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1. Introduction 

Risk prediction is an important component of effective systems of medical care and public 

health. Examples of models for risk prediction in current use are the Framingham model1 in 

cardiovascular disease and the Gail model2 in breast cancer.  Accurate risk prediction enables 

clinicians to match the intensity of treatment to the level of risk.3  For many conditions, clinicians 

have a limited ability to accurately identify high risk patients, and research efforts continue to be 

devoted to improving risk prediction models. In cardiovascular disease, many epidemiological 

publications have evaluated whether new predictors can improve the risk predictions from the 

Framingham model, which includes the established risk factors age, sex, systolic blood 

pressure, lipids and smoking. The goal of such investigations is to evaluate new biomarkers for 

the predictive capacity they offer above and beyond established predictors. The improvement in 

risk prediction is called the incremental value or prediction increment of the biomarker. 

In 2008 Pencina and colleagues4  introduced a new measure of incremental value called the 

Net Reclassification Index or NRI. They expanded the definition of the NRI in 2011.5 Variants of 

the NRI have recently become very popular in some areas of medical research, especially 

cardiovascular epidemiology. There are approximately 800 papers that contain “NRI” and cite 

the original4 paper. It is important to understand what such a popular statistic measures and 

how it behaves. 

Although NRI statistics have become popular, there are common mistakes in interpretation. 

Further, since there are now multiple NRIs to choose from, investigators may be unsure which, 

if any, to use. In addition, statistical methods pertaining to these indices are not yet well-

developed. The goals of this review are (i) to clarify the interpretation of NRI statistics; (ii) to 

relate NRI statistics to more traditional measures; (iii) to provide guidance on choice of NRI 

statistics; (iv) to highlight problems with current methods for calculating confidence intervals and 

p-values with NRI statistics; and (v) to recommend methods for NRI confidence intervals. 

1.1 NRI and other measures of the prediction increment 

This section provides basic definitions and introduces the data on cardiovascular disease risk 

that we will use for illustration.  Section 2 describes issues with the interpretation and application 

of both categorical and category-free NRI statistics.  Section 3 describes statistical issues in 

applying NRI statistics.  Section 4 applies the findings from Sections 2 and 3 to the MESA data.  

Section 5 summarizes our review and recommendations. 

The context of this article is risk prediction.  The specific goal is to improve risk prediction by 

adding a new predictor to an existing set of predictors.  A traditional way to evaluate the 

prediction increment of a new biomarker is to consider the improvement in the area under the 

ROC curves for the expanded risk model compared to the risk model without the new predictor.  

In other words, one can consider the improvement in AUC (ΔAUC).  However, promising new 
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markers have failed to produce meaningfully large increases in AUC. 4    There have been 

explicit calls to find ways to evaluate new marker other than ΔAUC.6  Responding to these calls, 

Pencina and colleagues4 proposed new metrics, IDI and NRI, for quantifying the prediction 

increment of a new marker.  The NRI statistic has become extremely popular, and is the topic of 

this review.   

The NRI, as originally proposed, seeks to quantify the effect of a new marker in moving 

predictions across clinically meaningful boundaries.  In the definition of NRI, the risk prediction 

model that uses the established predictors is called the “old” model. The model that adds the 

new marker to the established predictors is the “new” model. “Events” are cases — individuals 

who have or will have the disease or outcome in the absence of intervention. “Nonevents” are 

controls.   The formula defining NRI statistics is 4 

𝑁𝑅𝐼 = 𝑃(𝑢𝑝|𝑒𝑣𝑒𝑛𝑡) − 𝑃(𝑑𝑜𝑤𝑛|𝑒𝑣𝑒𝑛𝑡) + 𝑃(𝑑𝑜𝑤𝑛|𝑛𝑜𝑛𝑒𝑣𝑒𝑛𝑡) − 𝑃(𝑢𝑝|𝑛𝑜𝑛𝑒𝑣𝑒𝑛𝑡) (1) 

“Up” means that the new risk model places an individual into a higher risk category than the old 

model. Similarly, “down” means the new model places an individual into a lower risk category.  

For example, NRI0.2 means a two-category NRI with cut-off at 0.20 defining low and high risk. 

NRI0.1,0.2  is a three-category NRI with cut-offs at 0.10 and 0.20 defining low, medium, and high 

risk categories.  Any set of risk thresholds can be used to define an NRI statistic.   

The definition of the NRI in expression (1), which was originally based on discrete pre-defined 

risk categories, generalizes to any upward or downward movement in predicted risks.5 The 

“category-free NRI” (also called “continuous NRI”) interprets (1) this way.  We use NRI>0 to 

denote the category-free NRI.   

The idea behind the NRI is that a valuable new biomarker will tend to increase predicted risks or 

risk categories for events; and decrease predicted risks or risk categories for nonevents.  

P(up|event) and P(down|nonevent) form the positive components of the NRI in expression (1). 

On the other hand, events that move down and nonevents that move up are mistakes 

introduced by the new marker — these are the negative components of (1).  

An NRI statistic is the sum of the “event NRI” and the “nonevent NRI”: 

 𝑁𝑅𝐼𝑒 = 𝑃(𝑢𝑝|𝑒𝑣𝑒𝑛𝑡)− 𝑃(𝑑𝑜𝑤𝑛|𝑒𝑣𝑒𝑛𝑡) (2) 

                                                        𝑁𝑅𝐼𝑛𝑒 = 𝑃(𝑑𝑜𝑤𝑛|𝑛𝑜𝑛𝑒𝑣𝑒𝑛𝑡)− 𝑃(𝑢𝑝|𝑛𝑜𝑛𝑒𝑣𝑒𝑛𝑡) (3) 

For example, 𝑁𝑅𝐼0.2 = 𝑁𝑅𝐼𝑒0.2 + 𝑁𝑅𝐼𝑛𝑒0.2 and  𝑁𝑅𝐼>0 = 𝑁𝑅𝐼𝑒>0 + 𝑁𝑅𝐼𝑛𝑒>0. 
For the two-category setting, Pencina et al.5 generalized the NRI to consider the savings s1 from 

identifying an event as high risk and s2 from identifying a nonevent as low risk. s1 is meant to 

capture the adverse events that are avoided by labeling a person destined to have an event as 
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high risk.  s2 should capture all the savings (adverse events, money) from allowing a nonevent 

to avoid unnecessary treatment.  The “weighted NRI,” wNRI, is the average savings per person.   

𝑤𝑁𝑅𝐼 = 𝑠1�𝑃(𝑒𝑣𝑒𝑛𝑡|𝑢𝑝)𝑃(𝑢𝑝)− 𝑃(𝑒𝑣𝑒𝑛𝑡|𝑑𝑜𝑤𝑛)𝑃(𝑑𝑜𝑤𝑛)� 
                                                  +𝑠2(𝑃(𝑛𝑜𝑛𝑒𝑣𝑒𝑛𝑡|𝑑𝑜𝑤𝑛)𝑃(𝑑𝑜𝑤𝑛)− 𝑃(𝑛𝑜𝑛𝑒𝑣𝑒𝑛𝑡|𝑢𝑝)𝑃(𝑢𝑝))  (4) 

In this review we refer to two other measures of the prediction increment, ΔAUC (mentioned 

above) and ΔNB.  The metric ΔNB refers to the change in Net Benefit associated with the use of 
the new marker.7  For example, if the risk model is used to classify individuals as “high risk” or 

“low risk” and high risk entails an intervention, the Net Benefit is 

𝑁𝐵 = 𝐵 ⋅ 𝑃(𝑒𝑣𝑒𝑛𝑡)𝑃(ℎ𝑖𝑔ℎ|𝑒𝑣𝑒𝑛𝑡)− 𝐶 ⋅ 𝑃(𝑛𝑜𝑛𝑒𝑣𝑒𝑛𝑡)𝑃(ℎ𝑖𝑔ℎ|𝑛𝑜𝑛𝑒𝑣𝑒𝑛𝑡) (5) 

where B is the average benefit of the intervention among those who otherwise would have an 

event and C is the cost of intervention (including side effects) to nonevents. For old and new risk 

models, the change in Net Benefit, ΔNB, is a measure of the prediction increment of the new 

marker. 

1.2 Example: Coronary Artery Calcification and Predicting Coronary Events 

Polonsky et al.8 examined the prediction increment of the coronary artery calcium score (CACS) 

for predicting coronary heart disease (CHD) among 5878 participants in the Multi-Ethnic Study 

of Atherosclerosis (MESA). Median follow-up was 5.8 years and 209 CHD events were 

observed.  The cohort was 54% female, and the mean age was 62 years with a standard 

deviation of 10 years.  The “old” risk model included the risk factors from the Framingham risk 

model and race; the “new” model added CACS. We will use these data to illustrate metrics and 

methods. We estimate risks using Cox models; for simplicity we otherwise ignore censoring in 

the data, following Polonsky et al.8  We refer readers to the original paper8 for more details.  

2. Interpreting NRI 

2.1 NRI is not a proportion 

A common mistake is to interpret the NRI as a proportion.9 For example, it is incorrect to 

interpret the NRI as “the proportion of patients reclassified to a more appropriate risk 

category.”10 That is P(up and event)+P(down and nonevent). The NRI combines four 

proportions but is not a proportion itself.9 In particular, the maximum value of the NRI is 2. 

NRIe and NRIne are easier to interpret than NRI because they are differences in proportions. 

NRIe is the net proportion of events assigned a higher risk or risk category. NRIne  is the net 
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proportion of nonevents assigned a lower risk or risk category. The word “net” here is crucial for 

correct interpretation. 

2.2 Issues with combining event and nonevent NRIs 

Given the interpretations of NRIe and NRIne, it is not clear why one would want to take a simple 

sum (or unweighted average) to produce the NRI. One logical alternative is to weight by the 

prevalence of events.  This weighting extends the interpretations of NRIe and NRIne to the whole 

population. We define the “population-weighted NRI” as ρNRIe +(1–ρ)NRIne, where ρ is the 

prevalence of the condition. The population-weighted NRI can be interpreted as the net change 

in the proportion of subjects assigned a more appropriate risk or risk category under the new 

model. 

The MESA data illustrate another problem with the unweighted sum of NRIe and NRIne. Using 5-

year risks, NRI0.1=0.164. Looking at the components we see that NRIe0.1=0.191 but the nonevent 

NRI is negative, NRIne0.1= –0.027. Among nonevents, CACS introduces many more errors than 

corrections at the 10% risk threshold.  Since there are many more nonevents than events (a 

common situation), the new risk model introduces many more errors than corrections overall. 

The positive value for NRI0.1 masks the population-level results. Estimating the prevalence with 

3.6%, the population-weighted NRI0.1 is –0.020. That is, the net proportion of subjects assigned 

to a more appropriate risk category using the 0.1 threshold is –0.02. 

The population-weighted NRI illustrates one problem with the NRI.  However, we do not 

advocate its use because there is no compelling advantage in collapsing NRIe and NRIne into a 

single number. NRIe and NRIne tell us how the new risk model (potentially) improves prediction 

for events and, separately, for nonevents. The two types of improvements have different 

implications. Important information is lost when these two summaries are combined. 11 

2.3 Large and small values for NRI>0 are undefined 

Ideally, a measure of incremental value has an interpretation in terms of the clinical or public 

health benefit of incorporating the new marker. Pencina et al.12 remark that “further research is 

needed to determine meaningful or sufficient degree of improvement” in NRI>0”. NRI>0 has no 

interpretation that translates to the clinical benefit of the new marker.13 If it did, then the 

magnitude of the index would be directly applicable and a marker's sufficiency for improving 

prediction would be apparent. Other metrics, including ΔAUC, share the problem of lacking a 

clinically meaningful interpretation. However, an additional problem with NRI>0 is that its scale is 

unfamiliar. 

Pencina et al.12 give a mathematical example of a new marker described as having “strong 

effect size.” Supplement C describes the structure of the data considered by Pencina et al.12 

Here and throughout this review, X represents the established predictor or set of predictors, and 
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Y is the candidate new predictor.  In the example,12 the new marker Y yields NRI>0 =0.622. Is 

0.622 large? Consider Figures 1 and 2. In all four examples in the figures, Y has the same 

distribution, and the odds ratio for Y given the baseline marker X is constant.  The four 

examples differ only in the strength of the old risk model, i.e., the predictive capacity of X.  At 

one extreme, the old risk model is useless, with AUC=0.5. At the other extreme, the old risk 

model is excellent with AUC=0.99. The figures suggest that the prediction increment forY 

diminishes as the strength of the old model increases. Yet NRI>0=0.622 in all four cases.  

Clearly there are important aspects of prediction not captured by NRI>0.12 

2.4 NRI
>0 does not contrast the performance of the new risk model with the performance 

of the old risk model 

Most measures of incremental value are constructed by summarizing the performance of the old 

risk model, summarizing the performance of the new risk model, and comparing the two 

summaries. ΔAUC and ΔNB are two examples.  NRI>0 is fundamentally different.   It is not a 

difference of two performance measures for the two risk models. Instead, for each individual it 

compares the old and new risk values. However, within-individual changes in risk do not 

necessarily translate into improved performance on a population level.  For example, Figure 2 

(bottom row) shows examples where there are lots of changes in individual predicted risks 

(NRI>0=0.622), but the distribution of predicted risks in the population remains almost exactly the 

same.  

 When assessing a new biomarker, ultimately we want to know whether clinicians should 

continue using the old risk model or switch to the new, expanded risk model. To answer this 

question we need to assess the performances of each of the risk models and compare them.  

NRI>0 measures the difference between the old and new risk models within individuals without 

teaching us about the performances of the models.  

2.5 NRI
>0 incorporates irrelevant information 

NRI>0 , like ΔAUC, does not rely on risk thresholds. Greenland14 points out that “cutpoint free” 

indices incorporate irrelevant information, diminishing their potential for clinical relevance. For 

example, AUC summarizes the entire ROC curve, including parts of the curve describing 

sensitivity for unacceptably poor specificity. There are two ways in which NRI>0 incorporates 

irrelevant information. First, NRI>0 does not account for the size of changes in a predicted risk. 

Infinitesimally small changes “count” even though they are clinically irrelevant. Second, NRI>0 

does not account for an individual's position on the risk distribution. An event at the high end of 

the risk distribution who moves to an even higher risk reflects positively on NRI>0. Such 

movement likely has little effect on treatment decisions. A new marker is beneficial if it improves 

treatment decisions, which often means the marker can discriminate between events and 

nonevents in the middle of the risk distribution. 
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For the MESA data, NRIe>0=0.378 and NRIne>0=0.319.  20.6% of events have a new 5-year risk 

within 1% of the old risk. Among non-events the proportion is 52.8%. Therefore, a sizeable 

proportion of changes summarized by NRIe>0 and especially by NRIne>0 are small, likely 

inconsequential changes. 

2.6  NRI>0 can make uninformative new markers appear predictive 

Hilden and Gerds15 and Pepe and colleagues16 report a problematic feature of NRI>0. Suppose 

an old risk model (risk(X)) and a new risk model (risk(X,Y)) are fit to a training dataset.  Suppose 

further that the new marker Y is completely uninformative.  To avoid the optimistic bias caused 

by using the same data to fit and evaluate model performance, a standard strategy is to use an 

independent dataset to assess the models’ performances. However, NRI>0 tends to be positive 

for uninformative Y, even when NRI>0 is computed on a large, independent validation dataset 

that was not used to fit the models.16    This problem is likely to arise in settings where the risk 

models are not well calibrated, a common phenomenon in practice.  In contrast to NRI>0, more 

standard measures such as ΔAUC do not suffer this problem. These results show that NRI>0 

can mislead researchers to believe that an uninformative marker improves prediction.   

2.7 For 3+ categories NRI weights reclassifications indiscriminately  

The purpose of risk categorization is to guide appropriate treatment decisions. For 

cardiovascular disease, suppose low risk indicates no intervention, medium risk indicates 

lifestyle changes, and high risk indicates both lifestyle changes and pharmaceutical intervention. 

When categories correspond to treatment decisions, the nature of reclassification matters, not 

just the direction.  For example, an event whose risk category changes from high risk to low risk 

is a more serious error than an event moving from high risk to medium risk.  

When there are three or more risk categories, one should consider all the ways a new 

biomarker can move individuals among risk categories. For three risk categories there are three 

ways of moving “up”: low risk to medium risk; medium to high; and low to high. The 3-category 

NRIe gives each of these equal weight; in particular, moving up two risk categories counts the 

same as moving up one.  Supplement B describes how an appropriate weighting could be 

incorporated into a statistic.  Weighting the different types of reclassification is extremely 

challenging, but that challenge does not justify using equal weights. As an alternative to 

assigning weights and providing a single numerical summary, one can instead examine the 

different types of reclassification in a reclassification table (e.g., Table 2).  

Polonsky et al.8 considered 3-category NRIs with thresholds at 0.03 and 0.1 defining low, 

medium, and high 5-year risk. NRI0.03, 0.1=0.25. The value is driven by events (NRIe0.03,0.1=0.225 

and NRIne0.03,0.1=0.023), even though most of the population are nonevents.  NRI0.03, 0.1=0.25 is a 

very coarse summary and almost impossible to interpret (see 2.2).  Table 1 shows that the new 

risk model tends to place nonevents in the low and high risk categories, placing fewer 

http://biostats.bepress.com/uwbiostat/paper393



nonevents in the medium risk category than the old risk model. If the harm of moving a 

nonevent from medium risk to high risk is greater than the benefit of moving a nonevent from 

medium risk to low risk, then the harms of the new risk model outweigh the benefits among 

nonevents. The single numerical summary, NRIne0.03,0.1=0.023, does not reflect this. 

Table 2 shows the reclassifications of nonevents and, separately, events between the old and 

new risk models in the MESA data. Such tables are interesting and potentially instructive. 

However, it is easiest and most informative to simply look at how a risk model assigns 

nonevents and events to risk categories. This information appears on the margins of Table 2, 

and more succinctly in Table 1. NRI statistics do not capture this important information. 

2.8 2-category NRIs: new names for existing measures 

When there are two risk categories, low and high, NRIe is the change in the proportion of events 

assigned to the high risk category, i.e., the change in the True Positive Rate ( ΔTPR). NRIne is 

the change in the proportion of nonevents designated low risk. In other words, NRIne = –ΔFPR, 

where ΔFPR is the change in the False Positive Rate. For 2 risk categories, the population-

weighted NRI (Section 2.2) is the change in the misclassification rate. 

Furthermore, wNRI is the same as the change in Net Benefit between the old and new risk 

models (Supplement A or Van Calster et al17). In other words, wNRI=ΔNB.  

3. Data Analysis with NRI 

Common practice is as follows. Investigators have a dataset that includes established risk 

factors (X) for a condition of interest and a potentially useful new marker (Y). They fit two 

regression models: an “old” model that uses only X, and a “new” model that uses both X and Y. 

The risk models are typically logistic regression models, or Cox models if data are censored.   

The prediction increment of Y is then assessed, typically using the same data that were used to 

fit the models. 

3.1 NRI should not be used for testing 

A researcher may consider testing the null hypothesis H0 : NRI=0. Pencina et al.4  provide a z-

statistic for NRI-based testing. However, the test based on this z-statistic has never been 

validated. Section 3.2 and Supplements D and E discuss problems with the variance formula 

that this z-statistic is based on.18 

Interestingly for the category-free NRI, NRI>0, hypothesis testing is unnecessary. Pepe et al.19 

show that rejecting the null hypothesis H0 : NRI>0=0 is implied by rejecting the null hypothesis 

about the novel marker being a risk factor. In other words, once a test on the coefficient of the 

new marker is performed, it is redundant to perform a test based on NRI>0. 
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For the two-category NRIet  or NRInet  where t is the risk threshold, one cannot reject H0 : NRIet  = 0 

and H0 : NRInet  = 0 on the basis of Y being a risk factor.  Good tests are not yet established for 

these null hypotheses.  

We favor inference about the nature and size of the prediction increment rather than testing a 

null hypothesis of no improvement.  Such inference is challenging.   At the early stages of model 

development it might be unclear how a risk model will be used, yet understanding how a risk 

model will be used is important for appropriately evaluating incremental value.  Setting aside 

these larger considerations, the next section considers methods for constructing confidence 

intervals for NRI statistics. 

3.2 NRI Confidence Intervals 

We conducted a simulation study to evaluate methods for constructed NRI confidence intervals.  

Based on Section 2, we only considered category-free and 2-category event and non-event NRI 

statistics.  Results indicate that the most reliable confidence intervals use a bootstrap estimate 

of the variance of the statistic.  Such confidence intervals outperformed confidence intervals 

constructed using the estimator V1� proposed by Pencina et al.4 and other types of bootstrap 

confidence intervals.  Supplements C and D describe the simulation study and its results in 

detail.   

4. NRI inference in the MESA data 

In the MESA data, we used 5-year risk thresholds 0.03 and 0.1 following Polonsky et al.8 Table 

3 compares confidence intervals for category-free and various 2-category event and nonevent 

NRIs. Confidence intervals computed with bootstrapping are usually, but not always, wider than 

confidence intervals computed using V1� . For the 2-category NRIs with threshold 0.03 for 5-year 

risk, the changes in the true and false positive rates are modest, with an estimated 5.5% 

reduction in the false positive rate and 2.9% increase in the true positive rate. For the 0.1 risk 

threshold, adding CACS to risk prediction increases the true positive rate substantially (19.1%), 

but also increases the false positive rate by 2.7%. 

Although the reclassification table (Table 2) and summary statistics (Table 3) are interesting, we 

find the risk distributions (Table 1) most useful.  Table 1 shows that adding CACS to prediction 

increases the proportion of events labeled as high risk. Unfortunately, it also increases the 

proportion of nonevents labeled as high risk. Since nonevents vastly outnumber events, Table 1 

identifies an important problem with adding CACS to the risk model. 
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5. Discussion and Summary 

The recent literature on measures of incremental value developed as follows. Dissatisfaction 

with ΔAUC led to proposals for measures based on risk categories and reclassification.20 The 

category-based NRI soon followed to address issues with those new measures.4 A preference 

to avoid arbitrary or weakly-justified risk thresholds led to the proposal for NRI>0.5  Unfortunately, 

NRI>0 has many of the same problems as ΔAUC. Neither measure is clinically meaningful, both 

measures are broad summaries of changes in risk models, and both measures incorporate 

irrelevant information.  In these respects, things have come full circle. It is difficult to understand 

whether a value of NRI>0 is large or small, and this is only partly due to lack of experience with 

the index.  Furthermore, without proper attention to model fit, NRI>0 can mislead researchers to 

believe that an uninformative marker improves prediction.15-16  We are skeptical that NRI>0 will 

help investigators develop biomarkers or improve risk models, and are concerned about the 

potential for NRI>0 to mislead. 

The NRI statistics that are most useful are re-named versions of existing measures. Specifically, 

(1) event and nonevent 2-category NRIs are the changes in the true and false positive rates; 

and (2) the weighted 2-category NRI is the change in Net Benefit. In both cases, we prefer the 

established, descriptive terminology.   

We recommend the bootstrap for estimating the variance of NRI estimates and constructing 

confidence intervals. However, methodology that works well for markers with small prediction 

increment is needed.21 

The issues described in Sections 2.3 and 2.4 for NRI>0 also apply to NRIs for 3+ categories. 

However, the overriding issues with NRIs for 3+ categories is that they do not discriminate 

between different types of reclassification — all upward movements in risk categories count the 

same, as do all downward movements.   We thus recommend against NRI statistics for 3 or 

more categories.  As in the 2-category case, if the benefits and costs of different types of 

classification can be specified, these can be used as weights in a weighted NRI, which would be 

the same as the change in net benefit.  This is a challenging approach and, to the best of our 

knowledge, has not yet been done in practice.  A practical alternative is to examine how the old 

and new risk models place events and nonevents into the risk categories (e.g. Table 1).  A 

reclassification table (e.g. Table 2) may also be interesting as it informs about classification 

achieved with the new marker within strata defined by the baseline risk model.  Depending on 

the application, select 2-category summary statistics may be appropriate, particularly for risk 

thresholds that indicate expensive or invasive treatment. 

NRI>0 should not be used in hypothesis testing.  Better tests are available and validated for the 

regression setting. However, we emphasize the limited value of hypothesis testing in assessing 

biomarkers.  We recommend that investigators focus on describing the operating characteristics 

of risk models.   Ideally, then, the prediction increment of a new marker is described in terms of 

how it improves risk model operating characteristics. 
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Figures  

Figure 1. In each plot the solid black line is the ROC curve for the “old” marker and the dotted 

blue line is the ROC curve for the “new” risk model that incorporates the new marker. The new 

marker has identical distribution in all four cases. NRI>0=0.622 in all cases, despite the fact that 

the prediction increment of the new marker decreases as the strength of the old model 

increases. 
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Figure 2: The same data as Figure 1 are shown here in terms of the distributions of risks for old 

and new risk models. Risks are shown on the log odds scale. Blue curves are the risks using 

the established predictors X and red curves are risks using X as well as the new marker Y. 

Dotted lines are nonevents and solid lines are events. 
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Tables 

Table 1. Proportions of subjects in low, medium, and high risk categories in the MESA data, 

presented separately for events (those with coronary heart disease) and nonevent (those 

without coronary heart disease).  

Risk Old risk model New risk model (model with CACS) 

Category nonevent event nonevent event 

0-3% 67.1% 27.3% 70.6% 24.4% 

3–10% 30.6% 55.0% 22.3% 38.8% 

>10% 4.4% 17.7% 7.1% 36.8% 

Total 5669 209 5669 209 

 100% 100% 100% 100% 
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Table 2: Reclassification table for nonevents and events in the MESA data. Each interior cell 

contains the number of individuals in the corresponding risk categories under the old and new 

risk models. The percentages in interior cells are among nonevents or events. The rows and 

columns labeled “Total” show the distributions of nonevents and events into the three risk 

categories under the old and new risk models – the same data are found in Table 1 

Nonevents 

Old Model with CACS  

Model 0-3% 3-10% >10% Total 

0–3% 58% 7% 1%  

 3276 408 5 65% 

3–10% 12% 14% 4%  

 697 791 244 31% 

>10% 1% 1% 3%  

 30 63 155 4% 

Total 71% 22% 7% 5669 

Events 

Old Model with CACS  

Model 0-3% 3-10% >10% Total 

0–3% 16% 11% 0%  

 34 22 1 27% 

3–10% 7% 25% 23%  

 15 52 48 55% 

>10% 1% 3% 13%  

 2 7 28 18% 

Total 24% 39% 37% 209 
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Table 3: Confidence Intervals for select event and nonevent NRIs in the MESA data. Intervals 

based on bootstrap estimates of the standard error, which we recommend, tend to be wider 

than intervals based on the formula for the variance of the estimated NRI statistic..  Recall that 

for a threshold t delineating high risk, 𝑁𝑅𝐼𝑒𝑡 = ΔTPR and  𝑁𝑅𝐼𝑛𝑒𝑡  = –ΔFPR. 

 𝑁𝑅𝐼𝑒>0 = 0.378 𝑁𝑅𝐼𝑛𝑒>0 = 0.319 

formula (0.252,0.503) (0.294,0.344) 

bootstrap (0.275,0.481) (0.257,0.382) 

 𝑁𝑅𝐼𝑒0.03 = 0.029 𝑁𝑅𝐼𝑛𝑒0.03 = 0.055 

formula (–0.030,0.088) (0.044,0.067) 

bootstrap (–0.039,0.097) (0.026,0.084) 

 𝑁𝑅𝐼𝑒0.1 = 0.191 𝑁𝑅𝐼𝑛𝑒0.1 = 0.027 

formula (0.125,0.258) (–0.034,–0.021) 

bootstrap (0.097,0.286) (–0.039,–0.016) 
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A 2-category NRI and Net Benefit

For a single risk model, let B to be the benefit of identifying an event as high risk and C as the cost
of identifying a nonevent as high risk. Define the Net Benefit (3) of a risk model as

NB = B · P (event)P (high|event)− C · P (nonevent)P (high|nonevent). (1)

Now, suppose we have “old” and ”new” risk models, where the new model adds an additional marker
to the old model. It is natural to quantify the incremental value of the new marker as ∆NB, the
change in the Net Benefit by using the new marker for prediction. Let highn and higho denote that
a subject is in the high risk category according to the new and old risk models, respectively. Then

∆NB = B · P (event)[P (highn|event)− P (higho|event)]

−C · P (nonevent)[P (highn|nonevent)− P (higho|nonevent)]. (2)

For any individual, considering the old and new risk models there are four cases: the individual can
be classified low risk by both models, high risk by both models, low and then high, or high and then
low. Let ll, hh, lh, hl denote these four cases, where the first position is for the old risk model and the
second position is for the new risk model. Then we can write the first line of (2) as

B · P (event)[P (hh|event) + P (lh|event)− P (hh|event)− P (hl|event)]

= B · P (event)[P (lh|event)− P (hl|event)]

= B · P (event)[P (up|event)− P (down|event)] (3)

Similarly, the second line of (2) can be written

−C · P (nonevent)[P (up|nonevent)− P (down|nonevent)]. (4)

Therefore,

∆NB = B · P (event)[P (up|event)− P (down|event)]

−C · P (nonevent)[P (up|nonevent)− P (down|nonevent)]

= B · P (event)[
P (event|up)P (up)

P (event)
−

P (event|down)P (down)

P (event)
]

−C · P (nonevent)[
P (nonevent|up)P (up)

P (nonevent)
−

P (nonevent|down)P (down)

P (nonevent)
]

= B[P (event|up)P (up)− P (event|down)P (down)]

−C[P (nonevent|up)P (up)− P (nonevent|down)P (down)] (5)

Thus the wNRI is exactly the change in the Net Benefit for the old and new risk models.

2
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B 3-category NRI and Net Benefit

First, we generalize the definition of the 3-category NRI by considering the different ways individuals
can move between risk categories. Second, we define Net Benefit for a risk model when there are three
categories and derive ∆NB for the prediction increment. Last, we derive wNRI for the 3-category
NRI similar to the derivation of the wNRI for two-categories in Pencina et al. (4). We we show that
wNRI for three categories is the same as ∆NB, just as they are equal for two categories.

B.1 Generalized NRI for 3 categories

The definition of the NRI is

NRI = P (up|event)− P (down|event) + P (down|nonevent)− P (up|nonevent). (6)

For three categories, “up” can mean three things: move from low to medium, from medium to high,
or from low to high. Let l,m, and h represent the low, medium, and high categories. For 3 categories
we can write the NRI as

P (lm|event) + P (lh|event) + P (mh|event)

− P (ml|event)− P (hl|event)− P (hm|event)

+ P (ml|nonev) + P (hl|nonev) + P (hm|nonev)

− P (lm|nonev) + P (lh|nonev) + P (mh|nonev) (7)

= [P (event|lm)P (lm) + P (event|lh)P (lh) + P (event|mh)P (mh)]/P (event)

− [P (event|ml)P (ml) + P (event|hl)P (hl) + P (event|hm)P (hm)]/P (event)

+ [P (nonev|ml)P (ml) + P (nonev|hl)P (hl) + P (nonev|hm)P (hm)]/P (nonev)

− [P (nonev|lm)P (lm) + P (nonev|lh)P (lh) + P (nonev|mh)P (mh)]/P (nonev) (8)

This is a linear combination of P (event|∗)P (∗) and P (nonev|∗)P (∗) where ∗ represents movement
between risk categories.

B.2 Net Benefit and Three categories

Let Bh and Bm be the benefits for assigning a case to the high and medium risk categories, respectively.
Let Ch and Cm be the costs for assigning a control to the high and medium risk categories, respectively.
Then the Net Benefit or a risk model is

NB = BhP (h|event)P (event) + BmP (m|event)P (event)

− ChP (h|nonev)P (nonev)− CmP (m|nonev)P (nonev).

Use the subscript n and o for the new and old risk models, respectively. Then

∆NB = BhP (event)[P (hn|event)− P (ho|event)] (9)

+ BmP (event)[P (mn|event)− P (mo|event)] (10)

− ChP (nonev)[P (hn|nonev)− P (ho|nonev)] (11)

− CmP (nonev)[P (mn|nonev)− P (mo|nonev)] (12)

3
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Figure 1: Parameters for the derivation of wNRI for 3 risk categories.

Now, P (hn) = P (lh)+P (mh)+P (hh) and P (ho) = P (hl)+P (hm)+P (hh), so P (hn)−P (ho) =
P (lh) + P (mh)− P (hl)− P (hm). The same holds when conditioning on event status and the same
reasoning can be applied to P (mn) − P (mo). Applying this reasoning and Bayes’ rule gives the
following expression for the change in Net Benefit for using the new risk model instead of the old risk
model:

∆NB = Bh[P (event|lh)P (lh) + P (event|mh)P (mh)− P (event|hl)P (hl)− P (event|hm)P (hm)]

+ Bm[P (event|lm)P (lm) + P (event|hm)P (hm)− P (event|ml)P (ml)− P (event|mh)P (mh)]

− Ch[P (nonev|lh)P (lh) + P (nonev|mh)P (mh)− P (nonev|hl)P (hl)− P (nonev|hm)P (hm)]

− Cm[P (nonev|lm)P (lm) + P (nonev|hm)P (hm)− P (nonev|ml)P (ml)− P (nonev|mh)P (mh)].

B.3 wNRI derived for three categories

Following Pencina et al. (4), let slm be the savings for re-classifying an event from low risk to medium
risk and smh be the savings for re-classifying an event from medium risk to high risk. The savings
from re-classifying an event from low risk to high risk is then slm + smh. Similarly, for nonevents we
use parameters shm and sml. The total savings using the new risk model instead of the old risk model
is

nmh[P (event|mh)smh − P (nonev|mh)shm] +

nlm[P (event|lm)slm − P (nonev|lm)sml] +

nlh[P (event|lh)(smh + slm)− P (nonev|lh)(shm + sml)] +

nhm[−P (event|hm)smh + P (nonev|hm)shm] +

nml[−P (event|ml)slm + P (nonev|ml)sml] +

nhl[−P (event|hl)(smh + slm) + nlhP (nonev|lh)(shm + sml)]

4
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Divide through by n so that nmh/n = P (mh) and so forth. Then the expected savings for use of the
new risk model:

smh[P (event|mh)P (mh) + P (event|lh)P (lh)− P (event|hm)P (hm)− P (event|hl)P (hl)]

+ slm[P (event|lm)P (lm) + P (event|lh)P (lh)− P (event|ml)P (ml)− P (event|hl)P (hl)]

+ shm[P (nonev|hm)P (hm) + P (nonev|hl)P (hl)− P (nonev|mh)P (mh)− P (nonev|lh)P (lh)]

+ sml[P (nonev|ml)P (ml) + P (nonev|hl)P (hl)− P (nonev|lm)P (lm)− P (nonev|lh)P (lh)]

Compare this expected savings with expression (8) for the generalized definition of the 3-category
NRI. The expected savings can be viewed as a differently-weighted linear combination of P (event|∗)P (∗)
and P (nonev|∗)P (∗) where ∗ represents movement between risk categories.

Now return to the expression for ∆NB and reparametrize: replace Bm with slm and Bh with
slm + smh. Then from the first two lines we get:

slm[P (event|lh)P (lh) + P (event|lm)P (lm)− P (event|hl)P (hl)− P (event|ml)P (ml)]

+ smh[P (event|lh)P (lh) + P (event|mh)P (mh)− P (event|hl)P (hl)− P (event|hm)P (hm)]

= slmP (event)[P (lh|event) + P (lm|event)− P (hl|event)− P (ml|event)]

+ smhP (event)[P (lh|event) + P (mh|event)− P (hl|event)− P (hm|event)]

For the second two lines replace Cm with sml and Ch with shm + sml. The last two lines of ∆NB are:

sml[P (nonev|hl)P (hl) + P (nonev|ml)P (ml)− P (nonev|lh)P (lh)− P (nonev|lm)P (lm)]

+ shm[P (nonev|hl)P (hl) + P (nonev|hm)P (hm)− P (nonev|lh)P (lh)− P (nonev|mh)P (mh)]

= smlP (nonev)[P (hl|nonev) + P (ml|nonev)− P (lh|nonev)− P (ln|nonev)]

+ shmP (nonev)[P (ml|nonev) + P (mh|nonev)− P (lm|nonev) + P (hm|nonev)]

5
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C Simulation Study: Methods

Our primary simulation model is Binormal Equal Correlation data (5). Let ρ denote disease preva-
lence. The old marker X and the new marker Y are bivariate Normal in both events and nonevents.

(
X
Y

) ∣∣∣D = 0 ∼ N2

((
0
0

)
,

(
1 r
r 1

))

(
X
Y

) ∣∣∣D = 1 ∼ N2

((
µX

µY

)
,

(
1 r
r 1

))

A feature of this model is that the logistic model holds for both P (D = 1|X = x, Y = y) and
P (D = 1|X = x).

logitP (D = 1|X = x) = log
ρ

1− ρ
−

µ2

x

2
+ µxx

logitP (D = 1|X = x, Y = y) =
µX − rµY

1− r2
x+

µY − rµX

1− r2
y + log

ρ

1− ρ
−

µ2

X + µ2

Y − 2rµXµY

2(1− r2)
.

Therefore, when we apply logistic regression with data simulated from this model the risk model is
correctly specified.

Note that µX and µY summarize the marginal predictive abilities of X and Y respectively. r is the
conditional correlation between the markers – conditional on disease status. Throughout this paper
X represents the established marker(s) and Y represents the new predictor. The incremental value
of Y depends not just on µY but also on r and µX . In general the incremental value of Y is not a
monotone function of µY when r ̸= 0 (2).

A convenient feature of this model is that there is a simple formula for NRI>0:

NRI>0

e = NRI>0

ne =
1

2
NRI>0 = 2Φ

(
√

M2

X,Y −M2

X

2

)
− 1.

where M2

X,Y is the squared Mahalanobis distance between events and nonevents in the distribution of
(X, Y ) and M2

X is the squared Mahalanobis distance between events and nonevents in the distribution
of X. Φ is the distribution function of a standard Normal random variable. Any choice of simulation
parameters, µX , µY , and r exactly determine NRI>0. When we consider the two-category NRI we use
consider NRI0.1. We calculated true values for NRI0.1 by simulating datasets of size 5,000,000 and
fitting the logistic models to get very precise estimates of the proportion of subjects with predicted
risks above and below the high-risk threshold.
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D Confidence intervals for NRI

Investigators seek to understand the nature of the improvement in risk prediction offered by a marker.
To that end, it is of interest to estimate summaries of the prediction increment, and to quantify the
uncertainty of those estimates using confidence intervals. For example, researchers routinely provide
estimates and confidence intervals for the change in the area under the ROC curve, ∆AUC.

Many researchers are familiar with constructing confidence intervals for a parameter using the
point estimate for the statistic and an estimate of its standard error: a 95% confidence interval for
a parameter θ is formed as θ̂ ± 1.96 · ŜE(θ̂). There are three requirements for a confidence interval
constructed in this way to have the proper coverage: the estimate must be (1) consistent, which means
that it estimates the true value in large samples; (2) have a Normal sampling distribution; and (3)

ŜE must be a consistent estimate of the standard error of the estimate.
Pencina et al. (4) provide a formula for estimating V1, the variance of N̂RI. It is natural to

construct a 95% confidence interval for the NRI using N̂RI ± 1.96 ·

√
V̂1. However, a confidence

interval constructed in this way is valid only if conditions (1), (2), and (3) in the previous paragraph
are true (or approximately true).

Pepe et al. (6) noted that V̂1 does not account for the variability of the fitted model. That is,
when a risk model is fit to a dataset, there is uncertainty in coefficients of the model. This uncertainty
should be incorporated into inferences about summaries of prediction performance or the increment
of prediction. V̂1 ignores this uncertainty. Appendix E further elucidates problems with V̂1 as an

estimate of the variance of (N̂RI>0).
We conducted a simulation study to investigate whether confidence intervals have the correct

coverage. We considered confidence intervals constructed as described above. We also evaluated

confidence intervals constructed using N̂RI ± 1.96 · ŜEB(N̂RI), where ŜEB(N̂RI) is a bootstrap
estimate of the standard error. Bootstrap estimates are obtained as follows. Re-sample rows of the
original dataset with replacement to construct a “bootstrap dataset” of the same size as the original
dataset. For a bootstrap dataset, re-fit the “old” and “new” risk models and calculate the NRI
summary measures. Repeat this procedure a large number of times (e.g., 1000). This produces
a distribution of values for the summary measure called the bootstrap distribution. The standard

deviation of the bootstrap distribution is ŜEB. Note that the bootstrap procedure incorporates the

variability of the fitted model coefficients into estimating SE(N̂RI) because the risk model is re-fit
on each bootstrap dataset.

Appendix C describes the simulation study. Table 1 gives the results for confidence intervals
constructed using V̂1 and various bootstrap methods. Values in Table 1 should be compared to a
target value of 0.05. Confidence intervals constructed using the formula for V̂1 have non-coverage
proportions substantially above or below the target value. Non-coverage proportions substantially
below 5% indicate conservative inference – confidence intervals are wider than they should be. Non-
coverage proportions above 5% indicate anti-conservative inference. With anti-conservative inference,
confidence intervals are too narrow and one is falsely confident of the precision of results. The worst
performance was making confidence intervals for NRI>0

ne and NRI0.1ne , with non-coverage proportions
2-5 times as large as the target value.

Confidence intervals constructed using ŜEB show a clear tendency to give conservative results.
While conservative inference is not desirable, anti-conservative inference is not acceptable, particularly
at the levels we see in the tables for the formula for V̂1.

The other bootstrap methods for constructing confidence intervals did not work as as well as

7
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N̂RI ± 1.96 · ŜEB(N̂RI). We therefore recommend constructing confidence intervals by using a
bootstrap estimate of the standard error of the statistic. Note that this method relies on approximate

Normality for N̂RI. This is true asymptotically, but may not be a good assumption in small samples
or for weak biomarkers, especially for the 2-category NRI (7).

Table 1 gives results of our simulation study evaluating seven methods of forming confidence
intervals. Data were simulated as described in Appendix C with µX = 0.74, r =0, and three values
for µY . We considered seven methods for constructing confidence intervals.

1. N̂RI ± 1.96 ·

√
V̂1

2. N̂RI ± 1.96 · ŜEB(N̂RI). This is the same as 1 but uses resampling-subjects bootstrapping to
estimate the standard error.

3. Unadjusted. Uses resampling-subjects bootstrap but keeps the fitted models fixed.

4. Normal. This is similar to 2 but attempts to bias-correct the bootstrap estimate of the standard
error.

5. Basic

6. Percentile. Take the .025 and .975 quantiles of the bootstrap distribution of the statistic.

7. Bias-corrected and accelerated intervals.

The last four methods are described at
www.unc.edu/courses/2007spring/enst/562/001/docs/lectures/lecture28.htm.

8
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E The Variance of N̂RI

We simulated data as described in Supplement C. For all simulations we set the prevalence at 10%
(ρ = 0.1) and conditional independence (r = 0). We considered various values for the marginal
strength of the new marker Y , as indicated in the horizontal axis in the figures. We also considered
small, medium, and large samples sizes (300, 1000, and 10000). For each simulated dataset, we fit the
logistic model, computed NRI>0, and computed V̂1. Across the 4000 simulations, we also computed

the empirical variance of N̂RI>0. This resulted in a single empirical estimate of variance(N̂RI>0) to
compare to 4000 values of V̂1.

Figure 2 shows some of the problems with using V̂1 to estimate the variance of NRI>0. If the
incremental value of a marker is away from the null, V̂1 tends to underestimate the variance of NRI>0.
Near the null, V̂1 tends to overestimate the variance of NRI>0. This may be because of boundary
effects as described in Demler et al. (1) for ∆AUC.
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Figure 2: V̂1 as an estimate of the variance of N̂RI>0. Results here are based on 4000 simulations for
each µY with ρ = 0.1 and r = 0. The sample size of the simulated datasets is given over each set of

boxplots. The boxplots show the ratio of
√

V̂1 divided by the empirical standard deviation across the
4000 simulations. V̂1 tends to overestimate the variance when the incremental value of the marker is
small and the sample size is small. For markers of modest incremental value and medium to larger
sample sizes, V̂1 tends to underestimate the standard error of NRI>0.
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weak new marker (µY = 0.17)
NRI>0

e NRI>0

ne NRI0.1e NRI0.1ne

formula 0.009 0.135 0.134 0.091

ŜEB 0.012 0.035 0.004 0.004
Unadjusted 0.006 0.134 0.206 0.101
Normal 0.074 0.141 0.096 0.059
Basic 0.098 0.162 0.087 0.066

Percentile 0.009 0.024 0.001 0.002
BCA 0.066 0.132 0.142 0.097

medium new marker (µY = 0.34)
NRI>0

e NRI>0

ne NRI0.1e NRI0.1ne

formula 0.011 0.179 0.061 0.113

ŜEB 0.035 0.067 0.011 0.011
Unadjusted 0.007 0.183 0.067 0.114
Normal 0.072 0.084 0.091 0.052
Basic 0.079 0.099 0.09 0.055

Percentile 0.016 0.040 0.001 0.009
BCA 0.065 0.065 0.124 0.087

stronger new marker (µY = 0.74)
NRI>0

e NRI>0

ne NRI0.1e NRI0.1ne

formula 0.008 0.178 0.044 0.266

ŜEB 0.042 0.043 0.022 0.049
Unadjusted 0.006 0.179 0.046 0.268
Normal 0.068 0.051 0.061 0.064
Basic 0.073 0.056 0.071 0.079

Percentile 0.026 0.040 0.009 0.037
BCA 0.060 0.0423 0.074 0.067

Table 1: Non-coverage proportions for different types of confidence intervals. The method we recom-

mend is in the row labeled ŜEB (it is called simply “bootstrap” in Table 3 in the article). Unadjusted,
Normal, Basic, Percentile, and BCA are various types of bootstrap confidence intervals and are de-
scribed in Appendix D.
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