J. Oper. Res. Soc. China (2014) 2:423-443
DOI 10.1007/s40305-014-0065-8

Nesterov’s Smoothing and Excessive Gap Methods
for an Optimization Problem in VLSI Placement

Jian-Li Chen * Yan Cui + Wen-Xing Zhu

Received: 23 August 2014 /Revised: 17 November 2014/ Accepted: 19 November 2014/

Published online: 12 December 2014

© Operations Research Society of China, Periodicals Agency of Shanghai University, and Springer-
Verlag Berlin Heidelberg 2014

Abstract In this paper, we propose an algorithm for a nonsmooth convex opti-
mization problem arising in very large-scale integrated circuit placement. The
objective function is the sum of a large number of Half-Perimeter Wire Length
(HPWL) functions and a strongly convex function. The algorithm is based on
Nesterov’s smoothing and excessive gap techniques. The main advantage of the
algorithm is that it can capture the HPWL information in the process of optimi-
zation, and every subproblem has an explicit solution in the process of optimization.
The convergence rate of the algorithm is O(1/k?), where k is the iteration counter,
which is optimal. We also present preliminary experiments on nine placement
contest benchmarks. Numerical examples confirm the theoretical results.

Keywords VLSI - Global placement - Nonsmooth convex optimization -
Smoothing technique - Excessive gap technique

1 Introduction

In 2005, Nesterov presented the smoothing [16] and excessive gap techniques [17]
to solve nonsmooth convex minimization problems. Specifically, he solved the
following minimization problem,

This research was supported partially by National Natural Science Foundation of China (Nos. 61170308
and 11331003) and National Key Basic Research Science Foundation of China (No. 2011CB808003).

J.-L. Chen - Y. Cui - W.-X. Zhu (X))

Center for Discrete Mathematics and Theoretical Computer Science, Fuzhou University,
Fuzhou 350108, China

e-mail: wxzhu@fzu.edu.cn

@ Springer

424 J.-L. Chen et al.

o~

minf(x) = f(x) +max{ <Ax, u > — §(u):u € 0}, (1.1)

xeX

where X is a bounded closed convex set in the n-dimensional Euclidean space

~

R"; f(x) is a convex and Lipschitz continuous differentiable function with some
constant M > 0 on X; the linear operator A maps X to Q; Q is a simple bounded

closed convex set in the m-dimensional Euclidean space R"™; and &(u) is a simple
continuous convex function on Q, such that the maximum function in (1.1) has a
closed-form solution. The iteration complexity of Nesterov’s smoothing technique
is O(1/¢), where ¢ is a user-defined absolute accuracy of approximate optimal value.
The convergence rate of the excessive gap technique for the problem is O(1/k) if
f(x) is a non-strongly convex function, and can reach O(1/k?) if]A‘(x) is a strongly
convex function, where k is the iteration counter. The two methods have been
widely used in applications, e.g., sparse recovery [2], resource allocation [8], risk
measures for portfolio optimization [7], and multi-commodity flow and fractional
packing [19].

In this paper, we aim at using the smoothing [16] and excessive gap techniques
[17] to solve a convex optimization problem in the placement of a very large-scale
integrated (VLSI) circuit. Placement is one of the most important steps in VLSI
computer aided design, since chip performance depends heavily on the circuit
placement results [1]. A modern chip often contains millions of circuit cells and
nets, which must be placed in a design region legally and the objective is optimized.
This has to be done using high-performance optimization techniques.

A VLSI circuit can be modeled as a hypergraph A’ = (V, E), where V denotes
the set of circuit cells with possibly different widths and heights and E denotes the
set of nets specifying interconnections between the circuit cells. Note that a net may
contain more than two cells, i.e., a net may be a hyperedge. Given a rectangular
[0, W] x [0, H], VLSI placement seeks a placement of circuit cells such that no cell
overlaps with the other, and the total wirelength is minimized [1, 4, 14]. This
problem is NP-complete [6], and is rather difficult to solve due to the very large
scale and NP-completeness. However, up to now, there are a number of packages
for the VLSI placement problem using different optimization methods [1, 4, 14].

Given the location (x(, y)) € [0, W] x [0, H] of circuit cell i € V, the total
wirelength of the circuit is defined as the Half-Perimeter Wirelength (HPWL), i.e.,
HPWL (X, y) = HPWL/(x) + HPWL(y), where

HPWL,/(x) = Z {max x® — min x(j)} = z}; (E}eelz({x(i) —x } (1.2)
ec ’

ice ce
ecE J

Since the HPWL function (1.2) is continuous and convex, but not differentiable, it is
usually approximated by the Bound-2-Bound (B2B) net model [21]. The B2B model
is a convex quadratic function and has been widely used in VLSI placement
research [1, 4, 13]. SimPL [10, 12], ComPLx [9], and Mapple [11] are among the
best state-of-the-art placers in modern VLSI Computer Aided Design. They also
approximate the HPWL function by the B2B net model [21], and solve the fol-
lowing problem as a subproblem,

@ Springer

Nesterov’s Smoothing and Excessive Gap Methods 425

minf(x) = HPWL:B2B(x) + 4[|x = x7 [(1.3)
where X = [0, W]", HPWL,.B2B(x) is the B2B convex quadratic approximation of
the function HPWL (x) in Eq. (1.2), 2 > 0, and x{ is the feasible solution of the
VLSI placement problem.

The problem (1.3) is a key subproblem in VLSI placers SimPL, ComPLx, and
Mapple, which was solved by the conjugate gradient method. In the problem, the
B2B net model is a rough approximation of the HPWL function, which cannot
capture the HPWL information exactly in the process of optimization. Moreover,
the || ||, norm is not Lipschitz continuously differentiable, which makes the
conjugate gradient method for solving the problem (1.3) not theoretically sound.

In this paper, we do not use the B2B net model to approximate the function

HPWL,(x) but use the HPWL function directly. The /;-norm || - ||, is changed to

the square of l,-norm, i.e., || - H% Hence, the problem we consider in this paper is
. o i i +112

fxrél)fflf(x) —;Iir;&elz({x() —x(’>}+i|‘x—x0 H27 (1.4)

where A > 0. The function HPWL,/(x) is a non-differentiable convex function, so
we will adopt Nesterov’s smoothing and excessive gap techniques [16, 17] to solve
problem (1.4).

Several approaches in the previous literature can be used to solve the
minimization problem (1.4). The LSE net model and the Lp-norm net model [I,
4] approximate the function HPWL,(x) by the LSE and Lp-norm functions.
Subgradient methods [3] can be used to solve the problem (1.4) directly. But it has
been recognized in practice that subgradient methods are usually slow and
numerically sensitive to the choice of step sizes. Recently, Nesterov [18] proposed a
subgradient method to optimize huge-scale problems with sparse subgradients. This
method is based on a recursive update of the results of matrix/vector products and
the values of symmetric functions. The convergence rate of the algorithm is
O(1/Vk), where k is the iteration counter. Dinh et al. [5] proposed an algorithm
which combines Lagrangian decomposition with excessive gap smoothing tech-
niques to solve large-scale separable convex optimization problems. The conver-
gence rate is O(1/k). However, our problem is not separable, so we cannot use their
technique directly. Schmidt et al. [20] proposed an algorithm to optimize the sum of
a finite number of smooth convex functions by the stochastic average gradient
method. The convergence rate is O(1/k).

In this paper, we propose an algorithm basing on the smoothing and excessive
gap techniques by Nesterov [16, 17] to solve problem (1.4). Comparing problem
(1.4) with the problem (1.1) in Nesterov [16, 17], we can find that our considered
problem is a direct generalization of problem (1.1) on the summation of a large
number of maximum functions. Moreover, every maximum function in (1.4)
contains only the cells in a net, and the number of cells in a net is almost not too big
according to the characteristic of the VLSI circuit. Hence, we use Nesterov’s
smoothing technique on every maximum function directly. The proposed algorithm
has a convergence rate O(1/k?), where k is the iteration counter. According to the

@ Springer

426 J.-L. Chen et al.

complexity theory for convex optimization by Nemirovski and Yudin [15], the
proposed algorithm is optimal.

The paper is organized as follows. In Sect. 2, some notations and basic results are
quoted. In Sect. 3.1, we introduce the technique of smoothing the HPWL function
of every net ¢;. The excessive gap condition (EGC) and some lemmas are given in
Sect. 3.2. Section 4 introduces the algorithm. In this section, the theorems of
convergence rate and efficiency estimate are also specified. In Sect. 5, we give a
scheme to speed up the convergence of the algorithm. Finally, preliminary
computational experiments are put in Sect. 6.

2 Notations and Basic Results

In this section, we review some notations and basic results proposed in Nesterov’s
smoothing and excessive gap techniques [16, 17]. They will be used in our paper.
Let X be a finite dimensional space. In this paper, we define X as

X = {x = (D, 2 VD70 < 1) < W},

where W is the width of the placement region in the VLSI placement problem.

The space of linear functions on X is denoted by X*. For s € X*, x € X, the value
of s at x is denoted by (s, x), where (-, -) denotes the regular inner product. Denote
s, z € §, where S is a finite dimensional space equipped with the /,-norm. The dual
norm of s is defined as

:
N = max (s, 7).
sl = max, s, 2

Let A be a linear operator which maps X to Q, i.e., X — Q. We use A, to denote the
ith row of A, and use A’ to denote the jth column of A. In this paper, we set the space
Q be equipped with the /;-norm, and Q = {u: >0 | [ul)| < 1}.

For x € X, u € Q, X is equipped with the /;-norm, and the norm of A is defined
as

[lAll,; = max max (Ax, u).
T =l =1

Clearly,

141l = (|47l ;= max llAxll; = max [|47u],.

It is easy to verify that
lAx|[y < llAll, - lIxll, Vx € X, (2.1)
and

HATu

<Al - [lully, Vue Q. (2.2)

@ Springer

Nesterov’s Smoothing and Excessive Gap Methods 427

It is easy to prove that the norm of A satisfies

_ T _ *
IAlly; = max max {(4], x)} = max {4}, (2.3)
where p is the number of rows in A.

Furthermore, we define a strongly convex function dy(u) on the convex set Q,
which satisfies that

o,] x
do(u) > do(u”) + 5 agl|lu —u I (2.4)
and for all u, v € Q,
1
do(u) = do(v) + (Vdg(v), u —v) + EO’QHM — v||%, (2.3)

where oy > 0 is the strong convexity parameter of the function dy(u), and u* =
argmin,ecp do(u). Without loss of generality, we assume that dp(u*) = 0.

3 Objective and Dual Functions

In this section, we present the smoothing technique for the VLSI placement problem
in detail. And then, the EGC is given for the objective function and its dual form.

3.1 Smoothing the Objective Function

Let a;j(ex) be an n-dimensional vector corresponding to net ¢; and cells i and j,
where n is the dimension of the vector x. And for any i, j € ¢, i #j, the ith
component of a;;(ex) is 1, the jth component of a;j(ex) is —1, and the other
components are zeros. Let A(e;) be a matrix with respect to e; with all possible
vectors a;j(ex) as rows. To make it clear, we give the following example.

Consider a hypergraph N' = (V| E), where V = {1, 2, 3}, E = {ey, e»}, and the
cells 1,2€e,1,2,3€e¢,. By the notation, for the net ey, ajz(e) =
(1, —=1,0), az1(e;) = (=1, 1,0); and for the net ey, we have ajz(e) =
(17 -1, 0), al,S(eZ) = (17 0, _1)7 aZ,l(eZ) = (_1, L, 0), 02,3(62) = (Oa L, _1)7
asy (e2) = (—1,0, 1), aza(e2) = (0, —1, 1). Thus, the matrices A(e;) and A(es)
have the following forms:

1 -1 0
A(€1)=(_1 | O)’ Ale)=1| -1 0 1 1 0 -1

Obviously, the dimension of A(ey) is (n7 — ny) x n, where ny is the number of cells
on the net e;,. Moreover, any row of the matrix A(e;) has only two non-zero
components. The one is 1 and the other one is —1. So by (2.3), we can get

@ Springer

428 J.-L. Chen et al.

ARl = lAi(en) 1= 1Ai(ex)ll,= V2. (3.1)
Lemma 3.1 By the above notations, for any net e, with ny cells, we have

HPWL,, (x) = max{ (@) —xm} max{(a;;(ex), x) }
i,j€ey i,j€ey
(i
= max ek X, Mk Z ‘uk .

Proof For cells i, j € e, it holds that x) — xU) = (a;;(ey), x). Thus,

0 _ o>}_ - x| =
max {) — | = max(ay;(er). %) = max|x x| = max|(a,(e0). ¥)|- (32)

Furthermore, there exist i/, j/ € e, such that

[rrjlag(’ a,, ek | = | ap j ek) >| (3~3)

So for uy such that S 40| < 1,

e, m) = D (i),)

Py (3.4)

Hence, by (3.2)—(3.4),

i (1
max{ (ex)x, ug): g ‘uk

Furthermore, suppose that in Eq. (3.2), aj(ex) is the pth row of A(ex). Take uy such
that the pth component of u; is sgn((ay y(ex), x)), and the other components of uy
are 0. Then

L,jEe,

} max(au(ek) x).

(Aer)x, ug) = ‘ ap j(ex), | = r&ax(a,},(ek) x),
1 €

which implies that

me(m—1)
max{(a;;(ex), x)} = max{(A(ek)x, u): Z ‘u]({ﬂ < 1}.

1 Ee
J =1

@ Springer

Nesterov’s Smoothing and Excessive Gap Methods 429

Hence, Lemma 3.1 holds.

As shown in Lemma 3.1, in this paper, we define the set

i (ng—1) G
OQ=<w: Y, ‘Mkl) <o,

where ny is the number of cells on the net e;. Furthermore, by Lemma 3.1, for any
net e, we write the function HPWL,, (x) of ¢, as

feu() = max (Afen)x, w). (3.5)
Let
7o) =[x =5 3.

By Lemma 3.1, the problem in (1.4) can be written as

m

minf(x) = A (x) + > max(A(ex)x, u), (3.6)
xeX o ur €Qx

where 2 > 0, m = |\|, which is obviously a direct generalization of problem (1.1).
For every net e;, the HPWL function (1.2) is convex but not Lipschitz
continuously differentiable. Hence, the problem (3.6) is not easy to solve directly.
We use the idea of smoothing technique [16] to transform the problem such that it is
smooth.
Recall that dg, (1) is a strongly convex function on Qy with a strongly convexity
parameter oo, > 0. Let u] be the optimal solution of dg, (ux), i.e.,

S in d .
u = arg min do, () (3.7)
Let p be a positive smoothness parameter. Consider the following function

oen(x) = max{(A(ex)x, ux) — pdo, (ur) }- (3.8)

ur €0k

Since dg, (ux) is strongly convex, the optimal solution of the above maximization
problem is unique and we let it be uj(x). Thus, the smoothness function of the
objective function in (3.6) is in the following form,

fu@) = Af (x) +) max {(A(ex)x, we) — pdg, ()} (3.9)

By Theorem 1 of [16], f,,(x) is a continuously differentiable convex function, and its
gradient

@ Springer

430 J.-L. Chen et al.

is Lipschitz-continuous on X.
The dual problem of (3.6) can be formulated as

max ®(up,-- -, uy) = min Af (x) + f:(A(ek)x, uy), (3.10)

U1 €01, Um€0m xeX “—

where A > 0. Denote x*(u) as the optimal solution of the minimization problem in

the dual problem (3.10), where u = (i1, 2, - -,) - Since f (x) is strongly convex
with strongly convex parameter 2, x*(u) is unique. Moreover, by Theorem 1 of [16],
®(uy, -+, uy) is a continuously differentiable concave function.
Therefore, for any X € X and @, € Qy, where k = 1,---,m, we have
Oty) < A (X)+) (Aler)X,). (3.11)
k=1

Obviously, suppose ¥ = x*(u), then we have

3

Oy, T) < A (R)+ Y _(Alen)R,) (3.12)
k=1
Since uy,---,u,, are independent and they have different dimensions, the partial
gradient of the function ®(u,,- - -, u,) with respect to u is denoted by
0D (uuy, -+, Upy) oD ox*(u)
Vi @y, uy) = = A *(u).
k (w1 Unm) ouy ax* (I,t) duy + A(er)x" (u)
Since x*(u) is the unique optimal solution of (3.10), the gradient of the function
®(uy, -, u,) with respect to x*(u) satisfies the following equality:
aq)(ulv e ,um)
———=0.
Ox* (u)
Hence,
oD (uy, - -+, uy,
Vi O,) =) g0). (3.13)
6uk
By the way, the gradient of ®(uy,---,u,,) is defined as follows:

VO(uy, - ty) = (Vi @ur, - th), -+, Vi, O(ug, - - ,um))T.

By the properties of the norms, we can get the following inequality:

IVt -t [| < DI Vi@, un)|. (3.14)
k=1
Lemma 3.2 The function ®(uy,- - -, u,,) is Lipschitz-continuous differentiable with

a Lipschitz constant

@ Springer

Nesterov’s Smoothing and Excessive Gap Methods 431

2
m
L(®)=—.
@ ="
Proof From the assumption that]A‘(x) is strongly convex, the function
®(uy,- -, uy,) has the unique minimal solution x*(u). Consider uy, vy € O, k =
1,---,m. By the first-order optimality condition, we have
(VF (x +ZA (ex) ug, x*(v) — x* () > 0,
m
(IVF (x* Z ex) v, X (1) — x*(v)) > 0.

Adding the above inequalities and using the strong convexity of f(x)7 we have

im(ek)(x*(\))—x*(u)) = vi) = (V] (" () = AVF (& (v)), <" () = x"(v))

k=1

> 76|1x" (u) — x* ()] |3
(3.15)

By (2.1) and (3.15), we can get the following inequalities:

(inA(ek)(x*(u) —x*(v))lT)
k=1

m 2
D lACe) o 1 () X*(V))Hz)

1z

2
|A(ek)||2,1> [l (v) — ¥ (u) 2

(by (3.15)) < 5= <Z||A<ek>||21> S (A (1) — 2 (), 1 — i)
i k=1 k=1
m 2 m
<= (ZHA(ek)nz,l) JA(eR) (" () — % W) e = vl
N k=1 k=1

m 2 m m
< % (ZIIA(ek)||2,1> 14 ex) (" (ae) = " D)1l = willy-
: k=1

Thus, by (3.1) and & = 2, we can get the following inequality:

@ Springer

432 J.-L. Chen et al.

Q>| =

S A ()~ ¥ O < (z (e uzl) Sl
k=1 k=1

m
L
= g — Vil
/lk:

Moreover, by (3.13), (3.14), and the above inequality, we have
”vq)(ula"’aum) *V(D(Vla"'avm)m < Z”vukq)ek (”l 7”'a”m) 7vvk(1)(v1 7"'avm)||T
k=1

Hence, the lemma holds.
3.2 Excessive Gap Condition

Similar to [17], for some X € X and u; € Qy, where k = 1,---,m, the EGC is given
as follows:

f'u(f> < (I)(ﬁl7"'7ﬁln)~ (316)
Lemma 3.3 Let vectors X € X and u; € Qy. satisfying (3.16), where k =1,--- ,m
Then

where Dy = max,,cq, do, (ux).

Proof Clearly,

m

AF®) + Y {(Aler)®, u) — Dy}
k=1
< E) +D_{(Ae)F,) — pdo, (we) }-
k=1
So we have
F&E) =) D= if %)+ Z;naQX{ (ex)X, ux) — uDy}
—1 kEQk
)+ max {(Alew)%, w) — o ()} =)
k=1

Hence, we can easily get

@ Springer

Nesterov’s Smoothing and Excessive Gap Methods 433

m

— Y D <ful®) < O, Tim),
k=1

and Lemma 3.3 holds.

For uy, vy € Ok, denote the Bregman distance between u; and v by
S(vi, uk) = do, (vi) — do, () — (Vdo, (uy), vk —). (3.18)
By (2.5), we have

E(vi, wi) = %UQkHVk — [T (3.19)
Define the Bregman projection of g on the set Oy as follows:
Vi, g) = argmax{ (g, vi —) — u(ve, i) }- (3.20)
Lemma 3.4 The EGC holds for

1= max {——L(@)},

L<k<m G,
%= 2w,
= Vk(uk, Vuk(l)(u’l‘, e ,ufn)),
where uy; is the minimal solution of dg, (ux) and k=1,---,m.

Proof Indeed, for any x€ X and u; € Oy, k=1,---,m, by setting g, =
Vi @i, - -, ul,), we can get the equation

(Vi (uy, 1), Vit &m)) = @@, - -+ i)

By Lemma 3.3, the function ®(uy,---,u,) is Lipschitz-continuous differentiable,
we have

VD (ur, - th) = V(i -+, v [} < L(Z\Iuk*wc\l]
In review of [12] (Sect. 2.1), from the fact that the function ®(uy,---,u,) is con-
cave, we have

—(D(ﬁl, e ﬁm)

€0)~ ST)+ 20) S

m
k=1

Thus,

@ Springer

434 J.-L. Chen et al.

q)(ﬁ]’...7ﬁm) >®(u>f’... u*)

7 m

1
=300 1) — o) -}

—]?(x*(u*)) + 2:{<A(ek)x*(m)7 uy)

k=1

>

(Al (), T~) — 3 L®) [— i}

(by (3.19)) > F (e () + > (Al (), 1)
k=1
+(A(ex)x™(u"), . — uy) _ L) & (w, ”k)}
00

(bvi= max Ll @)}) > 76w + o4t o).)

o k=1

HA)x W), T = 1) — (i, 7))
= AP0 W) + 3 max{ (e (), v
k=1

— ke
_:ui(vka Mlt)}
(by (2.5)) = Af (" ("))

- Z{Eeagt X ("), vi) — Hko(Vk)}}

= fulx"(u)).
Hence, the EGC (3.16) is satisfied.

4 Algorithm

From Lemma 3.4, we know that the EGC holds for 4 = max<x< é L(D), x = x*(u*)
k

and u = uy, k =1,---,m. The following theorem develops a scheme to choose
W, X, W= (dy,- - ,Uy), and makes sure that the EGC (3.16) holds in each iteration.

Theorem 4.1 Letvectorsx € X andu, € Oy, k = 1,-- -, m, satisfying EGC for some
positive parameters . Fix a parameter t € (0, 1) and choose uy = (1 —71)u Let

(1 —Dm+ (%), k=1,---,m
X =1 —-1)x+ " (u),

Uy

uy = Vi(up (%), Aler)x), k=1,---,m,

(1-71)

Uy = (L= 1)ug + g, k=1,---,m

@ Springer

Nesterov’s Smoothing and Excessive Gap Methods 435

Then X and Uy = (W14, -, Uy) satisfy EGC with smoothness parameters i,
provided that t is chosen in accordance with the following relation:

2
T . Hog,

—— < .
=1 > 1 5m L(D)

Proof Denote X = x*(u) and v, = uj(X). By line 2 of (4.1) and the convexity of

F(x), we have

fu,) = 2 (%y) + Z max { (A(ex)x, ux) — p.do, (ur) }

ur€Qx

= ((1 =)X + 1%)

+ 37 max {(A(enl(1 —)+ 73],) — (1 - udg, (m))
k=1

<AL= @ + F ()]

+ > max{(1 = 7)[{A(e0)x, u) — ud, (ue)] + v(A(er)3, ur) }
=1 W€
= (1= 1) @) + (@1, -+,)
. m EleaQ)i{(l — 1)[(A(ex)x, ux) — pdo, ()] + t{A(ex)X, ux — i) }-
=1

Since v, = uj(X) is an optimal solution of (3.8), by the first-order condition, we have

Z ek X — Vko(Vk) up — Vk> < 0. (42)
k=1

Hence,
+Z (ex)X, wi) — pudg, (uy))

(by (3.18)) +Z (ex)X, ur) — p(&(ux, vi) + do, (vi)
<VdQA (Vk) ug — vi))]

(by (4.2)) Z (ex)X, vi) = p(&(ux, ve) + do, (vi))]

x) — #Zf(uk, Vi)
k=1
(by (3.16)) <Oy, -+, T) — 1Y _ i, i)

@ Springer

436 J.-L. Chen et al.

m

(Ae0)T,) — Yy i, vi)

1 k=1

~

(by (3.11)) <A4f (%) +

g

k

ST+ S AR, - e+) — e, v0)
k=1
(by (312)) :(D(il\l, .- ',it\m) + i{(A(ek)f, Uy — it\k>} — ,ui (;:(l/tk7 Vk).
k=1 k=1

By the above inequalities, (3.19) and (4.1), we can get the following relations:

fu 30) < (1= 1) (G) + 1 (i, -+, lin)

m

+ > max {(1 =)[{A(e)%, ur) — pdg, (ue)]
=1 “w<

-l-‘c(A(ek)? Up — /Iik>}

< O(Uy, -, ty Zmax{A e)X, (1 —)i + Ty — 1)

—(1 = 1) ué(u, Vk)}
(byline 1 of (4.1)) = ®(uy, -, Uy) + (1 — 1)

m
T

max {1 — (Aex)X, ux — vie) — ué(uy, Vk)}

u €0

k=1
(byline3of (4.1)) = ®(uy,- -, Up)

HI =03 A, - w) - (i wo))
k=1
(by (3.19)) < ®(uy, -, upy) + (1 — 1)

(T AR, i) =l -l

Ms

< O(@, -

~

)

T2 2
{‘E<A(€k)}, ﬁk - Vk> 7EL((I))HFIZIC — vk|l}.

+
NgE

k=1

Moreover, according to lines 1 and 4 of (4.1), we have

Tz ~
fin (50) < O@1, -, +Z{ (@)%, 1 —) = S L@ - wl

~ ~ - ~ ~ 1 _ ~
= 0) + 3o AT, T~) — S La(@) e —

S O(1e, -+ Tt)-

The proof is completed.

@ Springer

Nesterov’s Smoothing and Excessive Gap Methods 437

According to the above theorem and lemmas, the following algorithm is given.
Denote u' as the ith iteration value of u, x; as the ith iteration value of x, and u; as
the kth component of u.

Algorithm 1
Input: v* = (uj, - ,ul,

)E, 2§, desired accuracy e and the set of nets A
Initialization: set i = 0, jg = 2 La(¢,), To = 2" (u*) and Ty = Vi(uj, A(er)To).
Iterations:

1: repeat

2 = 1%

32 W= (1 —7)u + rut(T);

4 T = (1 —71)T + mx*(u);
for (k =1k <m; k++) do

ﬁA(ek)«T/* (@));

ot

6: ﬂ}c = Vk(u}'c*(@),
7. end for
8: ULJrl = (1 — Tl)ﬁl + Tiﬂi

9: Hi+1 = (1 — Ti>,lti;

10: i=1i+1;
1 until f(7;) — ¢, ,u,) <e.
Theorem 4.2 Let the pairs X; and W' = {u},---,u’ } be generated by the above

algorithm. Then the following inequality holds:
_ L(®)Dy
1) — @ . D —_— 5.
)= 00) < YDk =Y
Proof According to Theorem 4.1 and Lemma 3.4, we have that the sequences

{@h, -+ i 32 and {;}2, satisfy the EGC (3.16), and

1 1 2 5-2 i 2L(D)
= - X e X =
e 374775 i+2 i+)i+

2)o’

From Lemma 3.3, we have

0<f(®@)— @@, ,m, Z{“le} Z{ l+2) }

This completes the proof.

By Theorem 4.2, we can see that the convergence rate of our algorithm is
O(1/i%), where i is the iteration counter.

@ Springer

438 J.-L. Chen et al.

Next we will introduce some implementation details of the algorithm. Choose the
smoothness function dg, (ux) as the following form:

2
n;—ny

do, (ux) = Inng(ng — 1) + Z u,({i) In u,@.
i=1

It is easy to verify that
Dk = max {ko(uk)} = lnnk(nk — 1),
ux €Ok

and the strong convexity parameter oo, = 1.
We also need to compute the following objects at each iteration.

(1) Computation of u; (%), k =1,---,m.uj(X) is the solution of the following
problem:

max { (A(ex)x, ux) — pdg, (uy) }-

€0k

The solution of the above problem is

W) = P ({Aie) . 0)/n)
SO exp ((Ai(en) ", %) /1)

(2) Computation of x*(u).x*(u) is the solution of the problem as follows:

m

min Af (x) + > _{(A(ex)x, u)}.

X
xe =

The solution of the above problem can be written as

)= ;> A, w)
k=1

(3) Computation of Vi(uk, g), k=1,---,m.Vi(u, g) is the solution of the
following problem:

maX{(& vi — ug) — E(vi, we) }-
V€0,
The solution of the above problem can be written as

! exp (g /)
S) exp (g0 /)

Thus, all variables of the algorithm can be computed directly.

V]El) (uka g) =

@ Springer

Nesterov’s Smoothing and Excessive Gap Methods 439

5 Speeding Up the Convergence

By the above lemmas and theorems, we have found that the Lipschitz constant L(®)
may be too large. So we want to take the following strategies to reduce the constant
and speed up the convergence.

For any x € X, denote x,, as an n-dimensional vector, and for any i € e, the ith
component of x,, is x), and the other components are 0.

Obviously, for every net e, x,, can be generated by the information of ¢, and we
have the equalities as follows:

(aijex), x) = (aij(exr), Xe),
(Aer)x, ur) = (Aer)xe,, ui).

Let A be a matrix corresponding to a net with all the n cells. Then it is obvious that

(5.1)

[[Axe [l [|A(ex)xe, [l

By denoting X™(u) = (xj(u), x3(u),---, x5 (u)), and gx(u) = A(ex)x*(u), we can get

’vm

IVOur, uz, -+ um)ll = [[(g1(w), g2(),- -+, gm (@) TIL < JAX* W)y (5.2)

Denote deg; as the degree of the vertex i in the hypergraph. The following relations
hold:

m n

IR = I 2= deg; x| (5.3)
i=1 i=1

Note that the function ®(uy, - - -, uy,) defined by (3.10) is concave and differentiable,

and x*(u) is its minimal solution. Moreover, the function f (x) is strongly convex
with strong convexity parameter ¢ = 2. Thus, we have the following lemma.

Lemma 5.1 The function ®(uy, - - -, u,,) is Lipschitz-continuous differentiable with
a constant

1
L(®) = - max deg;.

L 1<i<m

Proof From the function ®(uy, - - -, u,,) defined by (3.10) and the fact that f(x) is
strongly convex, the minimization problem in (3.10) has the unique solution x*(u).
Consider uy, vy € O, k= 1,---,m. We have

(HV(I)(I/H, Upy,--- 7”111) - VCD(V], Vo, ’vm)HT)Z
(by (5.2)) < (IlAX* () — AX*(W)|1})°
(by (2.1)) < [JAIR 1A () — ()3

@ Springer

440 J.-L. Chen et al.

(by (3.1) =2 Y [[x;, (w) = x, ()5
k=1

(by (5.3)) <2 max degy||x"(u) = x*(V)[[3
1<i<n

m

(by (3.15)) < /16 max deg; Z(A(ek)(x*(v) —x"(u)), ux — vg)

1<i<
i<n P

1 m
< 7 max deg;[[VO(uy, g, - un) = VOV, va, -)l o= iy
) 1<i< -

Hence, we have

901,) = VO(1, - v, < 5 max degIZIIHk = Vil

A 1<i<n

and the lemma holds.

6 Experiments

In this section, we test the algorithm on nine benchmarks of the 2004 International
Symposium on Physical Design (ISPD04) placement contest benchmark suites. Our
implementation is written in Matlab 7.0, and is run on a personal computer with
Intel Core2 Duo CPU E7500 (2.9 GHZ) and 2 GB internal memory, under
Windows XP. The information of the nine benchmarks are put in Table 1. In the
experiments, we take different values 4 = 0.1, 0.5, and 1, and we take the value
& = 200 for every benchmark.

In Fig. 1, we plot the primal function value and the dual function value of the
algorithm on the benchmark ibm01 with 1 = 1.0 at each iteration.

From Fig. 1, we can find that the objective function value decreases very fast in
the first 10 iterations, and then the value changes very small. Hence, we terminate

Table 1 ICCAD’04 IBM benchmark

Ckt #Cells #Pads #Nets #Pins #Rows
ibmO1 12 506 246 14 111 50 566 96
ibm02 19 342 259 19 584 81 199 109
ibm03 22 853 283 27 401 93 573 121
ibm04 27 220 287 31 970 105 859 136
ibm05 28 146 1201 28 446 126 308 139
ibm06 32332 166 34 826 128 182 126
ibm07 45 639 287 48 117 175 639 166
ibm08 51023 286 50 513 204 890 170
ibm09 53110 285 60 902 222 088 183

@ Springer

Nesterov’s Smoothing and Excessive Gap Methods 441

9.5

8.5} 4

Function value

7.5

Primal function

—_— —_—T= = = = = — = =
1

= = = = Dual function

6.5 | | | | | | |
0 20 40 60 80 100 120 140 160 180

The number of iterations

Fig. 1 Primal and dual function values of ibm0O1, 1 = 1.0

our algorithm in the experiments when the dual gap is less than 200. The results of
the algorithm on the nine benchmarks are put in Table 2.

Table 2 shows the runtime and the final value of f(x) for different A and
benchmark. In general, the computation of u; (x) takes 25 % of the total runtime, the
computation of Vi(uy, g) takes 27 % the computation of x*(u) takes 14 % the
computation of dual function ®(uy, - - -, u,,) spends 26 % the computation of primal
function f(x) takes 5 % and the others take 3 % of the total runtime, respectively.

The runtime of our algorithm is not only related to the scale of the benchmark,
but also related to 4 and the number of cells on the nets. From Fig. 1 and Table 2,
we can find that with the increase of the value of 4, the algorithm costs less time.
This is because L is inversely proportional to A, and with the increase of L, the
improvement of each iteration will be smaller. From the experiments, we also find
that computations of u;(x), Vi(u, g), and @(uy, - - -, u,) take most of the runtime,
and these computations depend on the number of cells on the nets. When the
number of cells on a net is larger, the more runtime of these computations will cost.

Finally, it must be remarked that the problem considered in this paper is only a
subproblem in the software packages SimPL [10, 12], ComPLx [9], and Mapple
[11], for VLSI placement. Our future research will improve the performance of the
algorithm, and implement it for real VLSI placement.

@ Springer

J.-L. Chen et al.

442

L8°0T6 L LU'€9L 601 6§ €T6Y8 ¥I1 6€ €9€9T€ SE9TL 698 6€ LSYTH TLS 6€ I'0EL T SSLY8 L6 66 $S06E €L6 6€ 60WQ!
€8°L6L 81 S6'L66T09 TE 9FE6P TI9OTE 98°6L6 8 86’16V 8STEE SO'091 S9T €€ 6S9L8 S 8SSES L8E €€ 09769 TEE €€ 80wqr
1996 + CI'TS8 S8T 1€ €LV9S 68T 1€ €O6LI T 6L66Y 164 1€ S6'STO €6L 1€ €T9SL | TI061 8S8 1€ I#'€70 658 1€ LOwqr
YEYPT € 60'€9% T8% TT 86'S8E S8 TT 18°L9€¢ 1 YTL6E 608 TT STEI90I8TT 84896 YPOTI 168CC €TLOL 1S8TC 9owqr
1'9¥9 1 87167 9vS 61 Y0687 9¥S 61 YIErs 8S°6LY S18 61 6LtL9 18 61 $6'80€ 61°78¢ 68 61 12°9LS 68 61 sowq!
9°6C1 ¥ €Y ILE 8FL 61 SETI8L €SL 61 LUTEL T TOT8 SSI 0T 68°€9Y 651 0T 9I'LIT I ¥8°STI 12T 0T 18686 91T 0T +Owq!
9621 T S9'LIT ¥€8 91 68°18€ LE8 91 YE0€6 L6°69S ¥LI LI YT SLT L1 €6°189 88°981 0TT LI LE98E 0TT L gowqr
€V PSS T 67°€Ty 6€1 €1 89°LT9 OV €1 95681 1 L9TTI ¥HE €1 1816 ¥H€ €1 €0°€98 TLLI6 OLE €1 LOTIT 1LE €1 zowqr
€LITL 99°9¢¥ 106 99°8TS 106 €0°8T€ 80612 891 6 S1°09S 891 6 65°1ST €9°9TL L81 6 68°€T6 L81 6 owqr
ndo @ S ndo @ S ndo 0} f
10 90) I 14

soneA uonouny renp pue Jewtid pue ownuUNY g e

pringer

As

Nesterov’s Smoothing and Excessive Gap Methods 443

References

[1] Alpert, C.J., Mehta, D.P.: Handbook of Algorithm for Physical Design Automation. Auerbach
Publications, New York (2008)

[2] Becker, S., Bobin, J., Candes, E.J.: NESTA: a fast and accurate first-order method for sparse
recovery. SIAM J. Imaging Sci. 4(1), 1-39 (2011)

[3] Boyd, S., Xiao, L., Mutapcic, A.: Subgradient Methods. Lecture notes for EE364b. Stanford Uni-
versity (2007)

[4] Chu, C.: In: Wang, L.T., Chang, Y.W., Cheng, K.T. (eds.) Chapter 11: Placement in Electronic
Design Automation: Synthesis, Verification, and Testing. Elsevier/Morgan, Kaufmann, San Fran-
cisco (2008)

[5] Dinh, Q.T., Savorgnan, C., Diehl, M.: Combining Lagrangian decomposition and excessive gap
smoothing technique for solving large-scale separable convex optimization problems. Comput.
Optim. Appl. 55, 75-111 (2013)

[6] Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Com-
pleteness. W. H. Freeman and Company, New York (1979)

[7] Hans-Jakob, L., Jorg, D.: Convex risk measures for portfolio optimization and concepts of flexi-
bility. Math. Program. 104(2-3), 541-559 (2005)

[8] Hariharan, L., Pucci, F.D.: Decentralized resource allocation in dynamic networks of agents. SIAM
J. Imaging Sci. 19(2), 911-940 (2008)

[9] Kim, M.C., Markov, I.L.: ComPLx: a competitive primal-dual Lagrange optimization for global
placement. In: Design Automation Conference, pp. 747-752, 2012

[10] Kim, M.C., Lee, D.J., Markov, I.L.: SimPL: an effective placement algorithm. IEEE Trans. Com-
put.-Aided Des. Integr. Circuits Syst. 31(1), 50-60 (2012a)

[11] Kim, M.C., Viswanathan, N., Alpert, C.J., Markov, I.L., Ramji, S.: MAPLE: multilevel adaptive
placement for mixed-size Designs. In: International Symposium on Physical Design, pp. 193-200,
2012b

[12] Kim, M.C., Lee, D.J., Markov, L.L.: SimPL: an effective placement algorithm. Commun. ACM
55(6), 105-113 (2013)

[13] Lin, T., Chu, C., Shinnerl, J.R., Bustany, I., Nedelchev, I.: POLAR: placement based on novel rough
legalization and refinement. In: International Conference on Computer-Aided Design, pp. 357-362,
2013

[14] Markov, LL., Hu, J., Kim, M.C.: Progress and challenges in VLSI placement research. In: Inter-
national Conference on Computer-Aided Design, pp. 275-282, 2011

[15] Nemirovski, A.S., Yudin, D.: Problem complexity and method efficiency in optimization. In: Wiley-
Interscience Series in Discrete Mathematics, vol. XV. Wiley, New York (1983)

[16] Nesterov, Y.: Smooth minimization of non-smooth functions. Math. Program. 103(1), 127-152
(2005a)

[17] Nesterov, Y.: Excessive gap technique in nonsmooth convex minimization. SIAM J. Optim. 16(1),
235-249 (2005b)

[18] Nesterov, Y.: Subgradient methods for huge-scale optimization problems. Math. Program. 146(1-2),
275-297 (2014)

[19] Neveen, G., Jochen, K.: Faster and simpler algorithms for multicommodity flow and other fractional
packing problems. SIAM J. Imaging Sci. 37(2), 630-652 (2007)

[20] Schmidt, M., Roux, N.L., Bach, F.: Minimizing finite sums with the stochastic average gradient.
Technical report, HAL 00860051 (2013)

[21] Spindler, P., Schlichtmann, U., Johannes, F.M.: Kraftwerk2—a fast force-directed quadratic
placement approach using an accurate net model. IEEE Trans. Comput.-Aided Des. Integr. Circuits
Syst. 27(8), 1398-1411 (2008)

@ Springer

	Nesterov’s Smoothing and Excessive Gap Methods for an Optimization Problem in VLSI Placement
	Abstract
	Introduction
	Notations and Basic Results
	Objective and Dual Functions
	Smoothing the Objective Function
	Excessive Gap Condition

	 Algorithm
	Speeding Up the Convergence
	Experiments
	References

