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Abstract

Background: Network controllability focuses on discovering combinations of external interventions that can drive a
biological system to a desired configuration. In practice, this approach translates into finding a combined multi-drug
therapy in order to induce a desired response from a cell; this can lead to developments of novel therapeutic
approaches for systemic diseases like cancer.

Result: We develop a novel bioinformatics data analysis pipeline called NetControl4BioMed based on the concept of
target structural control of linear networks. Our pipeline generates novel molecular interaction networks by combining
pathway data from various public databases starting from the user’s query. The pipeline then identifies a set of nodes
that is enough to control a given, user-defined set of disease-specific essential proteins in the network, i.e., it is able to
induce a change in their configuration from any initial state to any final state. We provide both the source code of the
pipeline as well as an online web-service based on this pipeline http://combio.abo.fi/nc/net_control/remote_call.php.

Conclusion: The pipeline can be used by researchers for controlling and better understanding of molecular
interaction networks through combinatorial multi-drug therapies, for more efficient therapeutic approaches and
personalised medicine.

Keywords: Network controllability, Software pipeline, Web service, Data acquisition and integration, Protein-protein
interaction networks, Personalized medicine, Cancer

Background
Over the last decade, high-throughput experimental tech-

nologies like gene sequencing, proteomics, etc. became

the core of biomedical research and have generated a

large set of biomedical data [1]. The recent advances in

experimental data acquisitions allow researchers to study

functions and properties of proteins, RNAs and genes,

as well as to explore a network of interactions between
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them. The signal transduction network of protein-protein

interactions (PPIs) is the backbone of signalling path-

ways [2], metabolic pathways [3], and various essential

cell processes for normal cell function [4, 5]. Such net-

works are modelled mathematically as directed graphs,

consisting of nodes standing for all the proteins in the

network, and directed edges between them standing for

each signal transduction relationship between them. Each

edge carries a positive “weight” signifying the relative

strength of the corresponding interaction. One may asso-

ciate to nodes variables that follow the dynamic level of

the protein corresponding to that node. Each variable is

influenced through its incoming edges by the level of

its predecessors in the network, and it influences itself
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through its outgoing edges the level of all its successors

in the network. The quantitative level of this influence is

usually described through a computational model based

on difference equations or ordinary differential equations.

The result is a linear dynamic system where changes in

some variable cascade through the network eventually

influencing the levels of many nodes in the network. We

call configuration or state (at some given time point) the

collection of the levels of all variables associated to nodes

in the network (at that time point).

In recent years, analysis of such directed signalling PPI

networks through linear dynamical systems has been cen-

tral for the current biological research, providing novel

insights into modern molecular biology from the net-

work perspective [6]. In order to study the structure,

function and dynamics of directed PPI networks, multi-

ple computational system biology approaches have been

employed to reveal important links in various biologi-

cal networks [7]. This includes, among others, finding

physical interactions (e.g., between proteins in PPI net-

works) and functional interactions (e.g., between genes

with similar or related functions, direct or indirect regu-

latory relationships between genes), identifying network

modules (clusters of intensively interacting molecules) [7],

interaction patterns and topological properties of dis-

ease networks (such as cancers, HIV infections, diabetes

mellitus, Parkinson, Alzheimer, etc.) [8].

A number of computational pipelines and softwares

have been developed [9] to perform various analysis of

interaction patterns, topological properties, and visualisa-

tion of PPI networks. The majority of these approaches

are focusing on finding structurally important disease-

associated protein interactions in a network [10, 11].

However, so far there are no known software solutions

analysing interaction networks for the purpose of identi-

fying strategies to gain control over (parts of ) the network.

Recently, several algorithms have been developed to per-

form network structural analysis and suggesting optimal

sets of so-called driven nodes through which one can con-

trol a network [12–14]. This paper aims to fill this gap by

introducing the first open web-based tool implementing

network controllability for biomedical networks.

A linear dynamical system is said to be (fully) con-

trollable through a set of driven nodes if there exists

a time-dependent sequence of input signals delivered

through these nodes in such a way that, through cascading

changes, the system can be driven from any initial state

to any desired final state within finite time [12, 15]. In

the biomedical domain, the interventions can be thought

of as drugs delivered to a patient, and the driven nodes

can be thought of as the drug targets. An efficient method

to select a minimal set of driven nodes in gene regu-

latory network in order to reach its full controllability

was recently presented in [12]. However, computer-based

experimental tests in [12] shows that in biological net-

works one may have to control as much as 80% of the

nodes of a gene-regulatory network in order to gain

full controllability. This makes the full network control-

lability approach impractical for biological and medical

purposes. In many cases, it is more practical to control

only a certain subset of the network’s nodes (for instance,

a disease-specific set of essential proteins) in order to

reach a desired overall behavior of the system [13, 14, 16].

This approach, called target controllability, may lead, for

instance, to realistic suggestions for combined multi-drug

therapies for a particular disease [16]. We focus in this

paper on target controllability.

We develop a bioinformatics data analysis pipeline

(called NetControl4BioMed) and its web-based front-end

in order to provide a web-based service for automatic

generation of combined multi-drug therapy suggestions

through the analysis of directed biochemical interaction

networks. The pipeline generates automatically intracel-

lular molecular interaction networks by combining the

seed nodes provided by the user with interactions among

proteins and other intracellular components from several

public pathway repositories: KEGG, WikiPathways, and

Pathway Commons. The core of the pipeline consists of

the implementation of the algorithm proposed in [14]. For

a given set of disease-specific essential proteins, the algo-

rithm identifies in the network a small set of driven nodes

through which one can gain control over the essential pro-

teins. To boost the practical applicability of the pipeline,

we implemented a version of the algorithm that uses data

from DrugBank to maximize the use of drug-targetable

proteins as driven nodes. The pipeline can be accessed and

downloaded from [17].

Methods
Structural network control

We give a brief presentation of the network controllabil-

ity approach and of the algorithm proposed for it in [14].

This algorithm aims to find a small set of driven nodes

that can be used to control a given set of target nodes.

The algorithm uses several heuristic strategies for an effi-

cient exploration of the search space, which leads to faster

and better (smaller sets of driven nodes) results in com-

parison to the original version of the target controllability

algorithm proposed in [16].

We denote by N the set of nonnegative integers and by

R the set of real numbers.

We consider discrete time-invariant linear dynamical

systems as models of biological entities (proteins) influ-

encing each other. Such a dynamical system describes a

network where nodes influence each other’s evolution,

while the time-invariant attribute establishes that these

influences of the nodes over each other is not time depen-

dent. Moreover, a number of external, so-called driver
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nodes are also connected to some of the internal nodes

of the network and have a direct influence over their evo-

lution. The model also includes the possibility of having

a number of output nodes reflecting the evolution of the

internal nodes of the network. A quantitative model can

be associated to such a linear dynamical system by

xt+1 = Axt + But , yt = Cxt ,

where A,B,C are matrices of size n × n, n × m, and

l × n, respectively, xt ∈ Rn, ut ∈ Rm and yt ∈ Rl are

the state vector, input vector and output vector, for all

t ∈ N. The state vector collects the configuration of the

model at time t and has an entry for each node in the net-

work. The input vector has an entry for each of the driver

nodes and the output vector has one for each of the out-

put nodes. Matrix A describes the interactions within the

system under scrutiny; the entry ai,j of matrix A describes

the weight of the influence of node j over node i. As the

graph is directed, the system is in general asymmetric: the

influence of node i over node j need not be equal with

the influence of node j over node i. Matrix B describes the

influence of the m driver nodes over the internal nodes

of the system, while C describes the l output nodes as

a function of the internal nodes of the system. We call

driven node any i ∈ {1, . . . , n} such that Bij �= 0, for some

j ∈ {1, . . . ,m}; in other words a driven node is any inter-

nal node linked to an external driver node through matrix

B. We say that an output vector y ∈ Rl is reachable from

an initial state x0 ∈ Rn if there exists a finite sequence of

inputs u0,u1, . . . ,ut ∈ Rm such that yt = y.

In this paper we focus on target controllability, i.e., on

the case where the aim is to control a well-defined subset

of the internal nodes of the system. To capture this case,

we consider matrices C with l ≤ n and such that on each

row of matrix C there is at most one non-zero value; this

effectively selects the internal nodes of interest as outputs

of the dynamical system. We say that such a system is tar-

get controllable if any output vector is reachable from any

input state. It is known that a system is target controllable

if and only if

rank
[

CB,CAB,CA2B, . . . ,CAn−1B
]

= l,

see [14] and references therein. A related notion is that

of structural target controllability, that refers to a system

that becomes target controllable by changing the non-zero

values of A and B with some well-chosen non-zero values

(we call suchmatrices equivalent). The difference between

target controllability and structural target controllability is

significant: in the former case the precise numerical setup

of the network is crucial for the controllability of the net-

work, whereas in the latter case only the structure is of

interest, not the numerical setup. The focus on the struc-

tural (target) controllability is justified by the difficulty to

measure precisely numerical parameters, and by the many

numerical parameters left unmeasured in large network

models. The question for structural controllability thus

is: given a network of interactions, does there exist any

numerical setup that may make it controllable? The free-

dom in choosing any numerical setup does not hamper the

practical applicability of this approach to a specific case,

where the numerical setup is fixed. Indeed, a deep result of

[15, 18] shows that a system is structurally target control-

lable if and only if it is target controllable for all equivalent

matrices A and B, except a so-called “thin” set of matrices.

(It is beyond the goal of this paper to define the topolog-

ical notion of thin sets; we only give here the intuition

that such sets consist of isolated cases that may be eas-

ily replaced with nearby favourable cases.) The benefit of

this result is that by focusing on structure rather than

on highly precise numerical setups, the problem becomes

one on directed graphs, rather than on algebra. For details

we refer to [14] and references therein. We only men-

tion here that the problem may be formulated on directed

graphs as follows: given a directed graph G = (V ,E) with

n nodes and a subset T ⊆ V with l nodes, decide if there

exists a set of l directed paths in G such that each node in

T is an end point of one such path and no two paths inter-

sect at the same distance from their end points, see [15]

and Fig. 1. In an additionally constrained version of the

problem, one may also be given a subset D ⊆ V (e.g., cor-

responding to known drug-targets) and require that the

directed paths preferably start from nodes in D.

The targeted structural controllability was proved to

be computationally highly difficult in [14], where it was

shown to be NP-hard. This means that calculating the

minimal (in the sense of smallest) set of driven nodes to

control a given set of targets is exponential in the size of

the network, and thus unfeasible for practical real-life case

studies. Instead, the authors in [16] proposed heuristics

for giving some set of driven nodes, hopefully small, and

in any case not guaranteed to be minimal. In [14] faster

algorithms were proposed, based on stochastic searches

for paths to the target nodes. These algorithms remain

approximation heuristics and give no guarantee that they

will find a minimal set of driven nodes; in the tests we

made they returned results that are a degree of magnitude

smaller than those in [16]. The implementation we chose

for them in our pipeline is based on thousands of inde-

pendent runs of the algorithm, with the best of the results

reported as the final result.

Implementation
Here we discuss the software tools used to build our

pipeline and the data used in it.

Workflow engine: Anduril

The pipeline is developed for theAndurilworkflow frame-

work [19]. Anduril is an open source component-based
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Fig. 1 Targeted structural controlability. The targeted structural controllability problem for the directed graph G = (V , E) with n nodes and a subset
T ⊆ V with I target nodes, is equivalent with deciding if there exists a set of l directed paths in G such that each node in T is an end point of one
such path and no two paths intersect at the same distance from their end points, [15]. In this example, the paths from the driven nodes D1 , D2 to the
target nodes T1 − T4 intersect in the internal nodes A, B, and C. The controllability theorem of [15] implies that the lengths of the paths CT2 and CT3
is different, and that either the length of the path AT1 , AT2 , and AT3 are pairwise different, or the length of the path BT2, BT3, and BT4 are pair-wise
different (or both)

pipeline engine for scientific data analysis. Anduril defines

an API (Application programming interface) that allows

to integrate rapidly a vast range of existing software anal-

ysis and simulation tools and algorithms into a single data

analysis pipeline. An Anduril pipeline represents a set of

interconnected executable programs (called components)

through well-defined I/O ports. Upon the termination of

the execution of an Anduril component, its output results

are delivered as inputs to the other (downstream) com-

ponents by means of connecting the output port of the

component to the input ports of its downstream com-

ponents. When an Anduril pipeline is being executed,

a component can be executed as soon as all the neces-

sary input data at the input ports (from the upstream

components) become available.

Biological data and network generation

Our pipeline uses the Moksiskaan platform [20] to gen-

erate molecular interaction networks based on the user’s

query. Moksiskaan integrates pathways, protein-protein

interactions, genome and literature mining data into

comprehensive networks, starting from a given list of

proteins (so-called “seed nodes”). It combines the rela-

tions among proteins from different known pathways in

order to address the fact that pathways crosstalk and

influence each other. The Moksiskaan platform defines

a generic database schema to store the pathways from

a number of different pathway databases and can be

scaled to include the pathway data from new sources

(such as new databases and user’s own data). Cur-

rently, Moksiskaan has built-in support for the integra-

tion of the pathway data from, among others, KEGG

pathway database [21], Pathway Commons [22], and

WikiPathways [23, 24].

In our pipeline, Moksiskaan constructs a comprehen-

sive network for the list of seed nodes by using and

combining all imported pathways in the following man-

ner: it connects all seed nodes by all known paths of

length not exceeding the “gap” value. The gap, a param-

eter that the user may set in the pipeline GUI, is the

maximum number of intermediate nodes the network

may have between the seed nodes. For higher gap val-

ues, the network will grow quickly in size as the pipeline

will search for any paths of length up to gap+1 between

the seed nodes, and add them to the network, along

with all the intermediary nodes. The higher the gap, the

more comprehensive the network will be and the smaller

the set of identified driven nodes will be, but also the

slower the network analysis will become. The pipeline

currently includes the option of selecting a gap value

up to 5.

We use drug-target protein data from the open source

DrugBank database [25]. The DrugBank database com-

bines detailed drug (i.e. chemical, pharmacological
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and pharmaceutical) data with comprehensive

drug-target (i.e. sequence, structure, and pathway)

information from bioinformatics and cheminformat-

ics resources. For drug-target identifiers we selected

all FDA (Food and Drug Administration)-approved

drug-target proteins with known mechanisms, in total

1507 proteins.

We provide the user with a number of predefined sets

of target proteins associated to some specific cancer cell

lines. These target proteins are cancer-specific essential

proteins. We have included in the pipeline data for three

types of cancer after mapping from the COLT-Cancer

database [26]. In particular, we considered 29, 23 and

15 cell lines respectively for breast, pancreatic and ovar-

ian cancer. Previous studies [27] showed that proteins

with lower GARP (Gene Activity Rank Profile) score are

stronger associated with oncogenesis. Therefore, we have

selected only those essential proteins whose GARP value

is in the negative range, and whose GARP-P value is less

than 0.05. For more details about calculating GARP score,

see [26].

Pipeline structure

Here we describe the pipeline structure as well as its input

and output, see Fig. 2.

INPUT

Our pipeline currently accepts the following inputs from

the user:

1. Seed proteins: List of proteins that will be used as

seed nodes by Moksiskaan to generate the network.

This input can be any protein ID of Homo sapiens.

2. User-defined network: The user has the option to

use a custom network in the pipeline instead of the

Moksiskaan network.

3. Cancer Cell Lines: The user has the option to

include data on a cancer cell line, whose set of

essential proteins will be used as target nodes and/or

as seed nodes. If the user does not include any cancer

line, then the next field should not be empty.

4. Additional target proteins: A set of target nodes

defined in addition to those in the “Cancer Cell

Lines”. This input can be left empty if the previous

field is set to a cancer cell line. These nodes may also

be included as seed nodes.

5. Gap: The gap parameter used by Moksiskaan to

generate the network.

6. Include drug information: This is an option on

whether the pipeline should include also the

drug-target information for the driven nodes. If so,

then the driven nodes for which there exist FDA

approved drugs will be specifically highlighted in the

output of the pipeline.

7. User defined drug-target proteins to be included

in the analysis: The user has an option to include

also set of custom drug-target proteins. If the “Target

By Drug” field is chosen, the user-defined custom

drug-targets will be considered along with the

FDA-approved drugs-targets.

OUTPUT

The heuristics used for the target controllability algo-

rithms are stochastic, see [14]. This means that for the

same input, different outputs may be generated. The

pipeline generates as the result of the computation a

zip-archive with the following files. Table driven.csv con-

tains the drug-targetable driven nodes and the number

of targets (e.g., cancer essential proteins) controlled by

them. File driven.csv will be empty if no target could be

found that can be controlled by the drug-target driven

protein. Table extra.csv contains the non-drug-targetable

driven nodes (no FDA-approved drug-target proteins are

known to be targeting the node) and the number of tar-

gets (e.g., cancer essential proteins) controlled by them.

File extra.csv will be empty if no target could be found

that can be controlled from a non-drug-targetable driven

protein. In details.txt the first line indicates the heuris-

tics which was used for obtaining the result in the file. A

blank line follows, then the names of the driven nodes,

each on a separate line. After another blank line, it shows

the entire (control) path of targeted nodes in the net-

work from the driver nodes. File graph.xml contains the

generated network and can be visualized in Cytoscape

and further downloaded as a node.csv from Cytoscape.

The archive also contains a visualization of the con-

trolled graph (as a PDF file) generated with GraphML,

see Fig. 3.

Results and discussion
The network in Fig. 3 is generated based on breast can-

cer specific proteins. Here, we selected the AKT1, AKT3,

NRG1, MTOR, ERBB3 protein as seed nodes to gener-

ate the network. We chose MTOR and ERBB3 proteins

as target proteins, as we found these as essential pro-

teins in cancer cell lines MBD-MB-231. Here, AKT1 is a

drug-targetable driven node through which control can

be gained over the cancer essential protein MTOR. Dys-

regulation of MTOR pathways lead to oncogenesis in

breast cancer [28]. It has been seen that HER2 over-

expression by MTOR is one of the main cause of breast

cancer [29, 30]. It has also been shown that AKT is one

of the critical anticancer drug-targets for rational drug

discovery being present as a site in various multiple onco-

gene and tumor suppressor signaling networks [31]. The

non-drug-targetable node NRG1 is also predicted by our

algorithm to be able to gain control over cancer essen-

tial protein ERBB3. NRG1 is known to be involved in the
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Fig. 2 The general scheme of the NetControl4BioMed pipeline. The pipeline consists of three parts. In the first part we perform data input and
preprocessing: we get from the user the list of seed nodes, the predefined list of essential proteins, and the list of additional target nodes, if provided
by the user. Moksiskaan generates the network based on the seed proteins provided by the user; the seed can also include the predefined list of
cancer cell line-specific essential proteins and the optional list of user-defined target nodes. The user also can provide for the analysis a custom
network instead of that generated by Moksiskaan. The second part of the pipeline deals with the network structural controllability analysis, where a
minimal set of driven nodes is computed for the given set of target nodes (user-defined target nodes and cancer cell line-associated essential
proteins). In the third part of the pipeline the post-processing is performed and the output is generated. In the output, the user gets the network
generated by Moksiskaan and the information about driven nodes, target nodes and drug-targetable driven nodes
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Fig. 3 A visualization of the generated network from the pipeline. Proteins PIK3R3, PIK3CB, PIK3R1, PIK3CG, PIK3CD, PIK3CA, PIK3R5 and PIK3R2 are
promoted/activated by ERBB3. They promote/activate AKT1, AKT2, AKT3 and MTOR and inhibit AKT1, AKT2 and AKT3. Proteins PIK3R3, PIK3CB,
PIK3R1, PIK3CG, PIK3CD, PIK3CA, PIK3R5 and PIK3R2 have no interactions between each other. NRG1 controls ERBB3 and AKT1 controls MTOR. The
colors have the following meaning: “seed nodes” are shown in green circle (NRG1, ERBB3, MTOR), “driven drug-target nodes” are represented as aqua
color (AKT1), “controlled from drug-target nodes” are shown in purple color (MTOR), “driven non-drug-target nodes” are shown in red color (NRG1) and
“controlled from non-drug-target nodes” are shown in orange yellow (ERBB3)

dysregulation of ERBB3 (ERBB3 has prominent role in

oncogenesis) [32, 33].

To demonstrate the wide applicability of the pipeline

and its algorithmic back-engine, we also analyzed two

case studies on Type 2 diabetes and on Alzheimer disease

protein-protein interaction networks. For Type 2 diabetes

we gathered literature data on essential proteins from

[34–37]. Alzheimer’s essential protein data was gathered

from [38–42].

In the case study on the Alzheimer disease, our pipeline

reported MTOR as a driven node through which control

can be gained over the essential protein NOS3, see (Addi-

tional file 1: Figure S1). NOS3 is well known for its associ-

ation with G894T as a main risk factor of Alzheimer’s dis-

ease [43, 44]. Previous research shows that MTOR could

be a remarkable target for Alzheimer’s disease [45, 46]:

the dysregulation of MTOR signaling pathway is involved

in the pathogenesis and progression of Alzheimer’s Dis-

ease. Also, the use of MTOR inhibitors was reported as a

therapeutic target for Alzheimer’s disease in [47].

In Type 2 diabetes, our pipeline reported MYC as a

driven node through which control can be gained over

the essential protein CDKNB2 see (Additional file 1

Figure S2). This result correlates with earlier predictions

of MYC as drug-target in various cancers [34]; interest-

ingly,MYC is not yet documented to be used in treatment

options for Type 2 diabetes. With SNPs in their 3’ UTR

miRNA binding sites, CDKN2B increase the risk pheno-

type. Further, pancreatic beta-cell replication is regulated

by CDKNB2 [48] and its faulty regulations increase the

risk of diabetes.

The structural network controllability approach allows

to get a better insight into a system modeled as a directed

graph: for a set of target nodes it is possible to identify a set

of driven nodes through which one can control the target

nodes by an external intervention through using the inter-

nal “wiring” of the network. It is a promising approach

that allows one to design a system-level handle into direct-

ing the evolution of a complex system. Moreover, the

approach even allows the modeler to focus on the struc-

ture of the network, while avoiding the need to measure

or identify many numerical parameters. It is widely appli-

cable to any model presented as a directed network, with

a set of key nodes whose indirect control is to be gained.
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Signalling transduction networks are particularly suitable

for this approach. Other types of networks, e.g., metabolic

networks, remain outside the applicability domain of this

approach, as they are not amenable to being modeled as

directed graphs.

We use here a recently developed algorithm [14] for

structural targeted network controllability that identifies

a minimal set of driven nodes for a user-given set of target

nodes. We implemented this algorithm through a pipeline

(that can be downloaded and installed as a stand-alone

software) and through a related online service (a pub-

licly available web interface for an instance of the pipeline

installed on our servers). The pipeline performs an auto-

matic generation of intracellular molecular interaction

networks (by combining publicly available pathway data)

and identification of driven nodes (which also can be tar-

geted by FDA approved drug target-proteins) for a set of

target proteins defined by the user.

In this paper we also address the interesting problem

of using the controllability approach for a combination

of data on FDA-approved drug-targets and data on can-

cer essential proteins for different types of cancers. Users

can also apply this pipeline if they have other disease-

specific target proteins. We anticipate that our pipeline

has the potential in suggesting novel therapeutic strategies

by using currently known drugs.

The benchmark tests have shown the following results

for our pipeline. When using under 10 seed nodes and

gap 1, the pipeline generates networks of a size close to

30 nodes and 100 edges (the exact values depend on what

seed nodes have been chosen exactly and what interac-

tions between the nodes are known in the databases).

Our structural network controllability algorithm pro-

cesses networks of this scale and finds the driven nodes

(in the pipeline GUI called input nodes) in time of 1 sec-

ond. For 10 seed nodes and gap 2 the pipeline generates

networks in range 20 to 50 nodes and 30 to 300 edges.

Networks of this scale are being analyzed by our algorithm

in range of 1 to 3 seconds. When used near 20 seeds and

gap 1 or under 10 seeds and gap 3, the pipeline generates

networks of size close to 100 nodes and 1.000 edges. The

algorithm analyzes the networks of this size in 5 seconds.

If using near 20 seeds and gap 2, we get networks near 200

nodes and 2.500 edges. The analysis runs here near 20 sec-

onds. For 20 nodes with gap 3 and 4 we get networks from

300 to 600 nodes and 6.000 to 9.000 edges. The analysis

takes here from 30 to 50 minutes. The pipeline generates

networks with near 800 nodes and 11.000 edges for near

20 seeds with gap 5. The algorithm computes driven nodes

for this network in near 7 hours.

Hereby, we conclude that our pipeline is practical for

analysis of networks of size up 1.000 nodes and 10.000

edges, since the results can be obtained within 1 day.

For small networks (up to one hundred nodes and 2.000

edges) the result is obtained in time up to 2 minutes.

We note that in practice the computational time needed

for the algorithm starts growing extremely fast when

approaching size of 3.000 nodes in a network. Also, the

efficiency of the pipeline strongly depends on how many

free CPU cores the host system provides, since the python

implementation of our network target controllability algo-

rithm relies heavily on usage of parallel threads. In partic-

ular, we have been running several computationally heavy

pipeline tasks on a single system with 12 free CPU cores

while performing the benchmarking for this article.

The pipeline can be accessed and downloaded from [17].

Conclusion
The software we discussed in this article opens up the

network controllability methods for applications in a vari-

ety of domains. The focus has been on a user-friendly

interface that includes a text-based input, a visual output,

output files that are compatible with standard modelling

software, web-based interface requiring no special instal-

lations on the user’s end. There is extra support offered

by the software for users in cancer medicine in the pre-

loaded list of essential genes in several types of cancer.

We believe that the pipeline can be used by researchers

for controlling and better understanding of molecular

interaction networks through combinatorial multi-drug

therapies, for more efficient therapeutic approaches and

personalised medicine.

Availability and requirements
Project home page: http://combio.abo.fi/research/

network-controlability-project/

Operating system(s): Platform independent, browser-

based.

Programming language: Anduril, Python, PHP.

Other requirements:Modern webbrowser.

License: FreeBSD.

Any restrictions to use by non-academics: none.
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