent transaction' and 'application' by 'child
transaction', we can say: a parent transaction
may interact with its child transactions either
via a single-request or via a conversational
interface.

This leads to the concept of backout spheres. A
backout sohere includes one or more transactions.
The backout of a transaction of a given backout

Proceedings ol the Tenth Intematlonal
Conference on Very Large Data Bans.

sphere always implies the backing out of all
other transactions in this backout sphere as well.
The transactions of a backout sphere form a tree
structure, which must be a connected part of the
original transaction tree.

In the case of a conversational interface nor-
mally both the user and the application will
belong to the same backout sphere, in the case of
a single-request interface the application will
normally belong to a separate backout sphere
which is an inner sphere of its user's backout
sphere (see also the concept of sphere-of-control
in /Da73/ and the discussion in /MoBl/). Clearly,
not only technical reasons will influence the de-
cision whether two transactions will be included
in the same backout sphere or not. If, in the
case that a child fails, the parent should have
the chance to create some other child for proces-
sing its requests elsewhere, then the parent and
the child must be in different backout spheres.

Fig. 4 shows the nested transaction of Fig. 3 with
possible backout spheres. Note, that although TI21
and T122 belong to different backout spheres they
can be backed out together, if such a dependency
is realized in their parent transaction T12.

0

--w--H
a a -m- -

Fig. 4: A Nested Transaction with Backout Spheres

If all nodes belonging to the same backout sphere
are put together into one node, then this again
results in a tree structure, a tree of backout
spheres. In this tree each backout sphere bk that
is a child of a backout sphere bi, is an inner
sphere of bk. Fig. 5a shows the corresponding
tree of backout spheres. The backout sphere 82 is
an inner sphere of Bl and the spheres B3 and 84
are inner spheres of 82. An alternate, nested
representation is given in Fig. 5b. Backout of
the outer sphere implies the backout of the inner
spheres but not vice versa.

102. ov!r TI2 1
Bl B2

l.El

r

Fig. 5: Backout Spheres,
a) Tree Representation, b) Nested Representati,on

Singapore, August, 1984

I64

In our model a child transaction can be created
in both ways, either as part of the backout sphere
of its parent transaction or as part of a new,
separate backout sphere. The selected alternative
is specified by the parent transaction as an attri-
bute value in the corresponding creation command
(BACKOUT, if a new backout sphere is created,
NOBACKOUT, if the parent's sphere is extended).

BI The Dependency Aspect

As already discussed in the first chapter of this
paper it might be useful to permit that updates
on different applications commit independently,
even if they have been initialized under the same
top level transaction. Our philosophy is, that a
child transaction which is permitted to commit
its updates independently of its parent transac-
tion should be handled as a totally different
transaction with the following exceptions:
- Input and output data are exchanged directly

with the parent transaction.
- Child and parent transaction may belong to the

same backout sphere.
The latter is necessary mainly because the inter-
face may be conversational, i.e. the control may
switch multiple times between parent and child.
Clearly, if the child transaction has committed,
the parent transaction must
- either be able to remember the cotmnitment and

the committed child's output even after a re-
start (i.e. by writing the necessary informa-
tion into stable storage)

- or it should be a desired fact, that the com-
mitted child transaction is executed again
after a restart of its parent.

The latter might make sense, for instance, if a
child transaction is started in order to write
some statistical information about the caller into
some data base (e.g. for bookkeeping reasons). If
the parent is restarted after a processor failure,
this could be considered as a different execution
which makes it necessary to write the statistical
information again.

Since in our system both should be supported,
independent child transactions as well as child
transactions that commit in coincidence with
their parent, we require that each time a child
transaction is created, it must be specified
whether the child is independent (COMMIT) or not
(NOCOMMIT). It should be clear, that a transaction
may start multiple independent child transactions,
that nevertheless can conmnit all at the same time
(if the parent acts as a coordinator during the
commitment of these child transactions).

The corresponding concept to backout spheres is
the concept of conwnit spheres. A commit sphere
includes one or more transactions. The commitment
of each of these transactions is only possible if
all other transactions of this commit sphere also
conmnit. The transactions of a commit sphere form
a tree structure, which is a connected part of the
original transaction tree. Fig. 6 shows the trans-
action of Fig. 3 with a possible arrangement of

Proceedings 01 the Tenth International

COnfOrOnCO on Very Large Data Sasea.

conmnit spheres. In our model the arrangement of
a transaction's commit spheres may be different
from the arrangement of its backout spheres. The
problems that are caused by this fact will be
discussed in a later chapter of this paper.

-,--A

lpi&E-i ;ffIms$
--L- - --/
Fig. 6: A Nested.TraGaction with Comnit Spheres

Fig. 7a shows the corresponding tree of commit
spheres. The cornnit spheres C2 and C3 are inner
spheres of Cl and the sphere C4 is an inner
sphere of C2. The alternate nested representation
is given Fig. 7b. Conmnitment of the outer sphere
implies commitment of the inner sphere but not
vice versa.

Cl over Tl Tll
Tllll,- T12: and'T

I I I

Jzl

Cl c2 l3I-l

Fig. 7: Comnit Spheres,
a) Tree Representation, b) Nested Representation

C) The Synchronization Aspect

In the context of normal transactions, i.e. tran-
sactions without internal parallelism, synchroni-
zation always means synchronization against other
transactions. Nested transactions permit inter-
nal parallelism or concurrency, such that syn-
chronization might also be necessary within a
transaction. Two types of internal concurrency
can occur in our model of nested transactions.
- Concurrency between a transaction and its an-

cestors and descendants. This happens if such
transactions are executed in parallel and do
access the same data elements. For a better
understanding we have to consider, that the re-
quest sent from a parent transaction to one of
its child transactions can be issued in two
ways, in form of either a synchronous call or
an asynchronous call. In the first case, the
transaction, that has called one of its child
transactions, does not proceed in its own pro-
cessing until the result of the call has been
returned. In the latter case, the parent trans-
action does proceed in its own processing and
then fetches the returned results at some later

Singapore, August, 1984

165

point of time. Obviously, concurrency between
parent and child can only occur in the latter
case. If a child is called synchroneously, then
it is possible to permit, that it accesses data
elements already locked by its parent, if the
parent was called synchronously as well, then
the child may also access data elements locked
by its grandparent and so on (provided that
synchronization is based on locking as discus-
sed in a later chapter). The same might be
possible if the parent could guarantee that it
does not access certain data elements during
asynchronous activities.

- Concurrency between children. This type of con-
currency can occur between children that have
at least one ancestor in common (parent or
grandparent or grandgrandparent,...), but where
no one of the children is an ancestor of any
other of the children. As in /Mo81, Mu831 we
adopt the philosophy, that such children should
by synchronized against each other.

Each time a child transaction is created, an attri-
bute value must be passed to the child indicating
whether it must synchronize against its parent
(SYNC) or not (NOSYNC). In the latter case it may
use the locks of its parent (provided that both
lock at the same level of abstraction). Additio-
nally, the child must be informed whether its
parent was called synchronously and if so, whether
its grandparent . . . and so on. In fact, as will
be seen later on, information is forwarded about
the complete transaction path from the top level
transaction to the concerning child. Since a
fixed strategy is used for handling concurrency
between children, no information must be passed
to a child about sisters and brothers.

We do not require that NOSYNC is only used in the
case of a synchronous call, i.e. a parent trans-
action can also decide to execute unsynchronized
child transactions asynchronously if it is sure
that no interference can occur. The parent trans-
action must also take care, that a child created
in parallel with other children is either created
SYNC or does not interfere with the other children
when accessing objects locked by its parent (note,
that children are only synchronized against each
other on objects where they are required to set
their own locks).

D) Relationships between Parent and Child

So far we have defined, that the three attributes
are necessary to describe the relationship bet-
ween parent and child transactions. However, it
is still not quite clear whether all combinations
of the attribute values are really necessary. In
theory, eight combinations are possible which
will be discussed in the following:
- COMMIT, BACKOUT, SYNC. A call with these attri-

bute values creates an independent child trans-
action with its own backout sphere. This child
transaction may not use locks held by its pa-
rent. If this would be permitted in a case
where both principally request the same locks,
then the child transaction could update a data

Proceedings of the Tenth International

Conference on Very Large Data Bases.

element already updated by its parent, such
that the later update, which depends on the
first would be committed first. To avoid such
anomalies, in the above mentioned case COMMIT
should always imply SYNC.

- COMMIT, BACKOUT, NOSYNC. This combination makes
sense in the case where it is clear that the
child will not request the same locks as its
parent. One case of special interest is a system
where synchronization takes place at different
levels of abstraction (see for instance /We84/).
Assume a parent transaction setting locks at
the record level and a child transaction setting
locks at the page level. Now, if a record is
updated, itwill be locked by the parent, whereas
the child, which performs the physical update,
will lock the corresponding page. When the
child has finished the updating, it can commit
and unlock the page such it can be used by
other transactions. The record remains locked
by the parent such that no update anomalies can
occur (of course, if the parent backs out, a new
child transaction must be created to compensate
the effects at the page level; this will be dis-
cussed again in a later chapter of this paper).
Obviously, this is an example of the combination
COMMIT/NOSYNC that makes practical sense.

- COMMIT, NOBACKOUT, SYNC. A child transaction
created with these attributes is independent,
but does not possess its own backout sphere. If
such a child fails, its parent must backout as
well, if it commits successfully, its parent
should take the proper measurements in order to
remember this commitment. So if the parent
fails after the commitment, it must either de-
sire a further execution of the committed child
or be able to avoid a restart. Under this combi-
nation of attribute values, the child transac-
tion must synchronize against its parent.

- COMMIT, NOBACKOUT, NOSYNC. The child may commit
independently but not backout. As in the second
combination, synchronization against its parent
is not required.

- NOCOMMIT, BACKOUT, SYNC. The created child com-
mits together with its parent, possesses its
own backout sphere and must synchronize against
its parent. A backout of the child does not
require a backout of its parent, however, the
backout of the parent implies the backout of
the child (more details to be given later on).

- NOCOMMIT, BACKOUT, NOSYNC. The same as above,
however, the child must ,lot be synchronized
against its parent and may usi the locks of its
parent (if on the same level of abstraction).

- NOCOMMIT, NOBACKOUT, SYNC. The created child
commits and backs out together with its parent,
it must synchronize against its parent.

- NOCOMMIT, NOBACKOUT, NOSYNC. The same as above,
however, no extra synchronization is necessary
for data elements accessed by both the parent
and the child.

This shows, that all eight possible combinations
make sense. In the case of distributed transac-
tions there would be one additional attribute
(values: LOCAL, REMOTE) and sixteen combinations
would make sense /Wa84/.

Singapore, August, 1994

166

PROTOCOLS

In this chapter a locking protocol will be des-
cribed that provides the suitable synchronization
between and within transactions. Additionally,
the protocols will be described for initiating,
canmitting and aborting transactions and child
transactions.

The locking protocol we use is a consistent two-
phase locking protocol /Es76/, resources must be
locked before they are accessed, all locks are
held until commitment such that a transaction
cannot set new locks after the first unlocking
has occurred. The protocol is in several aspects
similar to the one described in /Mo81/, however,
our proposal provides more flexibility and is
also suitable for child transactions that commit
independently and permits a more efficient passing
of locks between child transactions (in /Mo81/
child transactions must pass locks explicitly via
their next common ancestor).

Since the purpose of this paper is to discuss
transaction structuring rather than transaction
synchronization, we will present a rather simple
method for synchronization. We will assume that
all locks are set on the page level and that the
only lock modes are SHARED and EXCLUSIVE in their
usual meaning /Es76/. For a discussion of more
general lock modes and locking at various level
of abstraction the interested reader is referred
to the literature e.g. /Ko83, Sc83, We84/ but also
to a shott discussion given in a later chapter of
this paper.

A transaction can either hold a lock or retain a
lock. 'Holding a lock' is defined in its
iiiZ%ng, 'retaining a lock' is defined as in
/Mo81/. A child transaction that holds a lock and
finishes its processing (a more precise definition
of 'finish' is given later on) converts its locks
from 'held' to 'retained'. A retained lock can be
locked by any other transaction in the same commit
sphere but not by a transaction of a different
commit sphere. If a transaction Tl sets a lock L
(starts to hold a lock) retained by another sub-
transaction T2, then the association between T2
and L stops (now T2 neither holds nor retains L).

In order to enable a transaction to determine
whether the holder or retainer of a lock belongs
to the same commit sphere, the ID (identifier) of
a transaction consists of two parts:
- The first part consists of the unique ID of the

top level transaction (unique within the con-
text of all other top level transactions in the
system) plus the concatenated numbers of the
transaction's other ancestors. For this purpose
each transaction numbers its children consecu-
tively in the order 1, 2, (see for in-
stance the numbering in the example of Fig.3).
This part is similar to the IDS used in /Li84/.

- The second part contains for each ancestor the
values of the three binary attributes concerning
synchronization and comit and backout spheres.

Proceedings of the Tenth International

Conference on Very Lsrge Data Sases.

Now a transaction is able to determine whether
some other tansaction that holds or retains a
lock belongs to the same conunit sphere or not.

The protocol for a transaction T, that requests
lock on a data element D is given in Fig. 8:

a

L k held by ancestor and all
tF&sactions between this
ancestor and the requesting
transaction were created with
NO.SY NC? A

yes

Access the data element directly if
the same or a weaker locking mode is
needed. If a stronger mode is needed
then convert the current mode to the
needed (wait if necessary).

no

transaction of the

Fig. 8: Lock i ng protocol

In /Mo81/ a similar locking scheme was proposed,
however, children are not permitted to use the
locks of their ancestors and locks that are
passed from child to child are forwarded along
a path via a common ancestor. In a later proposal
/Mo82/ no locks are retained, but children may
use the locks of their ancestors. Our proposal
includes both methods, supports a direct passing
of locks from child to child and supports multiple
commit spheres.

I
. c

Set lock in the requested
1

mode, set the status to
held and add the holder's
ID to the lock table.

Singapore, August, 1994

167

The scheme of /Mo81/ was shown to be correct with
respect to serializability in /Be83/. To show the
correctness of our proposal we have to show three
things:
- The notion of multiple commit spheres for one

nested transaction does not influence our lock-
ing scheme. In fact, concerning synchronization
each commit sphere is handled as a separate
transaction, such that we can consider the
locking scheme as if we had several transac-
tions with single commit spheres.

- Our passing of locks between children can be
mapped to the passing of locks in /Mo81/. In
fact, in our proposal the IDS of the retainer
and the new holder of a lock contain enough
information that permits to look for common
ancestors. Only if such a common ancestor is
found in the same commit sphere, the lock can
be converted. Hence, the semantics are the same
in both proposals, however our passing seems to
be more efficient to implement (a similar scheme
as ours is used in /Li84/).

- The use of locks of the parent does not violate
serializability. If a child is called synchro-
nously and if it accesses the same elements as
its parent, then this is absolutely the same as
if the parent itself had performed this access.
If the child is called asynchronously it accesses
not the same data elements as its parent, no
concurrency exists. So if the parent transaction
uses SYNC and NOSYNC properly, then nothing
wrong can occur.

Of course, as the scheme proposed in /Mo81/, our
locking scheme is subject to deadlock, however, a
detection algorithm similar to the one discussed
in /Mo81/ would be suitable for our system as
well.

Before we can define the various protocols for
creating, committing, and backing out transac-
tions, we have to add some details about the
maintenance of transaction states. For the pur-
pose of robustness we require the maintenance of
a transaction state table (TST) in stable stora-

ge. This table contains two entries for each
transaction in the system, the transaction's ID
(including the creation attributes of its ance-
stors as described above) and the transaction's
current state.

Al Creation of Transactions

When a new top level transaction is created a
unique identifier is generated and stored in the
TST tog,ether with the status ACTIVE.

When a transaction creates a child, then the ID
of this child is composed out of the parent's ID,
the attribute values defining the relationship
between child and parent, and a number that uni-
quely identifies this child within the set of all
children of its parent. The creation of a child
with NOBACKOUT extends the parent's backout
sphere, whereas the creation of a child with
NOCOMMIT extends the parent's commit sphere.

Proceedings of the Tenth lnternatlonal

Conference on Very Large Data Bases.

B) Finishing and Preparing Child Transactions

When a child has completed its execution it
either 'finishes' or 'finishes and prepares'. To
finish means to convert all locks from held to
retained. To 'finish and prepare' means to con-
vert the locks and to write all updates into
stable storage. A child that finishes, prepares
separately at a later point of time (on request
of its parent). We have made this distinction for
efficiency reasons. If for instance the same data
element is subsequently updated by several des-
cendants of the same top level transaction, we do
not require that the changes must be stabilized
after each update. Of course, if one of the later
updaters backs out, this might have the effect,
that already finished updaters must back out as
well. Our locking strategy guarantees that all
such updaters belong to the same commit sphere.

Each transaction can only finish (finish and pre-
pare, prepare) if all its descendants have finished
(finished and prepared, prepared) as well. A
transaction that has finished forwards the IDS of
all its dependent descendants to its parent. A
transaction that has finished changes its stable
state to FINISH, if it has finished and prepared
(prepared), the state is changed to PREPARED.

C) Committing Transactions

As already indicated in a previous chapter, all
transactions belonging to the same commit sphere
commit atomically together. The commitment of an
inner sphere can be done earlier than the commit-
ment of an outer sphere, the commitment of an
outer sphere implies the commitment of its inner
spheres (if not already done). Note that commit-
ment also might cause a backout sphere to shrink.

The coordinator of the commitment writes a commit
record into stable storage and then issues a
commit command for all transactions in the sphere
to be committed. The coordinator is either the
top level transaction or the parent that has
created the independent child that is the highest
ranking transaction in its sphere to be committed.

D) Backing Out Transactions

Backing out is arranged in the same way as the
commitment, i.e. a coordinator sends the backout
commands to the transactions to be backed out.
The transactions of a backout sphere are either
backed out because of a logical error, during
restart after a processor failure, or because of
a unilateral decision of the coordinator. Note
that if finishing and preparing is done separa-
tely , the backout of transactions of one backout
sphere may imply the backing out of transactions
of some other backout sphere as well.

Backing out also means that the data is restored
to a previous state. If we assume, that each time
a data element is updated, a new version is crea-
ted, that is written into stable storage when the,

Singapore, August, 1984

168

corresponding transaction prepares, then we always
have the appropriate earlier states. Other tech-
niques for doing so are well known and will not
be discussed in this paper.

E) Commands

In our system the following commands can be used
for handling transactions (TA stands for trans-
action):

CREATE-TA (CHILD-ID) returns (STATUS). Remem-
ber, that the CHILD-ID contains the PARENT-ID
as well as all needed attribute values, STATUS
returns whether the call was successfully per-
formed or not.
FINISH-TA (CHILD-ID) returns (STATUS).
PREPARE-TA (CHILD-ID) returns (STATUS).
COMMIT-TA (CHILD-ID) returns (STATUS).
BACKOUT-TA (CHILD-ID) returns (STATUS).
REQUEST (CHILD-ID,TASK) returns (RESULT,STATUS).
TASK describes the function the child should
perform, RESULT includes the returned data.

Additionally these elements can be used in cer-
tain combinations. For a transaction consisting
of just one request with a separate ccmmit the
combination CREATE-REQUEST-FINISH-PREPARE-TA can
be used in order to reduce the number of context
switches in an implementation and the number of
state changes of the child transaction. If the
interactions between parent and child are conver-
sational, then several REQUEST-TA would be sent
separately. FINISH-PREPARE-TA would cause the
corresponding child to finish and prepare as des-
cribed above.

An interesting combination is the following:
CREATE-REQUEST-FINISH-PREPARE-COMMIT-TA (models
the single-request interface discussed earlier)
reduces the interaction between parent and child
to a minimum. The important characteristic of
this case is, that a child needs never to wait
for its parent. This is important in the context
of deadlocks (see also in the next chapter).

We have called the above primitives 'conmnands'
for two reasons:
- Any action a child performs is only done on re-

quest of its parent. Ifthechild fails logically,
a corresponding code will be returned to its
parent, which then can give the BACKOUT-command.

- We do not want to enforce a special implementa-
tion by calling the primitives 'calls' or 'mes-
sages'. Of course, asynchronous message passing
would provide the highest flexibility, however,
other implementations are possible as well.

F) Interdependencies between Commit Spheres and
Backout Spheres

Since comnit and backout spheres are defined in-
dependently, two transactions may belong to the
same commit sphere but to different backout
spheres and vice versa. In the following the
various types of interdependencies will be discus-
sed that may occur between an arbitrary parent

Proceedings of the Tenth International

Conference on Very Large Data Barer.

transaction PT and one of its child transactions,
say CT. The discussion Is based on the assumption,
that whenever PT tells CT to cornnit, then the
effects of CT will never be compensated whatever
happens. An extension of our model that additio-
nally supports the opposite strategy, i.e. that
compensation may be possible, is discussed later
on (in the context of transaction structures for
layered applications with synchronisation at
multiple levels of abstraction). It should be
clear, that CT only performs actions on request
from PT.

Before the discussion can be started, it is neces-
sary to remember the various stable states of a
transaction:
- ACTIVE: The processing is in progess, updates

may already have been done.
- FINISHED: The processing phase is finished,

however, the updates may still be in volatile
memory and are not available for transactions
in other commit spheres. FINISHED can only be
reached from state ACTIVE.

- PREPARED: Similar to FINISHED, but all updates
have been transferred to stable storage. PRE-
PARED can be reached from state FINISHED or
directly from ACTIVE.

- COMMIT: This state can only be reached via the
state PREPARED. Its meaning is, that actions
can be taken to make the updates available for
transactions in other comnit spheres.

- BACKOUT: This state can be reached directly
from the states ACTIVE, FINISHED, and PREPARED.
'It's meaning is, that actions must be taken to
undo all the transaction's updates.

- UNKNOWN: This state can be reached via COMMIT
and via BACKOUT, it is also the state of each
transaction before it enters the state ACTIVE.
UNKNOWN is an implicit state, i.e. all trans-
actions not explicitly noted to be in one of
the previous five states, are assumed to be in
the state UNKNOWN.

In principle, four types of interdependencies
between PT and CT are possible:
- PT and CT belong to the same commit sphere as

well as to the same backout sphere. This is the
trivial case, where either both cornnit or both
backout.

- PT and CT belong to the same cormnit sphere but
to different backout spheres. If PT commits
L",fF"sH;;;t)erthen CT must commit !backoutI as

as long as PT is in the state
ACTIVE, CT may'be backed out independently of PT.
When PT enters the state FINISHED, then CT must
be prepared as well and CT may only backout on
request of PT. To understand this strategy, it
must be considered, that when PT is in the state
FINISHED, it has already left its processing
phase and hence is not able to redo the original
requests to CT any more. So, in the latter case
the only possibility to restart CT would be to
restart PT.

- PT and CT belong to different cornnit spheres
and to different backout spheres. CT may be com-
mitted and backed out independently on request

Singapore, August, 1994.

169

of PT as long as PT is in the state 'ACTIVE.
Additionally, if PT backs out before issuing
the COMMIT-command to CT, CT must back out as
well, since in this case no one would exist any
more for telling CT what to do. If, however, PT
backs out after having issued the corresponding
COMMIT-command, it has no effects on CT, no
matter whether a pure COMMIT-command or a com-
bination of commands including COMMIT was used.
Since CT was created in a different COMMIT-
sphere PT must issue the COMMIT-command before
leaving the ACTIVE-phase (otherwise it would
not have made sense to run CT in a separate
commit sphere).

- PT and CT belong to different commit spheres
but to the same backout sphere. This case is
similar to the previous case with the exception,
that a backing out of CT always enforces PT to
back out as well.

Note, that we do not permit that CT commits later
than PT (provided, that PT commits at all). Of
course, it would technically be possible, that PT
just tells CT what to do and to commit before CT
has finished. However, in this case there would
be no possibility for detecting a failure of CT.

If we also want to permit compensation in our
model, i.e. that transactions might be backed out
after commit, then anything would be the same as
above, with the exception, that the backout seman-
tics of a parent transaction would be different.
As discussed earlier, in this case a backing out
parent transaction must create new child trans-
actions for compensating the effects of earlier
child transactions. So, the above strategies are
also suitable for systems with synchronization at
various levels of abstraction.

G) Restart

Since backout and commit spheres can overlap, a
restart takes place in two phases:
- In the first phase all transactions are checked

for commitment. As indicated in a previous
chapter, the coordinator of a commitment writes
a commit record into stable storage before
issuing the commit command. After restart for
each commit sphere it is checked whether the
commit record was already written before the
crash. If this is the case, the transactions in
the corresponding commit sphere may commit. Re-
member, that commitment might cause backout
spheres to shrink.

- In the second phase all other transactions not
in the state PREPARED are backed out and re-
started. If the time between crash and restart
was too long all transactions can be backed out
(e.g. on request from the enduser).

IMPLEMENTATION

Due to space limitations we are not able to give
a complete description of the implementation of
the above concepts, however, we will discuss a
few more important questions:
- Should any application use its own transaction

Proceedings of the Tenth lntematlonal
Conference on Very Large Data Bases.

management? In theory this might be possible,
provided that all private transaction managers
understand the same language. In practice this
solution would be rather inefficient:
-- Each new application would require the re-

implementation of practically the same set
of management functions.

-- During a restart complex interactions bet-
ween the various transaction managers would
be necessary in order to coordinate their
actions.

For these reasons we favor a solution where
all application use a common so-called trans-
action kernel (the design of a very basic
kernel was for instance discussed in /Ro84/).

- Can the various applications use their own
locking and scheduling strategies? At a first
sight, this question seems to be answerable in
the same way as the previous, especially, since
the handling of deadlocks in a decentraliced
environment is considerably more complex than
in case of a centralized lock management. How-
ever, it has been demonstrated, that concur-
rency can be increased if more semantic infor-
mation is used for scheduling (see for instance
Sc83/) and semantic information is only avail-
able in the application system itself. Our
opinion is, that this is still a subject of
further research, however, it might be a good
idea to follow the concept of the transaction
kernel in /Ro84/ and to include the basic pri-
mitives in a kernel, but to let all strategies
and hence the semantics in the application. Of
course, it must be guaranteed, that each appli-
cation provides the same scheduling strategy
or that some global deadlock detection and
handling mechanism exists.

A further interesting question is, whether it
would be possible to integrate existing applica-
tions systems, i.e. a database system into a
structured application system. The main problem
is, that an existing system is in most cases
something like a black box, i.e. we are not quite
sure about its scheduling strategies etc. So if a
higher level transaction starts a child transac-
tion in this existing system, then this can lead
to deadlock situations.

A deadlock can exist if there is the possibility
of a circular wait. Assume two transactions Tl
and T2 belonging to the same higher level appli-
cation aI. Assume further that both create a child
on the lower level application a2, then, if both
use private schedulers, aI might schedule T2 after
Tl and a2 might schedule Tl after T2. Now, if Tl
waits for a response from its child in a2 and
T2's child waits for the next request from T2,
then a deadlock could occur in this situation.

If, however, transactions in aI only use calls of
the type CREATE-REQUEST-FINISH-PREPARE-COMMIT-TA
for running child transactions in a2, then, as
already mentioned earlier, no deadlock can occur.

Singapore, August, 1994

170

CONCLUSION

Nested transactions with multiple commit points
have been presented as a general method for
structuring- advanced database oriented applica-
tions in a centralized environment. Because of
space limitations the version of this concept for
distributed database applications is discussed in
a separate paper JWa84J. The main differences of
the distributed version are:

Child transactions can execute at local as well
as at remote sites, hence, a fourth attribute
with the values LOCAL and REMOTE is necessary
in order to describe the relationship between
parent and child transactions.
Applications can be distributed over multiple
sites of a network, hence we have a further
nesting of transactions within an application.
The sites of a network can fail independently
and hence also the transactions of a distri-
buted nesting hierachy. Hence, the protocols
for commitment and recovery are more complex
than in the centralized case. Additionally, the
orphan problem must be considered. An orphan is
a child transaction, whose parent transaction
has backed out without being able to inform the
child (see also JA183, Li84Jl.

The proposed model of nested transactions is more
general than any existing proposal. Without con-
sidering distribution aspects, the existing mo-
dels can be modelled in our concept as follows:

The proposal in JMo81J included the attribute
values BACKOUT, NOCOMMIT, SYNC. A latter propo-
sal of the same author JMo81J included NOSYNC
instead of SYNC. The proposals are not suitable
for conversational interfaces.
The ARGUS system JLi83, Li84J additionally sup-
ports COMMIT.
In /Mu831 the nested transactions of the LOCUS
system are presented. The parent/child relation-
ship is described by either BACKOUT, NOCOMMIT,
SYNC (the normal call of a child transaction in
LOCUS) or NOBACKOUT, NOCOMMIT, SYNCJASYNC (a
child transaction call based on the 'fork'-pri-
mitive of the underlying operating system). The
first type of call is not suitable for conver-
sational interfaces.
In JA183J a more general model was presented
for transactions over arbitrary objects, how-
ever. it does not include the attribute value
COMMIT.
In JWe84J a system with synchronization at mul-
tiple levels of abstraction is discussed, which
supports the combination COMMIT, BACKOUT, NO-
SYNC.

Our proposal supports the construction of trans-
actions with arbitrary internal parallelism.

REFERENCES

JA183J Allchin, J.E., "An Architecture for Reli-
able Decentralized Systems", Ph.D. Thesis,
Georgia Institute of Technology, GIT-ICS-
83123, 1983.

Proceedings of the Tenth International

Conference on Very Large Data Bases.

JBe83J

JDa73J

/Es761

/Ko83/

JLa81J

JLi 831

JLi84J

JMo81J

JMo82J

JMu83J

JRo84J

JSc83J

JSc83J

JWa84J

JWe84J

Beeri, C., P.A. Bernstein, N. Goodman,
M.Y. Lai, D.E. Shasha, "A Concurrency
Control Theory for Nested Transactions",
Proc. 2nd Symp. on Principle of Distributed
Computing, 1983.
Davies, C.T., "Recovery Semantics for a
OS/DC System", Proc. 28th ACM Nat. Conf.,
1973.
Eswaran, K.P., J.N. Gray, R.A. Lorie, I.L.
Traiger, "The Notion of Consistency and
Predicate Locks in a Database System",
CACM 19:11, 1976.
Korth, H.F., "Locking Primitives in a
Database System", JACM 30:1, 1983.
Lampson, B., H. Sturgis, "Crash Recovery
in a Distributed Data Storage System",
Technical Report, XEROX PARC, 1979.
Liskov, B., R. Scheifler, "Guardians and
Actions: Linguistic Support for Robust,
Distributed Programs", ACMTOPLAS 5:3, 1983.
Liskov, B., "Overview of the ARGUS Language
and System," Programing Methodology Group
Memo 40; MIT, 1984.
Moss, J.E.B., "Nested Transactions: An
Approach to Reliable Destributed Compu-
ting", Ph.D. Thesis, MIT-LCS TR-260, 1981.
Moss, J.E.B., "Nested Transactions and
Reliable Distributed Computing", Proc. 2nd
Symp. on Reliability in Distributed Soft-
ware and Database Systems, 1982.
Mueller, E.T., J.D. Moore, G.J. Popek, "A
Nested Transaction Mechanism for LOCUS",
Proc. 9th ACM Symp. on Operating Systems
Principles, 1983.
Rothermel, K., B. Walter, "A Kernel for
Transaction Oriented Comnunication in
Distributed Database Systems", Proc. 4th
Int. Conf. for Distributed Computing
Systems, 1984.
Schwarz, P.M., A.Z. Spector, "Synchronizing
Shared Abstract Types" (Revised Issue),
Technical Report, Carnegie-Mellon Univer-
sity, CMU-CS-83-163, 1983.
Schneider, F.B., "Fail-Stop Processors",
Proc. COMPCON'83, 1983.
Walter, B., "Nested Transactions with
Multiple Commit Points for Structuring
Advanced Distributed Applications", Working
Paper (to be submitted for publication),
University of Stuttgart, 1984.
Weikum, G., H.-J. Schek, "Architectural
Issues of Transaction Management in Multi-
Layered Systems", Proc. 10th VLDB, Singa-
pore, 1984.

Singapore, August, 1994
t

171

