
Open access to the Proceedings of
the 15th USENIX Symposium on Networked

Systems Design and Implementation
is sponsored by USENIX.

Net2Text: Query-Guided Summarization
of Network Forwarding Behaviors
Rüdiger Birkner, Dana Drachsler-Cohen, Laurent Vanbever,

and Martin Vechev, ETH Zürich

https://www.usenix.org/conference/nsdi18/presentation/birkner

This paper is included in the Proceedings of the
15th USENIX Symposium on Networked

Systems Design and Implementation (NSDI ’18).
April 9–11, 2018 • Renton, WA, USA

ISBN 978-1-931971-43-0

Net2Text: Query-Guided Summarization of Network Forwarding Behaviors

Rüdiger Birkner, Dana Drachsler-Cohen, Laurent Vanbever, Martin Vechev
ETH Zürich

net2text.ethz.ch

Abstract

Today network operators spend a significant amount of
time struggling to understand how their network for-
wards traffic. Even simple questions such as “How is my
network handling Google traffic?” often require opera-
tors to manually bridge large semantic gaps between low-
level forwarding rules distributed across many routers
and the corresponding high-level insights.

We introduce Net2Text, a system which assists net-
work operators in reasoning about network-wide for-
warding behaviors. Out of the raw forwarding state and a
query expressed in natural language, Net2Text automati-
cally produces succinct summaries, also in natural lan-
guage, which efficiently capture network-wide seman-
tics. Our key insight is to pose the problem of summa-
rizing (“captioning”) the network forwarding state as an
optimization problem that aims to balance coverage, by
describing as many paths as possible, and explainability,
by maximizing the information provided. As this prob-
lem is NP-hard, we also propose an approximation algo-
rithm which generates summaries based on a sample of
the forwarding state, with marginal loss of quality.

We implemented Net2Text and demonstrated its prac-
ticality and scalability. We show that Net2Text generates
high-quality interpretable summaries of the entire for-
warding state of hundreds of routers with full routing ta-
bles, in few seconds only.

1 Introduction

Put yourself in the shoes of a network operator working
for a large transit provider: you just received a call from
one of the largest Content Delivery Networks (CDN)
informing you that they observed bad performance for
flows crossing your network. As a cautious operator, you
run the latest control- and data-plane verification tech-
nologies and are confident that your network state is cor-
rect; you suspect a runtime problem. You start by col-

lecting the CDN routing advertisements and identify a
dozen of possible egress points used to reach them to-
gether with hundreds of ingresses. Analyzing some of
the internal paths, you do not observe any signs of loss.
Looking at traffic volumes, you realize that most of the
CDN traffic leaves via one egress connected to an Inter-
net Exchange Point (IXP). You suspect congestion inside
the fabric (invisible to you). Indeed, lowering the prefer-
ence for the CDN prefixes at the IXP solves the problem.

This example is loosely based on a real troubleshoot-
ing scenario observed at a Tier 1 and illustrates the chal-
lenges in understanding and reasoning about network-
wide forwarding behavior. The main issue lies in the
large semantic gaps that separate low-level forwarding
rules distributed across the entire network and actionable
high-level insights by network operators. Bridging this
gap manually (the default nowadays) is slow. Reasoning
about network behavior often takes hours (e.g., for the
case above)—even for the most skilled network opera-
tor. As networks grow more complex (e.g. as the number
of peering increases), so does the corresponding reason-
ing time. This tension is becoming even more palpable
as networks carry more and more critical services.

The example also illustrates that human insights and
domain-specific knowledge are fundamental for under-
standing non-trivial unwanted network behavior. Even
if the network control- [1–4] and data-plane [5–10] are
formally verified, subtle problems will arise at runtime.
Here, no observable signs were available to the operator.
The goal is therefore not to remove the human out of the
loop, but instead to assist her.

Net2Text In this paper, we introduce Net2Text, an inter-
active system which assists the network operator in rea-
soning about network-wide forwarding state. Out of the
low-level forwarding state and a query expressed in natu-
ral language, Net2Text automatically produces succinct,
natural language descriptions, which efficiently capture
network-wide semantics.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 609

mailto:rbirkner@ethz.ch
mailto:dana.drachsler@inf.ethz.ch
mailto:lvanbever@ethz.ch
mailto:martin.vechev@inf.ethz.ch
https://net2text.ethz.ch/

Relying on natural language ensures seamless human
interactions. We think of Net2Text as a “chatbot” for
networks. We confirmed the usefulness of such inter-
faces with the network operators themselves: all of them
liked the idea of having natural language descriptions of
their network. Of course, Net2Text’s reasoning capabili-
ties could also be integrated with other high-level inter-
faces such as graphs [11].

Coming back to the example above, the operator could
simply ask Net2Text: “What happens to the traffic des-
tined to CDN X?” to which Net2Text would answer:
“Traffic enters via n ingresses and mostly (85%) leaves
via IXP 1. Traffic is load-balanced between A and B.”.
Using this high-level insight, the operator could then ask
for more targeted information: “Tell me more about the
CDN traffic leaving via IXP 1”.

The main challenge behind Net2Text is to generate
concise summaries which “explain”’ as much as possible
out of the network forwarding state. We formulate this as
an optimization problem that aims to balance coverage
and explainability and show that it is NP-hard.

Fortunately, we show that the skewness of the network
forwarding state (i.e. its inherent redundancy) makes it
well-amenable to summarization in practice. This moti-
vates us to focus on a subspace of solutions which we can
prove contains good solutions. An important property of
this subspace is that every search path is of polynomial
size. This enables us to design an approximation algo-
rithm that traverses the space efficiently.

We designed and implemented Net2Text. Net2Text
takes a query in natural language, parses it to a database
query, runs the query on a network database, summa-
rizes the results, and translates the summarization back to
natural language. The operator can then pose follow-up
queries, and thereby interactively guide Net2Text towards
producing summaries focusing on particular aspects of
the network.

We evaluated Net2Text on a variety of realistic net-
works. Our results demonstrate that Net2Text is practi-
cal: it generates high-quality interpretable summaries of
the entire forwarding state of hundreds of routers and full
routing tables, in few seconds only.

Contributions Our main contributions are:

• A precise formulation of the network-wide summa-
rization problem as an optimization problem (§4).
• An approximation algorithm for generating high-

quality summaries (§5,§6), which scales to large
data sets, and a translation of the abstract summaries
to a description in natural language (§7).
• An implementation of Net2Text, along with a

comprehensive evaluation. Experiments show that
Net2Text can derive summaries for backbone net-
works with full routing tables within seconds (§9).

2 Overview

Consider an operator wondering how her network is for-
warding traffic towards Google:

“How is Google traffic being handled?”

Net2Text automatically parses the question expressed
in natural language and produces a concise description
(also in natural language) of the current forwarding be-
havior observed for Google:

“Google traffic experiences hot-potato routing. It
exits in New York (60%) and Washington (40%).
66% of the traffic exiting in New York follows the
shortest path and crosses Atlanta.”

Producing such a summary is challenging: the sys-
tem has to understand what the operator is interested in,
extract the relevant information, summarize it, and then
translate it to natural language. Extracting this informa-
tion goes beyond simply querying a database: it requires
processing the data to identify common path features
(e.g., the New York and Washington egresses) as well as
high-level features pertaining to different paths (e.g., hot-
potato routing, shared waypoints). In addition, the entire
process should be quick (even if the network is large) to
guarantee interactivity and deal with traffic dynamics.

In the following, we give a high-level overview of how
Net2Text manages to solve these challenges and go from
the above query to the final summary using a three-staged
process (see Fig. 1).

Parsing operator queries in natural language (§8)
Net2Text starts by parsing the operator query in natural
language using a context-free grammar. This grammar
defines a natural language fragment consisting of multi-
ple network features (e.g., ingress, egress, organization,
load-balancing) and possible feature values (e.g., New
York, Google) allowing a network operator to express a
wide range of queries. Our grammar consists of ∼ 150
derivation rules which are extended with semantic infer-
ence rules to infer implicit information. In the above ex-
ample, our grammar infers that the operator refers to traf-
fic destined to the organization Google. Net2Text also
understands other kinds of queries: (i) yes/no queries,
“Does all traffic to New York go through Atlanta?”; (ii)
counting queries, “How many egresses does traffic to
Facebook have?”; and (iii) data retrieval queries, “Where
does traffic to New York enter?”. Our grammar is extend-
able with new features, keywords, and names.

Net2Text maps the parsed query to an internal query
language, similar to SQL. Here, the query is mapped to:
SELECT * FROM paths WHERE org=GOOGLE. This
query is then run over a network database that stores
the entire forwarding state of the network. Afterwards,
the results are passed to the core part of Net2Text: the
summarization module.

610 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Live network

High-level query
in natural language

▁▂▃▅▂▇

▇▁▂▃▂▅

traffic vol.

▁▂▃▅▂▇

Google

Yahoo!

forwarding paths

How is Google's
traffic handled?

Network database

Google traffic experiences
hot-potato routing.  
It exits in New York (60%)
and Washington (40%).

66.6% of the traffic  
exiting in New York
follows the shortest path

and crosses Atlanta.”

SELECT * FROM paths

WHERE org=GOOGLE

Generated answer
in natural language

path 1

path 2

path n

…

egress lb? avg. bw

NEWY

BOST

SFO

true

false

true

98.4 Mbps

25.0 Mbps

0.4 Mbps

… … …

…
…

…

Parser

§8

Summarization

§3, §4, §5, §6

Translation

§7
“

Collected statistics

lb

bw>1Gbps

ingress

bw>1Gbps

{paths}

egress=NEWY

lb==T
included in
summary

egress!=NEWY

set of abstract explanations

optimal explanation

maximize information

low-level query

TextNet 2

Figure 1: Net2Text: Workflow and key components.

Summarizing forwarding states (§4, §5, and §6) Most
queries (including the one above) can and will return
a plethora of low-level forwarding entries. Net2Text as-
sists the operator in reasoning about forwarding state by
automatically generating high-quality interpretable sum-
maries out of low-level forwarding entries.

Summarizing network-wide forwarding states requires
overcoming a fundamental tradeoff between explainabil-
ity (how much detail a summary provides) and coverage
(how many paths a summary describes). By defining a
score function capturing both concepts analytically, we
show that we can formally phrase this problem as an
NP-hard optimization problem (§4). This renders both
exhaustive techniques along with techniques based on In-
teger Linear Programming impractical.

To scale, we leverage the insight that traffic is skewed
(heavy-tailed) across multiple levels: in the traffic dis-
tribution itself (few prefixes are typically responsible
for most of the traffic [12]) or at the routing level
(network topologies are usually built following guide-
lines, leading to repetitive forwarding patterns, e.g.,
edge/aggregation/core). This insight enables us to design
an approximate summarization algorithm, called Com-
Pass (§6), which explores a reduced search space that
we can prove contains good summaries (§5). In addition,
we show that ComPass can only summarize a sample of
the forwarding entries instead of all of them with only a
marginal loss in summarization quality.

Taken together, the reduced space and sampling opti-
mization enable Net2Text to generate high-quality inter-
pretable summaries for large networks (with hundreds of
routers) running with full routing tables in less than 2
seconds (§9).

Converting path specifications to concrete text (§7)
Given a set of path specifications, Net2Text finally pro-
duces a summary expressed in natural language in two
steps. It first extends the set with additional properties
inferred by examining the specifications as a whole. For
example, if the specifications imply that there are multi-
ple paths between the egress and ingress, Net2Text infers
that the traffic is load balanced. Net2Text then maps the
extended specifications to sentences in natural language.

3 Preliminaries

We now introduce the key terms we use in the paper.

Routing paths We model the network as a graph and
define a network path P as a finite sequence of links. A
routing path (d,P) is a pair of an IP prefix and a path,
which describes that traffic to prefix d can be routed on
P (a prefix can be routed on multiple paths). We denote
by R the set of all routing paths in the network.

Feature functions Feature functions describe path fea-
tures. Formally, a feature function q : R→Uq maps rout-
ing paths R to feature values from Uq. We denote
by vq a value in Uq. We focus on the following fea-
ture functions. Organization O : R→UO maps every
(d,P) to the organization owning d, e.g., Google. Egress
E : R→UE maps every (d,P) to the egress of P, and
ingress I : R→UI maps to P’s ingress. Shortest path
SP : R→{0,1} maps to 1 if P is a shortest path be-
tween its ingress and egress, and 0 otherwise. We use
the subscripts e, i, o, and sp to denote feature values of
the egress, ingress, organization, and shortest path fea-
ture functions, e.g., New Yorke ∈UE and 1sp ∈USP.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 611

Path specifications To explain the behavior of the net-
work and its routing paths, we define the concept of sets
of feature values called path specifications. Given a set
of l feature functions with disjoint ranges U1, ...,Ul

1 and
a bound t (for t ≤ l), a path specification is a (nonempty)
set of feature values where the size of the set is at most t
and each feature value describes a different feature func-
tion. Formally, a path specification is an element in:

St
U1,...,Ul

=
⋃

1≤m≤t

⋃
1≤ j1<...< jm≤l

U j1 × ...×U jm

Since the order of the feature values is not important
for our needs, we treat path specifications as sets, e.g.,
SG,NY = {Googleo,New Yorke}.

We say a routing path (d,P) meets a path specification
S, denoted (d,P) |= S, if for every feature value v ∈ S,
if v ∈Uq for a feature function q, then q(d,P) = v. We
define a specification set S as a set of path specifications,
i.e., S⊆ St

U1,...,Ul
. A routing path (d,P) meets a specifi-

cation set S, if there exists S ∈ S such that (d,P) |= S.

4 Problem Definition

Here, we formally phrase the problem of explaining net-
work behaviors as an optimization problem.

Our goal is to find a summary of a (large) set of routing
paths in the form of path specifications. The main chal-
lenge then is to infer a specification set that describes
as many routing paths as possible while providing max-
imal amount of information about them. To evaluate the
quality of a specification set, we define a score function.
Intuitively, the score of a specification set is the sum of
the “amount of explanation” of its routing paths. Given
a score function, we formulate the problem of network
summarization as constraint optimization.

We phrase our optimization problem as a MAP infer-
ence task [13], in which the goal is to find an assign-
ment that maximizes a score while satisfying a set of
constraints. In our context, an assignment consists of (up
to) k path specifications each with at most t feature val-
ues and over feature functions q1, ...,ql . The score of an
assignment is the weighted sum of the features the as-
signment describes for every routing path inR. We define
the score in two steps: (i) the score of a feature function
q ∈ {q1, ...,ql} and (ii) the score of all feature functions.

Feature score A score function of a feature function q
maps sets of up to k specifications to a real number score:

Φq :
(
St

U1,...,Ul
∪{ /0}

)k→ R

The domain consists of k-ary tuples, whose elements are
specification sets or the empty set. The empty set /0 de-

1This is not a limitation, because values can be uniquely annotated.

Specification set ΦE ΦSP ΦE,SP

{{NYe}} 1 0 1
{{LAe}} 2 0 2
{{1sp}} 0 3 3
{{NYe},{LAe,1sp}} 3 2 5

Table 1: Score functions for R = {(d1,P1),(d2,P2)},
where wd1,P1 = 1 and wd2,P2 = 2, E(d1,P1) = NYe and
E(d2,P2) = LAe, and SP(d1,P1) = SP(d2,P2) = 1sp.

notes “no specification”, and it enables us to cleanly cap-
ture specification sets with less than k specifications. To
simplify definitions, we assume: (d,P) 6|= /0 for all (d,P).
For a set S, the score Φq(S) is the weighted sum of rout-
ing paths in R for which q is described by a specification
in S. A path (d,P) is part of the sum if there is a speci-
fication S ∈ S containing a feature value of q that (d,P)
satisfies. The weight of a path wd,P is a positive number
(e.g., the traffic size). Formally:

Φq(S) = Σ
(d,P)∈R

wd,P · [
∨

S∈S : q(d,P)∈S(d,P) |= S] (1)

In this definition, [·] denotes the Iverson bracket that re-
turns 1 if the formula is satisfied or 0 otherwise.

Example 1 Table 1 shows an example for
R= {(d1,P1),(d2,P2)} with wd1,P1 = 1 and wd2,P2 = 2.
Assume E(d1,P1) = NYe, E(d2,P2) = LAe, and that P1
and P2 are shortest paths: SP(d1,P1) = SP(d2,P2) = 1sp.
Then, ΦE({{NYe}}) = 1 ·1+2 ·0 = 1 and similarly
ΦE({{LAe}}) = 1 ·0+2 ·1 = 2. Since both P1 and
P2 are shortest paths, ΦSP({{1sp}}) = 1 ·1+2 ·1 = 3.
However, ΦSP({{NYe},{LAe,1sp}}) = 1 ·0+2 ·1 = 2

Feature set score A score function of feature functions
q1, ...,ql maps k specifications of size at most t to a score:

Φq1,...,ql :
(
St

U1,...,Ul
∪{ /0}

)k→ R

The score is the sum of all the features’ scores:

Φq1,...,ql (S) = Σ
j : [1,l]

Φq j(S)

The last column of Table 1 shows the feature set score
of the previous example. We can now define the opti-
mization problem.

Definition 1 (Optimization Problem) Given a set of rout-
ing pathsR, weights wd,P for each (d,P)∈R, a set of fea-
ture functions q1, ...,ql , a constant k limiting the number
of path specifications, and a constant t limiting the size
of path specifications, we formulate the network summa-
rization problem as:

argmax
S∈(St

U1 ,...,Ul
∪{ /0})k

Φ(S)

612 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Example 2 Let R= {(Google,Pi)}100
i=1, each with weight

1, and k = t = 3. We assume that (i) if i ≤ 60,
E(Google,Pi) = NYe, and E(Google,Pi) = LAe other-
wise, (ii) for i ≤ 40, SP(Google,Pi) = 1sp, and (iii) all
other feature values are unique for every path. An op-
timal solution is: {{NYe},{Washingtone},{NYe,1sp}},
and its score is ΦE +ΦSP = 100+ 40 = 140. Another
optimal solution is {{NYe},{Washingtone},{1sp}}.
Though scores are identical, the operator is likely to pre-
fer the former specification set as it provides additional
information (e.g., all traffic following the shortest path
exits in New York). We leverage this insight in §5.

Definition 1 can be refined by extending the objective
function or adding constraints, as demonstrated in the
next section. Also, while this problem can be considered
as a general summarization problem suitable for other
contexts, the skewed nature of traffic makes our context
a better instantiation to this problem: the heavy traffic
is likely to share many feature values which can lead to
solutions that are clearly better than others. At the same
time, these properties are exactly the kind of information
that an operator needs in order to understand the behavior
of the main part of the traffic.

One approach to solving this optimization problem is
to phrase it as an integer linear program and use an off-
the-shelf solver. We show such a formulation and a per-
formance evaluation in Appendix A. Computing an exact
solution to this NP-hard optimization problem is (expect-
edly) too expensive for practical use when summarizing
a large number of paths. Instead, we introduce an approx-
imate and scalable optimization algorithm, which we de-
scribe in the next sections.

5 Approximate Optimization

A key challenge when designing an inference algorithm
for an NP-hard problem is dealing with the size of the
search space that is at least exponential. In our setting,
we show that the search space is exponential in both t and
k, making the search very challenging (§5.1). Intuitively,
this stems from the fact that we need to explore two di-
mensions: path coverage and path explainability. To ad-
dress the issue with the large search space, we leverage
the fact that traffic is skewed and focus on parts of it, en-
abling us to trade-off expressivity of the specification set
with the size of the search space. We show that the op-
timal solution for this part of the search space: (i) has at
least min{1/k,1/t} of the score of the optimal solution
for the full search space, (ii) the length of every search
path is polynomial in t, and (iii) the number of children
of every node is polynomial in the number of feature val-
ues (§5.2). We further identify an equivalence relation
over the path specifications and leverage it to define a
search space with solutions of higher quality (§5.3).

5.1 An Exponential Search Space
In this section, we analyze the size of the search space,
organize the solutions in a graph, and discuss the chal-
lenges of traversing it.

Size of search space We begin with showing that the
size of the search space is exponential in t and k.
The search space is the set of all specifications, that is
(St

U1,...,Ul
∪{ /0})k. Thus, it immediately follows that its

size is exponential in k. To conclude that the size is ex-
ponential in k and t, we show that the size of St

U1,...,Ul
is exponential in t. To prove this, we reduce this com-
putation to the combinatorial problem of choosing with-
out replacement up to t feature functions from l feature
functions (we assume l ≥ t) and then for each, picking a
feature value (we assume |Ui| ≥ 2 for all i). Then, using
a combinatorial identity [14, Vol. 2, (1.37)] we get:

t

∑
m=0

(
l
m

)
·2m ≥

t

∑
m=0

(
t
m

)
· 2m

m+1
=

3t+1−1
2(t +1)

Search space as a graph We organize the solutions in
a directed graph G. The nodes of G are the solutions:
(St

U1,...,Ul
∪{ /0})k. There is an edge (u,v) if v extends one

of u’s specifications with one feature value (Fig. 2). We
distinguish between two kinds of edges: edges that ex-
tend an empty specification (colored blue) and those that
extend an existing specification (colored red). Intuitively,
the blue edges try to increase coverage by including more
path specifications. This increases the number of routing
paths for which the overall specification set holds. The
red edges aim to increase the amount of detail captured
in a path specification, resulting in better explainability.
However, they can reduce the number of routing paths
that satisfy the specification set (and thus, have the oppo-
site effect of blue edges). Two extreme points in this cov-
erage versus explainability exploration are: (i) specifica-
tion sets that maximize explainability (specifications are
of size t) and (ii) specification sets that maximize cov-
erage (all specifications are of size 1). Depending on the
weights and number of routing paths, the optimal solu-
tion sits in-between these two extremes.

Example 3 {{New Yorke}} maximizes coverage, while
{{New Yorke, Dallasi, Googleo,1sp}} explainability.

Search challenge An important ingredient in any search
strategy is the solution scoring function, which guides
the search towards the optimal result, while effectively
pruning subspaces. In our setting, such a score function
is even more critical as the size of the search space is ex-
ponential in k and t. An immediate candidate for a score
function is Φ, as in Definition 1. However, Φ can guide
us towards a good solution only if we restrict our traver-
sal to nodes reachable through the blue edges. This is due

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 613

Ø,Ø,Ø

… {LAi},Ø,Ø{SFe},Ø,Ø

{LAi},{NYe},Ø

{LAi},{NYe},{Yo}

{SFe, LAi},Ø,Ø

…

{SFe, LAi, Go, 1sp}, 
{SFe, NYi, Yo, 1sp}, 
{LVe, NYi, Yo, 0sp} {SFe},{SFe, LAi},{SFe, LAi, Yo}

{SFe},{SFe, LAi},Ø

Maximal coverage

Maximal explainability
Coverage and explainability

…

…

G⊆

Figure 2: Part of the search space for k=3 specifications,
t=4 feature values per specification and features egress
(e), ingress (i), organization (o) and shortest path (sp).

to a monotonicity property guaranteeing that if v is reach-
able from u only through blue edges, then Φ(v) > Φ(u)
(since v includes all feature values described by u). How-
ever, the red edges do not have this property for Φ (as it
trades off path coverage with explainability). Even if we
consider a different scoring function, pruning is unlikely
to be effective and the traversal may end up exploring
an exponential number of nodes. Instead, we consider a
reduced subspace that has shorter paths and satisfies the
monotonicity property for every type of edge.

5.2 A Reduced Search Space

In this section, we define a reduced space G⊆, which
is a subspace of G. Our reduced space leverages the
fact that traffic is skewed, and thus the heavy part of
the traffic shares many feature values. This means that
specifications consisting of these common feature values
have higher score than other specifications and that these
higher-scored specifications intersect. This motivates us
to focus only on solutions whose specifications are con-
tained in one another. Such an approach guarantees that
the solutions balance path coverage (provided by the
shorter specifications) and explainability (provided by
the larger specifications). We show that G⊆ contains so-
lutions which are not significantly worse than an optimal
solution in G. Specifically, we show that G⊆ contains a
solution whose score is at least min{ 1

k ,
1
t } of an optimal

solution in G, in the worst case. In G⊆, the size of the
search paths is t (instead of t · k as in G), and every node
has at most ∑

l
i=1 |Ui| children (instead of k ·∑l

i=1 |Ui|).
The nodes of G⊆ are all specification sets whose

path specifications are extensions of one another. More
formally, a node has the property that its (nonempty)
specifications can be ordered to S1, ...,Sm such that
(i) S1 ⊂ ...⊂ Sm and (ii) for all 1≤ i≤ m, |Si|= i. For
example, {{New Yorke},{New Yorke,1sp}} is a node in
G⊆, while {{New Yorke},{Washingtone}} is not.

The edges of G⊆ combine both kinds of edges of G.
Concretely, there is an edge (u,v) if v contains all specifi-
cations of u and also contains a specification that extends

the largest specification of u with an additional feature
value. More formally, if the (nonempty) specifications of
u are ordered as defined before to S1, ...,Sm, then v has the
specifications S1, ...,Sm,Sm+1 such that Sm ⊂ Sm+1 and
|Sm+1|= m+1. Fig. 2 highlights the nodes of G⊆ with a
green background and shows the edges of G⊆ (which are
different from the edges of G) in green.

Optimality We now discuss how solution optimality in
G⊆ relates to that in G. Intuitively, there are two “worst
case scenarios”. First, if specifications are of size t, a so-
lution of G⊆ that contains any such specification con-
tains subsets of this specification as well, which “take the
spot” of the other specifications, without necessarily con-
tributing to the score. To illustrate this, consider the sce-
nario where k = 3, t = 4 and there are 3 paths, p1, p2, p3
with weight 1 whose feature values are {e1, i1,o1,sp1},
{e2, i2,o2,sp2},{e3, i3,o3,sp3}, respectively (where en is
an egress, in is an ingress, on is an organization, and spn
is an indicator for shortest path). An optimal solution is
to pick exactly these three feature values resulting in a
score of 12. However, in G⊆, a solution that includes one
of these specifications contains also its subsets, making
the score of the optimal solution only 3. The other ex-
treme is if all optimal solutions are of size 1. In this case,
sets of size greater than 1 may add little gain to the score.
To illustrate this, consider the scenario where k = 3, t = 4
and there are 12 paths, p1, . . . , p12 with weight 1 such that
p1, . . . , p4 have property e1, p5, . . . , p8 have property e2
and p9, . . . , p12 have property e3 (besides this, there are
no common feature values). An optimal solution is {e1},
{e2},{e3} whose score is 12. However, because of the
structure of our space, the optimal solution has score 6.

The next lemma states that the maximum gap between
the scores of the optimal solution in G⊆ and G is at most
a factor of min{ 1

t ,
1
k}. Proof is provided in Appendix B.

Lemma 1 Let OPTG,OPTG⊆ be the optimal solutions in
G and G⊆. Then, min{ 1

t ,
1
k} ·Φ(OPTG)≤Φ(OPTG⊆).

5.3 A Path Equivalent Space

In this section, we define a search space which is sim-
ilar to G⊆ but may contain solutions with higher score.
Intuitively, this is obtained by “merging” nodes in G⊆
that are equivalent with respect to the satisfying paths.
In other words, for every two nodes in this space, there
is at least one path satisfying one but not the other. Path
equivalence does not imply the same score. For example,
if {e1},{i1} are path equivalent, then {e1, i1} is also path
equivalent to them, but with a score twice as high from
each (because each path contributes its weight twice,
once per feature). By considering only nodes that are
not path equivalent, we can potentially obtain better so-
lutions, without sacrificing the lower bound of Lemma 1.

614 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

We use this observation to modify G to a space G=
whose solutions consist of specifications that are (i) con-
tained in one another (like G⊆) and (ii) maximal with
respect to path equivalence. In our example, this means
that {e1},{i1} are not part of any solution in G=, but
{e1, i1} might be if its extensions are not equivalent to
it. In G=, there is an edge (u,v) if, for u whose specifi-
cations are S1 ⊆ ... ⊆ Sm, we have (i) the specifications
of v are S1, ...,Sm,Sm+1, (ii) Sm ⊂ Sm+1, and (iii) for any
subset S such that Sm ⊂ S ⊂ Sm+1, Sm+1 and S are path
equivalent. By construction, G= has solutions which are
at least as good as those in G⊆, which gives us:

Lemma 2 Let OG⊆ and OG= be optimal solutions in G⊆
and G=, respectively. Then, Φ(OG=)≥Φ(OG⊆).

By traversingG=, algorithms can return solutions with
larger path specifications than if they traversed G⊆. This
follows since the maximal size of a specification in G⊆
is k, while the size of specifications in G= is up to t.

6 The ComPass Algorithm

We now introduce ComPass, our algorithm for
computing path specifications by traversing the search
space G=. ComPass (Algorithm 1) lazily computes
nodes in G= and continues to the node with the highest
increase in score. It takes as input a set of routing paths
R, a set of feature functions q1, . . . ,ql , and constants k
and t denoting the maximal number of specifications and
the maximal size of each path specification. ComPass
starts by initializing the set of solutions S and the
current specification L to the empty set and Q to the set
of all candidate feature functions (Lines 1–3). In up to
k iterations, the best feature value is selected to extend
L according to the score function – namely, the feature
value that will maximize the score of S as defined by the
score function (Eq. (1)) when adding it to L . This can
be formalized as maximizing the function on Line 5.

Let v be this feature value and q its feature. Then, L is
extended with v and q is dropped as L cannot contain an-
other feature value from Uq. The paths in R not meeting
v are dropped as well, as these will not be described by
the next specifications (Lines 6–8). Then, if the size of L
reaches the bound t, the loop breaks as it is impossible
to extend L further (Line 9). Otherwise, ComPass com-
putes the maximal specification that is equivalent to L by
checking whether it can be extended with other feature
values (Lines 10–13). Finally, L is added to S (Line 14),
and the next iteration begins. To ensure the limit of t is
not exceeded, once L has reached this bound, ComPass
completes and returns the current specification sets. This
means that ComPass may return fewer than k specifica-
tions. It can be shown that this solution has a higher score
than a solution with k specifications that are not repre-

Algorithm 1: ComPass (R, q1, . . . ,ql , k, t)
Input : R: a set of routing paths.

q1, . . . ,ql : a set of feature functions.
k: limit on the number of specifications.
t: limit on the size of specifications.

Output: A set of specifications S.
1 S = /0 // The specification set

2 L = /0 // The last computed specification

3 Q = {q1, ...,ql} // Candidate features

4 while |S|< k do
5 q,v = argmaxq∈Q,vq∈Uq

Σ
(d,P)∈R

wd,P · [q(d,P) = vq]

6 L = L∪{v}
7 Q = Q\{q}
8 R = R\{(d,P) | q(d,P) 6= v}
9 if |L|= t then S = S∪{L}; break

10 while ∃v ∈UQ.(L∪{v} ≡ L) do
11 L = L∪{v}
12 if |L|= t then S = S∪{L}; break
13 Q = Q\{q}
14 S = S∪{L}
15 return S

sentative of their class. Intuitively, this follows since the
paths described by the descendants are subsumed by the
paths described by their ancestors.

Example 4 Consider R = {(Google,Pi)}100
i=1, each with

weight 1, and k = t = 2. As before, we assume that (i) if
i ≤ 60, E(Google,Pi) = NYe, and E(Google,Pi) = LAe
otherwise, (ii) for i ≤ 40, SP(Google,Pi) = 1sp, and
(iii) all other feature values are unique for every path. We
now show how ComPass computes the optimal solution
{NYe},{NYe,1sp}. In its first iteration, ComPass dis-
covers that the feature value NYe maximizes the score.
It thus extends L to {NYe}, prunes the egress feature E
fromQ, and removes fromR all paths whose egress is not
NY. Since {NYe} is the representative of its equivalence
class, it is added to S. In the second iteration, the feature
value 1sp maximizes the score. Hence, ComPass extends
L with 1sp. Since the limit t = 2 has been reached, the
loop breaks (Line 7), and {NYe},{NYe,1sp} is returned.

Finding the best feature value To avoid iterating every
feature value separately in Line 5 (which can incur high
overhead), we find the best feature value by iterating over
the feature functions in Q and the routing paths in R and
storing the score of each feature value in a hash table.
Then, with a single pass over the hash table, we find the
feature value with the highest score.

Guarantees Our next theorem states that ComPass com-
putes a solution whose score is at least 1− f

1− f min{t,k} of the
optimal solution in G=, where f ∈ (0,1) is the maximal
portion of paths that a child of a node can have. Note that

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 615

since ComPass explores G=, whose nodes are not path
equivalent, f cannot be 1. Proof is in Appendix B.

Theorem 1 Given that there is f ∈ (0,1) such that for
every pair of path specifications A,A′ if A ⊂ A′, then
Φ({A})≤ f ·Φ({A′}). Then, if O is the solution returned
by ComPass, we have 1− f

1− f min{t,k} ·OPTG= ≤ O.

Example 5 The factor f is determined by the pair of
nodes A⊂A′ whose scores are the closest. In the previous
example, A = {{NYe}, /0}, A′ = {{NYe},{NYe,1sp}}.
Since Φ(A) = 60 and Φ(A′) = 100, we get that f = 0.6.
By the theorem, ComPass returns a solution whose score
is at least 62.5% compared to the optimal solution in G.

Speeding up ComPass by sampling To compute the
best feature value, ComPass iterates in Line 5 over all
routing paths to determine the best feature value. This
step is very expensive, especially if the number of routing
paths and feature functions is large. To mitigate this prob-
lem, we leverage two observations that allow ComPass
to uniformly sample the routing paths instead of con-
sidering all routing paths. First, Internet traffic is heav-
ily skewed, which means that most traffic is directed to-
wards a few organizations (e.g., CDNs), and egresses see
different traffic volumes depending on the peering. This
means that sampling is likely to pick representative rout-
ing paths. Second, by the score function definition, op-
timal solutions consist of specifications describing the
main part of the traffic. This means that specifications
representing little traffic have little effect on the decisions
ComPass makes. This implies that sampling will perform
well as it is more likely to ignore the specifications with
few routing paths than the ones with many.

7 From Specifications to Summaries

In this section, we describe how Net2Text produces a nat-
ural language summary given a specification set S (gen-
erated by ComPass). It begins by augmenting S with ad-
ditional information in three steps. It then transforms the
path specifications in S to natural language sentences us-
ing templates. In the first two steps, Net2Text augments S
with information computed as a byproduct by ComPass
(i.e., additional specification sets and the amount of traf-
fic). In the third step, Net2Text extends S with high-level
features, which cannot be directly computed by Com-
Pass. We next describe these steps and exemplify them
on our running example, S= {{NYe}, {NYe,1sp}}.

Step 1: Adding path specifications Net2Text extends
every S ∈S with the next m (a parameter) best path spec-
ifications that have the same parent in G= and are val-
ues of the same feature function. These path specifica-
tions can be extracted from the computation of ComPass

(in Line 5). In our example, for m = 1, this step results
in adding {Washingtone} to S as NYe and Washingtone
have the same parent and same feature function (egress).
This will eventually be translated to a single sentence:
Google traffic exits in New York and Washington.

Step 2: Adding traffic size Then, Net2Text extends ev-
ery S ∈ S with the total weight of the paths it describes
to let the operator understand how much traffic the sum-
mary covers. In our example, this gives {(60%,{NYe}),
(40%,{Washingtone}), (39.6%,{NYe,1sp})}.

Step 3: Computing high-level features Next, we ex-
tend S with high-level features (e.g., load-balancing,
waypointing, or hot-potato routing) that are not prop-
erties of single paths but rather of sets of paths, i.e.,
entire specifications. Thus, these features can only be
identified after ComPass computed the best specifica-
tion set. Each high-level feature defines the criteria that
a specification has to meet for it to hold. For example,
for load-balancing, the ingress and egress of a specifi-
cation have to be fixed and the paths described by it
need to be disjoint. In our example, Net2Text inferred
that a common waypoint for (39.6%,{New Yorke,1sp})
is Atlanta as all the paths in this specification go
through Atlanta, and thus this specification is ex-
tended to (39.6%,{New Yorke,1sp,Atlantaw}). In addi-
tion, Net2Text inferred that the traffic to Google experi-
ences hot-potato routing as it has multiple egresses and
all the traffic is forwarded to the closest one.

Step 4: Translation to natural language Lastly, S is
translated to natural language sentences using templates.
The sentences are a composition of multiple basic tem-
plates. To create fluency in the summary, Net2Text con-
nects related sentences by building upon the previous
sentence. In addition, it does not repeat information. For
example, the second sentence in our example summary in
Section 2 does not repeat that it refers to Google traffic,
and the percentage shown is relative (i.e., 39.6%/60% =
66%). Namely, {(39.6%,NYe,1sp,Atlantaw)} is mapped
to: 66% of the traffic exiting in New York follows the
shortest path and crosses Atlanta.

8 Parsing Queries

To leverage Net2Text’s summarization capabilities, the
operator needs to provide the feature functions Q, t, k,
and the routing paths R. Typically, once Q, t and k are
specified, the operator queries the network database to
obtain R. To simplify this, Net2Text allows the opera-
tor to submit queries in natural language which it then
translates to SQL-like queries for the network database.
In the following, we describe how Net2Text parses these
queries expressed in natural language.

616 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Router

How is to traffic Google New York handled ?

Org. Terminal

EgressOrganization

Traffic IdentifierQuery Type

SELECT * FROM paths  
WHERE egress=New York  
AND org=Google

Q[SEM=()] -> How TI[SEM=?ti]

PC[SEM=(egress=?n)] -> To N[SEM=?n]

N[SEM=(NY)] -> New York

PC[SEM=(?pc1 and ?pc2)] -> PC[SEM=?pc1] PC[SEM=?pc2]

TI[SEM=(?pc)] -> PC[SEM=?pc]

SELECT * FROM

paths WHERE ?ti

(5)

(4)

(3)

(2)

(1)

Figure 3: A parse tree and rules in the network grammar.

Network grammar The grammar consists of rules spec-
ifying how constituents of the queries (e.g., clauses,
words) can be composed. The rules also specify the se-
mantics of the constituents (e.g., the network terms such
as “ingress”), which enables the parser to construct the
SQL-like query. The grammar consists of two parts: (i) a
structural part (∼ 70 rules), which defines the allowed
constituent compositions; and (ii) a domain-specific part
consisting of mapping rules (∼ 80 rules), which capture
the network specific features (e.g., egress, organization)
as well as keywords (e.g., router and location names).
This split enables the operator to easily extend the gram-
mar with new features and keywords without having to
deal with the structure of the queries.

Structural grammar This grammar defines the query
structure and its building blocks. We identify two main
building blocks: query type and traffic identifier. De-
pending on the query type, there may be additional
building blocks. There are four query types: yes/no
(“Is/Does...”), counting (“How many...”), data retrieval
(“What is/are...”), and explanation (“How is/does traf-
fic...”). The query type determines whether the answer
is yes/no, a count, a list, or a summary (obtained us-
ing ComPass). The traffic identifier defines the WHERE
clause of the SQL-like query. The attributes selected by
the query are either determined by the query (in data re-
trieval queries) or are simply a wildcard (i.e., ?).

Fig. 3 illustrates the structural parsing. “How” defines
the desired behavior of Net2Text (summarize the data
with ComPass), while “Google traffic to New York” is
the traffic identifier. The black rules (1-3) are part of the
structural grammar, while the blue rules (4 & 5) are part
of the domain-specific grammar, which we discuss next.

Domain-specific grammar This grammar defines a
mapping between keywords and names to features and
their values. For example, the grammar defines the rules
(i) “to N → egress=N” indicating that the natural lan-

guage phrase “to N” means that N is a name of an egress,
where N is a non-terminal and (ii) N→ NY,LA, ..., lists
the possible egress names. Using these rules, “to NY” is
parsed to egress=NY in the SQL-like query.

9 Evaluation

We evaluated Net2Text‘s scalability and usability. For
scalability, we show that Net2Text can summarize large
forwarding state (§9.2) and generate summaries of high
quality, even with sampling (§9.3). Worst-case queries
complete within 2 seconds in large networks (∼ 200
nodes). For usability, we show that Net2Text is useful for
operators by conducting interviews (§9.4) and showcase
its end-to-end implementation in a case study (§9.5).

9.1 Methodology

We run our Python-based prototype (∼ 3k lines of code)
on a machine with 24 cores at 2.3 GHz and 256 GB of
RAM. For the experiments, we implemented an ISP-like
forwarding state generator, which we use to produce re-
alistic forwarding state for various Topology Zoo [15]
topologies ranging from 25 to 197 nodes (Table 2). The
generator enables us to control how “summarizable” a
state is by varying how skewed it is.

Forwarding state generation Our generator synthesizes
network-wide forwarding states (i.e., the set of routing
paths R) for a given number of IP prefixes and a given
network topology in five consecutive steps. First, it ran-
domly chooses a set of egress nodes (see Table 2). Sec-
ond, it creates a prefix-to-organization mapping using
the CAIDA AS-to-organization dataset [16]) and a full
IPv4 RIB [17]. Third, for each organization, it chooses
the number of egresses using an exponential distribution
fitted according to real measurements [18, Fig.3.], after
which the actual egresses are uniformly chosen from the
set of egress nodes. Fourth, for each node, it computes
its forwarding state by picking for each prefix the closest
egress. Fifth, each routing path (d,P) is finally associ-
ated with an amount of traffic sampled from an exponen-
tial distribution. This leads to few organizations owning
many prefixes, carrying relatively more traffic than oth-
ers (as shown in [12]). The generator can also generate
extra features whose values are arbitrarily picked.

Generality While we generate the input forwarding
state, we stress that our results are representative be-
cause: (i) the scalability of ComPass does not depend on
the actual feature values but only on the number of fea-
tures (see §6); and (ii) the quality analysis does not de-
pend on the actual score but rather on the ratio compared
to other scores under the same setting.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 617

1k 10k 100k 625k

Number of Prefixes

10−5

10−4

10−3

10−2

10−1

100

101

102

T
im

e
[s

]

1

1/10

1/100

1/1000

3 6 9 12

Number of Features

10−3

10−2

10−1

100

101

102

103

T
im

e
[s

]

1

1/10

1/100

1/1000

1 100 10k 1M

Sampling Rate

0.0

0.2

0.4

0.6

0.8

1.0

Q
ua

lit
y

uniform

skewed

(a) Time as a function of the number of
prefixes and sampling rate.

1k 10k 100k 625k

Number of Prefixes

10−5

10−4

10−3

10−2

10−1

100

101

102

T
im

e
[s

]

1

1/10

1/100

1/1000

3 6 9 12

Number of Features

10−3

10−2

10−1

100

101

102

103

T
im

e
[s

]

1

1/10

1/100

1/1000

1 100 10k 1M

Sampling Rate

0.0

0.2

0.4

0.6

0.8

1.0

Q
ua

lit
y

uniform

skewed

(b) Time as a function of the number of
features and sampling rate.

1k 10k 100k 625k

Number of Prefixes

10−5

10−4

10−3

10−2

10−1

100

101

102

T
im

e
[s

]

1

1/10

1/100

1/1000

3 6 9 12

Number of Features

10−3

10−2

10−1

100

101

102

103

T
im

e
[s

]

1

1/10

1/100

1/1000

1 100 10k 1M

Sampling Rate

0.0

0.2

0.4

0.6

0.8

1.0

Q
ua

lit
y

uniform

skewed

(c) Summary quality as a function of
sampling rate.

Figure 4: Net2Text scales—both in the size of the forwarding state (sub-second, even for 625k prefixes) (a) and the
number of features (sub-second, even for 12 features) (b)—while sampling affects the summary quality marginally (c).

Topology Nodes Egresses No sampling 1/1000

ATT NA 25 10 94.07 s 0.26 s
Switch 42 15 128.12 s 0.24 s
Sinet 74 30 223.91 s 0.50 s
GTS CE 149 40 611.81 s 1.18 s
Cogent 197 50 766.61 s 1.84 s

Table 2: With sampling (§6), Net2Text summarizes large
network forwarding states (> 600k prefixes), within 2
seconds, for networks with close to 200 nodes.

9.2 Scalability Analysis

We evaluate Net2Text scalability by measuring the time
it takes to summarize all routing paths (worst-case)
while varying the number of key dimensions: prefixes,
nodes, and feature functions. To evaluate the sam-
pling optimization of ComPass, we run ComPass four
times: without path sampling and with sampling rate of
1/10,1/100,1/1000. We repeated each experiment 10
times and report median results (std dev is small).

Fig. 4a shows the results when varying the number of
prefixes from 103 to 105 and the full RIB for the ATT
NA topology using 3 feature functions. The results indi-
cate that Net2Text scales linearly in the number of pre-
fixes. The running time decreases proportionally to the
sampling rate. Without sampling, summarizing forward-
ing states with 625k prefixes takes about 100 seconds
and less than one second with a sampling rate of 1/1000.
Fig. 4b shows a similar trend when varying the number
of features from 3 to 12 and using a full RIB.

Table 2 shows the results when considering different
topology sizes, with full routing tables (625k prefixes)
and 3 feature functions. The table also reports results
with (rate of 1/1000) and without sampling. We see that
the runtime is roughly linear in the number of nodes
in the network. More importantly, our results indicate
that Net2Text scales to large networks with hundreds of
nodes thanks to sampling: it takes less than 2 seconds for
Net2Text to summarize Cogent forwarding state.

9.3 Quality Analysis
We now evaluate the effect of sampling the input data
(i.e. the forwarding paths) and show that doing so only
marginally impacts the quality of the summary. In addi-
tion, we show that ComPass compares well against two
baselines both in terms of quality and running time.

We measure the quality of a summary using the score
function presented in §4. Intuitively, the score represents
the traffic volume of the paths covered by the resulting
summary, rewarding more detailed summaries by multi-
plying the volume of each path by the number of details
(feature values) present in the summary. When comput-
ing the score, we always account for all entries that match
the resulting summary and not just for the sampled en-
tries. As in §9.2, we consider the problem of summariz-
ing every single entry in the network database.

For the experiment, we generate forwarding state for
the ATT NA topology with a full routing table and vary
the sampling rate from 1 to 1/5,000,000. Note that we
have more entries in the network database than the total
number of prefixes as there is at least one path from every
node to every prefix. Hence, even with sampling rates
higher than the number of prefixes, we still have paths to
summarize. For this setup, we have more than 15 million
entries in the network database.

Fig. 4c shows the score of the summary for differ-
ent sampling rates normalized to the score without sam-
pling. We ran the experiment for two different scenarios:
(i) highly skewed traffic distributions among the feature
values, where the size difference between the feature val-
ues is high; and (ii) uniform distributions, where the dif-
ference between them is low. Our results show that the
sampling rate at which the score of the summary drops
significantly is very high. Even with sampling rates of
1/1000, ComPass still creates summaries whose qualities
are within 5% of the unsampled summary.

To further illustrate the quality of ComPass
summaries, we compare it against two baselines.
Both iterate once over the relevant routing paths

618 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 20 40 60 80 100 120

Time [s]

0.2

0.4

0.6

0.8

1.0

Q
ua

lit
y 1

1/10

1/100

1/1000

Aggregate

Entry

ComPass

Figure 5: Net2Text produces summaries of higher quality
than two simple baselines.

and pick the most detailed specification (e.g.,
{New Yorke,Philadelphiai,Googleo}). From this speci-
fication, we build the full specification set by randomly
removing one feature value after the other to obtain
for example {{New Yorke}, {New Yorke, Googleo},
{New Yorke, Philadelphiai, Googleo}}. The baselines
differ in how they choose the most detailed specification:
Entry, takes the routing path with the highest weight and
uses it as the most detailed specification; and Aggregate,
aggregates all routing paths with the same feature values
and uses the largest aggregate. When computing the
quality of the summaries, we consider all routing paths
matching the resulting summary. Thanks to sampling,
ComPass produces higher quality summaries in the
same amount of time as the two baselines (see Fig. 5). If
we also consider the information added to the summary
by extending it as described in 7, we see that ComPass
outperforms the baselines by almost 5 times.

9.4 Usefulness

To better assess the usability of Net2Text, we conducted
five interviews with network operators of ISP networks
(research, Tier 1 and Tier 2) and one enterprise network.
We questioned them about four aspects.

Aspect 1: Need for virtual assistants All operators see
opportunities for virtual assistants in tasks requiring to
process a lot of data to identify and extract the relevant
information. An assistant allows them to focus on reme-
dying, rather than identifying and analyzing the event.

Aspect 2: Relevance of the NL input The possibility
to write queries in natural language was well-perceived.
Some operators, however, do not mind a fixed query lan-
guage or writing their own scripts.

Aspect 3: Relevance of the NL output Most operators
see value in natural language summaries as they are con-
cise and simple to understand, especially for less tech-
nical persons. Depending on the query, some operators
mentioned that they would like to see visualizations of
the summary (e.g., a graph) in addition to text.

Aspect 4: Usefulness of Net2Text queries All opera-
tors confirmed that the queries currently supported by
Net2Text are relevant. In particular, they appreciated the
ability to query about incoming traffic. In addition, most
operators testified interest in service-oriented queries, in-
stead of purely destination-oriented ones (e.g., traffic to
the Gmail-service instead of Google traffic in general).

In the discussions, we saw a clear difference between
the queries of ISP and enterprise network operators.
While the ISP operators were mostly concerned about
where traffic was entering and leaving the network, the
enterprise operator was more interested in the status of
the different applications running in the network and
their policies (e.g., is there always a firewall on the path).

9.5 Case Study
We showcase our end-to-end implementation of Net2Text
by running it in a Quagga-based network emulating In-
ternet2 (Fig. 6a). Routers in Seattle, Sunnyvale, New
York and Washington are connected to external peers.
The router in New York receives routes to both Google
and Facebook, the router in Washington only to Google.
All external routes have the same local-preference. We
generate transit traffic entering via Seattle and Sunny-
vale towards both destinations. The flows are highlighted
in Fig. 6a and the measured throughput is depicted in
Fig. 6b. Every ten seconds, Net2Text summarizes the en-
tire forwarding state as indicated by the grey bars.

Table 3 shows the 4 summaries produced by Net2Text.
We see that Net2Text is able to explain the current for-
warding behavior at different levels of detail and auto-
matically zoom in on the largest part of the traffic. At
the time of the second summary, for example, traffic for
Google has spiked (purple and red) and is now three
times larger than Facebook. We see that Net2Text auto-
matically focuses on the traffic to Google and provides
more details about it, yet it still mentions traffic to Face-
book. In the third summary, we see how Net2Text cap-
tures higher-level constructs that are not directly present
in the database such as “hot-potato routing” (§7).

10 Discussion

Why natural language? We believe that a chat-like in-
terface provides a familiar and intuitive way for operators
to interact with their network. That said, our summariza-
tion contribution is useful in its own right, independently
of the NLP interface. As an illustration, we could easily
translate Net2Text summaries to a graph-based represen-
tation (e.g. using PGA [11]) rather than natural language.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 619

FB

G

G

(a) Internet 2 Topology

0 10 20 30 40 50

Time [s]

0

20

40

60

T
hr

ou
gh

pu
t

[M
bp

s]

1 2 3 4

(b) Network Throughput

Figure 6: We ran our Net2Text implementation in a live
network emulating Internet 2 (a) and vary the network
throughput according to (b).

What about new feature functions? While we only
deal with a limited set of features in this paper, we stress
that ComPass is flexible and can deal with any features
defined over paths. Additional features (e.g. such as the
TCP port number) can be easily added by adding a new
field to the database. For the translation, the singular and
plural of the feature name also have to be added to the
rules. The operator can also add a mapping of feature
values to some string, e.g., TCP port 80 to HTTP.

What about the network database? We assume that the
network database is fed with high-quality and consistent
data and focus on the problem of summarizing it. This
is a strong assumption. Gathering high-quality state con-
sistently is challenging and the quality of our summaries
will inevitably suffer should the data be incomplete, out-
dated or inconsistent. Fortunately, multiple works have
looked at the problem of extracting network data in a
fast and consistent manner, which Net2Text can directly
leverage. In particular, Libra [19] tackles the problem of
capturing consistent snapshots of the network forwarding
state. Similarly, FlowRadar [20] and Stroboscope [21,22]
tackle the problem of quickly gathering fine-grained traf-
fic statistics. Yet, summarizing network-wide behavior in
the presence of incorrect or inconsistent data is an inter-
esting problem we plan to address in future work.

11 Related work

Network verification & testing Net2Text directly com-
plements previous initiatives on data-plane [5–10] and
control-plane verification [1–4] as it does not aim at veri-
fying, but explaining network-wide behavior. The reason
is that even perfectly correct networks might exhibit un-
wanted or suboptimal behaviors at runtime, for instance,
due to unforeseen traffic shifts or partial failures.

Network provenance Net2Text‘s high-level objectives
of explaining how networks behave bear similarities with
many works on Network Provenance (e.g., [23–29]). The
main difference between these works and Net2Text is
that Net2Text does not aim at explaining why a partic-

1 “Traffic has a single egress (New York), and goes to a
single destination (Facebook). It enters at the follow-
ing ingresses: Sunnyvale (76%) and Seattle (24%).”

2 “Traffic goes to the following destinations: Google
and Facebook. Traffic for Google exits through Wash-
ington (50%) and New York (50%).”

3 “Traffic is destined to Google. It experiences hot-
potato routing. It exits through the following egresses:
New York (50%) and Washington (50%).”

4 “Traffic leaves through Washington, has a single
ingress (Sunnyvale), and goes to Google.”

Table 3: Actual summaries produced by our Net2Text im-
plementation when run on the network depicted in Fig. 6.

ular state is observed (by following the derivation his-
tory), but rather summarizing what is the current state
being observed to make it understandable to human oper-
ators. Net2Text can therefore be seen as complementary
to these frameworks. Once the network operator under-
stands what is the network behavior, he or she can then
ask questions about why. We also believe that Net2Text‘s
summarizing capabilities can be applied to summarize
provenance explanations which often tend to be large.

Connecting natural languages and networks A prior
work [30] introduced NLP techniques to network man-
agement. It proposes to use natural language as inter-
face between operators and an SDN network. Unlike
Net2Text, it does not provide any abstraction capability
and is limited to simple yes/no questions/answers along
with simple control tasks such as rate limiting a flow.

12 Conclusions

We presented Net2Text, a novel approach to assist net-
work operators in reasoning about network forwarding
behaviors. Net2Text is based on efficient summarization
techniques which generate interpretable summaries (in
natural language) out of low-level forwarding rules. We
propose an efficient approximation algorithm (with prov-
able bounds) to solve the summarization problem. We
fully implemented Net2Text and showed that it is highly
effective—it only takes 2 seconds to summarize the state
of hundreds of routers carrying full routing tables.

Acknowledgements

We are grateful to our shepherd Ranjita Bhagwan, the
anonymous reviewers, Roland Meier and Dimitar Dim-
itrov for the constructive feedback and comments. We
are also grateful to all the network operators who pro-
vided feedback and insights about Net2Text.

620 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References
[1] Ari Fogel, Stanley Fung, Luis Pedrosa, Meg Walraed-Sullivan,

Ramesh Govindan, Ratul Mahajan, and Todd D Millstein. A Gen-
eral Approach to Network Configuration Analysis. In USENIX
NSDI, Oakland, CA, USA, 2015.

[2] Aaron Gember-Jacobson, Raajay Viswanathan, Aditya Akella,
and Ratul Mahajan. Fast Control Plane Analysis Using an Ab-
stract Representation. In ACM SIGCOMM, Florianópolis, Brasil,
2016.

[3] Konstantin Weitz, Doug Woos, Emina Torlak, Michael D. Ernst,
Arvind Krishnamurthy, and Zachary Tatlock. Scalable Verifica-
tion of Border Gateway Protocol Configurations with an SMT
Solver. In ACM OOPSLA, Amsterdam, Netherlands, 2016.

[4] Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David Walker.
A General Approach to Network Configuration Verification. In
ACM SIGCOMM, Los Angeles, CA, USA, 2017.

[5] Haohui Mai, Ahmed Khurshid, Rachit Agarwal, Matthew Caesar,
P. Brighten Godfrey, and Samuel Talmadge King. Debugging the
Data Plane with Anteater. In ACM SIGCOMM, Toronto, Canada,
2011.

[6] Peyman Kazemian, George Varghese, and Nick McKeown.
Header Space Analysis: Static Checking for Networks. In
USENIX NSDI, San Jose, CA, USA, 2012.

[7] Peyman Kazemian, Michael Chang, Hongyi Zeng, George Vargh-
ese, Nick McKeown, and Scott Whyte. Real Time Network Pol-
icy Checking using Header Space Analysis. In USENIX NSDI,
Lombard, IL, USA, 2013.

[8] Ahmed Khurshid, Xuan Zou, Wenxuan Zhou, Matthew Caesar,
and P. Brighten Godfrey. VeriFlow: Verifying Network-Wide In-
variants in Real Time. In USENIX NSDI, Lombard, IL, USA,
2013.

[9] Nuno P Lopes, Nikolaj Bjørner, Patrice Godefroid, Karthick Ja-
yaraman, and George Varghese. Checking Beliefs in Dynamic
Networks. In USENIX NSDI, Oakland, CA, USA, 2015.

[10] Radu Stoenescu, Matei Popovici, Lorina Negreanu, and Costin
Raiciu. SymNet: Scalable Symbolic Execution for Modern Net-
works. In ACM SIGCOMM, Florianópolis, Brasil, 2016.

[11] Chaithan Prakash, Jeongkeun Lee, Yoshio Turner, Joon-Myung
Kang, Aditya Akella, Sujata Banerjee, Charles Clark, Yadi Ma,
Puneet Sharma, and Ying Zhang. PGA: Using Graphs to Express
and Automatically Reconcile Network Policies. In ACM SIG-
COMM, London, United Kingdom, 2015.

[12] Jennifer Rexford, Jia Wang, Zhen Xiao, and Yin Zhang. BGP
Routing Stability of Popular Destinations. In ACM IMC, Mar-
seille, France, 2002.

[13] Daphne Koller and Nir Friedman. Probabilistic Graphical Mod-
els: Principles and Techniques - Adaptive Computation and Ma-
chine Learning. The MIT Press, 2009.

[14] Henry Wadsworth Gould. Combinatorial Identities: A Standard-
ized Set of Tables Listing 500 Binomial Coefficient Summations.
Morgantown, 1972.

[15] S. Knight, H.X. Nguyen, N. Falkner, R. Bowden, and
M. Roughan. The Internet Topology Zoo. IEEE JSAC, October
2011.

[16] CAIDA. AS Organizations Dataset, 2017-04-01. http://www.
caida.org/data/as-organizations.

[17] CAIDA. BGPStream. https://bgpstream.caida.org/.

[18] Jaeyoung Choi, Jong Han Park, Pei-chun Cheng, Dorian Kim,
and Lixia Zhang. Understanding BGP Next-Hop Diversity. In
IEEE Global Internet Symposium, Shanghai, China, 2011.

[19] Hongyi Zeng, Shidong Zhang, Fei Ye, Vimalkumar Jeyakumar,
Mickey Ju, Junda Liu, Nick McKeown, and Amin Vahdat. Li-
bra: Divide and Conquer to Verify Forwarding Tables in Huge
Networks. In USENIX NSDI, Seattle, WA, USA, 2014.

[20] Yuliang Li, Rui Miao, Changhoon Kim, and Minlan Yu.
FlowRadar: A Better NetFlow for Data Centers. In USENIX
NSDI, Santa Clara, CA, USA, 2016.

[21] Olivier Tilmans, Tobias Bühler, Ingmar Poese, Stefano Vissic-
chio, and Laurent Vanbever. Stroboscope: Declarative Network
Monitoring on a Budget. In USENIX NSDI, Renton, WA, USA,
2018.

[22] Olivier Tilmans, Tobias Bühler, Stefano Vissicchio, and Laurent
Vanbever. Mille-Feuille: Putting ISP Traffic under the scalpel. In
ACM Hotnets, Atlanta, GA, USA, 2016.

[23] Ang Chen, Yang Wu, Andreas Haeberlen, Wenchao Zhou, and
Boon Thau Loo. The Good, the Bad, and the Differences: Bet-
ter Network Diagnostics with Differential Provenance. In ACM
SIGCOMM, Florianópolis, Brasil, 2016.

[24] Yang Wu, Mingchen Zhao, Andreas Haeberlen, Wenchao Zhou,
and Boon Thau Loo. Diagnosing Missing Events in Distributed
Systems with Negative Provenance. In ACM SIGCOMMM,
Chicago, IL, USA, 2014.

[25] Wenchao Zhou, Suyog Mapara, Yiqing Ren, Yang Li, Andreas
Haeberlen, Zachary Ives, Boon Thau Loo, and Micah Sherr. Dis-
tributed Time-aware Provenance. In VLDB, Riva del Garda,
Trento, Italy, 2013.

[26] Wenchao Zhou, Micah Sherr, Tao Tao, Xiaozhou Li, Boon Thau
Loo, and Yun Mao. Efficient Querying and Maintenance of Net-
work Provenance at Internet-Scale. In ACM SIGMOD, Indi-
anapolis, IN, USA, 2010.

[27] Andreas Wundsam, Dan Levin, Srini Seetharaman, and Anja
Feldmann. OFRewind: Enabling Record and Replay Trou-
bleshooting for Networks. In USENIX ATC, Portland, OR, USA,
2011.

[28] Colin Scott, Andreas Wundsam, Barath Raghavan, Aurojit Panda,
Andrew Or, Jefferson Lai, Eugene Huang, Zhi Liu, Ahmed El-
Hassany, Sam Whitlock, H.B. Acharya, Kyriakos Zarifis, and
Scott Shenker. Troubleshooting Blackbox SDN Control Soft-
ware with Minimal Causal Sequences. In ACM SIGCOMMM,
Chicago, IL, USA, 2014.

[29] Colin Scott, Vjekoslav Brajkovic, George Necula, Arvind Krish-
namurthy, and Scott Shenker. Minimizing Faulty Executions of
Distributed Systems. In USENIX NSDI, Santa Clara, CA, USA,
2016.

[30] Azzam Alsudais and Eric Keller. Hey Network, Can You Under-
stand Me? In IEEE INFOCOM Workshop on Software-Driven
Flexible and Agile Networking, Atlanta, GA, USA, 2017.

[31] Gurobi Optimization, Inc. Gurobi Optimizer Reference Manual,
2016.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 621

http://www.caida.org/data/as-organizations
http://www.caida.org/data/as-organizations
https://bgpstream.caida.org/

A ILP Formulation

max Σ
(d,P)∈R

Σ
1≤i≤k

Σ
v∈U1∪...∪Ul

wd,P · yd,P,i,v

Σ
v∈U j

xi,v ≤ 1 (1)

Σ
v∈U1∪...∪Ul

xi,v ≤ t (2)

yd,P,i− yd,P,v + xi,v ≤ 1 (3)
yd,P,i + xi,v− yd,P,i,v ≤ 1 (4.1)

yd,P,i,v− yd,P,i ≤ 0 (4.2)
yd,P,i,v− xi,v ≤ 0 (4.3)

Σ
1≤i≤k

yd,P,i ≤ 1 (5)

xi+1,v− xi,v ≥ 0 (6)
yd,P,i,xi,v,yd,P,i,v ∈ {0,1}

Figure 7: An integer program for computing a specifi-
cation set to explain the routing paths. i ∈ {1, ...,k}, j ∈
{1, ..., l},(d,P) ∈ R,v ∈ {U1∪ ...∪Ul}

In the following, we show how to formulate the infer-
ence problem from Section 4 as an integer linear program
(ILP) where the objective encodes the score function Φ

and the constraints encode the path specification search
space St

U1,...,Ul
.

Variables We have two kinds of variables: the x-
variables which encode the path specification set, and the
y-variables which encode the features and specifications
that paths meet. For each path specification, we introduce
a set of variables, one for every feature value that may be
in the path specification. Formally, we have a variable
xi,v for every 1 ≤ i ≤ k and v ∈U1∪ ...∪Ul . These vari-
ables are indicator functions and range over xi,v ∈ {0,1}.
That is, if xi,v = 1, it means that v is part of the ith path
specification (v ∈ Si), otherwise v is excluded. Thus, an
assignment to the x’s uniquely defines a path specifica-
tion set.

The y variables encode whether paths meet the path
specifications and which of their features are described
by the specs. Concretely, for every routing path (d,P) ∈
R, we maintain multiple binary variables:
• yd,P,i: encodes whether (d,P) meets the ith specifi-

cation.
• yd,P,v: indicates whether (d,P) contains a feature

value of v. Note that the values yd,P,v are known a-
priori and need not be computed during optimiza-
tion.

• yd,P,i,v: encodes whether the feature v of P is de-
scribed by the ith specification.

0 20 40 60 80 100

Number of Prefixes

0

5k

10k

15k

20k

25k

30k

T
im

e
[s

]

Figure 8: Running time using the ILP (optimal, but slow).

These variables allow us to capture precisely in what
detail a path is being described by a specification that
it meets. Note that yd,P,i,v can be 1 only if (d,P) meets
the ith specification and the ith specification has feature v
(i.e., yd,P,i = xi,v = 1). This requirement will be encoded
as part of the general constraints.

Objective function We encode the objective function
of Definition 1 as the weighted sum of yd,P,i,v variables.

Constraints The path specification space is expressed
as a set of constraints which states that each path speci-
fication can have at most one feature value for the same
feature (constraint set (1) in Fig. 7) and at most t features
across all features (constraint set (2) in Fig. 7). The next
constraint sets encode the score function. Constraint set
(3) encodes whether the routing path (d,P) meets the ith

specification. Intuitively, the constraints can be presented
as yd,P,i≤ 1+(yd,P,v−xi,v), which means that yd,P,i can be
1 (to indicate that (d,P) meets the ith specification) only
if yd,P,v ≥ xi,v for all v, which indicate that the routing
path meets all features in the ith specification. Constraint
set (4) in Fig. 7 encodes whether the feature value v of a
routing path (d,P) is described, which may only be true
if (d,P) meets the specification and that the specifica-
tion contains v. Lastly, the constraint set (5) guarantees
that each feature value v met by (d,P) is counted only
once. The total number of variables and constraints is
O(k · |R| · |U1∪ ...∪Ul |).

As we explain in Section 5, it is useful to impose a
certain shape or relation between the path specifications.
In particular, we will see why it is useful to require path
specifications to be extensions of one another. Constraint
set (6) in Fig. 7 encodes this optional requirement.

Scalability To show the need for an efficient algorithm
like ComPass, we evaluate the scalability of solving the
corresponding ILP (Fig. 7, with all constraints, includ-
ing (6)) using the gurobi solver [31]. Fig. 8 shows the
running times for the ATT North America network with

622 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

a forwarding state encompassing between 10 to 100 pre-
fixes (up to three orders of magnitude smaller than the
experiments in §9.2). Unsurprisingly, the running time
quickly explodes due to the large number of variables
and constraints. With only 100 prefixes, the ILP already
requires more than 25k seconds to complete.

B Proofs

In this section, we provide the proofs for the lemmas and
theorems presented in the paper.

Lemma 1 proof sketch Denote the optimal solution as
the specification set: {x1

1, , ...,x
1
t1},. . . ,{xk

1, ...,x
k
tk}.

By the score definition and since ti ≤ t,
∀i, j. j

t Φ({xi
1, , ...,x

i
ti}) ≤ Φ({xi

1, ...,x
i
j}). W.l.o.g.,

assume that {x1
1, , ...,x

1
t1} has the highest score. Then,

Φ({x1
1, , ...,x

1
t1}) > OPT/k. We split to cases. If k ≤ t1,

then the score of {x1
1},{x1

1,x
1
2}, ...,{x1

1, ...,x
1
k} is at

least k/t · (OPT/k). Since {{x1
1}, ...,{x1

1, ...,x
k
1}} is a

node in G⊆, the claim follows. Otherwise, if t1 < k,
then {{x1

1}, ...,{x1
1, , ...,x

1
t1}} is a node in G⊆ and since

Φ({x1
1, , ...,x

1
t1})> OPT/k, the claim follows.

Theorem 1 proof sketch Let the optimal solution be
OPT = {{a},{a,b}, ...,{a,b, ...,m}} and the specifica-
tion set that ComPass returned be the specification set
SComPass = {{a′},{a′,b′}, ...,{a′,b′, ...,m′}}. By the as-
sumption, Φ({a,b}) ≤ f · Φ({a}) ≤ f · Φ({a′}). By
induction, Φ({a,b, ..., j}) ≤ f |{a,..., j}| · Φ({a′}). Since
the length of the largest specification in OPT is
min{k, t}, the length of the optimal solution is at most

Σ1≤ j≤min{k,t} f j ·Φ({a}) = 1− f min{t,k}

1− f ·Φ({a}). By the
greedy operation, we have Φ({a}) ≤ Φ({a′}). Since
Φ({a′})≤Φ(SComPass), we get Φ({a})≤Φ(SComPass)≤
1− f min{t,k}

1− f · Φ({a}), which means that ComPass is a
1− f

1− f min{t,k} -approximation algorithm.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 623

