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Abstract In this paper, we propose an algorithm for a nonsmooth convex opti-

mization problem arising in very large-scale integrated circuit placement. The

objective function is the sum of a large number of Half-Perimeter Wire Length

(HPWL) functions and a strongly convex function. The algorithm is based on

Nesterov’s smoothing and excessive gap techniques. The main advantage of the

algorithm is that it can capture the HPWL information in the process of optimi-

zation, and every subproblem has an explicit solution in the process of optimization.

The convergence rate of the algorithm is Oð1=k2Þ; where k is the iteration counter,

which is optimal. We also present preliminary experiments on nine placement

contest benchmarks. Numerical examples confirm the theoretical results.

Keywords VLSI � Global placement � Nonsmooth convex optimization �
Smoothing technique � Excessive gap technique

1 Introduction

In 2005, Nesterov presented the smoothing [16] and excessive gap techniques [17]

to solve nonsmooth convex minimization problems. Specifically, he solved the

following minimization problem,
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min
x2X

f ðxÞ ¼ bf ðxÞ þmax
u
f\Ax; u [ � b/ðuÞ: u 2 Qg; ð1:1Þ

where X is a bounded closed convex set in the n-dimensional Euclidean space

R
n; bf ðxÞ is a convex and Lipschitz continuous differentiable function with some

constant M > 0 on X; the linear operator A maps X to Q; Q is a simple bounded

closed convex set in the m-dimensional Euclidean space R
m; and b/ðuÞ is a simple

continuous convex function on Q, such that the maximum function in (1.1) has a

closed-form solution. The iteration complexity of Nesterov’s smoothing technique

is Oð1=eÞ; where e is a user-defined absolute accuracy of approximate optimal value.

The convergence rate of the excessive gap technique for the problem is Oð1=kÞ if

bf ðxÞ is a non-strongly convex function, and can reach Oð1=k2Þ if bf ðxÞ is a strongly

convex function, where k is the iteration counter. The two methods have been

widely used in applications, e.g., sparse recovery [2], resource allocation [8], risk

measures for portfolio optimization [7], and multi-commodity flow and fractional

packing [19].

In this paper, we aim at using the smoothing [16] and excessive gap techniques

[17] to solve a convex optimization problem in the placement of a very large-scale

integrated (VLSI) circuit. Placement is one of the most important steps in VLSI

computer aided design, since chip performance depends heavily on the circuit

placement results [1]. A modern chip often contains millions of circuit cells and

nets, which must be placed in a design region legally and the objective is optimized.

This has to be done using high-performance optimization techniques.

A VLSI circuit can be modeled as a hypergraph N ¼ ðV ; EÞ; where V denotes

the set of circuit cells with possibly different widths and heights and E denotes the

set of nets specifying interconnections between the circuit cells. Note that a net may

contain more than two cells, i.e., a net may be a hyperedge. Given a rectangular

½0; W � � ½0; H�; VLSI placement seeks a placement of circuit cells such that no cell

overlaps with the other, and the total wirelength is minimized [1, 4, 14]. This

problem is NP-complete [6], and is rather difficult to solve due to the very large

scale and NP-completeness. However, up to now, there are a number of packages

for the VLSI placement problem using different optimization methods [1, 4, 14].

Given the location ðxðiÞ; yðiÞÞ 2 ½0; W � � ½0; H� of circuit cell i 2 V ; the total

wirelength of the circuit is defined as the Half-Perimeter Wirelength (HPWL), i.e.,

HPWLN ðx; yÞ ¼ HPWLN ðxÞ þ HPWLN ðyÞ; where

HPWLN ðxÞ ¼
X

e2E

max
i2e

xðiÞ �min
j2e

xðjÞ
� �

¼
X

e2E

max
i;j2e

xðiÞ � xðjÞ
n o

: ð1:2Þ

Since the HPWL function (1.2) is continuous and convex, but not differentiable, it is

usually approximated by the Bound-2-Bound (B2B) net model [21]. The B2B model

is a convex quadratic function and has been widely used in VLSI placement

research [1, 4, 13]. SimPL [10, 12], ComPLx [9], and Mapple [11] are among the

best state-of-the-art placers in modern VLSI Computer Aided Design. They also

approximate the HPWL function by the B2B net model [21], and solve the fol-

lowing problem as a subproblem,
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min
x2X

f ðxÞ ¼ HPWLNB2BðxÞ þ k x� xþ0
�

�

�

�

1
; ð1:3Þ

where X ¼ ½0; W �n; HPWLNB2BðxÞ is the B2B convex quadratic approximation of

the function HPWLN ðxÞ in Eq. (1.2), k[ 0; and xþ0 is the feasible solution of the

VLSI placement problem.

The problem (1.3) is a key subproblem in VLSI placers SimPL, ComPLx, and

Mapple, which was solved by the conjugate gradient method. In the problem, the

B2B net model is a rough approximation of the HPWL function, which cannot

capture the HPWL information exactly in the process of optimization. Moreover,

the k � k1 norm is not Lipschitz continuously differentiable, which makes the

conjugate gradient method for solving the problem (1.3) not theoretically sound.

In this paper, we do not use the B2B net model to approximate the function

HPWLN ðxÞ but use the HPWL function directly. The l1-norm jj � jj1 is changed to

the square of l2-norm, i.e., jj � jj22: Hence, the problem we consider in this paper is

min
x2X

f ðxÞ ¼
X

e2E

max
i;j2e

xðiÞ � xðjÞ
n o

þ k x� xþ0
�

�

�

�

2

2
; ð1:4Þ

where k [ 0: The function HPWLN ðxÞ is a non-differentiable convex function, so

we will adopt Nesterov’s smoothing and excessive gap techniques [16, 17] to solve

problem (1.4).

Several approaches in the previous literature can be used to solve the

minimization problem (1.4). The LSE net model and the LP-norm net model [1,

4] approximate the function HPWLN ðxÞ by the LSE and LP-norm functions.

Subgradient methods [3] can be used to solve the problem (1.4) directly. But it has

been recognized in practice that subgradient methods are usually slow and

numerically sensitive to the choice of step sizes. Recently, Nesterov [18] proposed a

subgradient method to optimize huge-scale problems with sparse subgradients. This

method is based on a recursive update of the results of matrix/vector products and

the values of symmetric functions. The convergence rate of the algorithm is

Oð1=
ffiffiffi

k
p
Þ; where k is the iteration counter. Dinh et al. [5] proposed an algorithm

which combines Lagrangian decomposition with excessive gap smoothing tech-

niques to solve large-scale separable convex optimization problems. The conver-

gence rate is Oð1=kÞ: However, our problem is not separable, so we cannot use their

technique directly. Schmidt et al. [20] proposed an algorithm to optimize the sum of

a finite number of smooth convex functions by the stochastic average gradient

method. The convergence rate is Oð1=kÞ:
In this paper, we propose an algorithm basing on the smoothing and excessive

gap techniques by Nesterov [16, 17] to solve problem (1.4). Comparing problem

(1.4) with the problem (1.1) in Nesterov [16, 17], we can find that our considered

problem is a direct generalization of problem (1.1) on the summation of a large

number of maximum functions. Moreover, every maximum function in (1.4)

contains only the cells in a net, and the number of cells in a net is almost not too big

according to the characteristic of the VLSI circuit. Hence, we use Nesterov’s

smoothing technique on every maximum function directly. The proposed algorithm

has a convergence rate Oð1=k2Þ; where k is the iteration counter. According to the
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complexity theory for convex optimization by Nemirovski and Yudin [15], the

proposed algorithm is optimal.

The paper is organized as follows. In Sect. 2, some notations and basic results are

quoted. In Sect. 3.1, we introduce the technique of smoothing the HPWL function

of every net ek: The excessive gap condition (EGC) and some lemmas are given in

Sect. 3.2. Section 4 introduces the algorithm. In this section, the theorems of

convergence rate and efficiency estimate are also specified. In Sect. 5, we give a

scheme to speed up the convergence of the algorithm. Finally, preliminary

computational experiments are put in Sect. 6.

2 Notations and Basic Results

In this section, we review some notations and basic results proposed in Nesterov’s

smoothing and excessive gap techniques [16, 17]. They will be used in our paper.

Let X be a finite dimensional space. In this paper, we define X as

X ¼ x ¼ ðxð1Þ; xð2Þ; � � � ; xðjV jÞÞT : 0 6 xðiÞ 6 W
n o

;

where W is the width of the placement region in the VLSI placement problem.

The space of linear functions on X is denoted by X�: For s 2 X�; x 2 X; the value

of s at x is denoted by hs; xi; where h�; �i denotes the regular inner product. Denote

s; z 2 S; where S is a finite dimensional space equipped with the lp-norm. The dual

norm of s is defined as

jjsjj�p ¼ max
jjzjjp¼1

hs; zi:

Let A be a linear operator which maps X to Q, i.e., X �! Q: We use Ai to denote the

ith row of A, and use A j to denote the jth column of A. In this paper, we set the space

Q be equipped with the l1-norm, and Q ¼ u:
Pp

i¼1 juðiÞj 6 1
� �

:

For x 2 X; u 2 Q; X is equipped with the l2-norm, and the norm of A is defined

as

jjAjj2;1 ¼ max
jjxjj2¼1

max
jjujj1¼1

hAx; ui:

Clearly,

jjAjj2;1 ¼ AT
�

�

�

�

1;2
¼ max
jjxjj2¼1

jjAxjj�1 ¼ max
jjujj1¼1

ATu
�

�

�

�

�
2
:

It is easy to verify that

jjAxjj�1 6 jjAjj2;1 � jjxjj2; 8x 2 X; ð2:1Þ

and

ATu
�

�

�

�

�
2
6 jjAjj2;1 � jjujj1; 8u 2 Q: ð2:2Þ
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It is easy to prove that the norm of A satisfies

jjAjj2;1 ¼ max
jjxjj2¼1

max
16i6p

hAT
i ; xi

� �

¼ max
16i6p

Aik k�2
� �

; ð2:3Þ

where p is the number of rows in A.

Furthermore, we define a strongly convex function dQðuÞ on the convex set Q,

which satisfies that

dQðuÞ > dQðu�Þ þ
1

2
rQkju� u�jj21; ð2:4Þ

and for all u; v 2 Q;

dQðuÞ > dQðvÞ þ hrdQðvÞ; u� vi þ 1

2
rQjju� vjj21; ð2:5Þ

where rQ [ 0 is the strong convexity parameter of the function dQðuÞ; and u� ¼
argminu2Q dQðuÞ: Without loss of generality, we assume that dQðu�Þ ¼ 0:

3 Objective and Dual Functions

In this section, we present the smoothing technique for the VLSI placement problem

in detail. And then, the EGC is given for the objective function and its dual form.

3.1 Smoothing the Objective Function

Let ai;jðekÞ be an n-dimensional vector corresponding to net ek and cells i and j,

where n is the dimension of the vector x. And for any i; j 2 ek; i 6¼ j; the ith

component of ai;jðekÞ is 1, the jth component of ai;jðekÞ is �1, and the other

components are zeros. Let AðekÞ be a matrix with respect to ek with all possible

vectors ai;jðekÞ as rows. To make it clear, we give the following example.

Consider a hypergraph N ¼ ðV; EÞ; where V ¼ f1; 2; 3g; E ¼ fe1; e2g; and the

cells 1; 2 2 e1; 1; 2; 3 2 e2: By the notation, for the net e1; a1;2ðe1Þ ¼
ð1; �1; 0Þ; a2;1ðe1Þ ¼ ð�1; 1; 0Þ; and for the net e2; we have a1;2ðe2Þ ¼
ð1; �1; 0Þ; a1;3ðe2Þ ¼ ð1; 0; �1Þ; a2;1ðe2Þ ¼ ð�1; 1; 0Þ; a2;3ðe2Þ ¼ ð0; 1; �1Þ;
a3;1 ðe2Þ ¼ ð�1; 0; 1Þ; a3;2ðe2Þ ¼ ð0; �1; 1Þ: Thus, the matrices Aðe1Þ and Aðe2Þ
have the following forms:

A e1ð Þ ¼
1 � 1 0

�1 1 0

� 	

; A e2ð Þ ¼
1 1 � 1 0 � 1 0

�1 0 1 1 0 � 1

0 � 1 0 � 1 1 1

0

B

@

1

C

A

T

:

Obviously, the dimension of AðekÞ is ðn2
k � nkÞ � n; where nk is the number of cells

on the net ek: Moreover, any row of the matrix AðekÞ has only two non-zero

components. The one is 1 and the other one is �1. So by (2.3), we can get
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A ekð Þk k2;1¼ Ai ekð Þk k�2¼ Ai ekð Þk k2¼
ffiffiffi

2
p

: ð3:1Þ

Lemma 3.1 By the above notations, for any net ek with nk cells, we have

HPWLek
ðxÞ ¼ max

i; j2ek

xðiÞ � xðjÞ
n o

¼ max
i; j2ek

hai;j ekð Þ; xi
� �

¼ max
uk

hA ekð Þx; uki:
X

nkðnk�1Þ

i¼1

u
ðiÞ
k

















 6 1

( )

:

Proof For cells i; j 2 ek; it holds that xðiÞ � xðjÞ ¼ hai;jðekÞ; xi: Thus,

max
i; j2ek

xðiÞ � xðjÞ
n o

¼ max
i; j2ek

hai;j ekð Þ; xi ¼ max
i; j2ek

xðiÞ � xðjÞ










 ¼ max
i; j2ek

hai;j ekð Þ; xi










: ð3:2Þ

Furthermore, there exist i0; j0 2 ek such that

max
i; j2ek

hai;j ekð Þ; xi










 ¼ hai0;j0 ekð Þ; xi










: ð3:3Þ

So for uk such that
Pnkðnk�1Þ

i¼1 juðiÞk j 6 1;

hA ekð Þx; uki ¼
X

nkðnk�1Þ

i¼1

u
ðiÞ
k hAi ekð Þ; xi

6

X

nkðnk�1Þ

i¼1

u
ðiÞ
k hAi ekð Þ; xi



















6 hai0;j0 ekð Þ; xi












X

nkðnk�1Þ

i¼1

u
ðiÞ
k



















6 hai0;j0 ekð Þ; xi










:

ð3:4Þ

Hence, by (3.2)–(3.4),

max
uk

hA ekð Þx; uki:
X

nkðnk�1Þ

i¼1

u
ðiÞ
k

















 6 1

( )

6 max
i; j2ek

hai;j ekð Þ; xi:

Furthermore, suppose that in Eq. (3.2), ai0;j0 ðekÞ is the pth row of AðekÞ: Take uk such

that the pth component of uk is sgnðhai0;j0 ðekÞ; xiÞ; and the other components of uk

are 0. Then

hA ekð Þx; uki ¼ hai0;j0 ekð Þ; xi










 ¼ max
i;j2ek

hai;j ekð Þ; xi;

which implies that

max
i;j2ek

hai;j ekð Þ; xi
� �

¼ max
uk

hA ekð Þx; uki:
X

nkðnk�1Þ

i¼1

u
ðiÞ
k

















 6 1

( )

:
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Hence, Lemma 3.1 holds.

As shown in Lemma 3.1, in this paper, we define the set

Qk ¼ uk:
X

nkðnk�1Þ

i¼1

u
ðiÞ
k

















 6 1

( )

;

where nk is the number of cells on the net ek: Furthermore, by Lemma 3.1, for any

net ek; we write the function HPWLek
ðxÞ of ek as

fek
ðxÞ ¼ max

uk2Qk

hA ekð Þx; uki: ð3:5Þ

Let

bf ðxÞ ¼ x� xþ0
�

�

�

�

2

2
:

By Lemma 3.1, the problem in (1.4) can be written as

min
x2X

f ðxÞ ¼ kbf ðxÞ þ
X

m

k¼1

max
uk2Qk

hA ekð Þx; uki; ð3:6Þ

where k[ 0; m ¼ jN j; which is obviously a direct generalization of problem (1.1).

For every net ek; the HPWL function (1.2) is convex but not Lipschitz

continuously differentiable. Hence, the problem (3.6) is not easy to solve directly.

We use the idea of smoothing technique [16] to transform the problem such that it is

smooth.

Recall that dQk
ðukÞ is a strongly convex function on Qk with a strongly convexity

parameter rQk
[ 0: Let u�k be the optimal solution of dQk

ðukÞ; i.e.,

u�k ¼ arg min
uk2Qk

dQk
ukð Þ: ð3:7Þ

Let l be a positive smoothness parameter. Consider the following function

fek ;lðxÞ ¼ max
uk2Qk

hA ekð Þx; uki � ldQk
ukð Þ

� �

: ð3:8Þ

Since dQk
ðukÞ is strongly convex, the optimal solution of the above maximization

problem is unique and we let it be u�kðxÞ: Thus, the smoothness function of the

objective function in (3.6) is in the following form,

flðxÞ ¼ kbf ðxÞ þ
X

m

k¼1

max
uk2Qk

hA ekð Þx; uki � ldQk
ukð Þ

� �

: ð3:9Þ

By Theorem 1 of [16], flðxÞ is a continuously differentiable convex function, and its

gradient

rflðxÞ ¼ krbf ðxÞ þ
X

m

k¼1

hA ekð Þ; u�kðxÞi;
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is Lipschitz-continuous on X.

The dual problem of (3.6) can be formulated as

max
u12Q1;���;um2Qm

U u1; � � � ; umð Þ ¼ min
x2X

kbf ðxÞ þ
X

m

k¼1

hA ekð Þx; uki; ð3:10Þ

where k[ 0: Denote x�ðuÞ as the optimal solution of the minimization problem in

the dual problem (3.10), where u ¼ ðu1; u2; � � � ; umÞT: Since bf ðxÞ is strongly convex

with strongly convex parameter 2, x�ðuÞ is unique. Moreover, by Theorem 1 of [16],

Uðu1; � � � ; umÞ is a continuously differentiable concave function.

Therefore, for any bx 2 X and uk 2 Qk; where k ¼ 1; � � � ;m, we have

U u1; � � � ; umð Þ 6 kbf ðbxÞ þ
X

m

k¼1

hA ekð Þbx; uki: ð3:11Þ

Obviously, suppose bx ¼ x�ðuÞ; then we have

U u1; � � � ; umð Þ 6 kbf ðbxÞ þ
X

m

k¼1

hA ekð Þbx; uki: ð3:12Þ

Since u1; � � � ; um are independent and they have different dimensions, the partial

gradient of the function Uðu1; � � � ; umÞ with respect to uk is denoted by

ruk
U u1; � � � ; umð Þ ¼ oUðu1; � � � ; umÞ

ouk

¼ oU
ox�ðuÞ

ox�ðuÞ
ouk

þ A ekð Þx�ðuÞ:

Since x�ðuÞ is the unique optimal solution of (3.10), the gradient of the function

Uðu1; � � � ; umÞ with respect to x�ðuÞ satisfies the following equality:

oUðu1; � � � ; umÞ
ox�ðuÞ ¼ 0:

Hence,

ruk
U u1; � � � ; umð Þ ¼ oUðu1; � � � ; umÞ

ouk

¼ A ekð Þx�ðuÞ: ð3:13Þ

By the way, the gradient of Uðu1; � � � ; umÞ is defined as follows:

rU u1; � � � ; umð Þ ¼ ru1
U u1; � � � ; umð Þ; � � � ;rum

U u1; � � � ; umð Þð ÞT:

By the properties of the norms, we can get the following inequality:

rU u1; � � � ; umð Þk k 6
X

m

k¼1

ruk
U u1; � � � ; umð Þk k: ð3:14Þ

Lemma 3.2 The function Uðu1; � � � ; umÞ is Lipschitz-continuous differentiable with

a Lipschitz constant
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LðUÞ ¼ m2

k
:

Proof From the assumption that bf ðxÞ is strongly convex, the function

Uðu1; � � � ; umÞ has the unique minimal solution x�ðuÞ: Consider uk; vk 2 Qk; k ¼
1; � � � ;m: By the first-order optimality condition, we have

hkrbf ðx�ðuÞÞ þ
X

m

k¼1

A ekð ÞTuk; x�ðvÞ � x�ðuÞi > 0;

hkrbf ðx�ðvÞÞ þ
X

m

k¼1

A ekð ÞTvk; x�ðuÞ � x�ðvÞi > 0:

Adding the above inequalities and using the strong convexity of bf ðxÞ; we have

X
m

k¼1

hA ekð Þðx�ðvÞ � x�ðuÞÞ; uk � vki > hkrbf ðx�ðuÞÞ � krbf ðx�ðvÞÞ; x�ðuÞ � x�ðvÞi

> kbrjjx�ðuÞ � x�ðvÞjj22:
ð3:15Þ

By (2.1) and (3.15), we can get the following inequalities:

X
m

k¼1

A ekð Þðx�ðuÞ � x�ðvÞÞk k�1

 !2

ðby ð2:1ÞÞ 6
X

m

k¼1

A ekð Þk k2;1jjðx�ðuÞ � x�ðvÞÞjj2

 !2

¼
X

m

k¼1

A ekð Þk k2;1

 !2

jjx�ðvÞ � x�ðuÞjj22

ðby ð3:15ÞÞ 6 1

kbr

X
m

k¼1

A ekð Þk k2;1

 !2
X

m

k¼1

hA ekð Þðx�ðuÞ � x�ðvÞÞ; uk � vki

6
1

kbr

X
m

k¼1

A ekð Þk k2;1

 !2
X

m

k¼1

A ekð Þðx�ðuÞ � x�ðvÞÞk k�1 uk � vkk k1

6
1

kbr

X
m

k¼1

A ekð Þk k2;1

 !2
X

m

k¼1

A ekð Þðx�ðuÞ � x�ðvÞÞk k�1
X

m

k¼1

uk � vkk k1:

Thus, by (3.1) and br ¼ 2; we can get the following inequality:
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X
m

k¼1

A ekð Þðx�ðuÞ � x�ðvÞÞk k�1 6
1

kbr

X
m

k¼1

A ekð Þk k2;1

 !2
X

m

k¼1

uk � vkk k1

¼ m2

k

X
m

k¼1

uk � vkk j1:

Moreover, by (3.13), (3.14), and the above inequality, we have

rU u1; � � � ;umð Þ�rU v1; � � � ;vmð Þk k�16
X

m

k¼1

ruk
Uek

u1; � � � ;umð Þ�rvk
U v1; � � � ;vmð Þk k�1

¼
X

m

k¼1

A ekð Þðx�ðuÞ�x�ðvÞÞk j�1

6
m2

k

X
m

k¼1

uk�vkk k1:

Hence, the lemma holds.

3.2 Excessive Gap Condition

Similar to [17], for some x 2 X and uk 2 Qk; where k ¼ 1; � � � ;m; the EGC is given

as follows:

flðxÞ 6 U u1; � � � ; umð Þ: ð3:16Þ

Lemma 3.3 Let vectors x 2 X and uk 2 Qk satisfying (3.16), where k ¼ 1; � � � ;m:
Then

0 6 f ðxÞ � U u1; � � � ; umð Þ 6 l
X

m

k¼1

Dk; ð3:17Þ

where Dk ¼ maxuk2Qk
dQk
ðukÞ:

Proof Clearly,

kbf ðxÞ þ
X

m

k¼1

hA ekð Þx; uki � lDkf g

6 kbf ðxÞ þ
X

m

k¼1

hA ekð Þx; uki � ldQk
ukð Þ

� �

:

So we have

f ðxÞ � l
X

m

k¼1

Dk ¼ kbf ðxÞ þ
X

m

k¼1

max
uk2Qk

hA ekð Þx; uki � lDkf g

6 kbf ðxÞ þ
X

m

k¼1

max
uk2Qk

hA ekð Þx; uki � ldQk
ukð Þ

� �

¼ flðxÞ:

Hence, we can easily get
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f ðxÞ � l
X

m

k¼1

Dk 6 flðxÞ 6 U u1; � � � ; umð Þ;

and Lemma 3.3 holds.

For uk; vk 2 Qk; denote the Bregman distance between uk and vk by

n vk; ukð Þ ¼ dQk
vkð Þ � dQk

ukð Þ � hrdQk
ukð Þ; vk � uki: ð3:18Þ

By (2.5), we have

n vk; ukð Þ > 1

2
rQk

vk � ukk k2
1: ð3:19Þ

Define the Bregman projection of g on the set Qk as follows:

Vk uk; gð Þ ¼ argmax
vk2Qk

hg; vk � uki � ln vk; ukð Þf g: ð3:20Þ

Lemma 3.4 The EGC holds for

l ¼ max
16k6m

f 1

rQk

LðUÞg;

x ¼ x�ðu�Þ;

uk ¼ Vk uk; ruk
U u�1; � � � ; u�m
� �� �

;

where u�k is the minimal solution of dQk
ðukÞ and k ¼ 1; � � � ;m:

Proof Indeed, for any x 2 X and uk 2 Qk; k ¼ 1; � � � ;m; by setting gk ¼
ruk

Uðu�1; � � � ; u�mÞ; we can get the equation

U V1 u�1; g1

� �

; � � � ;Vm u�m; gm

� �� �

¼ U u1; � � � ; umð Þ:

By Lemma 3.3, the function Uðu1; � � � ; umÞ is Lipschitz-continuous differentiable,

we have

rU u1; � � � ; umð Þ � rU v1; � � � ; vmð Þk k�16 LðUÞ
X

m

k¼1

uk � vkk k1:

In review of [12] (Sect. 2.1), from the fact that the function Uðu1; � � � ; umÞ is con-

cave, we have

�U u1; � � � ; umð Þ

6 �U u�1; � � � ; u�m
� �

�
X

m

k¼1

hruk
U; uk � u�ki þ

1

2
LðUÞ

X
m

k¼1

uk � u�k
�

�

�

�

2

1
:

Thus,
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U u1; � � � ; umð Þ > U u�1; � � � ; u�m
� �

þ
X

m

k¼1

hruk
U; uk � u�ki �

1

2
LðUÞ uk � u�k

�

�

�

�

2

1

 �

¼ kbf ðx�ðu�ÞÞ þ
X

m

k¼1

hA ekð Þx�ðu�Þ; u�ki
�

þ hA ekð Þx�ðu�Þ; uk � u�ki �
1

2
LðUÞ uk � u�k

�

�

�

�

2

1
g

ðby ð3:19ÞÞ > kbf ðx�ðu�ÞÞ þ
X

m

k¼1

hA ekð Þx�ðu�Þ; u�ki
�

þhA ekð Þx�ðu�Þ; uk � u�ki �
LðUÞ
rQk

n uk; u�k
� �

�

by l ¼ max
16k6m

1

rQk

LðUÞ
 �� 	

> kbf ðx�ðu�ÞÞ þ
X

m

k¼1

hA ekð Þx�ðu�Þ; u�ki
�

þhA ekð Þx�ðu�Þ; uk � u�ki � ln uk; u�k
� ��

¼ kbf ðx�ðu�ÞÞ þ
X

m

k¼1

max
vk2Qk

hA ekð Þx�ðu�Þ; vkif

�ln vk; u�k
� ��

ðby ð2:5ÞÞ > kbf ðx�ðu�ÞÞ

þ
X

m

k¼1

max
vk2Qk

hA ekð Þx�ðu�Þ; vki � ldQk
vkð Þ

� �

 �

¼ flðx�ðu�ÞÞ:

Hence, the EGC (3.16) is satisfied.

4 Algorithm

From Lemma 3.4, we know that the EGC holds forl ¼ max16k6m
1

rQk

LðUÞ; x ¼ x�ðu�Þ
and uk ¼ u�k ; k ¼ 1; � � � ;m: The following theorem develops a scheme to choose

l; x; u ¼ ðu1; � � � ; umÞ; and makes sure that the EGC (3.16) holds in each iteration.

Theorem 4.1 Let vectors x 2 X and uk 2 Qk; k ¼ 1; � � � ;m; satisfying EGC for some

positive parameters l: Fix a parameter s 2 ð0; 1Þ and choose lþ ¼ ð1� sÞl: Let

buk ¼ ð1� sÞuk þ su�kðxÞ; k ¼ 1; � � � ;m;

xþ ¼ ð1� sÞxþ sx�ðbuÞ;

euk ¼ Vkðu�kðxÞ;
s

ð1� sÞA ekð ÞbxÞ; k ¼ 1; � � � ;m;

ukþ ¼ ð1� sÞuk þ seuk; k ¼ 1; � � � ;m:

ð4:1Þ
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Then xþ and uþ ¼ ðu1þ; � � � ; umþÞ satisfy EGC with smoothness parameters lþ;
provided that s is chosen in accordance with the following relation:

s2

1� s
6 min

16k6m

lrQk

LðUÞ :

Proof Denote bx ¼ x�ðbuÞ and vk ¼ u�kðxÞ: By line 2 of (4.1) and the convexity of

bf ðxÞ; we have

flþ xþð Þ ¼ kbf xþð Þ þ
X

m

k¼1

max
uk2Qk

hA ekð Þxþ; uki � lþdQk
ukð Þ

� �

¼ kbf ðð1� sÞxþ sbxÞ

þ
X

m

k¼1

max
uk2Qk

hA ekð Þ½ð1� sÞxþ sbx�; uki � ð1� sÞldQk
ukð Þ

� �

6 k½ð1� sÞbf ðxÞ þ sbf ðbxÞ�

þ
X

m

k¼1

max
uk2Qk

ð1� sÞ hA ekð Þx; uki � ldQk
ukð Þ½ � þ shA ekð Þbx; uki

� �

¼ ð1� sÞðkbf ðxÞÞ þ sU bu1; � � � ; bumð Þ

þ
X

m

k¼1

max
uk2Qk

ð1� sÞ hA ekð Þx; uki � ldQk
ukð Þ½ � þ shA ekð Þbx; uk � buki

� �

:

Since vk ¼ u�kðxÞ is an optimal solution of (3.8), by the first-order condition, we have

X
m

k¼1

hA ekð Þx�rdQk
vkð Þ; uk � vki 6 0: ð4:2Þ

Hence,

kbf ðxÞ þ
X

m

k¼1

hA ekð Þx; uki � ldQk
ukð Þ½ �

ðby ð3:18ÞÞ ¼kbf ðxÞ þ
X

m

k¼1

hA ekð Þx; uki � l n uk; vkð Þ þ dQk
vkð Þð½

þhrdQk
vkð Þ; uk � vkiÞ�

ðby ð4:2ÞÞ 6kbf ðxÞ þ
X

m

k¼1

hA ekð Þx; vki � l n uk; vkð Þ þ dQk
vkð Þð Þ½ �

¼flðxÞ � l
X

m

k¼1

n uk; vkð Þ

ðby ð3:16ÞÞ 6U u1; � � � ; umð Þ � l
X

m

k¼1

n uk; vkð Þ
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ðby ð3:11ÞÞ 6kbf ðbxÞ þ
X

m

k¼1

hA ekð Þbx; uki � l
X

m

k¼1

n uk; vkð Þ

¼kbf ðbxÞ þ
X

m

k¼1

hA ekð Þbx; uk � buk þ buki � ln uk; vkð Þf g

ðby ð3:12ÞÞ ¼U bu1; � � � ; bumð Þ þ
X

m

k¼1

hA ekð Þbx; uk � bukif g � l
X

m

k¼1

n uk; vkð Þ:

By the above inequalities, (3.19) and (4.1), we can get the following relations:

flþ xþð Þ 6 ð1� sÞðkbf ðxÞÞ þ sU bu1; � � � ; bumð Þ

þ
X

m

k¼1

max
uk2Qk

ð1� sÞ hA ekð Þx; uki � ldQk
ukð Þ½ �

�

þshA ekð Þbx; uk � bukig

6 U bu1; � � � ; bumð Þ þ
X

m

k¼1

max
uk2Qk

A ekð Þbx; ð1� sÞuk þ suk � bukif

�ð1� sÞln uk; vkð Þg
ðby line 1 of ð4:1ÞÞ ¼ U bu1; � � � ; bumð Þ þ ð1� sÞ

X
m

k¼1

max
uk2Qk

s
1� s

hA ekð Þbx; uk � vki � ln uk; vkð Þ
n o

ðby line 3 of ð4:1ÞÞ ¼ U bu1; � � � ; bumð Þ

þð1� sÞ
X

m

k¼1

s
1� s

hA ekð Þbx; euk � vki � ln euk; vkð Þ
n o

ðby ð3:19ÞÞ 6 U bu1; � � � ; bumð Þ þ ð1� sÞ
X

m

k¼1

s
1� s

hA ekð Þbx; euk � vki �
rQk

2
euk � vkk k2

1

n o

6 U bu1; � � � ; bumð Þ

þ
X

m

k¼1

shA ekð Þbx; euk � vki �
s2

2
LðUÞ euk � vkk k2

1

 �

:

Moreover, according to lines 1 and 4 of (4.1), we have

flþ xþð Þ 6 U bu1; � � � ; bumð Þ þ
X

m

k¼1

shA ekð Þbx; euk � vki �
s2

2
LðUÞ euk � vkk k2

1

 �

¼ U bu1; � � � ; bumð Þ þ
X

m

k¼1

hA ekð Þbx; ukþ � buki �
1

2
L2ðUÞ ukþ � bukk k2

1

 �

6 U u1þ; � � � ; umþð Þ:

The proof is completed.
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According to the above theorem and lemmas, the following algorithm is given.

Denote ui as the ith iteration value of u; xi as the ith iteration value of x, and uk as

the kth component of u.

Algorithm 1
Input: u∗ = (u∗

1, · · · , u∗
m)T , x+

0 , desired accuracy ε and the set of nets N .

Initialization: set i = 0, μ0 = 1
σ
L2(φek

), x0 = x∗(u∗) and uk,0 = Vk(u∗
k, A(ek)x0).

Iterations:

1: repeat

2: τi = 2
i+3 ;

3: ûi = (1 − τi)ui + τiu
i∗(xi);

4: xi+1 = (1 − τi)xi + τix
∗(û);

5: for (k = 1;k m; k + +) do

6: ũi
k = Vk(ui∗

k (xi), τi

(1−τi)
A(ek)x∗(û));

7: end for

8: ui+1 = (1 − τi)ui + τiũ
i;

9: μi+1 = (1 − τi)μi;

10: i = i + 1;

11: until f(xi) − Φ(ui
1, · · · , ui

m) ε.

Theorem 4.2 Let the pairs xi and ui ¼ fui
1; � � � ; ui

mg be generated by the above

algorithm. Then the following inequality holds:

f xið Þ � U ui
1; � � � ; ui

m

� �

6

X
m

k¼1

liDkf g ¼
X

m

k¼1

2LðUÞDk

ðiþ 1Þðiþ 2Þr

 �

:

Proof According to Theorem 4.1 and Lemma 3.4, we have that the sequences

fli
1; � � � ;li

mg
1
i¼0 and fsig1i¼0 satisfy the EGC (3.16), and

li ¼
1

r
LðUÞ 1

3
� 2

4
� 5� 2

5
� � � � � i

iþ 2
¼ 2LðUÞ
ðiþ 1Þðiþ 2Þr :

From Lemma 3.3, we have

0 6 f xið Þ � U ui
1; � � � ; ui

m

� �

6

X
m

k¼1

liDkf g ¼
X

m

k¼1

2LðUÞDk

ðiþ 1Þðiþ 2Þr

 �

:

This completes the proof.

By Theorem 4.2, we can see that the convergence rate of our algorithm is

Oð1=i2Þ; where i is the iteration counter.
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Next we will introduce some implementation details of the algorithm. Choose the

smoothness function dQk
ðukÞ as the following form:

dQk
ukð Þ ¼ ln nk nk � 1ð Þ þ

X

n2
k
�nk

i¼1

u
ðiÞ
k ln u

ðiÞ
k :

It is easy to verify that

Dk ¼ max
uk2Qk

dQk
ukð Þ

� �

¼ ln nk nk � 1ð Þ;

and the strong convexity parameter rQk
¼ 1:

We also need to compute the following objects at each iteration.

(1) Computation of u�kðxÞ; k ¼ 1; � � � ;m: u�kðxÞ is the solution of the following

problem:

max
uk2Qk

hA ekð Þx; uki � ldQk
ukð Þ

� �

:

The solution of the above problem is

u
ðiÞ�
k ðxÞ ¼

exp ðhAiðekÞT; xi=lÞ
Pnkðnk�1Þ

i¼1 exp ðhAiðekÞT; xi=lÞ
:

(2) Computation of x�ðuÞ: x�ðuÞ is the solution of the problem as follows:

min
x2X

kbf ðxÞ þ
X

m

k¼1

hA ekð Þx; ukif g:

The solution of the above problem can be written as

x�ðuÞ ¼ xþ0 �
1

2k

X
m

k¼1

hA ekð Þ; uki:

(3) Computation of Vkðuk; gÞ; k ¼ 1; � � � ;m:Vkðuk; gÞ is the solution of the

following problem:

max
vk2Qk

hg; vk � uki � n vk; ukð Þf g:

The solution of the above problem can be written as

V
ðiÞ
k uk; gð Þ ¼ u

ðiÞ
k exp ðgðiÞ=lÞ

Pnkðnk�1Þ
i¼1 u

ðiÞ
k exp ðgðiÞ=lÞ

:

Thus, all variables of the algorithm can be computed directly.
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5 Speeding Up the Convergence

By the above lemmas and theorems, we have found that the Lipschitz constant LðUÞ
may be too large. So we want to take the following strategies to reduce the constant

and speed up the convergence.

For any x 2 X; denote xek
as an n-dimensional vector, and for any i 2 ek; the ith

component of xek
is xðiÞ; and the other components are 0.

Obviously, for every net ek; xek
can be generated by the information of ek; and we

have the equalities as follows:

hai;j ekð Þ; xi ¼ hai;j ekð Þ; xek
i;

hA ekð Þx; uki ¼ hA ekð Þxek
; uki:

ð5:1Þ

Let A be a matrix corresponding to a net with all the n cells. Then it is obvious that

Axek
k k2> A ekð Þxek

k k2:

By denoting X�ðuÞ ¼ ðx�1ðuÞ; x�2ðuÞ; � � � ; x�mðuÞÞ; and gkðuÞ ¼ AðekÞx�ðuÞ; we can get

rU u1; u2; � � � ; umð Þk k1¼ g1ðuÞ; g2ðuÞ; � � � ; gmðuÞð ÞTk k16 AX�ðuÞk k1: ð5:2Þ

Denote degi as the degree of the vertex i in the hypergraph. The following relations

hold:

jjx�ðuÞjj22 ¼
X

m

i¼1

xek
k k2

2¼
X

n

i¼1

degi xðiÞ
�

�

�

�

2

2
: ð5:3Þ

Note that the function Uðu1; � � � ; umÞ defined by (3.10) is concave and differentiable,

and x�ðuÞ is its minimal solution. Moreover, the function bf ðxÞ is strongly convex

with strong convexity parameter br ¼ 2: Thus, we have the following lemma.

Lemma 5.1 The function Uðu1; � � � ; umÞ is Lipschitz-continuous differentiable with

a constant

LðUÞ ¼ 1

k
max

16i6m
degi:

Proof From the function Uðu1; � � � ; umÞ defined by (3.10) and the fact that bf ðxÞ is

strongly convex, the minimization problem in (3.10) has the unique solution x�ðuÞ:
Consider uk; vk 2 Qk; k ¼ 1; � � � ;m: We have

rU u1; u2; � � � ;umð Þ�rU v1; v2; � � � ;vmð Þk k�1
� �2

ðby ð5:2ÞÞ6 jjAX�ðuÞ�AX�ðvÞjj�1
� �2

ðby ð2:1ÞÞ6 jjAjj22;1jjX�ðuÞ�X�ðvÞjj
2
2
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ðby ð3:1ÞÞ ¼ 2
X

m

k¼1

x�ek
ðuÞ � x�ek

ðvÞ
�

�

�

�

2

2

ðby ð5:3ÞÞ 6 2 max
16i6n

degijjx�ðuÞ � x�ðvÞjj22

ðby ð3:15ÞÞ 6 2

kbr
max
16i6n

degi

X
m

k¼1

hA ekð Þðx�ðvÞ � x�ðuÞÞ; uk � vki

6
1

k
max
16i6n

degi rU u1; u2; � � � ; umð Þ � rU v1; v2; � � � ; vmð Þk k�1
X

m

k¼1

uk � vkk k1:

Hence, we have

rU u1; � � � ; umð Þ � rU v1; � � � ; vmð Þk k16
1

k
max
16i6n

degi

X
m

k¼1

uk � vkk k1;

and the lemma holds.

6 Experiments

In this section, we test the algorithm on nine benchmarks of the 2004 International

Symposium on Physical Design (ISPD04) placement contest benchmark suites. Our

implementation is written in Matlab 7.0, and is run on a personal computer with

Intel Core2 Duo CPU E7500 (2.9 GHZ) and 2 GB internal memory, under

Windows XP. The information of the nine benchmarks are put in Table 1. In the

experiments, we take different values k ¼ 0:1; 0:5; and 1, and we take the value

e ¼ 200 for every benchmark.

In Fig. 1, we plot the primal function value and the dual function value of the

algorithm on the benchmark ibm01 with k ¼ 1:0 at each iteration.

From Fig. 1, we can find that the objective function value decreases very fast in

the first 10 iterations, and then the value changes very small. Hence, we terminate

Table 1 ICCAD’04 IBM benchmark

Ckt #Cells #Pads #Nets #Pins #Rows

ibm01 12 506 246 14 111 50 566 96

ibm02 19 342 259 19 584 81 199 109

ibm03 22 853 283 27 401 93 573 121

ibm04 27 220 287 31 970 105 859 136

ibm05 28 146 1 201 28 446 126 308 139

ibm06 32 332 166 34 826 128 182 126

ibm07 45 639 287 48 117 175 639 166

ibm08 51 023 286 50 513 204 890 170

ibm09 53 110 285 60 902 222 088 183
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our algorithm in the experiments when the dual gap is less than 200. The results of

the algorithm on the nine benchmarks are put in Table 2.

Table 2 shows the runtime and the final value of f ðxÞ for different k and

benchmark. In general, the computation of u�kðxÞ takes 25 % of the total runtime, the

computation of Vkðuk; gÞ takes 27 % the computation of x�ðuÞ takes 14 % the

computation of dual function Uðu1; � � � ; umÞ spends 26 % the computation of primal

function f ðxÞ takes 5 % and the others take 3 % of the total runtime, respectively.

The runtime of our algorithm is not only related to the scale of the benchmark,

but also related to k and the number of cells on the nets. From Fig. 1 and Table 2,

we can find that with the increase of the value of k; the algorithm costs less time.

This is because L is inversely proportional to k; and with the increase of L, the

improvement of each iteration will be smaller. From the experiments, we also find

that computations of u�kðxÞ; Vkðuk; gÞ; and Uðu1; � � � ; umÞ take most of the runtime,

and these computations depend on the number of cells on the nets. When the

number of cells on a net is larger, the more runtime of these computations will cost.

Finally, it must be remarked that the problem considered in this paper is only a

subproblem in the software packages SimPL [10, 12], ComPLx [9], and Mapple

[11], for VLSI placement. Our future research will improve the performance of the

algorithm, and implement it for real VLSI placement.
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Fig. 1 Primal and dual function values of ibm01, k ¼ 1:0
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