
NetFence: Preventing Internet
Denial of Service from Inside Out

Xiaowei Yang (Duke University)
with Xin Liu (Duke University)

Yong Xia (NEC Labs China)

Sigcomm 2010
Delhi, India

DoS is a Formidable Threat

• Distributed attacks: many bots
send packet floods to exhaust
shared resources
– Bandwidth, memory, or CPU



• 2009 Survey results
by Arbor Networks,
Inc. among 132
network operators

Largest Anticipated Threat
– Next 12 Months

Largest DDoS Attack
- 49 Gigabits Per Second

• 2009 Survey results
by Arbor Networks,
Inc. among 132
network operators

DDOS

Largest Anticipated Threat
– Next 12 Months

Largest DDoS Attack
- 49 Gigabits Per Second

• 2009 Survey results
by Arbor Networks,
Inc. among 132
network operators

DDOS

Largest Anticipated Threat
– Next 12 Months

Largest DDoS Attack
- 49 Gigabits Per Second

• 2009 Survey results
by Arbor Networks,
Inc. among 132
network operators

DDOS

Largest Anticipated Threat
– Next 12 Months

Largest DDoS Attack
- 49 Gigabits Per Second

• 2009 Survey results
by Arbor Networks,
Inc. among 132
network operators

DDOS

Largest Anticipated Threat
– Next 12 Months

Largest DDoS Attack
- 49 Gigabits Per Second

Combating DoS is Difficult

• A fundamental architecture problem
1. Open: Any to any communication, and

new applications

2. Robust: Non-disrupted communications
despite compromised hosts and routers

• DoS defense must be built inside out
– Rethinking the Internet architecture

Previous Work: Receivers as Victims

• Much work: AIP, AITF, CenterTrack, dFence, Defense-by-
Offense, FastPass, Flow-Cookies, Kill-a-Bot, LazySusan, Mayday,
OverDoSe, PacketSymmetry, Phalanx, Pushback, Portcullis, SIFF,
SOS, SpeakUp, StopIt, TVA…

• Denial of Edge Service (DoES)
– Enable receivers to suppress unwanted traffic

– Network filters, network capabilities

A

Victim

Previous Work: Receivers as Victims

• Much work: AIP, AITF, CenterTrack, dFence, Defense-by-
Offense, FastPass, Flow-Cookies, Kill-a-Bot, LazySusan, Mayday,
OverDoSe, PacketSymmetry, Phalanx, Pushback, Portcullis, SIFF,
SOS, SpeakUp, StopIt, TVA…

• Denial of Edge Service (DoES)
– Enable receivers to suppress unwanted traffic

– Network filters, network capabilities

A

Victim

Filter (A,V)

Previous Work: Receivers as Victims

• Much work: AIP, AITF, CenterTrack, dFence, Defense-by-
Offense, FastPass, Flow-Cookies, Kill-a-Bot, LazySusan, Mayday,
OverDoSe, PacketSymmetry, Phalanx, Pushback, Portcullis, SIFF,
SOS, SpeakUp, StopIt, TVA…

• Denial of Edge Service (DoES)
– Enable receivers to suppress unwanted traffic

– Network filters, network capabilities

A

Victim

Filter (A,V)

Previous Work: Receivers as Victims

• Much work: AIP, AITF, CenterTrack, dFence, Defense-by-
Offense, FastPass, Flow-Cookies, Kill-a-Bot, LazySusan, Mayday,
OverDoSe, PacketSymmetry, Phalanx, Pushback, Portcullis, SIFF,
SOS, SpeakUp, StopIt, TVA…

• Denial of Edge Service (DoES)
– Enable receivers to suppress unwanted traffic

– Network filters, network capabilities

A

Victim

Filter (A,V)

New Threat: Denial of Network
Service (DoNS)

• Bots can collude to send packet floods

• Incapable of identifying attack traffic

New Threat: Denial of Network
Service (DoNS)

• Bots can collude to send packet floods

• Incapable of identifying attack traffic

New Threat: Denial of Network
Service (DoNS)

• Bots can collude to send packet floods

• Incapable of identifying attack traffic

New Threat: Denial of Network
Service (DoNS)

• Bots can collude to send packet floods

• Incapable of identifying attack traffic

New Threat: Denial of Network
Service (DoNS)

• Bots can collude to send packet floods

• Incapable of identifying attack traffic

DoS

DoS

=

Victim

Denial of Edge
Service (DoES)

DoS

=

Victim

Denial of Edge
Service (DoES)

DoS

=
+

Victim

Denial of Edge
Service (DoES)

Denial of Network
Service (DoNS)

DoS

=
+

Victim

Denial of Edge
Service (DoES)

How can we design a network
architecture that can combat both
DoES and DoNS?

Denial of Network
Service (DoNS)

DoS

=
+

Solution: NetFence

• Design principle: inside-out, network-host
joint lines of defense

1. Network controls its resource allocation

• Combating DoNS

2. End systems controls what they receive

• Combating DoES

Key Idea

1. Hierarchical,

2. Secure congestion policing in the network

3. Coupled with network capabilities

+

+

Goals: Scalable, Robust, Open

Hierarchical Congestion Policing

• Scalable: no per-flow state in the core
1. Aggregate flow policing placed at edge

routers [CSFQ]

2. AS-level policing in the core
• Fair queuing or rate limiting

ASx

ASy

Hierarchical Congestion Policing

• Scalable: no per-flow state in the core
1. Aggregate flow policing placed at edge

routers [CSFQ]

2. AS-level policing in the core
• Fair queuing or rate limiting

ASx

ASy

Hierarchical Congestion Policing

• Scalable: no per-flow state in the core
1. Aggregate flow policing placed at edge

routers [CSFQ]

2. AS-level policing in the core
• Fair queuing or rate limiting

ASx

ASy

Slow down flooding senders

Hierarchical Congestion Policing

• Scalable: no per-flow state in the core
1. Aggregate flow policing placed at edge

routers [CSFQ]

2. AS-level policing in the core
• Fair queuing or rate limiting

ASx

ASy

xx

yyy

Slow down flooding senders

Secure Congestion Policing

• Robust to compromised routers and hosts
– Efficient symmetric key cryptography

– Packets carry secure tokens
• Source AS authenticators [Passport,NSDI08] 

AS Accountability

• Secure congestion policing feedback

ASx

ASy

xx

yyy

Secure Congestion Policing

• Robust to compromised routers and hosts
– Efficient symmetric key cryptography

– Packets carry secure tokens
• Source AS authenticators [Passport,NSDI08] 

AS Accountability

• Secure congestion policing feedback

ASx

ASy

xx

yyy

Secure Congestion Policing Feedback as
Network Capabilities

• Open
– Receiver explicitly authorizes desired traffic
• Return if wants to receive

• Not, otherwise

ASx

ASy

xx

yyy

Secure Congestion Policing Feedback as
Network Capabilities

• Open
– Receiver explicitly authorizes desired traffic
• Return if wants to receive

• Not, otherwise

ASx

ASy

xx

yyy

Secure Congestion Policing Feedback as
Network Capabilities

• Open
– Receiver explicitly authorizes desired traffic
• Return if wants to receive

• Not, otherwise

ASx

ASy

xx

yyy

Secure Congestion Policing Feedback as
Network Capabilities

• Open
– Receiver explicitly authorizes desired traffic
• Return if wants to receive

• Not, otherwise

ASx

ASy

xx

yyy

Now the Details…

How does NetFence Work?

• A sender sends two types of packets
Request Regular

How does NetFence Work?

• A sender sends two types of packets

mode link act timestamp MAC

Request Regular

NetFence Header

How does NetFence Work?

• A sender sends two types of packets

mode link act timestamp MAC

Request Regular

NetFence Header

How does NetFence Work?

• A sender sends two types of packets

mode link act timestamp MAC

Request Regular

nop mon

No attack Attack

NetFence Header

How does NetFence Work?

• A sender sends two types of packets

mode link act timestamp MAC

Request Regular

nop mon

No attack Attack

NetFence Header

How does NetFence Work?

• A sender sends two types of packets

mode link act timestamp MAC

Request Regular

nop mon

No attack Attack

NetFence Header

 or 

How does NetFence Work?

• A sender first sends a request packet

• Its access router stamps nop
– now  ts (timestamp), null  link, nop 

mode

– = MAC (src, dst, ts, null, nop)

L

How does NetFence Work?

• A sender first sends a request packet

• Its access router stamps nop
– now  ts (timestamp), null  link, nop 

mode

– = MAC (src, dst, ts, null, nop)

L

How does NetFence Work?

• A sender first sends a request packet

• Its access router stamps nop
– now  ts (timestamp), null  link, nop 

mode

– = MAC (src, dst, ts, null, nop)

L

How does NetFence Work?

• A sender first sends a request packet

• Its access router stamps nop
– now  ts (timestamp), null  link, nop 

mode

– = MAC (src, dst, ts, null, nop)

L

How does NetFence Work?

• A sender first sends a request packet

• Its access router stamps nop
– now  ts (timestamp), null  link, nop 

mode

– = MAC (src, dst, ts, null, nop)

A time-varying secret key

L

How does NetFence Work?

• A router under attack replaces nop with L

– All traffic

– Signal congestion to access router

– L link,   act, mon  mode

– = MAC (src, dst, ts, L, mon, ,)

– No downstream overwrite

L

How does NetFence Work?

• A router under attack replaces nop with L

– All traffic

– Signal congestion to access router

– L link,   act, mon  mode

– = MAC (src, dst, ts, L, mon, ,)

– No downstream overwrite

L

How does NetFence Work?

• A router under attack replaces nop with L

– All traffic

– Signal congestion to access router

– L link,   act, mon  mode

– = MAC (src, dst, ts, L, mon, ,)

– No downstream overwrite

L

How does NetFence Work?

• A router under attack replaces nop with L

– All traffic

– Signal congestion to access router

– L link,   act, mon  mode

– = MAC (src, dst, ts, L, mon, ,)

– No downstream overwrite

L

How does NetFence Work?

• A router under attack replaces nop with L

– All traffic

– Signal congestion to access router

– L link,   act, mon  mode

– = MAC (src, dst, ts, L, mon, ,)

– No downstream overwrite

L

How does NetFence Work?

• A router under attack replaces nop with L

– All traffic

– Signal congestion to access router

– L link,   act, mon  mode

– = MAC (src, dst, ts, L, mon, ,)

– No downstream overwrite

A shared time-varying secret key
via distributed Diffie-Hellman via BGP [Passport]

L

How does NetFence Work?

• A router under attack replaces nop with L

– All traffic

– Signal congestion to access router

– L link,   act, mon  mode

– = MAC (src, dst, ts, L, mon, ,)

– No downstream overwrite

A shared time-varying secret key
via distributed Diffie-Hellman via BGP [Passport]

L

How does NetFence Work?

• A router under attack replaces nop with L

– All traffic

– Signal congestion to access router

– L link,   act, mon  mode

– = MAC (src, dst, ts, L, mon, ,)

– No downstream overwrite

A shared time-varying secret key
via distributed Diffie-Hellman via BGP [Passport]

L

How does NetFence Work?

• A receiver use the feedback as capabilities

• Sender sends regular packets that carry
the congestion policing feedback
– Could be nop when there is no attack

– Can’t send if receiving no feedback from
receiver

L

How does NetFence Work?

• A receiver use the feedback as capabilities

• Sender sends regular packets that carry
the congestion policing feedback
– Could be nop when there is no attack

– Can’t send if receiving no feedback from
receiver

L

How does NetFence Work?

• A receiver use the feedback as capabilities

• Sender sends regular packets that carry
the congestion policing feedback
– Could be nop when there is no attack

– Can’t send if receiving no feedback from
receiver

L

How does NetFence Work?

• A receiver use the feedback as capabilities

• Sender sends regular packets that carry
the congestion policing feedback
– Could be nop when there is no attack

– Can’t send if receiving no feedback from
receiver

L

How does NetFence Work?

• A receiver use the feedback as capabilities

• Sender sends regular packets that carry
the congestion policing feedback
– Could be nop when there is no attack

– Can’t send if receiving no feedback from
receiver

L

How does NetFence Work?

• A receiver use the feedback as capabilities

• Sender sends regular packets that carry
the congestion policing feedback
– Could be nop when there is no attack

– Can’t send if receiving no feedback from
receiver

L

How does NetFence Work?

• Access router validates feedback

• Starts congestion policing
– One leaky bucket per (src, L) limits sending rate

– Not distinguish legitimate/malicious senders

• Resets L

– now  ts,   act

– = MAC (src, dst, ts, L, mon, )

L

How does NetFence Work?

• Access router validates feedback

• Starts congestion policing
– One leaky bucket per (src, L) limits sending rate

– Not distinguish legitimate/malicious senders

• Resets L

– now  ts,   act

– = MAC (src, dst, ts, L, mon, )

L

How does NetFence Work?

• Access router validates feedback

• Starts congestion policing
– One leaky bucket per (src, L) limits sending rate

– Not distinguish legitimate/malicious senders

• Resets L

– now  ts,   act

– = MAC (src, dst, ts, L, mon, )

(src, L)

L

How does NetFence Work?

• Access router validates feedback

• Starts congestion policing
– One leaky bucket per (src, L) limits sending rate

– Not distinguish legitimate/malicious senders

• Resets L

– now  ts,   act

– = MAC (src, dst, ts, L, mon, )

(src, L)

L

How does NetFence Work?

• Access router validates feedback

• Starts congestion policing
– One leaky bucket per (src, L) limits sending rate

– Not distinguish legitimate/malicious senders

• Resets L

– now  ts,   act

– = MAC (src, dst, ts, L, mon, )

(src, L)

L

How does NetFence Work?
(src, L)

L

How does NetFence Work?
(src, L)

L

How does NetFence Work?

• Establishes a congestion policing loop
– Bottleneck router signals
• If congested, L  L

• Otherwise, L

– Access router polices
• Periodic Additive Increase Multiplicative Decrease

(AIMD, TCP-like) for fairness and efficiency

(src, L)

L

How does NetFence Work?

• Establishes a congestion policing loop
– Bottleneck router signals
• If congested, L  L

• Otherwise, L

– Access router polices
• Periodic Additive Increase Multiplicative Decrease

(AIMD, TCP-like) for fairness and efficiency

(src, L)

L

How does NetFence Work?

• Establishes a congestion policing loop
– Bottleneck router signals
• If congested, L  L

• Otherwise, L

– Access router polices
• Periodic Additive Increase Multiplicative Decrease

(AIMD, TCP-like) for fairness and efficiency

(src, L)

L

How does NetFence Work?

• Establishes a congestion policing loop
– Bottleneck router signals
• If congested, L  L

• Otherwise, L

– Access router polices
• Periodic Additive Increase Multiplicative Decrease

(AIMD, TCP-like) for fairness and efficiency

(src, L)

L

How does NetFence Work?

• Establishes a congestion policing loop
– Bottleneck router signals
• If congested, L  L

• Otherwise, L

– Access router polices
• Periodic Additive Increase Multiplicative Decrease

(AIMD, TCP-like) for fairness and efficiency

(src, L)

L L

L

How does NetFence Work?

• Bottleneck router
1. Detect attack to start a policing cycle
• Loss or load based

2. Signal congestion within a cycle
• Random Early Detection (RED)

Recap: Why It Works

1. Secret keys to secure congestion policing
feedback

2. Periodic AIMD based on secure congestion
police feedback

3. Secure congestion feedback as network
capabilities

L L

Properties

• Provable fairness
– Denial of Service  Predictable Delay of

Service

Theorem: Given G good and B bad senders sharing
a bottleneck link of capacity C, regardless of the
attack strategies, any good sender g with
sufficient demand eventually obtains a fair share

where and is a transport efficiency factor.

BG

Cvg




1 gv

Properties

• Provable fairness
– Denial of Service  Predictable Delay of

Service

Theorem: Given G good and B bad senders sharing
a bottleneck link of capacity C, regardless of the
attack strategies, any good sender g with
sufficient demand eventually obtains a fair share

where and is a transport efficiency factor.

BG

Cvg




1 gv

Properties

• Provable fairness
– Denial of Service  Predictable Delay of

Service

Theorem: Given G good and B bad senders sharing
a bottleneck link of capacity C, regardless of the
attack strategies, any good sender g with
sufficient demand eventually obtains a fair share

where and is a transport efficiency factor.

BG

Cvg




1 gv

Now the Trickier Stuff

More Challenges
• A broad range of attacks
– Flood request packets (with no feedback)
– Hide L

– Evade attack detection
– On/Off
– …

• Multiple bottlenecks
• Practical constraints
– Low overhead
– Gradual deployment
– Incentive-compatible adoption

More Challenges
• A broad range of attacks
– Flood request packets (with no feedback)
– Hide L

– Evade attack detection
– On/Off
– …

• Multiple bottlenecks
• Practical constraints
– Low overhead
– Gradual deployment
– Incentive-compatible adoption

Limiting Request Packet Floods

1. Separate request packet channel

2. Per-sender request packet policing

3. Priority-based backoff
• Emulate computational puzzles

L

Limiting Request Packet Floods

1. Separate request packet channel

2. Per-sender request packet policing

3. Priority-based backoff
• Emulate computational puzzles

L

Limiting Request Packet Floods

1. Separate request packet channel

2. Per-sender request packet policing

3. Priority-based backoff
• Emulate computational puzzles

L

k

Limiting Request Packet Floods

1. Separate request packet channel

2. Per-sender request packet policing

3. Priority-based backoff
• Emulate computational puzzles

L

k

1
2

 k

Limiting Request Packet Floods

1. Separate request packet channel

2. Per-sender request packet policing

3. Priority-based backoff
• Emulate computational puzzles

L

k

1
2

 k

Limiting Request Packet Floods

1. Separate request packet channel

2. Per-sender request packet policing

3. Priority-based backoff
• Emulate computational puzzles

L

k

1
2

 k

k-1

Limiting Request Packet Floods

1. Separate request packet channel

2. Per-sender request packet policing

3. Priority-based backoff
• Emulate computational puzzles

L

k

1
2

 k

k-1

Limiting Request Packet Floods

1. Separate request packet channel

2. Per-sender request packet policing

3. Priority-based backoff
• Emulate computational puzzles

L

k

1
2

 k

k-1

1. Eventual success
2. Efficient: waiting replaces proof of work

Making hiding L ineffective

• Robust signaling rate increase with L

1. Treating the absence of L as L

2. Stamping no L for sufficiently long after
congestion ends

Making hiding L ineffective

• Robust signaling rate increase with L

1. Treating the absence of L as L

2. Stamping no L for sufficiently long after
congestion ends

Bottleneck

Router

t1 t2 t2 + 2 Ictrl

Making hiding L ineffective

• Robust signaling rate increase with L

1. Treating the absence of L as L

2. Stamping no L for sufficiently long after
congestion ends

Bottleneck

Router

t1 t2 t2 + 2 Ictrl

Making hiding L ineffective

• Robust signaling rate increase with L

1. Treating the absence of L as L

2. Stamping no L for sufficiently long after
congestion ends

Bottleneck

Router

t1 t2 t2 + 2 Ictrl

Making hiding L ineffective

• Robust signaling rate increase with L

1. Treating the absence of L as L

2. Stamping no L for sufficiently long after
congestion ends

Bottleneck

Router

t1 t2 t2 + 2 Ictrl

Making hiding L ineffective

• Robust signaling rate increase with L

1. Treating the absence of L as L

2. Stamping no L for sufficiently long after
congestion ends

Bottleneck

Router

t1 t2 t2 + 2 Ictrl

Making hiding L ineffective

• Robust signaling rate increase with L

1. Treating the absence of L as L

2. Stamping no L for sufficiently long after
congestion ends

Bottleneck

Router

t1 t2 t2 + 2 Ictrl

Access

Router

te te+ Ictrl

Making hiding L ineffective

• Robust signaling rate increase with L

1. Treating the absence of L as L

2. Stamping no L for sufficiently long after
congestion ends

Bottleneck

Router

t1 t2 t2 + 2 Ictrl

Access

Router

te te+ Ictrl

Making hiding L ineffective

• Robust signaling rate increase with L

1. Treating the absence of L as L

2. Stamping no L for sufficiently long after
congestion ends

Bottleneck

Router

t1 t2 t2 + 2 Ictrl

Access

Router

te te+ Ictrl

Making hiding L ineffective

• Robust signaling rate increase with L

1. Treating the absence of L as L

2. Stamping no L for sufficiently long after
congestion ends

Bottleneck

Router

t1 t2 t2 + 2 Ictrl

Access

Router

te te+ Ictrl

Making hiding L ineffective

• Robust signaling rate increase with L

1. Treating the absence of L as L

2. Stamping no L for sufficiently long after
congestion ends

Bottleneck

Router

t1 t2 t2 + 2 Ictrl

Access

Router

te te+ Ictrl

Making hiding L ineffective

• Robust signaling rate increase with L

1. Treating the absence of L as L

2. Stamping no L for sufficiently long after
congestion ends

Bottleneck

Router

t1 t2 t2 + 2 Ictrl

Access

Router

te te+ Ictrl

Making hiding L ineffective

• Robust signaling rate increase with L

1. Treating the absence of L as L

2. Stamping no L for sufficiently long after
congestion ends

Bottleneck

Router

t1 t2 t2 + 2 Ictrl

Access

Router

te te+ Ictrl

Making hiding L ineffective

• Robust signaling rate increase with L

1. Treating the absence of L as L

2. Stamping no L for sufficiently long after
congestion ends

Bottleneck

Router

t1 t2 t2 + 2 Ictrl

Access

Router

te te+ Ictrl

 te+Ictrl ≤ t2 + 2Ictrl

A sender can’t present L

 Rate limit is reduced

Performance

Implementation

• A software implementation in Linux
–XORP and Click

–AES-128 as the MAC function

• DeterLab experiments
–Dual-core Intel Xeon 3GHz CPUs

–2GB memory

Implementation

• A software implementation in Linux
–XORP and Click

–AES-128 as the MAC function

• DeterLab experiments
–Dual-core Intel Xeon 3GHz CPUs

–2GB memory

Encrypting the Internet!

Implementation

• A software implementation in Linux
–XORP and Click

–AES-128 as the MAC function

• DeterLab experiments
–Dual-core Intel Xeon 3GHz CPUs

–2GB memory

Processing overhead
Packet
type

Access
router

Bottleneck
router

No Attack Request 546 ns/pkt 0

Regular 781 ns/pkt 0

Attack Request 546 ns/pkt 492 ns/pkt

Regular 1267 ns/pkt 554 ns/pkt

Processing overhead
Packet
type

Access
router

Bottleneck
router

No Attack Request 546 ns/pkt 0

Regular 781 ns/pkt 0

Attack Request 546 ns/pkt 492 ns/pkt

Regular 1267 ns/pkt 554 ns/pkt

Processing overhead
Packet
type

Access
router

Bottleneck
router

No Attack Request 546 ns/pkt 0

Regular 781 ns/pkt 0

Attack Request 546 ns/pkt 492 ns/pkt

Regular 1267 ns/pkt 554 ns/pkt

Processing overhead

One AES
computation
Tput ~ 2mpps

Packet
type

Access
router

Bottleneck
router

No Attack Request 546 ns/pkt 0

Regular 781 ns/pkt 0

Attack Request 546 ns/pkt 492 ns/pkt

Regular 1267 ns/pkt 554 ns/pkt

Processing overhead

One AES
computation
Tput ~ 2mpps

Packet
type

Access
router

Bottleneck
router

No Attack Request 546 ns/pkt 0

Regular 781 ns/pkt 0

Attack Request 546 ns/pkt 492 ns/pkt

Regular 1267 ns/pkt 554 ns/pkt

Processing overhead

One AES
computation
Tput ~ 2mpps

≤ 3AES computation.
Parallelizable

Packet
type

Access
router

Bottleneck
router

No Attack Request 546 ns/pkt 0

Regular 781 ns/pkt 0

Attack Request 546 ns/pkt 492 ns/pkt

Regular 1267 ns/pkt 554 ns/pkt

Processing overhead

One AES
computation
Tput ~ 2mpps

≤ 3AES computation.
Parallelizable

NetFence is suitable for high-speed
implementation

Packet
type

Access
router

Bottleneck
router

No Attack Request 546 ns/pkt 0

Regular 781 ns/pkt 0

Attack Request 546 ns/pkt 492 ns/pkt

Regular 1267 ns/pkt 554 ns/pkt

Header overhead

Header overhead

Header overhead: 20 – 28 bytes

Simulations

• Extensive ns-2 simulations

• Systems compared: more state in core
– Per-sender Fair Queuing (FQ)

– TVA+: capability + per-sender/receiver FQ

– StopIt: filter + per-sender FQ

NetFence
• Enables receivers to suppress unwanted traffic
• Effectively polices malicious flows

 A robust and scalable DoS solution

A Subset of Results

Expr 1: DoES Attacks

• In each source AS
– 1 user sends a 20KB file to a victim via TCP

– 99 attackers each send 1Mbps UDP traffic
to the victim

AS1

AS2

…
…

…

…AS10

10Gbps

Victim

NetFence Limits DoES

• All transfer finishes despite attackers >> users

• No per-sender queues

NetFence Limits DoES

• All transfer finishes despite attackers >> users

• No per-sender queues

Cost of scalability is
acceptable

Expr 2: DoNS Attacks

• In each source AS
– 25% legitimate users and 75% attackers

• In each destination AS
– One legitimate receiver or one colluding

attacker

AS1

AS2

…
…

…

…AS10

10Gbps

AS20

AS12

AS11

…

NetFence Limits DoNS

• Throughput ratio = avg(user)/avg(attacker)

NetFence Limits DoNS

• Throughput ratio = avg(user)/avg(attacker)

NetFence provides
fairness

NetFence Limits DoNS

• Throughput ratio = avg(user)/avg(attacker)

NetFence Limits DoNS

• Throughput ratio = avg(user)/avg(attacker)

Per-receiver queuing. Topology
dependent performance.

NetFence Limits DoNS

• Fairness index among legitimate users

 22
)(ii xnx

NetFence Limits DoNS

• Fairness index among legitimate users

 22
)(ii xnx

NetFence provides
fairness

Conclusion

• NetFence
– First comprehensive solution combating DoES

and DoNS attacks scalably
–Design principle: inside-out, network-host

joint lines of defense

–Goals: Scalable, robust, and open
– Key idea: Hierarchical, secure congestion

policing coupled with network capabilities

Victim

(DoES) (DoNS)

Thank you!

• Questions
– xwy@cs.duke.edu

– xinl@cs.duke.edu

– xia_yong@nec.cn

mailto:xwy@cs.duke.edu
mailto:xwy@cs.duke.edu
mailto:xinl@cs.duke.edu
mailto:xia_yong@nec.cn

