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 Distributed attacks: many bots
send packet floods to exhaust
shared resources

— Bandwidth, memory, or CPU
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Combating DoS is Difficult

A fundamental architecture problem

1. Open: Any to any communication, and
new applications

2. Robust: Non-disrupted communications
despite compromised hosts and routers

* DoS defense must be built inside out
— Rethinking the Internet architecture
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Offense, FastPass, Flow-Cookies, Kill-a-Bot, LazySusan, Mayday,
OverDoSe, PacketSymmetry, Phalanx, Pushback, Portcullis, STFF,
S0S, SpeakUp, StopIt, TVA..
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— Enable receivers to suppress unwanted traffic
— Network filters, network capabilities
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How can we design a network
architecture that can combat both

DoES and DoNS?
\ %




Solution: NetFence

« Design principle: inside-out, network-host
joint lines of defense

1. Network controls its resource allocation
« Combating DoNS

2. End systems controls what they receive
» Combating DoES




Key Idea

1. Hierarchical,

<4

2. Secure congestion policing in the network
-+

3. Coupled with network capabilities

4

Goals: Scalable, Robust, Open
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Now the Detalils...



How does NetFence Work?

* A sender sends two types of packets
Request Regular

[ |




How does NetFence Work?

* A sender sends two types of packets

Request Regular
L] 4

NetFence Header




How does NetFence Work?

* A sender sends two types of packets

Request Regular
L] 4

NetFence Header




How does NetFence Work?

* A sender sends two types of packets
Request Regular

L] W4
e [ e

NetFence Header

nop mg\n

No attack | | Attack|




How does NetFence Work?

* A sender sends two types of packets
Request Regular

L] W4
e [ e

NetFence Header

nop mg\n

No attack | | Attack|




How does NetFence Work?

* A sender sends two types of packets
Request Regular

L] W4
e [ e

NetFence Header

nop mg\n

No attack | | Attack|




How does NetFence Work?

A sender first sends a request packet

» Its access router stamps nop

—nhow 2> ts (timestamp), null = link, nop >
mode

— =g = MACW(src, dst, ts, null, nop)




How does NetFence Work?

A sender first sends a request packet

» Its access router stamps nop

—nhow 2> ts (timestamp), null = link, nop >
mode

— =g = MACM(src, dst, ts, null, nop)



How does NetFence Work?

A sender first sends a request packet

» Its access router stamps nop

—nhow 2> ts (timestamp), null = link, nop >
mode

— =g = MACM(src, dst, ts, null, nop)



How does NetFence Work?

A sender first sends a request packet

» Its access router stamps nop

—nhow 2> ts (timestamp), null = link, nop >
mode

— =g = MACM(src, dst, ts, null, nop)



How does NetFence Work?

| =
., 2 ‘ L
@ﬂ

A time-varying secret key

A sender first sends a request packet
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How does NetFence Work?

» Establishes a congestion policing loop
— Bottleneck router signals
- If congested, L* > LY
e Otherwise, L1 /M
— Access router polices L LY

* Periodic Additive Increase Multiplicative Decrease
(AIMD, TCP-like) for fairness and efficiency




How does NetFence Work?

* Bottleneck router

1. Detect attack to start a policing cycle
Loss or load based

2. Signal congestion within a cycle
Random Early Detection (RED)



Recap: Why It Works

1. Secret keys to secure congestion policing
feedback

2. Periodic AIMD based on secure congestion
police feedback

ANV

LA LY

3. Secure congestion feedback as network
capabilities



Properties

* Provable fairness

— Denial of Service > Predictable Delay of
Service

Theorem: Given & good and B bad senders sharing
a bottleneck link of capacity €, regardless of the
attack strategies, any good sender g with

sufficient demand eventually obtains a fair share

v, poC
G+ B

where pz1 andV, is a transport efficiency factor.
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Limiting Request Packet Floods

_ (& (2R

1. Separate request packet channel
2. Per-sender request packet policing
3. Priority-based backoff

Emulate computational puzzles

1. Eventual success
2. Efficient: waiting replaces proof of work
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Packet Access Bottleneck
type router router
No Attack Request (546 ns/pkt

492 ns/pkt
54 ns/pk

Regular 781 ns/pkt
Attack Request 546 ns/pkt

Regular \ 1267 ns/pki;

< 3AES computation.  One AES

Parallelizable computation
Tput ~ 2mpps

NetFence is suitable for high-speed
implementation



Header overhead

1xxx: request packet
Oxoex: regular packet
00xx: regular packet w/ nop feedback
0lxx: regular packet w/ mon feedback
xxx1: w/ returned feedback

—

Common VER(4) [TYPE(4)] PROTO(8) [PRIORITY(8) FLAGS(8)
Header TIMESTAMP (32)
nop
Feedback Common Header (64)
LINK-ID (32)
MAC (32)
mon Common Header (64)
Feedback
LINK-ID (32)
MAC (32)
TOKEN-NOP (32)
Returned
MAC reurn  (32)
Feedback
May be omitted{ LINK-ID,e1urn (32)
FLAGS field: Lxooorexx: the action is decr

x1xooxx: the returned action is decr
xxxxx1xx: LINK-IDreturn is present
w0ocxYY: YY is the timestamp of the returned feedback



Header overhead

1xxx: request packet

Oxoex: regular packet

00xx: regular packet w/ nop feedback
0lxx: regular packet w/ mon feedback
xxx1: w/ returned feedback

—N—
Common VER(4) [TYPE(4)] PROTO(8) [PRIORITY(8) FLAGS(8)
Header TIMESTAMP (32)
nop
Feedback Common Header (64)

LINK-ID (32)
MAC (32)

Header overhead: 20 - 28 bytes

LINK-ID (32)
MAC (32)
TOKEN-NOP (32)

Returned
MAC e (32)
Feedback
May be omitted{ LINK-ID,e1urn (32)
FLAGS field: 1xxooexx: the action is decr

x1xooxx: the returned action is decr
xxxxx1xx: LINK-IDreturn is present
xoooxxYY: YY is the timestamp of the returned feedback



Simulations

 Extensive ns-2 simulations

« Systems compared: more state in core
— Per-sender Fair Queuing (FQ)
— TVA+: capability + per-sender/receiver FQ
— StopIt: filter + per-sender FQ

NetFence
« Enables receivers to suppress unwanted traffic
» Effectively polices malicious flows

=> A robust and scalable DoS solution



A Subset of Results



Expr 1: DoES Attacks

AS, =3 Victim

10Gbps

 Tn each source AS
— 1 user sends a 20KB file to a victim via TCP

— 99 attackers each send 1Mbps UDP traffic
to the victim



NetFence Limits DoES
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* All fransfer finishes despite attackers >> users
* No per-sender queues
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Expr 2: DoNS Attacks

* In each source AS
— 25% legitimate users and 75% attackers

 Tn each destination AS

— One legitimate receiver or one colluding
attacker



NetFence Limits DoNS
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» Throughput ratio = avg(user)/avg(attacker)
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NetFence Limits DoNS
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Conclusion

Victim

 NetFence

— First comprehensive solution combating DoES
and DoNS attacks scalably

— Design principle: inside-out, network-host
joint lines of defense

— Goals: Scalable, robust, and open

— Key idea: Hierarchical, secure congestion
policing coupled with network capabilities



Thank you!

* Questions
— xwy@cs.duke.edu
— Xinl@cs.duke.edu
— Xia_yong@nec.cn
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