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ABSTRACT
The distributed nature of the Internet makes it difficult for
a single service provider to troubleshoot the disruptions ex-
perienced by its customers. We propose NetDiagnoser, a
troubleshooting algorithm to identify the location of failures
in an internetwork environment. First, we adapt the well-
known Boolean tomography technique to work in this envi-
ronment. Then, we significantly extend this technique to im-
prove the diagnosis accuracy in the presence of multiple link
failures, logical failures (for instance, misconfigurations of
route export filters), and incomplete topology inference. In
particular, NetDiagnoser takes advantage of rerouted paths,
routing messages collected at one provider’s network and
Looking Glass servers. We evaluate each feature of Net-
Diagnoser separately using C-BGP simulations on realistic
topologies. Our results show that NetDiagnoser can success-
fully identify a small set of links, which almost always in-
cludes the actually failed/misconfigured links.

1. INTRODUCTION
We define network unreachabilities as network con-

nectivity disruptions experienced by end users due to
failures on the IP forwarding path. The failure of an IP
path is an important source of connectivity disruptions
(A study of the Sprint network shows that it is the most
important source of disruptions for VOIP traffic [2]).
Such unreachability problems are frustrating for end
users and hard to detect for Internet Service Providers
(ISPs). This is indicated by the large number of mes-
sages related to unreachability problems on mailing lists
such as NANOG. A customer has no means to identify
the cause of unreachabilities on her own. An ISP can
detect problems in its network, but does not know how
these problems impact its customers. It is beneficial
to both parties to locate the cause of these unreach-
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abilities. Customers expect providers to match their
service-level agreements or otherwise to obtain financial
compensation. ISPs would benefit from locating a prob-
lem on their network before their customers complain.
ISPs would also benefit from locating remote problems
outside their network, so that they know where to com-
plain or how to avoid the problematic network.

In this work, we focus on network unreachabilities
that are non-transient, i.e., they cannot be recovered by
routing protocols. Several events can can lead to such
non-transient failures. Failures of physical links and
routers affect all IP paths that depend on them. Router
misconfigurations (such as incorrectly set BGP policies
or packet filters) can cause a link to fail “partially”,
meaning that the link works for a subset of paths but
not for others. Unfortunately, path redundancy (due to
multihoming or load balancing) does not always protect
against multiple correlated link or router failures, and
router misconfigurations that could prevent a backup
link from coming up. Such failures are non-transient
in nature because they can only be resolved by the in-
tervention of a network operator. The diverse nature of
failures makes the troubleshooting problem even harder.

To address these issues, we propose a troubleshoot-
ing algorithm for ISPs to identify the location of a net-
work failure by combining information from end hosts
with control plane information from their own network.
The algorithm relies on an overlay of troubleshooting
sensors located at end hosts in multiple ASes. These
sensors perform traceroute-like measurements in a full
mesh, the results of which are used by a troubleshooter
located at the ISP’s Network Operation Center (NOC).
The placement of the sensors is fixed (e.g., sensors can
be co-located with end hosts and at popular service lo-
cations such as web-server farms, data centers, etc.),
and the algorithm aims to diagnose only those failures
that lead to unreachability among some sensors. This
troubleshooting system corresponds to at least two re-
alistic scenarios. A DSL provider could deploy trou-
bleshooting sensors in gateways located at customer
premises, and these sensors would help troubleshoot
problems experienced by customers. A third party (see
www.nettest.com, for example) could also provide a trou-



bleshooting service to end users that installs the trou-
bleshooting software on their own machines.

Our starting point is a “Boolean tomography” ap-
proach [7, 6], which assumes either a “good” or “bad”
state for links, and tries to identify the smallest set of
links that explains the end-to-end measurements. Then,
we design NetDiagnoser to handle several practical is-
sues that arise in a multi-AS environment. NetDiag-
noser introduces a number of important features. First,
it uses information from rerouted paths, improving the
accuracy in diagnosing multiple link failures. Second,
it uses the concept of “logical links” to diagnose reach-
ability failures due to router misconfigurations. Third,
it introduces mechanisms to combine routing messages
collected at an ISP with end-to-end probing data to
improve the diagnosis accuracy. Finally, NetDiagnoser
uses a heuristic to identify the AS(es) responsible for a
failure, in case some ASes block traceroute-like probes.

We evaluate the performance NetDiagnoser under var-
ious failure scenarios using simulations with realistic
multi-AS topologies. We find that a basic “Boolean to-
mography” algorithm has several limitations, and per-
forms poorly in diagnosing multiple link failures and
router misconfigurations. NetDiagnoser, on the other
hand, is almost always able to identify the failed link(s),
with a small number of false positives. This is true for
various failure scenarios, such as multiple link failures,
router failures and router misconfigurations. In situa-
tions where ASes block traceroutes, we find that the use
of information from Looking Glass servers enables Net-
Diagnoser to identify the AS responsible for the failure.

The rest of this paper is organized as follows. Sec-
tion 2 extends the classical Boolean tomography solu-
tion to the case of multiple sources and destinations in a
multi-AS environment. Section 3 presents each feature
of the NetDiagnoser algorithm. Sections 4 and 5 de-
scribe our evaluation methodology and the evaluation
results, respectively. Section 6 discusses some practical
issues with deploying NetDiagnoser. Section 7 presents
a review of related work and we conclude in Section 8.

2. THE TOMOGRAPHY APPROACH
The classical approach to infer network-internal char-

acteristics from end-to-end measurements is to use net-
work tomography [7, 4, 3, 8]. In particular, “Boolean
tomography” [7, 23] represents the state of the art in
detecting the most likely set of link failures on a known
topology. This section first presents the Boolean to-
mography problem as formulated by Duffield [7]. Then,
it adapts this approach to the multi-AS environment to
diagnose problems affecting an overlay of sensors. We
call this the “multi-AS tomography algorithm”, Tomo.

2.1 Boolean tomography
Boolean tomography is a class of network tomogra-

phy in which links can have one of two states: “good”
or “bad”. If all links on a path are good, then the path
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Figure 1: Boolean tomography problem

itself is good, whereas if at least one link on a path is
bad, then the path is bad. Duffield’s formulation [7]
considers a topology consisting of paths from a single
source to multiple destinations, and assumes that this
topology is accurately known. Failures of link(s) from
this topology cause some of those paths to go to the
“bad” state. Duffield [7] presents the “Smallest Com-
mon Failure Set” (SCFS) algorithm, which designates
as bad only those links nearest the source that are con-
sistent with the observed set of bad paths.

We use an example to demonstrate the Boolean to-
mography approach. Figure 1 shows a network topol-
ogy, where squares denote sensors and circles denote
routers. Let the single-source tree consist of the paths
from s1 to s2 and s3. If link r9-r11 fails, path s1-s2
will be broken, while the path s1-s3 will be working.
To minimize false positives, the Boolean tomography
algorithm marks the the link r6-r7 as failed, as it is
the link closest to the source that can explain the path
failures. In reality, however, any of the following links
would cause the observed path failures: r6-r7, r7-r9,
r9-r11, r11-s2. It is not possible to narrow down the
set of potential failed links without more information.

2.2 The multi-AS case
We describe a multi-AS deployment scenario in which

a provider has access to an overlay of troubleshooting
sensors located at end hosts in multiple ASes. The lo-
cation of these sensors is fixed, and the goal is to trou-
bleshoot only those failures that cause some pairs of
sensors to become unreachable. We call the provider
that performs the troubleshooting process AS-X.1 The
goal of AS-X is to find the smallest set of links, which, if
failed, would explain the failed paths. In case it cannot
find the exact set of failed links, the goal is to find at
least the AS(es) containing the failed link(s).

Figure 2 shows an internetwork topology that we use
to illustrate this multi-AS deployment. Say that, at
a certain time, the link b1-b2 fails, causing some pairs
of sensors to become unreachable. The goal of AS-X
is to determine that the link b1-b2 failed (or that the
failed link lies in AS-B). It is important that the set of
potential failed links returned by the algorithm should

1To simplify notation, “AS-X” will refer to the “trou-
bleshooter entity in AS-X” in the rest of this paper.



include the actual failed links (no false negatives), even
if it also includes some working links (false positives). In
other words, false positives are preferred to false nega-
tives. This narrows down the set of possibly failed links
that the operator must check to determine the failure.

There are two reasons why the Boolean tomography
approach [7] cannot be directly applied in this scenario:
It requires knowledge of the complete topology, which is
not possible in a multi-AS scenario, where each AS only
has knowledge of its own topology. Futher, it works on
a single source tree, while the paths between the sensors
are from multiple sources to multiple destinations.

It is relatively simple to obtain the topology among
the sensors in a multi-AS scenario by using active mea-
surement tools like traceroute. The paths between the
sensors are obtained from traceroutes, and the topology
graph G is inferred from the union of these traceroute
paths. Note that AS-X does not face issues such as
router aliasing, since it is does not need to determine
which interfaces belong to the same router. The set
of links (pairs of interfaces) inferred from traceroutes
is not the complete topology of each AS, but it does
contain each link on the paths between sensors. This
information is sufficient for a Boolean tomography ap-
proach. Every sensor uses traceroute to examine the
reachability from itself to every other sensor, and sends
the results to AS-X. AS-X then constructs the reacha-
bility matrix R from these measurements. In practice,
load balancing could lead to multiple paths between a
pair of sensors. In this case, a tool such as Paris tracer-
oute [1] can discover all paths between a pair of sensors.
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Figure 2: Multi-AS example

Given the inferred topology graph G and the reach-
ability matrix R, we are now faced with a multiple-
source, multiple-destination version of the Boolean to-
mography problem stated in the previous section. Un-
fortunately, the SCFS algorithm [7] is not applicable in
this case, as it is designed for a tree topology. There-
fore, we introduce in the next section a multiple-source,
multiple-destination Boolean tomography algorithm.

2.3 The multiple source, multiple destination
Boolean tomography problem

Given a set of N sensors, S = {s1 . . . sN}, we de-
note as pij the path from sensor si to sensor sj , where
i, j ∈ 1 . . .N . Let G = (V , E) be the directed graph con-
structed from the union of all traceroute paths.sensors.

At a certain time, some links from E fail, which causes
some paths to fail. We associate with each link ` ∈ E
and each path pij a status of 0 (down) or 1 (up). Let
R be the reachability matrix that reflects the status of
each path between the sensors. Rij=1, if the path from
sensor si to sj is up, and Rij=0 otherwise. Similarly,
let f(`) denote the status of link `. If Rij=1, then ∀` ∈
pij , f(`)=1. Let W be the set of constraints obtained
from working paths. If Rij=0, then ∃` ∈ pij , f(`)=0.
For each failed path pij , we define the failure set, Lij =
∪`∈pij

`. Let L be the set of all failure sets.
The multiple-source, multiple-destination Boolean to-

mography problem is defined as follows: Find the small-
est set of links, H, which is consistent with the ob-
servations in R. In other words, H is the smallest
set of links that “intersects” with each failure set, i.e.,
H ∩ Lij 6= ∅, ∀Lij ∈ L. Further, H must not violate
any of the constraints in W , i.e., no link from H can
appear on any working path.

The problem as stated here is exactly an instance of
the Minimum Hitting Set problem. The optimization
version of the Minimum Hitting Set problem is NP-
hard, as it is the dual of the NP-hard Min Set Cover
problem [12]. It has been shown that a greedy heuris-
tic approximates the solution to Min Set Cover within
an approximation ratio of log|U|, where U is the set
of elements from which the hypothesis set can be cho-
sen [13]. Due to the duality of the problems, a similar
greedy heuristic for the Minimum Hitting Set problem
has the same approximation ratio log|U|. We present
our version of the greedy heuristic in the next section.

2.4 Greedy heuristic
We now describe a greedy heuristic, called Tomo, to

solve the Minimum Hitting Set problem on the inferred
graph G and reachability matrix R. Let H be our hy-
pothesis set and nf be the number of failed paths, so
that we have nf failure sets in L. Let U be the union
of these failure sets, U=∪Lij ∀Lij ∈ L. Note that U is
a set containing the links from each failure set, while L
is the set of failure sets. The actual set of failed links
must come from the set U , called the candidate set.

Algorithm 1 gives the details of Tomo. The greedy
heuristic proceeds iteratively as follows. We first re-
move from the candidate set U each link that appears
on a working path, as these links cannot be down. We
maintain a set of unexplained failure sets, which are
failure sets that the current hypothesis set does not in-
tersect with. In each iteration, we compute, for each
link ` ∈ U , the number of unexplained failure sets that
` intersects with (called the “score” of link `). We then
add the link (or set of links) with the highest score to
the hypothesis set. This heuristic runs in polynomial
time with the number of links in the candidate set.

Tomo constitutes our extension of the Boolean to-
mography approach [7] to the multi-AS scenario with
multiple probing sources and destinations.



Algorithm 1 Tomo

Require: Set of all links E
Require: Reachability matrix R
Require: Set of equations from working paths W
1: Initialize L = ∅ {The set of failure sets}
2: For each Rij = 0, L = L+ Lij {Add the failure set

due to each broken path}
3: Initialize H = ∅ {Hypothesis set of failed links}
4: Initialize Lu = L {Set of unexplained failure sets}
5: U = ∪Lij ∀Lij ∈ L {The candidate set.}
6: Remove from U every link ` on a working path
7: while Lu 6= ∅ AND U 6= ∅ do

8: for each link ` ∈ U do

9: C(`)=set of failure sets in Lu containing `
10: score(`) = |C(`)| {The number of unex-

plained failure sets that ` intersects with.}
11: end for

12: Lm = {`m|`m = argmax`∈L score(`)}
{The set of links with the maximum score.}

13: for each link `m ∈ Lm do

14: H = H∪{`m} {Add `m to hypothesis set}
15: Lu = Lu−C(`m) {All failure sets in C(`m)

are now explained. Remove from Lu.}
16: U = U − {`m}
17: end for

18: end while

19: return H

2.5 Limitations
Several practical issues limit the effectiveness of Tomo

in diagnosing unreachability failures in the Internet:

1. Links can fail “partially”. Router misconfigu-
rations (such as incorrectly set BGP policies or packet
filters) may cause a link to fail only for a subset of the
paths using that link. Tomo cannot detect such failures
because it assumes that if a link is up, then each path
using that link is up.
2. There is life after link failures. Routing proto-
cols (either IGP or BGP) try to reroute around failed
links. Tomo misses information by not considering the
paths obtained after rerouting.
3. Inference using only edge data can be inac-

curate. Tomo uses only end-to-end probing data from
sensors. Control-plane information from AS-X could be
used to improve the diagnosis.
4. Some ASes block traceroute. If traceroutes

are incomplete, then Tomo does not have access to the
complete graph G.

3. NETDIAGNOSER
This section presents the NetDiagnoser algorithm.

This algorithm includes four features designed to over-
come the aforementioned limitations of the Boolean to-
mography approach. Sections 3.1 and 3.2 comprise the

version of NetDiagnoser that uses only end-to-end prob-
ing data (ND-edge) and can be used, for example, by
a third-party that provides a troubleshooting service to
end-users without the cooperation of ISPs. Section 3.3
presents the version of NetDiagnoser that uses routing
data (ND-bgpigp), and hence is appropriate for use by
ISPs. Section 3.4 shows how NetDiagnoser deals with
incomplete topology information due to blocked tracer-
outes. Here, we present the basic ideas behind these
features. For more details, we refer the reader to [5].

3.1 Locating router misconfiguration failures
BGP speaking routers in the Internet typically use

complex policies to control which routes they exchange
with their neighbors. Unfortunately, the complexity of
these policies leads to frequent misconfiguration [10].
To use again the example of Figure 2, a misconfiguration
could cause AS-Y to stop announcing to AS-X the route
towards AS-B, while it announces the route towards AS-
C. This results in the situation where link x2-y1 works
for path s1-s2, while it does not work for path s1-s3.

To handle failures due to such misconfigurations, we
describe a procedure that AS-X uses to extend G with
logical links. For each link in the IP graph, AS-X de-
termines the ASes corresponding to the endpoints of
the link (using a well-known IP-to-AS mapping tech-
nique [19]). If the link is intradomain, then AS-X simply
includes it in the graph as is. If the link is interdomain,
then it is replaced by a set of logical links. To capture
router configurations and policies at the finest granular-
ity, we should ideally have logical links on a per-prefix
basis. However, this could result in a very large graph
(some tier-1 ISPs have more than 200,000 prefixes in
their routing tables). Further, BGP policies are usu-
ally set on a per-neighbor basis, rather than on a per-
prefix basis [20], which means that logical links on a per-
neighbor basis should be sufficient. Even though some
core ASes in the Internet could have more than 2000
neighbors, logical links are added only for the neighbors
seen in the traceroutes. As long as sensors are not de-
ployed in each AS in the Internet, the graph is tractable.
In [5], we discuss scalability issues in more detail.
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Figure 3: Example of logical links

Figure 3 shows an example of how the IP-level graph
of Figure 2 can be converted into a graph with logical



links. Suppose the traceroutes are from s1 to s2 and
s3. For this set of paths, AS-X sees one out-neighbor
AS-Y for AS-X, and two out-neighbors AS-B and AS-C
for AS-Y. For path p12, the inter-AS link a2-x1 is re-
placed by the links a2-x1(Y ) and x1(Y )-x1, while x2-y1

is replaced by the links x2-y1(B) and y1(B)-y1. Logical
links are formed similarly for path p13.

We use the same example to show how logical links
can identify router misconfigurations. Under normal
circumstances, y1 announces to x2 the routes it learns
from ASes B and C (routes towards sensors s2 and s3).
Now, a misconfiguration at the outbound route filter of
y1 causes it to announce to x2 only the route towards B,
while it does not announce the route towards C. As a
result, the path s1-s2 works, while s1-s3 fails. The Tomo
algorithm applied on the original IP graph would mark
the link x2-y1 as non-failed, as it carries a working path.
However, when Tomo is used on the graph of Figure 3,
the logical links x2-y1(C) and y1(C)-y1 are added to the
hypothesis set. The algorithm can now identify the link
x2 − y1 as the misconfigured link.

3.2 Using information from rerouted paths
The Tomo algorithm uses the traceroutes before the

failure to construct G, but not the traceroutes after the
failure. Therefore, Tomo is not able to use information
from paths that were rerouted, and work after the fail-
ure event. If a path is rerouted2 but still works after the
failure, then every link on the new path must be work-
ing. This path can be added to the set of constraints ob-
tained from working paths (W) described earlier. This
information helps to reduce the size of the hypothesis
set, and also to detect multiple link failures. Consider a
situation where multiple links fail simultaneously. If all
the link failures can be recovered by rerouting, then all
end-to-end paths work after the failure, and the trou-
bleshooting algorithm is not invoked. On the other
hand, if some failures cannot be rerouted, then some
paths fail while others are rerouted. Since Tomo does
not use the paths after rerouting, it is not able to iden-
tify the link failures that caused path rerouting.

Let T−, T and T+ be three time instants such that
T− < T < T+ and T be the time at which the failure
event occurs. Let pij be a path that is working both
before and after the failure event. At time T−, pij

consists of the set of links pT−

ij ={`1,`2,`3,`4}, and at

time T+, pT+

ij ={`1,`2,`5,`6}. Comparing pT−

ij and pT+

ij ,
we find that the links `3, `4 are in the old path, but not
in the new path. This means that the failure of link `3

or `4 would explain the rerouting of path pij . We call
{`3, `4} a reroute set, and obtain one reroute set Rij for

2Rerouted paths can be distinguished from path changes due
to load balancing by using a tool such as Paris traceroute
to determine all possible paths. For simplicity, the remain-
der of the analysis and evaluation does not consider load
balancing.

each rerouted path.

Rij = {` | ` ∈ pT−

ij AND ` /∈ pT+

ij }

We use rerouted paths in Tomo while calculating the
“score” of a link. Let C(`) be the set of unexplained
failure sets that contain `, and R(`) the set of unex-
plained reroute sets that contain `. The score of ` is
a|C(`)|+ b|R(`)|, where a and b are weights that reflect
the relative importance of failures and reroutes. In this
work, we assume a,b=1. The rest of the algorithm is the
same as Tomo. We call the version of NetDiagnoser that
uses logical links and reroute information ND-edge.

3.3 Using control-plane information
Control plane information in the form of BGP and

IGP messages from AS-X can be useful in detecting the
cause of unreachability problems. For instance, AS-X
can directly detect a link failure from IGP “link down”
messages. AS-X can infer that a sensor is unreachable if
it receives a BGP withdrawal for the destination prefix
that contains that sensor. However, it is not easy to
determine the impact of a routing event on end-to-end
paths. Further, network operators only have access to
routing messages from their own network. Hence, we
propose a mechanism that combines control-plane in-
formation from AS-X with the end-to-end probing data
to obtain better troubleshooting performance.

This algorithm is called ND-bgpigp. Using IGP
messages from AS-X is straightforward, as these mes-
sages directly indicate the status of IGP links. When
AS-X receives a “link down” message for `, it adds `
to the hypothesis set H . We illustrate with an exam-
ple how AS-X uses BGP withdrawals. Consider again
the example in Figure 2 and the case where the paths
s2-s1 and s3-s1 have failed, while all other paths are
working. The Tomo algorithm returns a hypothesis set
containing links y4-y1, y1-x2, x2-x1, x1-a2, a2-a1 and
a1-s1. Now suppose that after the failure, x1 receives a
route withdrawal from a2 for a prefix A, corresponding
to sensor s1.

3 This indicates that the failed link must
be on the portion of the path between AS-X and s1.
AS-X can remove links y4-y1, y1-x2, x2-x1, and x1-a2

from H , thus reducing the size of the hypothesis set.

3.4 Dealing with blocked traceroutes
NetDiagnoser so far assumes that traceroute mea-

surements are complete, i.e., every hop on all paths
between sensors responds with a valid IP address. How-
ever, certain ASes block traceroutes for privacy rea-
sons, and almost all routers rate-limit ICMP responses.
Additionally, routers sometimes send ICMP responses
from a different interface than the one receiving the in-
coming packet, and this interface could have a private
IP address. In such cases, traceroutes will either con-
tain “stars” for non-responding hops, or have hops with
3AS-X should use a withdrawal message only if it is for the
most specific prefix known for a destination.



private IP addresses. We call all such hops unidentified
hops or UHs. UHs represent a major challenge for Net-
Diagnoser, because it relies on traceroute to construct
G. If the failed link falls in an AS that blocks traceroute,
then it is impossible to exactly determine that link. We
make the assumption that if an AS blocks traceroutes,
then no router in that AS will respond, and if an AS
allows traceroutes, each router in that AS will respond
with a valid IP address. We disregard the case where
only a few routers in an AS do not respond due to ICMP
rate limiting. This problem can be solved by repeating
the traceroute for the source-destination pair.

We introduce a feature in NetDiagnoser that can be
used to identify the AS(es) with failed links, when the
traceroute graph contains UHs. We call this algorithm
ND-LG, because it uses information from Looking Glass
servers [21]. Looking Glass servers located in an AS al-
low queries for IP addresses or prefixes, and return the
AS path as seen by that AS to the queried address or
prefix. The ND-LG algorithm proceeds in two steps:
First, we map each UH to an AS. Next, we cluster links
with UHs that could actually be the same link.

AS-X maps UHs to ASes using Looking Glass servers.
For example, consider the topology shown in Figure 4
and suppose that pij is the path that contains UHs.
Let the IP path be si-x-u1-u2-u3-y-sj , where u1, u2, u3

are UHs. Let si, x map to AS A and y, sj map to AS
C. The goal is to map the UHs u1, u2, and u3. To do
this, AS-X needs to obtain the AS path from the source
to the destination. AS-X queries the Looking Glass of
AS-A to obtain the AS path to destination sj . If the
Looking Glass of the source AS is not available, then
AS-X queries the first available Looking Glass on the
path. Suppose the Looking Glass returns the AS path
A-B-C from si to sj . The UHs u1, u2 and u3 can clearly
be marked as belonging to AS-B. However, AS-X may
not always be able to map UHs to ASes unambiguously.
In the same example, suppose the AS path returned is
A-B-D-C. In this case, we cannot say which of the
UHs belong to AS-B and which belong to AS-D. Hence,
we assign these UHs the combined tag {B, D}. This
means that these UHs could belong either to AS-B or
AS-D. For mapping downstream UHs, AS-X can use
its own BGP information to determine the AS path to
the destination. Looking Glasses are useful in mapping
UHs that are upstream of AS-X.

After mapping each UH to a particular AS, AS-X
still needs to infer whether two UHs are actually the
same hop. Some links may have a UH as one (or both)
endpoints. Let us call such links unidentified links.
An unidentified link can appear in only one path, and
hence, appears in at most one failure set. Consider the
case of two unidentified links `1=u1u2 and `2=u3u4.
AS-X uses the following rules to determine if `1 and `2

are actually the same link: (i) u1 must have the same
AS tag as u3, and u2 must have the same AS tag as
u4; (ii) `1 and `2 must not occur on the same path; (iii)

AS−A
Si x
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u1 u2 u3 y AS−CSj

AS path from LG: A B C

AS−A
Si x

AS−{B,D}

u1 u2 u3

AS path from LG: A B D C

y Sj AS−C

Figure 4: Mapping UHs to ASes in ND-LG.

`1 and `2 must appear in the same number of failure
sets (either zero or one). Using these three rules, AS-
X constructs a set of links for each unidentified link `,
called linkCluster(`). If link `′ ∈ linkCluster(`), then
it is the same link as `. Now, to determine the score
of ` in Tomo, we must add the number of path failures
explained by `′, ∀`′ ∈ linkCluster(`).

4. EVALUATION METHODOLOGY
We evaluate each feature of NetDiagnoser via simu-

lation. There are two compelling reasons in favor of a
simulation-based evaluation: It is the only reliable way
to know the ground truth; and we can evaluate a vast
parameter space to understand the effects of our as-
sumptions and practical constraints on troubleshooting
performance. Though evaluation on a real network is
important, we believe that evaluation via extensive sim-
ulation is a necessary first step. We use the open source
BGP simulator C-BGP [25], which allows us to simu-
late internal and multi-AS topologies, IS-IS and BGP
message exchange, and traceroute.

Network topology.

We use the topology of the “research part” of the In-
ternet, constructing the multi-AS topology as follows.
We use Abilene, GEANT, and WIDE4 as the core ASes
which are connected in full mesh. Using publicly avail-
able BGP traces from Abilene, GEANT and Route-
views [26], we obtain the AS path from these core net-
works towards the stubs, which gives us a tree rooted at
each of the core networks. To allow the simulations to
run in a reasonable amount of time, we scale down this
topology, by performing a breadth-first search on the
graph starting from the core networks, and select the
first 165 ASes. This gives us a topology with three core
ASes, 22 tier-2 ASes (of which 50% are multihomed),
and 140 stub ASes (of which 25% are multihomed). The
interconnection points for Abilene, GEANT and WIDE
are known exactly. For interconnecting other ASes, we
randomly choose routers from these ASes as the con-

4Their topologies and peering connectivity are available at:
abilene.internet2.edu, www.geant.net, and www.wide.ad.jp.



nection points, and reproduce the inter-AS connectivity
(including multihoming) found in the measurements5.

For the intradomain topologies, we use the accurate
router-level topology of Abilene, GEANT, and WIDE
using IS-IS traces and topology maps found on their
web pages. Since it is extremely difficult to get the accu-
rate topology for other networks, we use a 12-node hub-
and-spoke topology for the tier-2 ASes, which is similar
to some intradomain topologies we have observed. We
model stubs as single-router ASes. It is possible that
this topology contains less path diversity than what is
found in the Internet. However, path diversity only de-
termines the number of failure instances that lead to
unreachabilities. It does not influence the performance
of our algorithms, since they are invoked only for the
failures that lead to unreachabilities.

Sensor placement and diagnosability.

Even though the network topology is fixed, varying
the sensor placement can result in significantly different
graphs. Note that the graph G used by our algorithm
is not the complete topology, but only the part of the
topology inferred by the traceroutes. As a result, the
traceroute graph (and not the network topology) is the
main parameter that determines how hard or easy it
is to identify the failed link(s). We do not specifically
study sensor placement in this work. However, it is still
useful to define a metric that quantifies “diagnosabiity”
i.e. the difficulty of diagnosing failures on a graph.

Intuitively, it is easier for Tomo to diagnose failures
in a graph, G={V , E}, when each link ` ∈ E is traversed
by a unique set of paths. In this case, each link failure
produces a different reachability matrix R. When there
is a set of links L such that the same paths cross each
link in L, the failure of any link ` ∈ L produces the
same reachability matrix R, and it is hard to identify
the exact link that failed.

Based on this intuition, we define a metric for di-
agnosability. For each ` ∈ E , let the hitting set of `,
h(`), be the set of paths that traverses `, and HS(G) =
{h(`), ` ∈ E} be the set of all distinct hitting sets. We
define the diagnosability of G as:

D(G) =
number distinct hitting sets

number probed links
=

|HS(G)|

|E|
.

D(G) takes values between 0 and 1. D(G)=1 means
that we can precisely identify any single link failure in
G, whereas D(G)=0 only when the number of paths is
0, in which case diagnosability is obviously 0.

We illustrate the relation between sensor placement
and diagnosability with a simple case study. In the first
placement (“same AS”), N sensors are placed in the
same AS. In this case, there is more diversity in how the
paths traverse the set of links in that AS. Consequently,

5The topology and simulation scripts are available at www.
cc.gatech.edu/~amogh/NetDiagnoser.html

we expect diagnosability to be high for this placement.
In the second placement (“distant AS”), N/2 sensors
are placed in one AS, and the remaining N/2 are placed
in another AS. In this scenario, all paths from sensors
in one AS to the other cross the same sequence of links.
The failure of any link in this sequence produces the
same reachability matrix, leading to low diagnosability.
In a third placement, most sensors are placed as in the
“distant AS” placement, but some sensors are placed at
intermediate nodes between the networks (“distant AS,
split path”). The goal is to have a more diverse cover-
age of the links between the two ASes, which should im-
prove diagnosability. In a fourth placement, sensors are
placed at randomly chosen edge networks (“random”).
Figure 5 shows the diagnosability for these placements
as we vary the number of sensors. We see that the “same
AS” placement shows much better diagnosability than
the “distant AS” placement. The placement of sensors
on the sequence of links between the ASes improves the
diagnosability of the “distant AS” placement. The ran-
dom placement shows the worst diagnosability.
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Figure 5: Sensor placement and diagnosability

In the simulation results of the following section, the
sensors are all placed at randomly chosen stub ASes,
meaning that we evaluate the performance of NetDiag-
noser under the worst-case scenario. The number of
sensors is fixed at N=10 (experiments with N ranging
from 5 to 100 show similar trends). We compute the
diagnosability for all simulations with 10 sensors and
find that the diagnosability ranges from 0.25 to 0.6. To
relate these values of diagnosability to a real-world set-
ting, we perform the following measurement. We ran-
domly select 10 nodes (from different ASes) from the
PlanetLab infrastructure as our sensors. We use tracer-
oute to obtain the paths between every pair of sensors,
and compute the diagnosability of this set of paths. The
value we obtain is 0.41, which means that we investigate
a range of diagnosability which is similar to that seen
in real topologies with the same number of sensors.

Failure scenarios.

We evaluate our algorithms under various failure sce-



narios consisting of link failures, router failures and
router misconfigurations. We simulate link failures by
randomly breaking x links in E , where x= {1, 2, 3}. In
the case of multiple simultaneous failures, the failed
links could be in different ASes. There are two classes
of link failures. If the link failure can be recovered by
routing protocols, then we call such a failure reroutable.
A reroutable link failure leads to rerouted paths. If
a link failure cannot be recovered by the routing pro-
tocols, then we call such a failure non-recoverable. A
non-recoverable failure leads to failed paths. We simu-
late router failures by breaking all links attached to a
router. We simulate router misconfigurations as follows.
We choose an interdomain link at random from among
the probed paths, and choose the router at one end of
that link as the target router to be misconfigured. We
then choose some route(s) from the routing table of the
target router and apply an export-filter such that the
selected routes are not advertised to the peer (only the
peer at the other end of the misconfigured link), thus
simulating a BGP policy misconfiguration. After intro-
ducing the misconfiguration, we let C-BGP converge to
a stable network state, and then perform a new set of
traceroutes to obtain the paths after the failure.

Metrics.

Let F be the set of failed links and H the hypothesis
set defined in Section 2. We use the metrics sensitiv-
ity and specificity to evaluate the “goodness” of the
hypothesis set produced by our algorithm. Sensitivity
and specificity are well-known evaulation metrics used
in medical diagnosis. Sensitivity is defined as:

sensitivity =
number true positives

total number failed
=

|F ∩ H |

|F |

Sensitivity measures how well the algorithm is able to
detect the actual failed links. If the number of false neg-
atives is high, then sensitivity will be low. Specificity is
defined as:

specificity =
number true negatives

number non-failed
=

|(E \ F ) ∩ (E \ H)|

|E \ F |

Specificity measures the number of false positives pro-
duced by the algorithm. If the hypothesis set contains
many false positives, specificity will be low. Both sen-
sitivity and specificity vary from zero to one, and high
values are desirable for both metrics. Sensitivity and
specificity can also be defined at the granularity of ASes
with failed links, rather than actual links.

Given that the number of links in the graph (|E|) is
orders of magnitude higher than the number of links
we expect to fail at the same time (|F |), it is expected
that specificity will always be close to one for our algo-
rithms. For instance, say that |E|=150 (in the simula-
tion results that we report, the number of probed links
is around this number) and consider single link fail-
ures (i.e., |F |=1). If |H |=10, the specificity would be

140/149 = 0.939. Consequently, we are very interested
in specificity increases, even if they are quite small.

5. EVALUATION RESULTS
This section evaluates the NetDiagnoser algorithm.

Unless otherwise stated, we report the results of 1000
simulation runs for each scenario, with 10 random sen-
sor placements and 100 failures per placement.

5.1 Evaluation of Tomo
Tomo represents our starting point for troubleshoot-

ing in a multi-AS scenario. First, we evaluate Tomo
under link failures and router misconfigurations.

The top graph in Figure 6 shows the cumulative dis-
tribution of the sensitivity of Tomo for one, two, and
three link failures across 1000 simulation runs. Not
surprisingly, Tomo is able to find the failed link when
there is only a single link failure (sensitivity is one for
almost all simulation instances). This is because for
single link failures, Tomo is invoked only if the failure
is non-recoverable. In this case, there are only failed
paths, and no rerouted paths. As a result, Tomo does
not miss any information from rerouted paths, and per-
forms quite well. However, Tomo cannot identify the
failed links under two and three link failures, showing
a much lower sensitivity. This is because with multi-
ple link failures, there may be some failures that are
reroutable, and some that are non-recoverable, leading
to both failed and rerouted paths. Since Tomo does
not use reroute information, it cannot detect the link
failures that lead to rerouted paths.
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Figure 6: Tomo under different failure scenarios.

Tomo also shows poor performance under router mis-
configurations. The bottom graph in Figure 6 presents
the CDF of the sensitivity for one router misconfigura-
tion and a combination of one router misconfiguration
and one link failure. The main observation is that the
sensitivity is zero in almost 90% of instances. Tomo
cannot identify router misconfuration failures, because
it assumes that any link carrying a working path must
be working. This condition is clearly violated in the
case of router misconfigurations.



These results confirm the limitations of Tomo in di-
agnosing failures more complex than single link failures.
Next, we evaluate each feature of NetDiagnoser.

5.2 Comparing Tomo with ND-edge
In this section, we evaluate the version of NetDi-

agnoser that uses logical links and information from
rerouted paths. Figure 7 shows that ND-edge achieves
a signficant improvement in sensitivity as compared to
Tomo. The top graph compares the sensitivity of Tomo
and ND-edge for the case of three link failures. We find
that ND-edge almost always has a sensitivity of one,
whereas Tomo has low sensitivity. The results for one
and two link failures are similar. The lower graph in
Figure 7 compares the sensitivity of Tomo and ND-edge
under a combination of router misconfiguration and link
failures. We find that the sensitivity of ND-edge is al-
most always one. Again, Tomo could not identify the
actual failed links in 90% of the instances.
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This comparison shows that adding rerouting infor-
mation and logical links to Tomo guarantees that in
almost all cases, we achieve perfect sensitivity, i.e., F ⊂
H . To evaluate the size of the hypothesis set returned
by ND-edge, we present the specificity of ND-edge in
Figure 8, for the case of a single link failure and a single
router misconfiguration. We find that ND-edge reports
a high value (larger than 0.9) of specificity in all cases of
single link failures, and close to or greater than 0.9 for
two and three simultaneous link failures (not shown).
This is true both for link failures and router misconfig-
urations. In fact, we observe from Figure 8 that ND-
edge shows a much better specificity in detecting router
misconfigurations. This is due to the fact that a router
misconfiguration appears as a failed logical link in our
graph, and the working paths allow the algorithm to
eliminate several physical links from the hypothesis set.

To get a more intuitive feel for the specificity of ND-
edge, we measure the size of the hypothesis set from
each simulation run.6 We find that for single link fail-

6The size of the hypothesis set and the specificity are equiv-
alent; given the number of links in the topology and the

ures, ND-edge sometimes reports up to 12 links in the
hypothesis set. While this number is small compared to
the number of probed links (which is greater than 200
in our simulations), there are still some false positives.
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Intuitively, the specificity (and consequently the size
of the hypothesis set) of ND-edge depends on the diag-
nosability of the inferred graph. We vary the number
of probing sources from 5 to 90, and calculate the diag-
nosability of the resulting set of paths, which spans the
range from 0.1 to 0.9. The specificity varies with the
diagnosability as shown in Figure 9, where each point
corresponds to one (sensor placement, failure) pair. We
find that the diagnosability directly affects the speci-
ficity of the algorithm. Although the specificity seems
high (it is always greater than 0.75), the size of the
hypothesis set is greater than 1 (indicating false posi-
tives) in more than 50% of the instances, particularly
when the diagnosability is low. This indicates that us-
ing end-to-end probing data alone is not sufficient to
obtain perfect specificity, especially when the diagnos-
ability of the underlying graph is low. In the next sec-
tion, we demonstrate how the addition of routing data
improves specificity of the diagnosis.

In some cases, it may be more important for AS-X to
identify the AS(es) in which the failed links lie, rather
than the actual links. We evaluate the AS-sensitivity
and AS-specificity of ND-edge. We find that in more
than half of the cases, ND-edge can find the exact AS(es)
containing the failure, and for over 90% of the instances
there is at most one AS-false positive. The number of
AS-false negatives is low, and in more than 90% of the
cases, there are no AS-false negatives. Thus, ND-edge
accurately detects the AS responsible for the failure.

Finally, we investigate the performance of ND-edge
when dealing with router failures. This situation is sim-
ilar to the failure of a Shared Risk Link Group (SRLG).
In the case of an SRLG, the failure of a physical compo-
nent results in the correlated failure of several IP links
that depend on that component. We say that ND-edge
detects a router failure if the hypothesis set contains at

hypothesis set, it is easy to compute the specificity.
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least one link from the router that was failed. We find
that in each simulation run, ND-edge is able to identify
the router that failed. We further evaluate the sensi-
tivity and specificity calculated using the set of links
attached to the failed router. The results are similar to
those for three link failures reported earlier.

To summarize, we find that ND-edge is quite effec-
tive at removing the limitations of Tomo in diagnosing
complex failure scenarios such as multiple link failures,
router misconfigurations and router failures.

5.3 Performance of ND-bgpigp
Here, we evaluate the improvement achieved by com-

bining traceroute data with IGP and BGP messages
from AS-X. Figure 10 compares the sensitivity and speci-
ficity of ND-edge and ND-bgpigp for three link failures
(results for one and two failures are similar). The main
observation is that the use of control plane information
improves the specificity of the algorithm. This is be-
cause, as described in Section 3, the use of BGP infor-
mation helps ND-bgpigp to eliminate some non-failed
links from its hypothesis set. Though the improvement
does not appear to be large, these results are from sim-
ulations on a relatively small topology. If these simula-
tions were at the scale of the real Internet, the benefit
of using BGP and IGP information would be greater.

The performance improvement of ND-bgpigp over ND-
edge depends on the location of the failures with respect
to AS-X. If all failed links lie inside AS-X, then the use
of IGP information ensures that ND-bgpigp can always
find the exact set of failed links This is a significant per-
formance improvement over ND-edge, specially because
it is more important to exactly identify the failed links
if they are inside AS-X. If the failed links lie outside
AS-X, then ND-bgpigp can only use BGP withdrawals
received at AS-X to reduce the size of the hypothesis
set. This leads to an improvement in the specificity, as
shown in Figure 10. The improvement, however, is less
than when the link failure is within AS-X.

We also study whether the performance of ND-bgpigp
depends on the position of AS-X in the Internet topol-
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ogy (i.e., whether AS-X is a core or stub AS). Due to
space constraints we summarize our main findings with-
out presenting quantitative results. We find that the
position of AS-X makes no difference to the sensitiv-
ity of ND-bgpigp. However, the specificity is either the
same or higher when AS-X is at the core, compared to
when it is a stub. This is explained as follows. On re-
ceiving a BGP withdrawal for a prefix corresponding to
destination sd, AS-X removes from the hypothesis set
any upstream links on the path to sd, improving the
specificity of the hypothesis. When AS-X is a core AS,
it is more likely to be in the middle of several paths, and
the likelihood of being able to remove upstream links is
higher. As a result, the use of BGP information helps
a core AS more often than an edge AS.

5.4 Blocked traceroutes
We conclude our evaluation with a study of the im-

pact of ASes that block traceroutes. We compare ND-
LG with ND-bgpigp, which simply ignores any uniden-
tified link in traceroute paths. When the failed links
are in an AS that blocks traceroutes, it is impossible for
ND-bgpigp to identify the exact links that failed. Thus,
we focus on identifying the AS(es) with failed links. Let
fb be the fraction of ASes that block traceroutes.

We initially assume that each AS provides access to
its Looking Glass server, and compare the performance
of the algorithms for values of fb from 0 to 0.8. For
each value of fb, we compute the average AS-sensitivity
and AS-specificity across 1000 simulation runs. The
AS-sensitivity and AS-specificity are calculated using
the ASes covered by the probes, which consists of 15
ASes on average. We present the results in Figure 11.
The average AS-sensitivity and AS-specificity of ND-
LG are both around 0.8, even when 80% of the ASes
on the paths block traceroutes. This means that for
single link failures, the algorithm returns the failed AS
80% of the times, with an average of two false positive
ASes. ND-bgpigp has a much lower sensitivity under
the same settings, and the value is close to 1-fb. In-
tuitively, this is because ND-bgpigp cannot diagnose a
failure in an AS that blocks traceroutes, which happens



with a probability around fb.
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Figure 11: The effect of blocked traceroutes

We also evaluate the performance of ND-LG when
some ASes do not have Looking Glass servers. Here, we
use fb=0.25, 0.5 and 0.75, and vary the fraction of ASes
that allow the use of Looking Glass servers from 5% to
100%. We calculate the average AS-sensitivity and AS-
specificity across 1000 simulation runs. Figure 12 shows
the AS-sensitivity as a function of the fraction of ASes
providing Looking Glass servers. We also show the sen-
sitivity of ND-bgpigp, which does not depend on the
fraction of ASes that allow Looking Glass servers, re-
sulting in the horizontal lines. There is a significant gain
over ND-bgpigp, even when a small fraction of ASes al-
low the use of their LGs. This benefit increases quickly
as more ASes allow LGs, and after about 50% of ASes
provide LGs we see diminishing returns.
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6. DISCUSSION
A deployment of NetDiagnoser requires several prac-

tical issues to be resolved. The first issue relates to the
detection of an unreachability problem by the sensors.
Events such as link flaps could affect the measurements,
causing transient events to be treated as failures. This

can be overcome by using a more robust detection al-
gorithm. For example, the troubleshooter could raise
an alarm only if the failure manifests itself in several
successive measurements. So far, we have assumed that
the sensors perform measurements at approximately the
same time, which requires some form of clock synchro-
nization. Approximate clock synchronization can be
achieved in practice using NTP. Also, we assume that
the time required to perform a measurement is small
compared to the time between measurements, and that
the network state does not change during the measure-
ment. The measurement duration can be made small
(on the order of a few round-trips) using a modified form
of traceroute that probes each hop of the path in paral-
lel. The probability of a network event occuring during
this small measurement period is then negligibly small.
In [5], we examine further issues related to a practical
deployment of NetDiagnoser, and present some ideas.

7. RELATED WORK
The Tomo algorithm is an instance of network to-

mography. There are a number of tomography solu-
tions to detect network-internal characteristics such as
topology [4], or link delay and loss rate [3, 8]. These
solutions do not apply here because our goal is not to
determine the properties of every link, but rather diag-
nose a reachability failure observed by end-hosts.

The area of Boolean tomography is most similar to
our work. Duffield [7, 6] presents a simple algorithm to
detect the smallest set of failed links that explains a set
of end-to-end observations on a tree topology. Steinder
et al. [27] use a “belief network” to find the links that
have the highest likelihood of being faulty. A similar ap-
proach is adopted to find Shared Risk Link Groups [16].
Kompella et al. [17] present an algorithm similar to
Tomo for failure localization using measurements be-
tween edge routers in a network. All these algorithms
assume that the topology is completely and accurately
known, and hence apply mostly to intradomain sce-
narios. Another approach to failure identification uses
Bayesian techniques [15, 28, 24, 14, 22]. These stud-
ies assume that the link failure probabilities are known.
The state of the art in this area [23], introduces a tech-
nique to learn the link failure probabilities from multi-
ple measurements over time. In our work, we make no
assumption about the probability of link failures, and
only assume that the smallest set of potentially failed
links is most likely to explain the observations. None of
the tomography studies considers the multi-AS environ-
ment or uses control-plane information in the diagnosis.

Several measurement studies correlate end-to-end per-
formance degradation with control-plane events. Feam-
ster et al. [9] measure the location of path failures,
their durations, and their correlation with routing pro-
tocol messages. More recently, Wang et al. [29] studied
the causal effects between routing failures and end-to-



end delays and loss rates, and the impact of topology,
policy and BGP configuration on these effects. These
studies, however, do not present algorithms to identify
the location of those failures.

Tulip [18] and PlanetSeer [30] are two systems for
Internet path diagnosis. Tulip uses end-to-end probes
to track Internet path performance. Its approach is
different from ours because the goal there is to identify
the location of the “bad” links with respect to loss rate,
queuing, or reordering. PlanetSeer’s goal is to detect
paths with bad performance, and not to identify the
location of the path failure. In fact, PlanetSeer could
be used as the sensor infrastructure for NetDiagnoser.

In the area of interdomain routing root-cause analy-
sis, Feldmann et al. [11] use passive BGP measurements
to find the root-cause of BGP-visible routing changes.
However, this approach can only diagnose path failures
that are visible at some BGP collection points.

8. CONCLUSIONS
Troubleshooting network unreachability problems is

a challenging task, especially when multiple ASes are in-
volved. In this paper, we take some first steps towards
addressing this problem by proposing NetDiagnoser, an
algorithm for multi-AS network troubleshooting. We
use as our starting point the Boolean tomography ap-
proach introduced by Duffield [7], and significantly ex-
tend it to work in a multi-AS scenario. In particular,
we introduce techniques to make use of the information
obtained from rerouted paths, BGP and IGP messages,
and Looking Glass servers. NetDiagnoser can also lo-
cate failures due to router misconfigurations. We find
that NetDiagnoser performs very well in a variety of
failure scenarios, such as link failures, router failures
and router misconfigurations. The hypothesis set al-
most always contains the actually failed links, with a
small number of false positives. In cases where some
ASes block traceroutes, NetDiagnoser is able to identify
the AS(es) responsible for the failed links, again with a
small number of false positives and false negatives.
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