NetFence: Preventing Internet
Denial of Service from Inside Out

Xiaowei Yang (Duke University)
with Xin Liu (Duke University)
Yong Xia (NEC Labs China)

Sigcomm 2010
Delhi, India

 Distributed attacks: many bots
send packet floods to exhaust
shared resources

— Bandwidth, memory, or CPU

Largest DDoS Attack
- 49 Gigabits Per Second

a0 49
o 45 =
L Anticipated Th
3 argest Anticipate reat
— 35 a -
; > N ’r 12 M ‘rh
S
L;j 20 .B
g redential/Identity Thedt B DNS Cache Poisaning
0 15 . - :
g 1 ° ﬁiil fu'ii : A
%) Ma : _—

| os 12

(4]

Fgre]' Largest DDoS Altack - 49 Gigabits Per Second 30 |~

or Matworks, Inc.

ts

2009 Survey results
by Arbor Networks,
Inc. among 132

network operators et v

Survey Responden

Largest DDoS Attack
- 49 Gigabits Per Second

a0 49
o 45 =
L Anticipated Th
g argest Anticipate reat
5 35 - -
s = ~ NexT 12 MonThs
O » i
Q - recdantial/ [dentity Thett B CNS Cache Poisaning
U—“‘j) 10 BGF Route Hijacking System/Infrastructure Compromise
E 10 (Malicious or Unintentional) B o

0.4 1.2
(8]

L

1::“;&1‘ Lai ierD .ISHf ck - 49 Gigabits Per Second :%: iz : -.
2009 Survey results . .
by Arbor Networks,
Inc. among 132 |
network operators 4 st i o

Survey Respon

Largest DDoS Attack
- 49 Gigabits Per Second

a0 49

E 45

g a0 40
w
(7]

5 35
[

m 30

L

m 5

o 25
[

I 20

o

] 5
o 15

E ‘0 10

E 5

0.4 1.2
(¥

Fgre]'LngDSka 49 Gigabits Per Second
5 or Matworks, Inc.

2009 Survey results
by Arbor Networks,
Inc. among 132
network operators

/Largest Anticipated Threat

- NexT 12 MonThs

W e
redantial /lder W DhS 1e Poiganing
BGP Route Hijacking System/ Infrastructure Compromise

IMalicious ar Unintentianall

. Worms

IR0
30w |—

L

T 25w | :

L]

L=
200

Survey Respon

Figure 4: Largest Anticipated Threat — Next 12 Months

Source: Arbor Metworks, Inc,

Largest DDoS Attack
- 49 Gigabi

ts Per Second

2009

49

d

N\ Next 12 Mo

Credential /ldentity Thit

Gigabits Per Secon

Attack Size -

/Largest Anticipated Threat

nth

. Botnets

Figure 1: Largest DDoS Aftack - 49 Gigabits Per Second

Source: Arbor Metworks, Inc.

2009 Survey results
by Arbor Networks,
Inc. among 132
network operators

Survey Respondents

Source: Arbor Metworks, Inc,

Figure 4: Largest Anticipated Threat — Next 12 Months

Largest DDoS Attack
- 49 Gigabits Per Second

d

Gigabits Per Secon

Attack Size -

G 2 Hijac
(Malicicus or Unintentional)

/Largest Anticipated Threat
- Next 12 Mo

Credential /ldentity Thit

nth

. Botnets

Figure 1: Largest DDoS Attack - 49 Gigabits Per Second 300

Source: Arbor Metworks, Inc.

2009 Survey results
by Arbor Networks,
Inc. among 132

Survey Respondents

Figure 4: Largest Anticipated Threat — Next 12 Months

network operators

ree: Arbor Matworks, Ine,

Combating DoS is Difficult

A fundamental architecture problem

1. Open: Any to any communication, and
new applications

2. Robust: Non-disrupted communications
despite compromised hosts and routers

* DoS defense must be built inside out
— Rethinking the Internet architecture

Previous Work: Receivers as Victims

* Much work: AIP, AITF, CenterTrack, dFence, Defense-by-
Offense, FastPass, Flow-Cookies, Kill-a-Bot, LazySusan, Mayday,
OverDoSe, PacketSymmetry, Phalanx, Pushback, Portcullis, STFF,
S0S, SpeakUp, StopIt, TVA..

* Denial of Edge Service (DoES)

— Enable receivers to suppress unwanted traffic
— Network filters, network capabilities

Previous Work: Receivers as Victims

Filter (A,V)

* Much work: AIP, AITF, CenterTrack, dFence, Defense-by-
Offense, FastPass, Flow-Cookies, Kill-a-Bot, LazySusan, Mayday,
OverDoSe, PacketSymmetry, Phalanx, Pushback, Portcullis, STFF,
S0S, SpeakUp, StopIt, TVA..

* Denial of Edge Service (DoES)

— Enable receivers to suppress unwanted traffic
— Network filters, network capabilities

Previous Work: Receivers as Victims

Filter (A,V)

* Much work: AIP, AITF, CenterTrack, dFence, Defense-by-
Offense, FastPass, Flow-Cookies, Kill-a-Bot, LazySusan, Mayday,
OverDoSe, PacketSymmetry, Phalanx, Pushback, Portcullis, STFF,
S0S, SpeakUp, StopIt, TVA..

* Denial of Edge Service (DoES)

— Enable receivers to suppress unwanted traffic
— Network filters, network capabilities

Previous Work: Receivers as Victims

Filter (A,V)

Victim

* Much work: AIP, AITF, CenterTrack, dFence, Defense-by-
Offense, FastPass, Flow-Cookies, Kill-a-Bot, LazySusan, Mayday,
OverDoSe, PacketSymmetry, Phalanx, Pushback, Portcullis, STFF,
S0S, SpeakUp, StopIt, TVA..

* Denial of Edge Service (DoES)

— Enable receivers to suppress unwanted traffic
— Network filters, network capabilities

New Threat: Denial of Network
Service (DoNS)

* Bots can collude to send packet floods
» Incapable of identifying attack traffic

New Threat: Denial of Network
Service (DoNS)

* Bots can collude to send packet floods
» Incapable of identifying attack traffic

New Threat: Denial of Network
Service (DoNS)

* Bots can collude to send packet floods
» Incapable of identifying attack traffic

New Threat: Denial of Network
Service (DoNS)

* Bots can collude to send packet floods
» Incapable of identifying attack traffic

New Threat: Denial of Network
Service (DoNS)

* Bots can collude to send packet floods
» Incapable of identifying attack traffic

DoS

DoS

Victim
Denial of Edge
Service (DoES)

| Victim
Denial of Edge
Service (DoES)

DoS

| Victim
Denial of Edge
Service (DoES)

Denial of Network
Service (DoNS)

| Victim
Denial of Edge
Service (DoES)

Denial of Network
Service (DoNS)

N

How can we design a network
architecture that can combat both

DoES and DoNS?
\ %

Solution: NetFence

« Design principle: inside-out, network-host
joint lines of defense

1. Network controls its resource allocation
« Combating DoNS

2. End systems controls what they receive
» Combating DoES

Key Idea

1. Hierarchical,

<4

2. Secure congestion policing in the network
-+

3. Coupled with network capabilities

4

Goals: Scalable, Robust, Open

Hierarchical Congestion Policing

& &

 Scalable: no per-flow state in the core

1. Aggregate flow policing placed at edge
routers [CSFQ]

2. AS-level policing in the core
Fair queuing or rate limiting

Hiemrchical Congestion Policing

& o8

 Scalable: no per-flow state in the core

1. Aggregate flow policing placed at edge
routers [CSFQ]

2. AS-level policing in the core
Fair queuing or rate limiting

)
""-""W—

r"vﬁ .

Hierarchical Congestion Policing
Y Slow down flooding senders
)

fﬁ/_

 Scalable: no per-flow state in the core

1. Aggregate flow policing placed at edge
routers [CSFQ]

2. AS-level policing in the core
Fair queuing or rate limiting

)
__”z/_

Hierarchical Congestion Policing
Slow down flooding senders

 Scalable: no per-flow state in the core

1. Aggregate flow policing placed at edge
routers [CSFQ]

2. AS-level policing in the core
Fair queuing or rate limiting

Secure Congestion Policing

* Robust to compromised routers and hosts
— Efficient symmetric key cryptography

— Packets carry secure tokens

« Source AS authenticators [Passport NSDIO8] >
AS Accountability

« Secure congestion policing feedback

Secure Congestion Policing

 Robust to compromised routers and hosts
— Efficient symmetric key cryptography

— Packets carry secure tokens

« Source AS authenticators [Passport NSDIO8] >
AS Accountability

« Secure congestion policing feedback

Secure Congestion Policing Feedback as
Network Capabilities

* Open
— Receiver explicitly authorizes desired traffic

e Return if wants to receive
* Not, otherwise

Secure Congestion Policing Feedback as
Network Capabilities

* Open
— Receiver explicitly authorizes desired traffic

e Return if wants to receive
* Not, otherwise

Secure Congestion Policing Feedback as
Network Capabilities

* Open
— Receiver explicitly authorizes desired traffic

e Return if wants to receive
* Not, otherwise

Secure Congestion Policing Feedback as
Network Capabilities

* Open
— Receiver explicitly authorizes desired traffic

e Return if wants to receive
* Not, otherwise

Now the Detalils...

How does NetFence Work?

* A sender sends two types of packets
Request Regular

[|

How does NetFence Work?

* A sender sends two types of packets

Request Regular
L] 4

NetFence Header

How does NetFence Work?

* A sender sends two types of packets

Request Regular
L] 4

NetFence Header

How does NetFence Work?

* A sender sends two types of packets
Request Regular

L] W4
e [e

NetFence Header

nop mg\n

No attack | | Attack|

How does NetFence Work?

* A sender sends two types of packets
Request Regular

L] W4
e [e

NetFence Header

nop mg\n

No attack | | Attack|

How does NetFence Work?

* A sender sends two types of packets
Request Regular

L] W4
e [e

NetFence Header

nop mg\n

No attack | | Attack|

How does NetFence Work?

A sender first sends a request packet

» Its access router stamps nop

—nhow 2> ts (timestamp), null = link, nop >
mode

— =g = MACW(src, dst, ts, null, nop)

How does NetFence Work?

A sender first sends a request packet

» Its access router stamps nop

—nhow 2> ts (timestamp), null = link, nop >
mode

— =g = MACM(src, dst, ts, null, nop)

How does NetFence Work?

A sender first sends a request packet

» Its access router stamps nop

—nhow 2> ts (timestamp), null = link, nop >
mode

— =g = MACM(src, dst, ts, null, nop)

How does NetFence Work?

A sender first sends a request packet

» Its access router stamps nop

—nhow 2> ts (timestamp), null = link, nop >
mode

— =g = MACM(src, dst, ts, null, nop)

How does NetFence Work?

| =
., 2 ‘ L
@ﬂ

A time-varying secret key

A sender first sends a request packet

* Its access router stamps

—nhow 2> ts (timestamp), null = link, nop >
mode

— =g = MACM(src, dst, ts, null, nop)

How does NetFence Work?

L=l

» A router under attack replaces nop with LY
— All traffic
— Signal congestion to access router
— L= link, ¥ 2 act, mon = mode
- 3¢ = MAG(src, dst, ts, L, mon, ¥, —¢)
— No downstream overwrite

How does NetFence Work?

L=l

» A router under attack replaces nop with LY
— All traffic
— Signal congestion to access router
— L= link, ¥ 2 act, mon = mode
- 3¢ = MAG(src, dst, ts, L, mon, ¥, —¢)
— No downstream overwrite

How does NetFence Work?

L=l

o s ed ¢

» A router under attack replaces nop with LY
— All traffic
— Signal congestion to access router
— L= link, ¥ 2 act, mon = mode
- 3¢ = MAG(src, dst, ts, L, mon, ¥, —¢)
— No downstream overwrite

How does NetFence Work?

LYl

g _oeroa ¢

» A router under attack replaces nop with LY
— All traffic
— Signal congestion to access router
— L= link, ¥ 2 act, mon = mode
- 3¢ = MAG(src, dst, ts, L, mon, ¥, —¢)
— No downstream overwrite

How does NetFence Work?

Nira
#\ 3
& &

» A router under attack replaces nop with LY
— All traffic
— Signal congestion to access router
— L= link, ¥ 2 act, mon = mode
- 3¢ = MAG(src, dst, ts, L, mon, ¥, —¢)
— No downstream overwrite

How does NetFence Work?

LR

A shared time-varying secret key

via distributed Diffie-Hellman via BGP [Passport]
» A router under attack replaces nop with LY

— All traffic

— Signal congestion to access router

— L= link, ¥ 2 act, mon = mode

— 3¢ = MAG(src, dst, ts, L, mon, ¥, —¢)

— No downstream overwrite

How does NetFence Work?

L
A\

A shared time-varying secret key

via distributed Diffie-Hellman via BGP [Passport]
» A router under attack replaces nop with LY

— All traffic

— Signal congestion to access router

— L= link, ¥ 2 act, mon = mode

— 3¢ = MAG(src, dst, ts, L, mon, ¥, —¢)

— No downstream overwrite

.

How does NetFence Work?

L
A\

A shared time-varying secret key

via distributed Diffie-Hellman via BGP [Passport]
» A router under attack replaces nop with LY

— All traffic

— Signal congestion to access router

— L= link, ¥ 2 act, mon = mode

— 3¢ = MAG(src, dst, ts, L, mon, ¥, —¢)

— No downstream overwrite

.

How does NetFence Work?

L&

o8 o

* A receiver use the feedback as capabilities

 Sender sends reqgular packets that carry
the congestion policing feedback
— Could be when there is no attack

— Can't send if receiving no feedback from
receiver

&

Rﬁ
(®
%

&

R

How does NetFence Work?

* A receiver use the feedback as capabilities

 Sender sends reqgular packets that carry
the congestion policing feedback
— Could be when there is no attack

— Can't send if receiving no feedback from
receiver

How does NetFence Work?

o8 o

L&

&

Rﬁ
(®
%

&

R

* A receiver use the feedback as capabilities

 Sender sends reqgular packets that carry
the congestion policing feedback
— Could be when there is no attack

— Can't send if receiving no feedback from
receiver

How does NetFence Work?

o8 o

L&

&

Rﬁ
(®
%

&

R

* A receiver use the feedback as capabilities

 Sender sends reqgular packets that carry
the congestion policing feedback
— Could be when there is no attack

— Can't send if receiving no feedback from
receiver

How does NetFence Work?

* A receiver use the feedback as capabilities

 Sender sends reqgular packets that carry
the congestion policing feedback
— Could be when there is no attack

— Can't send if receiving no feedback from
receiver

How does NetFence Work?
4
o od

* A receiver use the feedback as capabilities

 Sender sends reqgular packets that carry
the congestion policing feedback
— Could be when there is no attack

— Can't send if receiving no feedback from
receiver

Rﬁ
(®
%

&

R

How does NetFence Work?

&
« Access router validates feedback
« Starts congestion policing

— One leaky bucket per (src, L) limits sending rate
— Not distinguish legitimate/malicious senders

e Resets LN
—how = ts,* = act
— t¢= MACy (src, dst, 1s, L, mon, 1)

4
)

g /)

P

Rﬁﬁ

How does NetFence Work?

&
« Access router validates feedback
« Starts congestion policing

— One leaky bucket per (src, L) limits sending rate
— Not distinguish legitimate/malicious senders

e Resets LN
—how = ts,* = act
— t¢= MACy (src, dst, 1s, L, mon, 1)

4
)

g /)

P

Rﬁﬁ

How does NetFence Work?
(src, L)
S Irgs

& &
« Access router validates feedback
« Starts congestion policing

— One leaky bucket per (src, L) limits sending rate
— Not distinguish legitimate/malicious senders

e Resets LN
—how = ts,* = act
— t¢= MACy (src, dst, 1s, L, mon, 1)

Q-

How does NetFence Work?

(src, L)

& &
« Access router validates feedback
« Starts congestion policing

— One leaky bucket per (src, L) limits sending rate
— Not distinguish legitimate/malicious senders

e Resets LN
—how = ts,* = act
— t¢= MACy (src, dst, 1s, L, mon, 1)

/";A'\
[l
) —
\
L
\.

P

Q-

How does NetFence Work?

\=-/ (src, L)
(1]

s eve g e
&

« Access router validates feedback

« Starts congestion policing

— One leaky bucket per (src, L) limits sending rate
— Not distinguish legitimate/malicious senders

e Resets LN
—how = ts,* = act
— t¢= MACy (src, dst, 1s, L, mon, 1)

/";A'\
T .\
) —
\
L
\.

P

Rﬁﬁ

How does NetFence Work?

How does NetFence Work?

How does NetFence Work?

» Establishes a congestion policing loop

— Bottleneck router signals
- If congested, L* > LV
e Otherwise, L1

— Access router polices

* Periodic Additive Increase Multiplicative Decrease
(AIMD, TCP-like) for fairness and efficiency

How does NetFence Work?

» Establishes a congestion policing loop

— Bottleneck router signals
- If congested, L* > LV
e Otherwise, L1

— Access router polices

* Periodic Additive Increase Multiplicative Decrease
(AIMD, TCP-like) for fairness and efficiency

How does NetFence Work?

» Establishes a congestion policing loop

— Bottleneck router signals
- If congested, L* > LV
e Otherwise, L1

— Access router polices

* Periodic Additive Increase Multiplicative Decrease
(AIMD, TCP-like) for fairness and efficiency

How does NetFence Work?

» Establishes a congestion policing loop

— Bottleneck router signals
- If congested, L* > LV
e Otherwise, L1

— Access router polices

* Periodic Additive Increase Multiplicative Decrease
(AIMD, TCP-like) for fairness and efficiency

How does NetFence Work?

» Establishes a congestion policing loop
— Bottleneck router signals
- If congested, L* > LY
e Otherwise, L1 /M
— Access router polices L LY

* Periodic Additive Increase Multiplicative Decrease
(AIMD, TCP-like) for fairness and efficiency

How does NetFence Work?

* Bottleneck router

1. Detect attack to start a policing cycle
Loss or load based

2. Signal congestion within a cycle
Random Early Detection (RED)

Recap: Why It Works

1. Secret keys to secure congestion policing
feedback

2. Periodic AIMD based on secure congestion
police feedback

ANV

LA LY

3. Secure congestion feedback as network
capabilities

Properties

* Provable fairness

— Denial of Service > Predictable Delay of
Service

Theorem: Given & good and B bad senders sharing
a bottleneck link of capacity €, regardless of the
attack strategies, any good sender g with

sufficient demand eventually obtains a fair share

v, poC
G+ B

where pz1 andV, is a transport efficiency factor.

Properties

* Provable fairness

— Denial of Service > Predictable Delay of
Service

Theorem: Given & good and B bad senders sharing
a bottleneck link of capacity €, regardless of the
attack strategies, any good sender g with

sufficient demand eventually obtains a fair share

v, poC
G)

where pz1 andV, is a transport efficiency factor.

Properties

* Provable fairness

— Denial of Service > Predictable Delay of
Service

Theorem: Given & good and B bad senders sharing
a bottleneck link of capacity €, regardless of the
attack strategies, any good sender g with

sufficient demand eventually obtains a fair share

v, poC
G+ B

where pz1 andV, is a transport efficiency factor.

Now the Trickier Stuff

More Challenges

« A broad range of attacks
— Flood request packets (with no feedback)
— Hide LV
— Evade attack detection
— On/Off

« Multiple bottlenecks

* Practical constraints
— Low overhead
— Gradual deployment
— Incentive-compatible adoption

More Challenges

« A broad range of attacks
— Flood request packets (with no feedback)
— Hide LV
— Evade attack detection
— On/Off

« Multiple bottlenecks

* Practical constraints
— Low overhead
— Gradual deployment
— Incentive-compatible adoption

Limiting Request Packet Floods

1. Separate request packet channel
2. Per-sender request packet policing
3. Priority-based backoff

Emulate computational puzzles

Limiting Request Packet Floods

1. Separate request packet channel
2. Per-sender request packet policing
3. Priority-based backoff

Emulate computational puzzles

Limiting Request Packet Floods

. ¥

1. Separate request packet channel
2. Per-sender request packet policing
3. Priority-based backoff

Emulate computational puzzles

Limiting Request Packet Floods

1. Separate request packet channel
2. Per-sender request packet policing
3. Priority-based backoff

Emulate computational puzzles

Limiting Request Packet Floods

. 2k—1
k 1

1. Separate request packet channel
2. Per-sender request packet policing
3. Priority-based backoff

Emulate computational puzzles

Limiting Request Packet Floods

_2k—1
k || b k-1

1. Separate request packet channel
2. Per-sender request packet policing
3. Priority-based backoff

Emulate computational puzzles

Limiting Request Packet Floods

_2k—1
k || b k-1

1. Separate request packet channel
2. Per-sender request packet policing
3. Priority-based backoff

Emulate computational puzzles

Limiting Request Packet Floods

_ (& (2R

1. Separate request packet channel
2. Per-sender request packet policing
3. Priority-based backoff

Emulate computational puzzles

1. Eventual success
2. Efficient: waiting replaces proof of work

Making hiding LY ineffective

* Robust signaling rate increase with L*
1. Treating the absence of L* as LV

2. Stamping no L™ for sufficiently long after
congestion ends

Making hiding LY ineffective

t ty + 2 lg Bottleneck

Router

* Robust signaling rate increase with L*
1. Treating the absence of L* as LV

2. Stamping no L™ for sufficiently long after
congestion ends

Making hiding LY ineffective

Lt o+ 2 lgy

Bottleneck
Router

* Robust signaling rate increase with L*
1. Treating the absence of L* as LV

2. Stamping no L™ for sufficiently long after
congestion ends

Making hiding LY ineffective

Lt o+ 2 lgy

Bottleneck
Router

* Robust signaling rate increase with L*
1. Treating the absence of L* as LV

2. Stamping no L™ for sufficiently long after
congestion ends

Making hiding LY ineffective

_ S
rd

b to + 2 lg Bottleneck
Router

* Robust signaling rate increase with L*
1. Treating the absence of L* as LV

2. Stamping no L™ for sufficiently long after
congestion ends

Making hiding LY ineffective

_ S
rd

b to + 2 lg Bottleneck
Router

* Robust signaling rate increase with L*
1. Treating the absence of L* as LV

2. Stamping no L™ for sufficiently long after
congestion ends

Making hiding LY ineffective

_ S
rd

i b to + 2 lo Bottleneck
Router

te te+ Ictrl ACCGSS

Router

* Robust signaling rate increase with L*
1. Treating the absence of L* as LV

2. Stamping no L™ for sufficiently long after
congestion ends

Making hiding LY ineffective

_ S
rd

b to + 2 lg Bottleneck

Router

te te+ Ic'[rl

Access
Router

* Robust signaling rate increase with L*
1. Treating the absence of L* as LV

2. Stamping no L™ for sufficiently long after
congestion ends

Making hiding LY ineffective

_ S
rd

i b ty +2 |y

Bottleneck
Router
te te+ Ictrl ACCGSS
Router

* Robust signaling rate increase with L*
1. Treating the absence of L* as LV

2. Stamping no L™ for sufficiently long after
congestion ends

Making hiding LY ineffective

_ S
rd

i b ty +2 |y

Bottleneck
Router
te te+ Ictrl ACCGSS
Router

* Robust signaling rate increase with L*
1. Treating the absence of L as LV

2. Stamping no L* for sufficiently long after
congestion ends

Making hiding L¥ ineffective

_ S
rd

i b ty +2 |y

Bottleneck
Router
te te+ Ictrl ACCGSS
Router

* Robust signaling rate increase with L*
1. Treating the absence of L as LV

2. Stamping no L* for sufficiently long after
congestion ends

Making hiding L¥ ineffective

_ S
rd

i b ty +2 |y

Bottleneck
Router
te te+ Ictrl ACCGSS
Router

* Robust signaling rate increase with L*
1. Treating the absence of L as LV

2. Stamping no L* for sufficiently long after
congestion ends

Making hiding LY ineffective

_ S
rd

i b ty +2 |y

Bottleneck
Router

te te+ Ictrl ACCGSS

\ Y ’ Router

* Robust signaling rate increase with L*
1. Treating the absence of L as LV

2. Stamping no L* for sufficiently long after
congestion ends

Making hiding L¥ ineffective

_ S
rd

b to + 2 lg Bottleneck
e
t, tet low Access
\ ' ’ Router
 Rokt = Te"'Ic‘rr'l <Tr+ 2IcTrl jith LT
1 T =>Asender can't present LT
> o > Rate limit is reduced ~_ong after

congestion ends

Performance

Implementation

» A software implementation in Linux
—XORP and Click
—AES-128 as the MAC function

* DeterlLab experiments
—Dual-core Intel Xeon 3GHz CPUs
—26B memory

Implementation

» A software implementation in Linux
—XORP and Click
—AES-128 as the MAC function

. DeterlLab Encrypting the Internet!

—Dual-core Ir'n‘el Xeon 3GHz CPUs
—26B memory

Implementation

» A software implementation in Linux
—XORP and Click
—AES-128 as the MAC function

* DeterlLab experiments
—Dual-core Intel Xeon 3GHz CPUs
—26B memory

Processing overhead

Packet Access Bottleneck
type router router

No Attack Request 546 ns/pkt 0
Regular 781 ns/pkt 0

Attack Request 546 ns/pkt 492 ns/pkt
Regular 1267 ns/pkt 554 ns/pkt

Processing overhead

Packet Access Bottleneck
type router router
No Attack Request 546 ns/pkt

Regular 781 ns/pkt
Attack Request 546 ns/pkt

Regular 1267 ns/pkt 554 ns/pkt

Processing overhead

Packet Access Bottleneck
type router router
No Attack Request 546 ns/pkt “
Regular 781 ns/pkt :
Attack Request 546 ns/pkt

492 ns/pkt
54 ns/pk

Regular 1267 ns/pkt

Processing overhead

Packet Access Bottleneck
type router router
No Attack Request 546 ns/pkt “
Regular 781 ns/pkt s
Attack Request 546 ns/pkt (492 ns/pkt
Regular 1267 ns/pkt Q54 ns/pk

One AES
computation
Tput ~ 2mpps

Processing overhead

Packet Access Bottleneck
type router router
No Attack Request (546 ns/pkt) “
Regular 781 ns/pkt s
Attack Request 546 ns/pkt | (492 ns/pkt
Regular | 1267 ns/pkt) \o54 ns/pK

One AES
computation
Tput ~ 2mpps

Processing overhead

Packet Access
type router

Bottleneck
routgf

No Attack Request (546 ns/pkt

Attack

Regular 781 ns/pkt
Request 546 ns/pkt

Regular \ 1267 ns/pki;

492 ns/pkt
54 ns/pk

< 3AES computation.
Parallelizable

One AES
computation
Tput ~ 2mpps

Processing overhead

Packet Access Bottleneck
type router router
No Attack Request (546 ns/pkt

492 ns/pkt
54 ns/pk

Regular 781 ns/pkt
Attack Request 546 ns/pkt

Regular \ 1267 ns/pki;

< 3AES computation. One AES

Parallelizable computation
Tput ~ 2mpps

NetFence is suitable for high-speed
implementation

Header overhead

1xxx: request packet
Oxoex: regular packet
00xx: regular packet w/ nop feedback
0lxx: regular packet w/ mon feedback
xxx1: w/ returned feedback

—

Common VER(4) [TYPE(4)] PROTO(8) [PRIORITY(8) FLAGS(8)
Header TIMESTAMP (32)
nop
Feedback Common Header (64)
LINK-ID (32)
MAC (32)
mon Common Header (64)
Feedback
LINK-ID (32)
MAC (32)
TOKEN-NOP (32)
Returned
MAC reurn (32)
Feedback
May be omitted{ LINK-ID,e1urn (32)
FLAGS field: Lxooorexx: the action is decr

x1xooxx: the returned action is decr
xxxxx1xx: LINK-IDreturn is present
w0ocxYY: YY is the timestamp of the returned feedback

Header overhead

1xxx: request packet

Oxoex: regular packet

00xx: regular packet w/ nop feedback
0lxx: regular packet w/ mon feedback
xxx1: w/ returned feedback

—N—
Common VER(4) [TYPE(4)] PROTO(8) [PRIORITY(8) FLAGS(8)
Header TIMESTAMP (32)
nop
Feedback Common Header (64)

LINK-ID (32)
MAC (32)

Header overhead: 20 - 28 bytes

LINK-ID (32)
MAC (32)
TOKEN-NOP (32)

Returned
MAC e (32)
Feedback
May be omitted{ LINK-ID,e1urn (32)
FLAGS field: 1xxooexx: the action is decr

x1xooxx: the returned action is decr
xxxxx1xx: LINK-IDreturn is present
xoooxxYY: YY is the timestamp of the returned feedback

Simulations

 Extensive ns-2 simulations

« Systems compared: more state in core
— Per-sender Fair Queuing (FQ)
— TVA+: capability + per-sender/receiver FQ
— StopIt: filter + per-sender FQ

NetFence
« Enables receivers to suppress unwanted traffic
» Effectively polices malicious flows

=> A robust and scalable DoS solution

A Subset of Results

Expr 1: DoES Attacks

AS, =3 Victim

10Gbps

 Tn each source AS
— 1 user sends a 20KB file to a victim via TCP

— 99 attackers each send 1Mbps UDP traffic
to the victim

NetFence Limits DoES

[
-

— FQ

z 8 NetFence

2 TVA+

i 6 Stoplt

% 4

=

e T — e R — +
2 0 l 1 1 J

- 25K 50K 100K 200K

Number of Simulated Senders

* All fransfer finishes despite attackers >> users
* No per-sender queues

NetFence Limits DoES

[
-

F S—
2 TVA+ acceptable
i 6 Stoplt
S 4
=
e T — e R — +
2 0 l 1 1 J
- 25K 50K 100K 200K

Number of Simulated Senders

* All fransfer finishes despite attackers >> users
* No per-sender queues

Expr 2: DoNS Attacks

* In each source AS
— 25% legitimate users and 75% attackers

 Tn each destination AS

— One legitimate receiver or one colluding
attacker

NetFence Limits DoNS

o 1 A | | |
52 0.8
2 06 |
"on . NetFence —+
= 0.4 FQ
< 0.2 Stoplt
0 - TVA+ | | |
25K 50K 100K 200K

Number of Simulated Senders

» Throughput ratio = avg(user)/avg(attacker)

NetFence Limits DoNS

g 7 7 ’ | |
< 0.8 .
5 06 | NetFence provides
o, Y- .
"on . NetFence —+ fairness
= 04 FQ
< 0.2 Stoplt
X TVA+ | | |
25K 50K 100K 200K

Number of Simulated Senders

» Throughput ratio = avg(user)/avg(attacker)

NetFence Limits DoNS

o 1 A | | |
52 0.8
2 06 |
"on . NetFence —+
= 0.4 FQ
< 0.2 Stoplt
0 - TVA+ | | |
25K 50K 100K 200K

Number of Simulated Senders

» Throughput ratio = avg(user)/avg(attacker)

NetFence Limits DoNS

1+ | | |
o !
S 08 Per-receiver queuing. Topology
S 06 | dependent performance.
(- .
"o . NetFence —+
= 0.4
2 FQ
= 02 r Stoplt
0 - TVA+ | | |
25K 50K 100K 200K

Number of Simulated Senders

» Throughput ratio = avg(user)/avg(attacker)

NetFence Limits DoNS

< 1 F = YL

L

<

S 0.8

S 0.6 |

= 04 NetFence —+

o Y FQ

—

2 02 Stoplt

- 0 | | - TVA+ |
25K S0K 100K 200K

Number of Simulated Senders

* Fairness index among legitimate users

(in)2/”in2

NetFence Limits DoNS

< 1 F = |

QL

-

S 08 ¢t

S 0.6 | .

g NetFence provides NetFence -

o 041 fairness FQ

2 02 Stoplt

> L | TVA+ <
25K 50K 100K 200K

Number of Simulated Senders

* Fairness index among legitimate users

(le.)2/”in2

Conclusion

Victim

 NetFence

— First comprehensive solution combating DoES
and DoNS attacks scalably

— Design principle: inside-out, network-host
joint lines of defense

— Goals: Scalable, robust, and open

— Key idea: Hierarchical, secure congestion
policing coupled with network capabilities

Thank you!

* Questions
— xwy@cs.duke.edu
— Xinl@cs.duke.edu
— Xia_yong@nec.cn

mailto:xwy@cs.duke.edu
mailto:xwy@cs.duke.edu
mailto:xinl@cs.duke.edu
mailto:xia_yong@nec.cn

