
This paper is included in the Proceedings of the

15th USENIX Symposium on Networked

Systems Design and Implementation (NSDI ’18).
April 9–11, 2018 • Renton, WA, USA

ISBN 978-1-939133-01-4

Open access to the Proceedings of

the 15th USENIX Symposium on Networked

Systems Design and Implementation

is sponsored by USENIX.

NetComplete: Practical Network-Wide
Configuration Synthesis with Autocompletion

Ahmed El-Hassany, Petar Tsankov, Laurent Vanbever, and Martin Vechev, ETH Zürich

https://www.usenix.org/conference/nsdi18/presentation/el-hassany

NetComplete: Practical Network-Wide Configuration Synthesis with Autocompletion

Ahmed El-Hassany, Petar Tsankov, Laurent Vanbever, Martin Vechev

ETH Zürich

netcomplete.ethz.ch

Abstract

Network operators often need to adapt the configuration

of a network in order to comply with changing rout-

ing policies. Evolving existing configurations, however,

is a complex task as local changes can have unforeseen

global effects. Not surprisingly, this often leads to mis-

takes that result in network downtimes.

We present NetComplete, a system that assists oper-

ators in modifying existing network-wide configurations

to comply with new routing policies. NetComplete takes

as input configurations with “holes” that identify the

parameters to be completed and “autocompletes” these

with concrete values. The use of a partial configuration

addresses two important challenges inherent to existing

synthesis solutions: (i) it allows the operators to precisely

control how configurations should be changed; and (ii) it

allows the synthesizer to leverage the existing configura-

tions to gain performance. To scale, NetComplete relies

on powerful techniques such as counter-example guided

inductive synthesis (for link-state protocols) and partial

evaluation (for path-vector protocols).

We implemented NetComplete and showed that it can

autocomplete configurations using static routes, OSPF,

and BGP. Our implementation also scales to realistic net-

works and complex routing policies. Among others, it is

able to synthesize configurations for networks with up to

200 routers within few minutes.

1 Introduction

In a world where more and more critical services con-

verge on IP, even slight network downtimes can cause

large financial or reputational losses. This strategic im-

portance contrasts with the fact that managing a net-

work is surprisingly hard and brittle. Out of high-level

requirements, network operators have to come up (often

manually) with low-level configurations specifying the

behavior of hundreds of devices running complex dis-

tributed protocols. A single misconfiguration can bring

down the network infrastructure, or worse, a piece of

the Internet in case of BGP-related misconfigurations.

Every few months downtimes involving major players

such as NYSE [1], Google [2], Facebook [3], or United

Airlines [4] make the news. Actually, studies show that

human-induced misconfigurations, not physical failures,

explain the majority of downtimes [5].

To address these challenges, recently there has been

an increased interest in configuration verification [6, 7,

8, 9, 10, 11, 12, 13] and synthesis [14, 15, 16, 17, 18,

19, 20]. Configuration synthesis in particular promises

to alleviate most of the operator’s burdens by deriving

correct configurations out of high-level objectives.

Challenges in network synthesis While promising, net-

work operators can still be reluctant to use existing syn-

thesis systems for at least three reasons: (i) interpretabil-

ity: the synthesizer can produce configurations that differ

wildly from manually provided ones, making it hard to

understand what the resulting configuration does. More-

over, small policy changes can cause the synthesized

configuration (or configuration templates in the case of

PropaneAT [16]) to change radically; (ii) protocol cov-

erage: existing systems [15, 16] are restricted to produc-

ing BGP-only configurations, while most networks rely

on multiple routing protocols (e.g., to leverage OSPF’s

fast-convergence capabilities); and (iii) scalability: re-

cent synthesizers such as SyNET [20] handle multiple

protocols but do not scale to realistic networks.

NetComplete We present a system, NetComplete,

which addresses the above challenges with partial syn-

thesis. Rather than synthesizing a new configuration

from scratch, NetComplete allows network operators

to express their intent by sketching parts of the ex-

isting configuration that should remain intact (captur-

ing a high-level insight) and “holes” represented with

symbolic values which the synthesizer should instanti-

ate (e.g., OSPF weights, BGP import/export policies).

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 579

mailto:eahmed@ethz.ch
mailto:petar.tsankov@inf.ethz.ch
mailto:lvanbever@ethz.ch
mailto:martin.vechev@inf.ethz.ch
https://netcomplete.ethz.ch

NetComplete then autocompletes these “holes” such that

the resulting configuration leads to a network that ex-

hibits the required behavior. Our approach supports a

practically relevant scenario as few operators ever start

from scratch but rather modify their existing configu-

rations (e.g., OSPF weights) to handle new routing re-

quirements. This evolving approach also has the benefit

of better explainability as large parts of the existing con-

figuration are preserved in the newly synthesized config-

uration. Further, because we focus on synthesizing parts

of the configuration, there is an opportunity to scale the

synthesizer to realistic networks. This opportunity arises

even though NetComplete is quite expressive: it han-

dles static routes, OSPF, and BGP1 as well as a variety

of essential routing requirements such as waypointing,

failure-resilience, load-balancing, and traffic isolation.

NetComplete reduces the autocompletion problem to

a constraint satisfaction problem that it solves with

SMT solvers (e.g., Z3 [21]). The main challenge is

that a naive encoding of the problem leads to com-

plex constraints that cannot be solved in reasonable

time (e.g., within a day). To scale, NetComplete relies

on two key insights: (i) partial evaluation along with

(ii) network-specific heuristics to efficiently navigate the

search space. Specifically, it speeds up BGP synthesis

by propagating symbolic announcements through partial

BGP policies allowing it to eliminate many variables. For

OSPF, NetComplete is 100x faster than a naive encod-

ing via a new counter-example guided inductive synthe-

sis algorithm. Overall, NetComplete autocompletes con-

figurations for networks with up to 200 routers in few

minutes.

Contributions Our main contributions are:

• A new approach to network-wide configuration syn-

thesis based on autocompletion of partial configura-

tions. It enables operators to evolve existing config-

urations so they match new requirements.

• A scalable synthesis procedure based on SMT con-

straints which relies on partial evaluation tech-

niques along with domain-specific heuristics and

counter-example guided inductive synthesis.

• An end-to-end implementation of our approach in

a system called NetComplete which outputs actual

Cisco configurations.

• A comprehensive evaluation of NetComplete us-

ing a variety of real-world topologies and com-

plex requirements. Our results demonstrate that

NetComplete can effectively autocomplete partial

configurations for large networks with up to 200

routers within few minutes.

1We plan to add support for more protocols and mechanisms in fu-

ture work, including MPLS and route redistribution.

2 Motivating Scenarios

In this section, we motivate the need for NetComplete

through three practical use cases rooted within existing

network management practices. These use cases are dif-

ficult or practically impossible to solve today.

Scenario 1: Evolving configurations preserving exist-

ing semantics. Existing configurations typically embed

deep knowledge of semantics and design guidelines. For

instance, operators often use specific OSPF weights to

identify primary/backup links, and specific BGP local-

preferences or communities to identify their peers. This

(often unwritten) semantic helps them reason about the

network-wide configuration. At the same time, these

rules also reduce the operators flexibility as it can com-

plexify the implementation of new routing requirements,

e.g., by requiring the modification of multiple weights

instead of one.

NetComplete allows operators to communicate such

semantics as constraints on the configuration sketch and

let the synthesizer find a valid network-wide configura-

tion that adheres to the operators style.

Scenario 2: Simplifying federated or constrained man-

agement. Network configurations are often maintained

by multiple teams of operators [22, 23], each responsi-

ble for some parts (e.g., edge vs core) or functionalities.

Coordinating changes in these federated configurations

tends to be challenging as multiple teams need to come

together. With NetComplete, the operators can easily ex-

plore whether there is a way to implement the policy lo-

cally, for instance, without adapting the BGP configura-

tion (i.e., by restricting changes to the OSPF configura-

tion). Similar requirements appear in heterogeneous net-

works where not all routers support all protocols (e.g.,

due to licensing issues or device capabilities).

NetComplete allows operators to simply communi-

cate such constraints as part of the sketch and let the syn-

thesizer find a multi-protocol configuration.

Scenario 3: Configuration Refactoring and Network

Merging. Configurations evolve over time and this in-

creases their complexity. Design decisions that made

sense in the past may no longer do, requiring refactor-

ing. Other examples calling for large refactoring include

merging and acquisitions; e.g., when a company buys an-

other one and wishes to integrate their networks [24].

NetComplete helps operators to refactor configura-

tions by enabling them to morph entire pieces of their

existing configurations, e.g., to adopt the configuration

guidelines of one network and let the synthesizer com-

pute and propagate the changes network-wide.

580 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

3 Overview

We now show how given a network topology, high-

level routing requirements, and a partial configuration,

NetComplete autocompletes the partial configuration to

a correct network-wide configuration. First, we present

a small running example and define NetComplete’s in-

puts. We then present the key synthesis steps to produce

the output configuration before explaining the more com-

plex steps in detail in the following sections.

3.1 Running Example

In Fig. 2, we show how a network operator would use

NetComplete to synthesize a network-wide configura-

tion that enforces routing requirements. We consider that

the Autonomous System (AS) of the operator’s network

is AS500 and consists of four routers: A, B, C, and D. This

network is further connected to one customer peer AS100

and three external peers: AS200, AS300, and AS400.

High-level Routing Policy The policy for our example

is given in Fig. 1. Rule (1) disallows transit traffic be-

tween external peers; e.g., AS200 cannot send traffic to

AS300 through the network. Rule (2) defines how the

customer peer accesses prefixes announced by external

peers: AS300 is most preferred, followed by AS400, and

then AS200. Traffic to AS200 may exit via B or C, where

B is preferred. Rules (3) and (4) capture traffic engineer-

ing requirements. Note that this policy can be formalized

in a high-level SDN-like language, such as Propane [15],

Genesis [18], Frenetic [25], or SyNET [20].

3.2 NetComplete Inputs

NetComplete takes three inputs: (i) network topology,

(ii) routing requirements, and (iii) a configuration sketch.

(1) Network Topology The network topology is given

via a graph over the set of routers (A, B, C, and D) and

external peers (AS100, AS200, AS300, and AS400). An

edge represents a physical link that connects two nodes.

(2) Routing Requirements We now describe the type

of requirements supported by NetComplete. We start

with some basic notation. A routing path is of the form:

P ::= Src → R1 → ·· · → Rn → Dst, where Src and

Dst are source and destination routers, respectively, and

R1, . . . ,Rn are router identifiers. We use a wildcard no-

tation to denote sets of simple paths, i.e., paths without

repeated nodes. For example, Src→∗→ Dst denotes all

simple paths from Src to Dst.

NetComplete supports positive and negative require-

ments. Positive requirements have the form

Req ::= (P, · · · ,P) | (P = · · ·= P) | Req≫ Req

Rule 1 No transit between AS200, AS300, and AS400;

Rule 2 Traffic from the customer peer AS100 to the ex-

ternal peers prefers exit routers in order: AS300,

AS400, AS200 via B, AS200 via C;

Rule 3 Traffic from AS100 to AS300 is load-balanced

along A→C and A→ D→C; if both paths are un-

available, then the path A→ B→C is used;

Rule 4 Traffic from AS100 to AS400 must follow the

path A→ B→C.

Figure 1: High-level policy for our running example

where P is a routing path. All routing paths that appear in

a requirement must have identical source and destination.

The semantics of requirements is as follows:

An any-path requirement (P1, . . . ,Pk) is satisfied if the

traffic from the source to the destination is forwarded

along any available path in {P1, . . . ,Pk}. The requirement

is not-applicable if all paths P1, . . . ,Pk are unavailable.

We remark that any-path requirements are used to ensure

failure-resilience. We will refer to any-path requirements

(P) consisting of a single path P as simple requirements.

An ECMP requirement (P1 = · · · = Pk) is satisfied if

the traffic from Src to Dst is load-balanced among all

available paths in the set {P1, . . . ,Pk}. The requirement

is not-applicable if all paths P1, . . . ,Pk are unavailable.

We remark that ECMP requirements are useful to capture

load-balancing.

An ordered requirement Req1 ≫ Req2 defines a pref-

erence over requirements. This requirement is satisfied

if the most preferred applicable requirement is satisfied,

and it is not-applicable if both requirements are not-

applicable. For example:

(AS100→ A→ B→C→ AS300)
≫ (AS100→ A→C→ AS300)

is satisfied if traffic from AS100 to AS300 is forwarded

along this path if it is available:

AS100→ A→ B→C→ AS300

Otherwise traffic is forwarded along the path:

AS100→ A→C→ AS300

NetComplete also supports negative requirements of

the form !{P1, . . . ,Pk}, where {P1, . . . ,Pk} is a set of rout-

ing paths. This requirement is satisfied if traffic is not for-

warded along any path in this set. Negative requirements

are useful to express traffic isolation.

The requirements for our running example are given

in Fig. 2b. We interpret sets of paths, such as AS100→
∗→ AS300, as any-path requirements. Policy rules 1, 2,

3, and 4, given Fig. 1, are specified as requirements 1,

2−7, 8, and 9, respectively. We use a natural assignment

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 581

(a) Network topology

! B Configuration Sketch
! 10G interface to C
interface TenGigabitEthernet1/1/1
 ip address ?
 ip ospf cost
router ospf 100

 ...
router bgp 6500
...
 neighbor AS200 import route-map imp-p1
 neighbor AS200 export route-map exp-p1
 ...
ip community-list C1 permit
ip community-list C2 permit
route-map imp-p1 permit 10
 set
 set
route-map exp-p1 10
 match community C2
route-map exp-p2 20
 match community C1
...

(c) Configuration sketch for router B (e) Synthesized configuration for router B

?

?
10 < ? < 100

?

?

?

?

(b) Routing requirements

Link connectivity and
static routes synthesis

BGP Synthesis (§4)

OSPF Synthesis (§5)

(d) Configuration synthesis flow

BGP requirements:
 1. (AS100→*→AS300 >> AS100→*→C-AS400 >>
 >> AS100→*→B→AS200 >> AS100→*→C→AS200)
 2. !AS200→*→AS300 4. !AS300→*→AS200 6. !AS400→*→AS200
 3. !AS200→*→AS400 5. !AS300→*→AS400 7. !AS400→*→AS300

OSPF requirements:
 8. (AS100→A→C→AS300 = AS100→A→D→C→AS300) >> AS100→A→B→C→AS300

Static routes:
 9. AS100→A→B→C→AS400

Additional OSPF
requirements

NetComplete

?

Input

In
p

u
t

O
u

tp
u

t

! B Configuration Sketch
! 10G interface to C
interface TenGigabitEthernet1/1/1
 ip address 10.0.0.0 255.255.255.254
 ip ospf cost 15
router ospf 100
 network 10.0.0.1 0.0.0.1 area 0.0.0.0
 ...
router bgp 6500
...
 neighbor AS200 import route-map imp-p1
 neighbor AS200 export route-map exp-p1
 ...
ip community-list C1 permit 6500:1
ip community-list C2 permit 6500:2
route-map imp-p1 permit 10
 set community 6500:1
 set local-pref 50
route-map exp-p1 permit 10
 match community C2
route-map exp-p1 deny 20
 match community C1
...

B C

A D

AS200

AS300

AS400

AS100

AS500

?

?

Figure 2: Overview of NetComplete. The inputs are: (a) network topology, (b) routing requirements, and (c) a config-

uration sketch. The output is a configuration for each router; for the configuration of router B see (e).

of requirements to protocols. For example, requirements

1− 7 pertain to external peers and they are assigned to

the Border Gateway Protocol (BGP). Requirement 8 per-

tains to traffic engineering within the network and is as-

signed to the Open-Shortest Path First (OSPF) protocol,

which forwards traffic along the shortest path. Note that

requirements 8 and 9 cannot be both enforced by OSPF.

To enforce requirement 9, the cost of A→ B→ C must

be lower than that of A→C and A→ D→C. However,

this would also divert traffic from AS100 to AS300 to be

forwarded along routers A→ B→ C, which would vio-

late requirement 8. To this end, requirement 9 is enforced

using a static route.

We remark that the requirements above can be spec-

ified manually by the operator, or using existing sys-

tems [15, 16, 18, 25] that compile high-level policies to

forwarding paths.

(3) Configuration Sketch Configuration sketches are

router configurations where some of the parameters are

left symbolic. To specify symbolic values, the operator

tags parts of the configurations with a question mark

symbol ? (instead of writing concrete values). The sym-

bol ? represents: (i) specific attributes (e.g., OSPF link

cost, BGP local preferences2); or (ii) entire import / ex-

port policies, e.g., match ? , action ? .

As an example, we depict the sketch of router B’s con-

figuration in Fig. 2c. We remark that operators can write

additional constraints to restrict how NetComplete in-

stantiates symbolic parameters. For example, the sym-

bolic OSPF link cost in the sketch of router B is con-

strained to values between 10 and 100.

This sketching language enables NetComplete to be

used in different scenarios. For example, changes can be

restricted to certain parts of the network [Scenario 2]. By

leaving most of the configurations symbolic, an opera-

tor can explore a large range of possible configurations

that implement a given set of requirements [Scenarios 1

and 3]. Moreover, an operator can also provide a fully

concrete configuration to verify its correctness.

2Except BGP AS numbers, which are assigned based on higher-

level considerations that are not captured in the requirements.

582 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

3.3 Configuration Synthesis

NetComplete synthesizes a network-wide configuration

that enforces the requirements in three steps.

First, it synthesizes the sessions between routers that

have a physical link between them and may be necessary

to enforce the routing requirements. Further, it config-

ures any static routes defined in the requirements. For ex-

ample, for requirement AS100→ A→ B→C→ AS400,

NetComplete establishes a session between A− B and

B−C, and configures static routes at A and B.

Second, NetComplete synthesizes router-level BGP

configurations based on the BGP routing requirements.

To this end, NetComplete computes a propagation graph

that captures which BGP announcements are exchanged

between the routers and in what order they must be se-

lected. NetComplete then synthesizes BGP configura-

tions that enforce the constructed propagation graph. We

explain this step in detail in §4. Note that BGP may select

routes based on path costs (computed by OSPF). There-

fore, whenever this is necessary to enforce the require-

ments, the BGP synthesizer outputs additional OSPF re-

quirements to be enforced by the OSPF synthesizer.

Third, NetComplete synthesizes OSPF costs that en-

force all OSPF requirements. This is a well-known hard

problem that is difficult to scale to large networks. We

solve the problem in §5 via a novel counter-example

guided inductive synthesis algorithm.

If all synthesis steps succeed, NetComplete outputs a

configuration that is guaranteed to enforce the require-

ments. Otherwise, a counter-example is returned to in-

dicate that the requirements cannot be enforced for the

given inputs. Based on this counter-example, the network

operator can modify the partial configuration (by making

more parameters symbolic) or adapt the requirements.

We present a detailed evaluation of NetComplete with

practical topologies and requirements in §6.

4 BGP Synthesis

We now present NetComplete’s BGP synthesizer which

takes as input BGP requirements and computes router-

level BGP policies. It also outputs a set of OSPF re-

quirements (to be fed to NetComplete’s OSPF synthe-

sizer) if the BGP requirements cannot be enforced by

BGP policies alone. In the following, we first overview

the BGP protocol (§4.1), then present the construction

of a BGP propagation graph which defines correct prop-

agation of BGP announcements (§4.2). We illustrate

NetComplete’s BGP sketches in §4.3 and propagation of

(symbolic) announcements over them in §4.4. Finally, we

describe our BGP synthesis procedure (§4.5).

Name Description

Prefix A value that represents a set of destination

IPs that belong to the same traffic class

LocalPref A positive integer that indicates the degree of

preference for one route over the other routes

Origin The origin of the announcement: IGP, EGP,

or Incomplete

MED (Multi-Exit Discriminator) A positive in-

teger that indicates which of the multiple

routes received from the same AS is selected

ASPath The AS path to reach the destination

ASPathLen The length of the AS path to the destination

NextHop The router to which to forward packets

Communities A list of tags carried with the announcement.

Figure 3: BGP attributes supported by NetComplete.

4.1 BGP Protocol

The BGP protocol is used to exchange information be-

tween ASes. An AS sends announcements to its neigh-

boring ASes to inform them that it can carry traffic to

prefixes (i.e., sets of IP addresses). Announcements are

also exchanged within an AS to disseminate routing in-

formation among routers. Note that operators may parti-

tion their network into multiple ASes to use BGP to en-

force routing requirements within the network. We refer

to the ASes under the operator’s control as private and to

the remaining as public ASes.

Announcements have attributes, which are used to se-

lect a single best route out of (possibly) multiple routes

to the same prefix; see Fig. 3. A router processes each

received announcement using import filters, which may

drop the announcement or modify its attributes. Then,

the router selects the best route according to a local BGP

policy, processes it using export filters, and forwards the

result to its neighboring routers.

Each router uses the following preferences when se-

lecting the best route:

1. Prefer higher LocalPref;

2. Prefer shorter ASPathLen;

3. Prefer lower origin type: IGP < EGP < Incomplete;

4. Prefer lower MED;

5. Prefer announcements from external routers;

6. Prefer lower IGPCost, calculated by the network’s

Internal Gateway Protocol (IGP), such as OSPF.

We assume prefixes in announcements do not overlap (as

we can use known techniques [8] to ensure this).

4.2 BGP Propagation Graph

We present how NetComplete builds, for each prefix, a

propagation graph that defines a correct enforcement of

the BGP routing requirements for that prefix. In more

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 583

AS100→∗→AS300 ≫ AS100→∗→AS400

≫ AS100→∗→B→AS200 ≫ AS100→∗→C→AS200

(a) Positive BGP requirements

!AS200→∗→AS300 !AS300→∗→AS200 !AS400→∗→AS200

!AS200→∗→AS400 !AS300→∗→AS400 !AS400→∗→AS300

(b) Negative BGP requirements

Propagate edge Block edge

 Forward graph G
fwd

 BGP propagation graph G
ebgp

BGP propagation graph G
bgp

B

AS200

AS300

AS400

AS100

AS500

C

DA

AS300 > AS400 > B-AS200 > C-AS200

B

AS200

AS300

AS400

AS100

AS500

C

DA

AS200

AS300

AS400

AS100

AS500

AS300 > AS400 > AS200

!AS300

!AS400

!AS200,!AS400

!AS200,!AS300

!AS200,!AS400

!AS200,!AS300

!AS300

!AS400

!AS300

!AS400

AS300

> AS400

> AS200

AS300

> AS400

> AS200

AS300 > AS400

> B-AS200 > C-AS200

Figure 4: Deriving a BGP propagation graph from BGP requirements and a network topology.

details, NetComplete first constructs a graph Gebgp that

only considers announcements learned over eBGP. Then,

it refines Gebgp into Gbgp, which also defines how an-

nouncements are propagated internally (using iBGP). In

Fig. 4, we illustrate the steps on our running example.

Construct eBGP propagation graph The graph Gebgp

contains one node for each private/public AS. For our ex-

ample, Gebgp has one private AS, AS500, and four public

ones AS100, . . . ,AS400; see Fig. 4.

The graph Gebgp has two kinds of labeled edges: prop-

agate and block edges, labeled with the preference order

over announcements and, respectively, announcements

that must be dropped.

To add propagate edges, NetComplete traverses each

positive BGP requirement backwards and appends edges

along the traversed ASes. For example, for the re-

quirement AS100→∗→ AS300, NetComplete traverses

three ASes and adds the propagate edges AS300 →
AS500 and AS500→ AS100. While adding these edges,

NetComplete tracks the set of announcements that must

be propagated along them and labels the edges with the

preference order based on the requirements.

To add block edges, NetComplete traverses each neg-

ative requirement and adds block edges to enforce it. For

example, for the requirement !AS200→∗→ AS300, it

adds the block edge AS500→ AS200, label with !AS300,

to enforce the requirement.

Once Gebgp is fully constructed, NetComplete checks

if preferences over announcements are consistent. To il-

lustrate, suppose AS1 must select announcements from

AS2, and AS2 must select from AS3. Then, the pref-

erences over announcements labeled along the edges

AS3→ AS2 and AS2→ AS1 must match.

Construct iBGP propagation graph Next,

NetComplete refines Gebgp into a detailed propaga-

tion graph, Gbgp, that also accounts for iBGP.

First, for each private AS in Gebgp, NetComplete adds

to Gbgp all BGP-enabled routers within that AS. For our

example, NetComplete adds the routers A, B, C, and D.

Second, NetComplete connects the neighbor routers

between ASes that have an edge in Gebgp. For example,

for edge AS200→AS500 in Gebgp, NetComplete adds the

edges AS200→B and AS200→C to Gbgp.

Finally, NetComplete extends the paths learned via

eBGP. Note that in iBGP routers will not export routes

learned from another iBGP router.3 Similar to Gebgp,

nodes in Gbgp are labeled with the preferences over an-

nouncements and NetComplete check if the preferences

over announcements are consistent.

4.3 BGP Policies

We now present the semantics of BGP policies. A BGP

policy applies on a set of announcements and has a match

expression followed by zero or more actions. The match

expression is a boolean formula over the announcement’s

attributes. If the match expression holds for the input an-

nouncement, then the actions are executed which modify

the announcement’s attributes or drop the announcement.

For example, the following policy:

1 BGPPolicy

2 match next -hop AS200

3 set local -pref 10

matches an announcement whose NextHop attribute is set

to AS200 and sets the value of attribute LocalPref to 10.

3While NetComplete does not support Route Reflectors, we plan

to add support for them as their functionality is similar to eBGP.

584 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

1 AttributesSketch

2 match next -hop AS200

3 set local -pref ? < 50

(a) Attributes sketch Sattr

1 AbstractSketch

2 match ?

3 set ?

(b) Abstract sketch Sabs

Figure 5: Example of two BGP policy sketches.

Sketching BGP Policies NetComplete allows the net-

work operator to define the policy sketch at three levels

of details; (i) everything is concrete (no holes), (ii) de-

fine the types of matches and actions but leave the spe-

cific values empty (see Fig. 5a), (iii) or leave the matches

and actions as holes (see Fig. 5b). We formalize the en-

coding of such sketches using SMT constraints in Ap-

pendix B. In §4.5, we show how NetComplete synthe-

sizes BGP policy and instantiates the symbolic values in

the given sketch to enforce the BGP propagation graph.

4.4 Processing Symbolic Announcements

We present how NetComplete processes symbolic BGP

announcements passing through the various BGP policy

sketches in the network. Given an announcement A, we

write attrA to denote the attribute attr of A. For in-

stance, LocalPrefA returns A’s local preference. Each an-

nouncement attribute either has a concrete value, if its

value is fixed by the partial configuration, or a symbolic

value, if a correct concrete value is yet to be discovered

by the BGP synthesizer.

We represent announcements symbolically as their at-

tribute values are constrained by the BGP policies, which

are yet to be synthesized by NetComplete. Each an-

nouncement A is represented with symbolic variables

PrefixA, . . . ,NextHopA. The set of possible attribute val-

ues of A is captured by a conjunction of constraints over

these variables. For example, the constraint

(NextHopA = AS200)∧ (0 < LocalPrefA < 50)

captures all announcements whose next hop is AS200 and

local preference is a positive integer smaller than 50.

In addition to the attributes listed in Fig. 3 we intro-

duce two boolean variables: PermittedA, which indicates

whether the announcement A is dropped, and eBGPA,

which indicates whether A is sent via eBGP or iBGP.

Processing Announcements with Policy Sketches A

BGP policy sketch takes as input a symbolic announce-

ment Ain (a set of constraints over Ain’s attributes) and

outputs another symbolic announcement Aout. To com-

pute the set of possible output announcements for a given

input announcement, we take the conjunction of the BGP

sketch constraints with the constraint that captures the set

of possible concrete input announcements.

To illustrate this step, consider the input announce-

ment NextHopAin
= AS200 and the BGP sketch in Fig. 5a.

Since the NextHop attribute is concrete and equal to

AS200, NetComplete knows that the input announce-

ment would match this policy. Therefore, NetComplete

captures the set of possible output announcements with

the constraint:

(LocalPrefAout = Var1)∧ (0 < Var1 < 50)
∧ (NextHopAout

= NextHopAin
) ∧ ·· ·

Namely, the local preference of the output announce-

ment is set to the value of Var1, which is constrained

to positive values below 50 (to be synthesized by

NetComplete), and all remaining attributes are identical

to those in the input announcement (captured with equal-

ity constraints, such as NextHopAout
= NextHopAin

).

As another example, consider the input announcement

NextHopAin
= Var1 where the NextHop attribute is sym-

bolic. When evaluating this announcement with the BGP

sketch in Fig. 5a, NetComplete captures the set of possi-

ble output announcements with the following constraint:

if Var1 = AS200

then (LocalPrefAout = Var2)∧ (0 < Var2 < 50)
∧ (NextHopAout

= NextHopAin
)∧ ·· ·

else (NextHopAout
= NextHopAin

)∧ ·· ·

This constraint is more complex because the result of

the match expression depends on the symbolic next hop

(Var1). If the next hop is AS200, then the local prefer-

ence is set to Var2 and all remaining attributes remain

unchanged. Otherwise, all attributes in the output an-

nouncement Aout are identical to those in the input an-

nouncement Ain.

Encoding Selection of Announcements When a BGP

router receives different announcements for the same

prefix, it uses the preference ordering to select the best

route; see §4.1. We encode the selection process into two

SMT predicates: PrefNoIGP(A1,A2) and Pref(A1,A2).
The predicate PrefNoIGP(A1,A2) holds if and only if A1

is preferred over A2 without considering the IGP costs

of A1 and A2. While the predicate Pref(A1,A2) holds if

and only if A1 is preferred over A2 with considering the

IGP costs of A1 and A2. We show the encoding of these

predicates in Appendix A.

4.5 BGP Policy Synthesis

We now describe how NetComplete synthesizes BGP

policies from requirements and policy sketches.

Encoding Requirements Suppose that a router receives

multiple announcements A1, . . . ,An to the same prefix.

The BGP propagation graph identifies a preference with

which the announcements must be selected by the router.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 585

Suppose the router must select announcements A1,A2,

and A3 in the order A1 ≫ A2 ≫ A3. We encode this re-

quirement with the following constraint:

Pref(A1,A2)∧Pref(A2,A3)∧
(

∀i ∈ [4, ..,n].Pref(A3,Ai)
)

Note that simpler requirements that do not stipulate a par-

ticular order are a special case. For example, if a require-

ment stipulates that an announcement Ak is selected as

the best route, the above constraint becomes:

∀i ∈ [1,n]. k 6= i =⇒ Pref(Ak,Ai)

Overall Synthesis Algorithm Putting all pieces

together, the complete algorithm employed by

NetComplete to synthesize concrete BGP policies

is as follows:

Step 1 (§4.2): Construct a BGP propagation graph Gbgp

from the given requirements and network topology.

Step 2 (§4.3): Encode the routers’ BGP policy sketches.

The result is a constraint ϕS over variables S. Each

concrete instantiation of the variables S identifies

concrete BGP policies.

Step 3 (§4.4): Declare symbolic variables A to represent

all announcements propagated through the BGP

propagation graph.

Propagate all symbolic announcements through the

policy sketches. The result is an SMT constraint

ϕannouncements over the variables S and A.

Step 4 (Synthesis without additional OSPF requirements):

Encode the route selection process and the require-

ments with the selection predicate PrefNoIGP,

resulting in SMT constraints ϕselect and ϕreq over

the variables A. If a model of ϕselect ∧ ϕreq exists,

then derive concrete BGP policies and return;

otherwise, go to Step 5.

Step 5 (Synthesis with additional OSPF requirements):

Find the unsatisfiable core of ϕselect ∧ϕreq and de-

rive a set S of pairs (A1,A2) of announcements that

cannot be correctly selected without considering

their IGP costs. Modify the constraint to:

(
∧

(A1,A2)∈S

IGPCostA1
< IGPCostA2

)

⇒ ϕselect∧ϕreq

If a model of this constraint exists, then derive BGP

policies, create OSPF requirements from the set S,

and return; otherwise, return that the requirements

cannot be satisfied.

5 OSPF Synthesis

We now present NetComplete’s OSPF synthesizer.

OSPF is a Dijskstra-based routing protocol that forwards

traffic along the shortest path, where path costs are com-

puted based on the OSPF cost attached to each link.

OSPF Requirement:

(AS100→ A→C→ AS300

= AS100→ A→ D→C→ AS300)
≫ AS100→ A→ B→C→ AS300

B C

A D

AS300

AS100

AS500

2
0

10

20

1010

Figure 6: Example of correct assignment of link costs

with respect to OSPF requirements.

NetComplete features a new counter-example guided in-

ductive synthesis (CEGIS) [26] algorithm for OSPF that,

given a set of OSPF requirements and a network topol-

ogy, outputs OSPF link costs that enforce the require-

ments. Our algorithm can be tailored to support other

Dijkstra-based routing protocols, such as IS-IS [27].

5.1 SMT Encoding

We phrase the OSPF synthesis problem as a constraint

solving problem as follows. For any link that connects

two nodes R to R′ we introduce an integer variable CR,R′

to represent the cost of link R→ R′. The cost of a path

is given by the sum of the link costs along that path. For

example, the cost of AS100→ A→ B→ C → AS300,

denoted by Cost(A→ B→ C), is CA,B +CB,C. We also

denote the (finite) set of all simple paths between two

nodes R and R′ with Paths(R,R′). We can encode that the

path P = AS100→ A→C→ AS300 has the lowest cost

among all other simple paths from AS100 to AS300 via:

∀X ∈Paths(AS100,AS300)\{P}. Cost(A→C)<Cost(X)

We can directly use this method to encode the enforce-

ment of OSPF requirements; see Fig. 6. For our example

requirements, we obtain:

Cost(A→C) = Cost(A→ D→C)
∧
(

Cost(A→C)< Cost(A→ B→C)
)

∧
(

∀X ∈ Paths(AS100,AS300)\S.

Cost(A→ B→C)< Cost(X)
)

, where

S = {A→C,A→ D→C,A→ B→C}

This constraint captures that: (i) AS100 → A → C →
AS300 and AS100 → A → D → C → AS300 must

have equal costs, (ii) path AS100 → A → C →
AS300 has lower cost than AS100 → A → B → C →
AS300, and (iii) all other paths have higher cost than

586 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

AS100 → A → B → C → AS300. Note, in this ex-

ample, Paths(AS100,AS300) = S. Therefore, we have

Paths(AS100,AS300) \ S = /0 and condition (iii) vacu-

ously holds.

Naive OSPF Synthesis A naive synthesis solution is to

encode all requirements with constraints, as described

above, and to then use a constraint solver to discover

a model that identifies correct link costs. Unfortunately,

phrasing the OSPF synthesis problem directly into SMT

does not scale to large networks; cf. [20]. The main issue

is the for-all (∀) quantifier in the constraints used to en-

code that a path has a lower cost among all other simple

paths with the same source and destination.

5.2 Counter-Example Guided Inductive

Synthesis for OSPF

We now present our new counter-example guided induc-

tive synthesis (CEGIS) algorithm for OSPF. CEGIS is a

contemporary approach to synthesis, where a correct so-

lution is iteratively learned from counter-examples [26].

CEGIS algorithms tend to work quite well in practice be-

cause often a small number of counter-examples (that is,

few iterations) is sufficient to discover a correct solution.

The OSPF synthesis problem amounts to finding a

model of logical constraints of the form:

∃C. ENCODEOSPF(C,r,Paths(r))

where C is the set of variables that represent link costs,

r is an OSPF requirement, Paths(r) is the set of all

paths from the source Src and destination Dst provided

in the requirement r, and ENCODEOSPF(C,r,Paths(r))
returns a logical formula that encodes the requirement’s

satisfaction (as described in §5.1). Finding a model of

this formula directly using a constraint solver is difficult

due to the large number of paths in Paths(r). To avoid

this quantifier, CEGIS restricts the constraint to a (small)

set of paths S = {P1, . . . ,Pn} ⊆ Paths(r). The resulting

constraint is:

∃C. ENCODEOSPF(C,r,S)

which is easier to solve by existing constraint solvers. A

model of this constraint identifies link costs that imply

that the requirement holds over the paths in S. However,

it may not hold over all paths in Paths(r). The idea of

CEGIS is to check the requirement over all paths and

to obtain a concrete counter-example that violates it, if

one exists; we remark that the step of checking is usu-

ally efficient. The set S is then iteratively expanded with

counter-examples until a correct solution is found.

Algorithm We show the main steps of our CEGIS al-

gorithm in Alg. 1. For each requirement r ∈ Reqs, the

algorithm declares a set Sr (line 3). The algorithm then

Algorithm 1: CEGIS algorithm for synthesizing

OSPF link costs with respect to OSPF requirements.

Input: OSPF requirements Reqs =
⋃

i ri, link cost

variables C, bound b

Output: OSPF link costs

1 begin

2 for r ∈ Reqs do

3 Sr = /0

4 while true do

5 ϕ = true

6 for r ∈ Reqs do

7 Sr← Sr ∪SAMPLEPATHS(r,b)

8 ϕr← ENCODEOSPF(C,r,Sr)
9 ϕ ← ϕ ∧ϕr

10 if UNSAT(ϕ) then

11 return ⊥

12 M←MODEL(ϕ)
13 if CHECKREQS(M,Reqs) then

14 return M(C)

15 (r,path)← COUNTEREXAMPLE(M,Reqs)
16 Sr← Sr ∪{path}

iteratively repeats the following steps. For each require-

ment r ∈ Reqs, the algorithm samples b paths from the

source to the destination of the requirement r and adds

these to Sr (line 7). It then encodes the requirement’s sat-

isfaction with respect to Sr (line 8) and conjoins the result

to ϕ (line 9). If the resulting constraint ϕ is unsatisfiable,

it means the requirements cannot be satisfied and the al-

gorithm returns ⊥ to indicate this. Otherwise, it obtains

a model M of the constraints ϕ (line 12), which defines a

concrete value for each link cost variable.

The algorithm then checks whether these costs defined

by M enforce the requirements Reqs (over all paths).

If the requirements are satisfied, the algorithm returns

M(C) (line 14), i.e. it returns the values associated to

the link cost variables C. Otherwise, it obtains a con-

crete counter-example as a pair (r,path) of a path path

that violates a requirement r, and expands the set Sr with

path (line 16). This ensures that the counter-example is

avoided in the next iteraion. Further, to reach a solution

faster, the algorithm samples additional b paths for each

requirement r and adds them to Sr. These steps are re-

peated until a solution is found or the requirements are

deemed unsatisfiable.

6 Implementation and Evaluation

We implemented NetComplete in around 10K lines of

Python code using SMT-LIB v2 [28] and Z3 [21]. Our

implementation is based on the theories of linear in-

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 587

2 requirements 8 requirements 16 requirements

Network Req. 50% symbolic 100% symbolic 50% symbolic 100% symbolic 50% symbolic 100% symbolic

size type CEGIS Naive CEGIS Naive CEGIS Naive CEGIS Naive CEGIS Naive CEGIS Naive

Small Simple 0.41 0.93 0.43 1.04 1.66 2.42 1.67 2.73 3.33 6.95 3.39 8.02

Any-path 0.62 2.00 0.67 2.38 2.31 12.27 2.38 14.48 4.63 7.22 4.76 8.58

ECMP 0.48 0.84 0.53 0.94 1.72 5.02 1.77 5.76 3.44 3.16 3.48 3.61

Ordered 0.55 0.54 0.68 0.64 2.90 2.93 5.49 3.50 4.76 5.07 7.93 6.05

Medium Simple 0.79 790.04 0.81 1554.81 3.06 19613.55 3.10 20.60 6.17 3238.46 6.18 6039.24

Any-path 1.27 1677.30 1.28 4208.68 4.89 18758.02 4.94 66.10 9.70 107.13 9.83 122.68

ECMP 0.85 567.02 0.86 1370.70 3.16 5643.60 3.24 22272.88 6.34 45.32 6.39 51.61

Ordered 1.76 450.64 2.81 732.60 30.83 2942.83 33.60 8636.21 31.08 49.43 43.63 58.54

Large Simple 1.78 > 24h 1.85 > 24h 7.35 > 24h 7.40 > 24h 13.90 > 24h 14.03 > 24h

Any-path 4.23 > 24h 4.33 > 24h 16.59 > 24h 16.89 > 24h 32.61 > 24h 33.01 > 24h

ECMP 1.83 > 24h 1.89 > 24h 7.07 > 24h 7.14 > 24h 13.37 > 24h 13.52 > 24h

Ordered 6.90 > 24h 15.00 > 24h 33.81 > 24h 44.72 > 24h 249.48 > 24h 1155.19 > 24h

Figure 7: Using Counter-Example Guided Inductive Synthesis (CEGIS) to synthesize OSPF weights is considerably

faster than a naive OSPF algorithm which aims to solve all constraints at once.

teger arithmetic and quantifier-free uninterpreted func-

tions. Our prototype takes as input partial configurations

(combining OSPF, BGP, and static routes) and outputs

completed ones. We support standard Cisco commands

for setting OSPF costs and BGP policies and can easily

extend our code base to support other languages.

In the following, we show that our NetComplete im-

plementation is practical and scales to realistic networks.

Specifically, we measure: (i) NetComplete OSPF and

BGP synthesis times in growing network topologies; (ii)

the impact of having more or less symbolic variables

in the sketches; and (iii) how NetComplete compares

against competing approaches such as SyNET [20].

6.1 Methodology and datasets

Topologies We sample 15 network topologies from

Topology Zoo [29] that we classify according to their

size: small (from 32 to 34 routers), medium (from 68 to

74 routers), and large (from 145 to 197 routers). We se-

lect 5 topologies per category.

Requirements We generate four types of routing re-

quirements (simple, any-path, ECMP, and ordered) in

each topology. Each requirement is defined between a

randomly selected source Src and destination Dst pair.

For simple path requirements, we choose a random fea-

sible path from Src to Dst. For the other requirements,

we first choose two paths P1 and P2 from Src to Dst

and then we construct (P1,P2) for any-path requirements,

(P1 = P2) for ECMP, or P1 ≫ P2 for ordered require-

ments. For each topology, we generate multiple sets of

requirements of size 2, 8, and 16. We generate all four

types of requirements for the OSPF evaluation, and only

generate simple and ordered path requirements for the

BGP evaluation. Indeed, any-path and ECMP require-

ments are typically internal requirements and are there-

fore typically enforced by IGP protocols.

Sketches We construct configuration sketches for each

topology from a fully concrete configuration (which we

synthesize using NetComplete) for which we randomly

make a given percentage of the variables symbolic. For

instance, to generate partial OSPF (resp. BGP) configu-

rations that are 50% symbolic, we randomly make 50%

of the edges (resp. BGP import/export policies) in the

synthesized concrete configurations symbolic.

Validation We validate that our synthesized configura-

tions comply with the corresponding requirements in an

emulated environment composed of Cisco routers [30].

6.2 Results

We now present our results focusing first on OSPF syn-

thesis, before considering BGP synthesis, and finishing

with a comparison with SyNET. We run all our exper-

iments on a server with 128GB of RAM and a 12-core

dual-processors running at 2.3GHz. Unless indicated, we

report averaged results over 5 runs and across topologies

of the same class.

OSPF Synthesis We first illustrate the effectiveness of

synthesizing OSPF configuration using our CEGIS algo-

rithm versus a naive algorithm in which the entire ∃∀ϕ
constraint is directly fed to the solver. We then evaluate

how sketches affect synthesis time.

Our results are reported in Fig. 7 and convey four

important insights. First, CEGIS significantly outper-

forms naive OSPF synthesis, especially in large networks

where naive synthesis does not even terminate within

a day. Second, we see that the synthesis time is pro-

portional to the topology size and the number of re-

quirements. Indeed, the number of symbolic variables

588 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 20 40 60 80 100

Percentage of symbolic edge costs

0

500

1000

1500

2000

T
im

e
[s
]

Figure 8: NetComplete synthesizes ordered path require-

ments faster when the configuration sketch provides

more concrete values for edge costs.

is equal to the number of symbolic edge costs, while

the number of constraints is proportional to the require-

ments size and the number of available paths. Third, or-

dered path requirements take more time to synthesize

than the other requirements. This is expected as such

requirements specify a strict sequence of paths mak-

ing the search space more sparse. Fourth, the use of

more concrete values significantly reduces the synthe-

sis time, especially for ordered path requirements with

reductions up to 70%. We further illustrate this behav-

ior in Fig. 8 which depicts the times required to synthe-

size 16 ordered path requirements for the large networks

as a function of the percentage of symbolic values. We

see that NetComplete indeed leverages the concrete vari-

ables and the reduced search space to synthesize config-

urations faster.

BGP Synthesis We now evaluate the effectiveness of the

BGP synthesizer and how it leverages partial evaluation

to concretize up to 25% of the symbolic variables and

therefore speed up the overall synthesis time.

In Fig. 9, we show the average number of generated

symbolic variables for each group (see Appendix C for

detailed numbers). We see that the number of generated

symbolic variables is not directly related to the topol-

ogy size and the number of requirements: the number

of variables for medium topologies can exceed the ones

of larger topologies. For BGP, the number of variables

indeed depends on: (i) the number of routers (and their

connectivity) in the computed propagation graph; (ii) the

complexity of the configuration sketch; and (iii) the ef-

fectiveness of partial evaluation.

Regarding partial evaluation, we observe that

NetComplete manages to evaluate between 7% and

25% of the generated symbolic variables (Fig. 9), which

makes BGP synthesis proportionally faster. Indeed, in

Fig. 10, we show how the BGP synthesis time evolves

linearly as a function of the number of symbolic vari-

ables. We also see that NetComplete always manages to

Topo Req. 16 reqs.

type Total Min % Eval Max % Eval

Small Simple 58578 9.62% 18.76%

Ordered 37662 16.75% 18.76%

Medium Simple 98683 7.27% 13.54%

Ordered 58924 10.02% 22.81%

Large Simple 83832 11.93% 14.57%

Ordered 29565 22.56% 25.07%

Figure 9: Number of generated symbolic variables.

Thanks to partial evaluation, NetComplete is able

to evaluate between 7% and 25% of the symbolic

variables—making BGP synthesis significantly faster.

synthesize BGP configurations in less than 14min.

Comparison to SyNET We now compare the syn-

thesis time of NetComplete to SyNET. Specifically,

we compare NetComplete and SyNET running times

for the worst-case scenario reported in [20] involving

10 requirements defined in topologies with 49 and 64

routers. Since SyNET defines requirements in terms of

the number of traffic classes and not forwarding paths

as NetComplete, we first translate each traffic class to

a set of simple path requirements. To ensure a fair com-

parison, we provide NetComplete with entirely symbolic

sketch since SyNET does not accept sketches.

Our results (Fig. 11) shows that NetComplete is at

least 600× faster than SyNET and is able to synthesize

configurations for larger topologies that SyNET timed

out on. This speed up stems from two factors. First,

NetComplete does not use an SMT solver for the re-

quirements that it can solve directly (such as synthesizing

static routes). Second, NetComplete relies on domain-

specific heuristics (CEGIS and partial evaluation) to re-

duce the search space, while SyNET relies on the generic

optimizations of the underlying SMT solver.

7 Related Work

Intent-based Networking and SDN Languages The

importance of relying on high-level abstractions in net-

work management has received considerable attention,

specifically in the context of Software-Defined Network-

ing (SDN) [18, 25, 31, 32, 33, 34, 35, 36, 37]. This influ-

ence goes beyond academic with two of the largest SDN

controllers (ONOS and OpenDayLight) now providing

declarative network management [38, 39].

Our work brings programmability to traditional net-

works, by enabling operators to enforce policies ex-

pressed in high-level SDN-like languages such as Gen-

esis [18] or Frenetic [25]. Our work, therefore, comple-

ments the above initiatives and enables them to be used

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 589

0 50k 100k 150k

Number of symbolic variables

0

200

400

600

800

T
im

e
[s
]

Figure 10: BGP synthesis time grows linearly with re-

spect to the number of symbolic variables.

beyond OpenFlow or P4-enabled networks.

Network Verification Network verification approaches

are used to check a configuration with respect to require-

ments. FSR [40] encodes BGP preferences using routing

algebra [41] and verifies safety properties (e.g., BGP sta-

bility) using SMT solvers. Batfish [6] encodes routing

protocols in Datalog and uses Datalog solvers to check

conformance with routing requirements. Bagpipe [9] and

Minesweeper [8] formalize BGP and present an analyzer

for BGP configurations. In contrast, NetComplete fo-

cuses on synthesis, which subsumes verification.

Network Configuration Synthesis Recently, multiple

works have aimed at synthesizing configurations out of

high-level requirements [14, 15, 16, 20].

ConfigAssure [14] supports requirements expressed

using first-order constraints. As shown in our evalua-

tion, a direct encoding of routing computations into con-

straints goes beyond what existing solvers can handle.

Route Shepherd [41, 42] takes a partial specification of

BGP preferences and derives constraints over link costs

that capture the absence of BGP instability. In contrast,

NetComplete models the derivation of BGP preferences

and also synthesizes the BGP configuration.

Propane [15] and PropaneAT [16] produce BGP con-

figurations out of high-level requirements. Having the

freedom to output any configuration enables these sys-

tems to use templates and, in turn, to scale to large net-

works. In contrast, NetComplete supports partial config-

urations for multiple protocols (OSPF, BGP, and static

routes), which prevents us from leveraging specific tem-

plates. While NetComplete pays for this flexibility in

terms scalability, it is still fast, synthesizing configura-

tions within seconds.

SyNET [20] is another network-wide configuration

synthesizer supporting multiple protocols. It differs from

NetComplete in two ways. First, SyNET supports any

protocol that can be specified in stratified Datalog [43],

while NetComplete supports specific protocols (OSPF,

BGP). Since BGP cannot be fully captured in strati-

Rtrs Protocol SyNET NetComplete

49 Static 14m11s 0.05s

Static + OSPF 5h22m56s 2m1s

Static + OSPF + BGP timeout (> 24h) 44m2s

64 Static 49m22s 0.06s

Static + OSPF 21h13m16s 2m22s

Static + OSPF + BGP timeout (> 24h) 6h6m30s

Figure 11: NetComplete is > 600× faster than [20].

fied Datalog, SyNET supports a simplified BGP though,

while NetComplete supports it fully. Second, SyNET

uses a generic synthesis procedure for Datalog, while

NetComplete uses custom procedures for each protocol.

Consequently, SyNET does not scale to large networks

and is orders of magnitude slower than NetComplete.

Synthesizers such as NetEgg [19, 44] and NetGen [17]

target SDN environments and aim to derive controller

programs (instead of configurations) out of requirements.

While their goal is similar to ours, our target is different

(distributed protocols vs. centralized controller).

Program Synthesis Our work also relates to program

synthesis. In particular, we showed a novel instantiation

of counter-example guided inductive synthesis (CEGIS)

[26] for synthesizing weights in OSPF. CEGIS is a gen-

eral concept that has become popular in the program syn-

thesis community. A key challenge in using it is finding

effective ways to specialize it (e.g., efficient representa-

tion of the hypothesis space, interaction with the SMT

solver) to the particular application domain (e.g., net-

working and the OSPF protocol in our case).

8 Conclusion

We presented NetComplete, the first scalable network-

wide configuration synthesizer to support multiple pro-

tocols and a partial sketch of the desired configuration.

NetComplete features a new BGP synthesis procedure

that supports BGP configuration sketches and partial

computations over symbolic announcements. It also in-

troduces an efficient synthesis procedure for the widely-

used OSPF protocol. This procedure is based on counter-

example guided inductive synthesis and achieves signifi-

cant speedups (> 100x) over existing solutions.

Finally, we presented a comprehensive set of experi-

mental results, which demonstrate that NetComplete can

autocomplete configurations for large networks with up

to 200 routers within few minutes.

Acknowledgments

We are grateful to our shepherd, Vyas Sekar, and the

anonymous reviewers for their constructive feedback.

590 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] Stock trading closed on NYSE after glitch

caused major outage. https://www.

theguardian.com/business/live/2015/jul/

08/new-york-stock-exchange-wall-street.

[2] Google routing blunder sent Japan’s Internet dark on

Friday. https://www.theregister.co.uk/2017/

08/27/google_routing_blunder_sent_japans_

internet_dark/, 2017.

[3] Facebook, Tinder, Instagram suffer widespread is-

sues. http://mashable.com/2015/01/27/

facebook-tinder-instagram-issues/.

[4] United Airlines jets grounded by computer

router glitch. http://www.bbc.com/news/

technology-33449693.

[5] Juniper Networks. Whats Behind Network Downtime?

Proactive Steps to Reduce Human Error and Improve

Availability of Networks. Technical report, May 2008.

[6] Ari Fogel, Stanley Fung, Luis Pedrosa, Meg Walraed-

Sullivan, Ramesh Govindan, Ratul Mahajan, and Todd D

Millstein. A General Approach to Network Configura-

tion Analysis. In 12th USENIX Symposium on Networked

Systems Design and Implementation (NSDI ’15), 2015.

[7] Aaron Gember-Jacobson, Raajay Viswanathan, Aditya

Akella, and Ratul Mahajan. Fast Control Plane Analy-

sis Using an Abstract Representation. In Proceedings of

the 2016 ACM SIGCOMM Conference SIGCOMM ’16,

2016.

[8] Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David

Walker. A General Approach to Network Configuration

Verification. In Proceedings of the 2017 ACM SIGCOMM

Conference SIGCOMM ’17, 2017.

[9] Konstantin Weitz, Doug Woos, Emina Torlak, Michael D.

Ernst, Arvind Krishnamurthy, and Zachary Tatlock. Scal-

able Verification of Border Gateway Protocol Configura-

tions with an SMT Solver. In ACM SIGPLAN Interna-

tional Conference on Object-Oriented Programming, Sys-

tems, Languages, and Applications, (OOPSLA’16), 2016.

[10] Peyman Kazemian, George Varghese, and Nick McKe-

own. Header Space Analysis: Static Checking for Net-

works. In 9th USENIX Symposium on Networked Systems

Design and Implementation (NSDI ’12), 2012.

[11] Ahmed Khurshid, Xuan Zou, Wenxuan Zhou, Matthew

Caesar, and P. Brighten Godfrey. VeriFlow: Verifying

Network-Wide Invariants in Real Time. In 10th USENIX

Symposium on Networked Systems Design and Implemen-

tation (NSDI ’13), 2013.

[12] Radu Stoenescu, Matei Popovici, Lorina Negreanu, and

Costin Raiciu. SymNet: Scalable Symbolic Execution for

Modern Networks. In Proceedings of the 2016 ACM SIG-

COMM Conference SIGCOMM ’16, 2016.

[13] Nuno P Lopes, Nikolaj Bjørner, Patrice Godefroid,

Karthick Jayaraman, and George Varghese. Checking Be-

liefs in Dynamic Networks. In 12th USENIX Symposium

on Networked Systems Design and Implementation (NSDI

’15), 2015.

[14] Sanjai Narain, Gary Levin, Sharad Malik, and Vikram

Kaul. Declarative Infrastructure Configuration Synthesis

and Debugging. Journal of Network and Systems Man-

agement, 16(3):235–258, 2008.

[15] Ryan Beckett, Ratul Mahajan, Todd Millstein, Jitendra

Padhye, and David Walker. Don’t Mind the Gap: Bridg-

ing Network-wide Objectives and Device-level Config-

urations. In Proceedings of the 2016 ACM SIGCOMM

Conference SIGCOMM ’16, 2016.

[16] Ryan Beckett, Ratul Mahajan, Todd Millstein, Jitendra

Padhye, and David Walker. Network Configuration Syn-

thesis with Abstract Topologies. In Proceedings of the

38th ACM SIGPLAN Conference on Programming Lan-

guage Design and Implementation PLDI ’17, 2017.

[17] Shambwaditya Saha, Santhosh Prabhu, and P Madhusu-

dan. NetGen: Synthesizing Data-plane Configurations for

Network Policies. In Proceedings of the 1st ACM SIG-

COMM Symposium on Software Defined Networking Re-

search SOSR ’15, 2015.

[18] Kausik Subramanian, Loris D’Antoni, and Aditya Akella.

Genesis: Synthesizing Forwarding Tables in Multi-tenant

Networks. In Proceedings of the 44th ACM SIGPLAN

Symposium on Principles of Programming Languages

POPL ’17, 2017.

[19] Yifei Yuan, Dong Lin, Rajeev Alur, and Boon Thau

Loo. Scenario-based Programming for SDN Policies. In

Proceedings of the 11th ACM Conference on Emerging

Networking Experiments and Technologies CoNEXT ’15,

2015.

[20] Ahmed El-Hassany, Petar Tsankov, Laurent Vanbever,

and Martin Vechev. Network-Wide Configuration Syn-

thesis. In Proceedings of the 29th International Confer-

ence on Computer Aided Verification CAV ’17. Springer,

2017.

[21] L. De Moura and N. Bjørner. Z3: An Efficient SMT

Solver. In International conference on Tools and Al-

gorithms for the Construction and Analysis of Systems

TACAS ’08, 2008.

[22] Peng Sun, Ratul Mahajan, Jennifer Rexford, Lihua Yuan,

Ming Zhang, and Ahsan Arefin. A Network-State Man-

agement Service. In Proceedings of the 2016 ACM SIG-

COMM Conference SIGCOMM ’15, 2015.

[23] Nanxi Kang, Ori Rottenstreich, Sanjay G Rao, and Jen-

nifer Rexford. Alpaca: Compact Network Policies With

Attribute-Encoded Addresses. IEEE/ACM Transactions

on Networking, 2017.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 591

https://www.theguardian.com/business/live/2015/jul/08/new-york-stock-exchange-wall-street
https://www.theguardian.com/business/live/2015/jul/08/new-york-stock-exchange-wall-street
https://www.theguardian.com/business/live/2015/jul/08/new-york-stock-exchange-wall-street
https://www.theregister.co.uk/2017/08/27/google_routing_blunder_sent_japans_internet_dark/
https://www.theregister.co.uk/2017/08/27/google_routing_blunder_sent_japans_internet_dark/
https://www.theregister.co.uk/2017/08/27/google_routing_blunder_sent_japans_internet_dark/
http://mashable.com/2015/01/27/facebook-tinder-instagram-issues/
http://mashable.com/2015/01/27/facebook-tinder-instagram-issues/
http://www.bbc.com/news/technology-33449693
http://www.bbc.com/news/technology-33449693

[24] G Gonzalo et al. Network Mergers and Migrations: Junos

Design and Implementation, volume 45. John Wiley &

Sons, 2011.

[25] Nate Foster, Rob Harrison, Michael J Freedman, Christo-

pher Monsanto, Jennifer Rexford, Alec Story, and David

Walker. Frenetic: A Network Programming Language.

In Proceedings of the 16th ACM SIGPLAN International

Conference on Functional Programming ICFP ’11, 2011.

[26] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik,

Sanjit Seshia, and Vijay Saraswat. Combinatorial Sketch-

ing for Finite Programs. In Proceedings of the 12th in-

ternational conference on Architectural support for pro-

gramming languages and operating systems ASPLOS XII,

2006.

[27] R. W. Callon. RFC 1195: Use of OSI IS-IS for Routing

in TCP/IP and Dual Environments, 1990.

[28] C. Barrett et al. The SMT-LIB Standard: Version 2.0,

2010.

[29] Simon Knight, Hung X. Nguyen, Nick Falkner, Rhys Al-

istair Bowden, and Matthew Roughan. The Internet

Topology Zoo. IEEE Journal on Selected Areas in Com-

munications, 2011.

[30] Graphical Network Simulator-3 (GNS3). https://www.

gns3.com/.

[31] Chaithan Prakash, Jeongkeun Lee, Yoshio Turner, Joon-

Myung Kang, Aditya Akella, Sujata Banerjee, Charles

Clark, Yadi Ma, Puneet Sharma, and Ying Zhang. PGA:

Using Graphs to Express and Automatically Reconcile

Network Policies. In Proceedings of the 2015 ACM SIG-

COMM Conference SIGCOMM ’15, 2015.

[32] Christopher Monsanto, Joshua Reich, Nate Foster, Jen-

nifer Rexford, and David Walker. Composing Software

Defined Networks. In 10th USENIX Symposium on Net-

worked Systems Design and Implementation (NSDI ’13),

2013.

[33] Andreas Voellmy, Junchang Wang, Y Richard Yang,

Bryan Ford, and Paul Hudak. Maple: Simplifying SDN

Programming Using Algorithmic Policies. In Proceed-

ings of the 2016 ACM SIGCOMM Conference SIGCOMM

’13, 2013.

[34] Tim Nelson, Andrew D Ferguson, Michael JG Scheer, and

Shriram Krishnamurthi. Tierless Programming and Rea-

soning for Software-Defined Networks. In 11th USENIX

Symposium on Networked Systems Design and Implemen-

tation (NSDI ’14), 2014.

[35] Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-

Baptiste Jeannin, Dexter Kozen, Cole Schlesinger, and

David Walker. NetKAT: Semantic Foundations for Net-

works. In Proceedings of the 41st ACM SIGPLAN Sym-

posium on Principles of Programming Languages POPL

’14, 2014.

[36] Nate Foster, Dexter Kozen, Matthew Milano, Alexandra

Silva, and Laure Thompson. A Coalgebraic Decision Pro-

cedure for NetKAT. In Proceedings of the 42st ACM SIG-

PLAN Symposium on Principles of Programming Lan-

guages POPL ’15, 2015.

[37] Robert Soulé, Shrutarshi Basu, Parisa Jalili Marandi, Fer-

nando Pedone, Robert Kleinberg, Emin Gun Sirer, and

Nate Foster. Merlin: A Language for Provisioning Net-

work Resources. In Proceedings of the 10th ACM Con-

ference on Emerging Networking Experiments and Tech-

nologies CoNEXT ’14, 2014.

[38] Open Network Operating System (ONOS) Intent Frame-

work. https://wiki.onosproject.org/display/

ONOS/The+Intent+Framework.

[39] OpenDayLight (ODL) Group-Based Policy. https:

//wiki.opendaylight.org/view/Group_Policy:

Main.

[40] A. Wang, L. Jia, W. Zhou, Y. Ren, B. T. Loo, J. Rex-

ford, V. Nigam, A. Scedrov, and C. Talcott. FSR: For-

mal Analysis and Implementation Toolkit for Safe Inter-

domain Routing. IEEE/ACM Transactions on Network-

ing, 20(6):1814–1827, 2012.

[41] Alexander J., T. Gurney, Anduo Wang Limin Jia, and

Boon Thau Loo. Partial Specification of Routing Config-

urations. In Workshop on Rigorous Protocol Engineering,

2011.

[42] Alexander J.T. Gurney, Xianglong Han, Yang Li, and

Boon Thau Loo. Route Shepherd: Stability Hints for the

Control Plane. In Proceedings of the 2016 ACM SIG-

COMM Conference SIGCOMM ’12, 2012.

[43] Serge Abiteboul, Richard Hull, and Victor Vianu, editors.

Foundations of Databases: The Logical Level. Addison-

Wesley Longman Publishing Co., Inc., 1995.

[44] Yifei Yuan, Rajeev Alur, and Boon Thau Loo. NetEgg:

Programming Network Policies by Examples. In Pro-

ceedings of the 13th ACM Workshop on Hot Topics in

Networks HotNets ’14, 2014.

592 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.gns3.com/
https://www.gns3.com/
https://wiki.onosproject.org/display/ONOS/The+Intent+Framework
https://wiki.onosproject.org/display/ONOS/The+Intent+Framework
https://wiki.opendaylight.org/view/Group_Policy:Main
https://wiki.opendaylight.org/view/Group_Policy:Main
https://wiki.opendaylight.org/view/Group_Policy:Main

PrefNoIGP(A1,A2)⇔

// 0) A1 is received and A2 is dropped
(permittedA1

∧ ¬permittedA2
)

// 1) Higher local preference
∨
(

permittedA1
∧ permittedA2

∧ (LocalPrefA1
> LocalPrefA2

)
)

// 2) Lower AS path length
∨
(

permittedA1
∧ permittedA2

∧ (LocalPrefA1
= LocalPrefA2

)

∧ (AsPathLenA1
> AsPathLenA2

)
)

.

.

.

// 5) Prefer routes learned over eBGP
∨
(

permittedA1
∧ permittedA2

∧ (LocalPrefA1
= LocalPrefA2

)

· · ·∧ (eBGPA1
∧¬eBGPA2

)
)

Pref(A1,A2)⇔ PrefNoIGP(A1,A2)∨
// 6) Lower IGP cost
(

permittedA1
∧ permittedA2

∧ (LocalPrefA1
= LocalPrefA2

)

· · ·∧ (IGPCostA1
< IGPCostA2

)
)

Figure 12: SMT encoding of the preference over BGP

announcements with the same prefix

A SMT Encoding of the BGP Selection

Process

Encoding Selection of Announcements When a BGP

router receives different announcements for the same

prefix, it uses the preference ordering to select the best

route. We encode the logic used by routers to select the

best route in Fig. 12. The predicate PrefNoIGP(A1,A2)
holds if and only if announcement A1 is preferred over

A2 without considering the IGP costs of A1 and A2. The

constraint is a disjunction over the different cases defined

by the BGP selection process. First, if A2 is dropped, then

A1 is selected as a best route. Second, if both announce-

ments are permitted, the router selects A1 over A2 if A1’s

local preference is lower than that of A2. Analogously,

the constraint encodes cases 3−5 described in §4.4.

In addition, we define the constraint Pref(A1,A2) that

also compares the announcements’ IGP costs. The con-

straint Pref(A1,A2) holds if announcement A1 is pre-

ferred over A2 without considering IGP costs (i.e.,

PrefNoIGP(A1,A2) holds) or the IGP cost of A1 is lower

than that of A2.

B SMT Encoding of BGP sketches

We illustrate the encoding of BGP sketches using SMT

constraints. Consider the following BGP sketch:

1 AttributesSketch

2 match next -hop AS200

3 set local -pref ? < 50

This sketch would match any announcement that has

the value AS200 set for the next hop attribute. If an an-

nouncement is matched, this policy would set the local

preference of the output announcement to a value that is

yet to be synthesized by the BGP synthesizer. As defined

by the sketch, this local preference value must be smaller

than 50. Note that this BGP policy does not change the

remaining attributes (as there are no further actions).

We encode this BGP sketch as follows:

if NextHopAin
=AS200

then
(

(LocalPrefAout = Var1)∧ (0 < Var1 < 50)
∧(∀X ∈ Attrs\{LocalPref}. XAout = XAin

)
)

else ∀X ∈ Attrs. XAout = XAin

where Attrs = {NextHop, . . .} and Var1 are fresh variables

Here, the variable Var1 represents the local preference

value that will be set by the BGP policy. Ain represents

the input announcement (before it is processed by the

BGP policy) and Aout the output one. The constraint for-

malizes that only input announcements with next hop

equal to AS200 are matched. For matched announce-

ments, the then constraint encodes that the output an-

nouncement has local preference set to Var1, which is

a value smaller than 50, and all remaining attributes are

identical to those in the input announcement (and thus re-

main unchanged). Finally, the else constraint ensures that

if an announcement is not matched (its local preference

is not AS200), then all attributes remain unchanged.

C Symbolic Variables in BGP Synthesis

In Fig. 13, we show the number of generated symbolic

variables when synthesizing BGP configurations for each

topology we used in our data set. We observe that the

number of generated variables depends on the number of

routers (and their connectivity) in the computed propa-

gation graph, the complexity of the configuration sketch,

and on the effectiveness of partial evaluation.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 593

Size Topo Req. 2 reqs. 8 reqs. 16 reqs.

type Total 100% 50% Total 100% 50% Total 100% 50%

Small Arnes simple 1997 488 482 13565 2466 2397 68355 7205 7126

order 962 224 200 11759 2394 2352 35993 6541 6380

Bics simple 2045 515 503 17960 2592 2553 51890 6930 6760

order 758 206 197 10313 2462 2423 40581 7302 7223

Canerie simple 764 210 198 16451 2569 2478 55787 6394 6233

order 1238 316 300 10775 2457 2424 40243 6981 6981

CrlNet simple 653 179 170 13112 2078 2078 41693 5476 5288

order 854 228 210 6728 1634 1562 27607 5204 5055

Renater simple 2717 669 651 18983 2884 2884 75167 7189 7104

order 758 206 188 13283 2642 2558 43884 7333 7251

Medium Columbus simple 2057 556 540 13400 2520 2421 52672 7159 7010

order 854 228 219 6728 1634 1595 28545 6510 6361

Esnet simple 2324 543 536 28403 4206 4110 105879 10298 10125

order 1526 382 370 13295 2888 2849 51135 9885 9805

Latnet simple 5111 1052 1043 44012 4921 4825 149394 10778 10590

order 3530 837 834 27626 3990 3903 104606 10482 10482

Sinet simple 1139 293 281 33905 4339 4230 114648 10466 10278

order 2966 712 703 29552 4978 4933 77823 11276 11203

Uninett2011 simple 2705 696 678 24275 3317 3224 70821 8752 8585

order 1610 397 388 14333 3011 2933 32511 7122 7122

Large Cogentco simple 3293 837 828 22565 4420 4348 85708 11441 11371

order 1046 272 272 7115 1819 1743 29726 6982 6821

Colt simple 3578 866 845 47795 6087 6024 85997 12524 12362

order 662 184 184 9992 2544 2475 33887 7819 7737

GtsCe simple 3566 861 861 29627 4948 4855 67705 9450 9356

order 854 228 210 8621 2060 2023 31073 7011 7011

TataNld simple 2348 624 608 20330 3861 3822 75380 10575 10405

order 662 184 181 6650 1680 1602 31424 7393 7316

UsCarrier simple 1460 412 391 19643 3776 3737 104371 12202 12017

order 758 206 199 5438 1445 1415 21715 5440 5361

Figure 13: The number of symbolic variables generated for each topology and the number of partially evaluated

variables when the configuration sketch is 100% and 50% symbolic.

594 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

	Introduction
	Motivating Scenarios
	Overview
	Running Example
	NetComplete Inputs
	Configuration Synthesis

	BGP Synthesis
	BGP Protocol
	BGP Propagation Graph
	BGP Policies
	Processing Symbolic Announcements
	BGP Policy Synthesis

	OSPF Synthesis
	SMT Encoding
	Counter-Example Guided Inductive Synthesis for OSPF

	Implementation and Evaluation
	Methodology and datasets
	Results

	Related Work
	Conclusion
	SMT Encoding of the BGP Selection Process
	SMT Encoding of BGP sketches
	Symbolic Variables in BGP Synthesis

