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DoS is a Formidable Threat 

• Distributed attacks: many bots 
send packet floods to exhaust 
shared resources 
– Bandwidth, memory, or CPU
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Combating DoS is Difficult

• A fundamental architecture problem
1. Open: Any to any communication, and 

new applications

2. Robust: Non-disrupted communications 
despite compromised hosts and routers

• DoS defense must be built inside out
– Rethinking the Internet architecture



Previous Work: Receivers as Victims 

• Much work: AIP, AITF, CenterTrack, dFence, Defense-by-
Offense, FastPass, Flow-Cookies, Kill-a-Bot, LazySusan, Mayday, 
OverDoSe,  PacketSymmetry, Phalanx, Pushback, Portcullis, SIFF, 
SOS, SpeakUp, StopIt, TVA…

• Denial of Edge Service (DoES)
– Enable receivers to suppress unwanted traffic

– Network filters, network capabilities
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How can we design a network 
architecture that can combat both 
DoES and DoNS?

Denial of Network
Service (DoNS)

DoS

=
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Solution: NetFence

• Design principle: inside-out, network-host 
joint lines of defense

1. Network controls its resource allocation

• Combating DoNS

2. End systems controls what they receive

• Combating DoES



Key Idea

1. Hierarchical, 

2. Secure congestion policing in the network

3. Coupled with network capabilities

+

+

Goals: Scalable, Robust, Open



Hierarchical Congestion Policing

• Scalable: no per-flow state in the core
1. Aggregate flow policing placed at edge 

routers [CSFQ]
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• Fair queuing or rate limiting
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Secure Congestion Policing

• Robust to compromised routers and hosts
– Efficient symmetric key cryptography

– Packets carry secure tokens
• Source AS authenticators [Passport,NSDI08] 
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• Secure congestion policing feedback
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Secure Congestion Policing Feedback as 
Network Capabilities

• Open
– Receiver explicitly authorizes desired traffic
• Return if wants to receive

• Not, otherwise 

ASx

ASy

xx

yyy



Secure Congestion Policing Feedback as 
Network Capabilities

• Open
– Receiver explicitly authorizes desired traffic
• Return if wants to receive

• Not, otherwise 

ASx

ASy

xx

yyy



Secure Congestion Policing Feedback as 
Network Capabilities

• Open
– Receiver explicitly authorizes desired traffic
• Return if wants to receive

• Not, otherwise 

ASx

ASy

xx

yyy



Secure Congestion Policing Feedback as 
Network Capabilities

• Open
– Receiver explicitly authorizes desired traffic
• Return if wants to receive

• Not, otherwise 

ASx

ASy

xx

yyy



Now the Details…
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How does NetFence Work? 

• Bottleneck router
1. Detect attack to start a policing cycle
• Loss or load based

2. Signal congestion within a cycle
• Random Early Detection (RED)



Recap: Why It Works

1. Secret keys to secure congestion policing 
feedback

2. Periodic AIMD based on secure congestion 
police feedback

3. Secure congestion feedback as network 
capabilities

L L



Properties

• Provable fairness
– Denial of Service  Predictable Delay of 

Service

Theorem: Given G good and B bad senders sharing 
a bottleneck link of capacity C, regardless of the 
attack strategies, any good sender g with 
sufficient demand eventually obtains a fair share       

where        and    is a transport efficiency factor. 
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Now the Trickier Stuff
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• Multiple bottlenecks
• Practical constraints
– Low overhead
– Gradual deployment
– Incentive-compatible adoption
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Limiting Request Packet Floods

1. Separate request packet channel

2. Per-sender request packet policing

3. Priority-based backoff
• Emulate computational puzzles

L

k

1
2

 k

k-1

1. Eventual success
2. Efficient: waiting replaces proof of work



Making hiding  L ineffective

• Robust signaling rate increase with L

1. Treating the absence of L as L

2. Stamping no L for sufficiently long after 
congestion ends



Making hiding  L ineffective

• Robust signaling rate increase with L

1. Treating the absence of L as L

2. Stamping no L for sufficiently long after 
congestion ends

Bottleneck 

Router

t1 t2 t2  + 2 Ictrl



Making hiding  L ineffective

• Robust signaling rate increase with L

1. Treating the absence of L as L

2. Stamping no L for sufficiently long after 
congestion ends

Bottleneck 

Router

t1 t2 t2  + 2 Ictrl



Making hiding  L ineffective

• Robust signaling rate increase with L

1. Treating the absence of L as L

2. Stamping no L for sufficiently long after 
congestion ends

Bottleneck 

Router

t1 t2 t2  + 2 Ictrl



Making hiding  L ineffective

• Robust signaling rate increase with L

1. Treating the absence of L as L

2. Stamping no L for sufficiently long after 
congestion ends

Bottleneck 

Router

t1 t2 t2  + 2 Ictrl



Making hiding  L ineffective

• Robust signaling rate increase with L

1. Treating the absence of L as L

2. Stamping no L for sufficiently long after 
congestion ends

Bottleneck 

Router

t1 t2 t2  + 2 Ictrl



Making hiding  L ineffective

• Robust signaling rate increase with L

1. Treating the absence of L as L

2. Stamping no L for sufficiently long after 
congestion ends

Bottleneck 

Router

t1 t2 t2  + 2 Ictrl

Access 

Router

te te+ Ictrl



Making hiding  L ineffective

• Robust signaling rate increase with L

1. Treating the absence of L as L

2. Stamping no L for sufficiently long after 
congestion ends

Bottleneck 

Router

t1 t2 t2  + 2 Ictrl

Access 

Router

te te+ Ictrl



Making hiding  L ineffective

• Robust signaling rate increase with L

1. Treating the absence of L as L

2. Stamping no L for sufficiently long after 
congestion ends

Bottleneck 

Router

t1 t2 t2  + 2 Ictrl

Access 

Router

te te+ Ictrl



Making hiding  L ineffective

• Robust signaling rate increase with L

1. Treating the absence of L as L

2. Stamping no L for sufficiently long after 
congestion ends

Bottleneck 

Router

t1 t2 t2  + 2 Ictrl

Access 

Router

te te+ Ictrl



Making hiding  L ineffective

• Robust signaling rate increase with L

1. Treating the absence of L as L

2. Stamping no L for sufficiently long after 
congestion ends

Bottleneck 

Router

t1 t2 t2  + 2 Ictrl

Access 

Router

te te+ Ictrl



Making hiding  L ineffective

• Robust signaling rate increase with L

1. Treating the absence of L as L

2. Stamping no L for sufficiently long after 
congestion ends

Bottleneck 

Router

t1 t2 t2  + 2 Ictrl

Access 

Router

te te+ Ictrl



Making hiding  L ineffective

• Robust signaling rate increase with L

1. Treating the absence of L as L

2. Stamping no L for sufficiently long after 
congestion ends

Bottleneck 

Router

t1 t2 t2  + 2 Ictrl

Access 

Router

te te+ Ictrl



Making hiding  L ineffective

• Robust signaling rate increase with L

1. Treating the absence of L as L

2. Stamping no L for sufficiently long after 
congestion ends

Bottleneck 

Router

t1 t2 t2  + 2 Ictrl

Access 

Router

te te+ Ictrl

 te+Ictrl ≤ t2 + 2Ictrl

A sender can’t present L

 Rate limit is reduced



Performance
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Processing overhead

One AES 
computation
Tput ~ 2mpps

≤ 3AES computation. 
Parallelizable

NetFence is suitable for high-speed 
implementation

Packet
type

Access 
router

Bottleneck
router

No Attack Request 546 ns/pkt 0

Regular 781 ns/pkt 0

Attack Request 546 ns/pkt 492 ns/pkt

Regular 1267 ns/pkt 554 ns/pkt
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Header overhead

Header overhead: 20 – 28 bytes 



Simulations

• Extensive ns-2 simulations

• Systems compared: more state in core
– Per-sender Fair Queuing (FQ)

– TVA+: capability + per-sender/receiver FQ

– StopIt: filter + per-sender FQ

NetFence
• Enables receivers to suppress unwanted traffic 
• Effectively polices malicious flows

 A robust and scalable DoS solution



A Subset of Results



Expr 1: DoES Attacks

• In each source AS
– 1 user sends a 20KB file to a victim via TCP

– 99 attackers each send 1Mbps UDP traffic 
to the victim

AS1

AS2

…
…

…

…AS10

10Gbps

Victim



NetFence Limits DoES

• All transfer finishes despite attackers >> users

• No per-sender queues



NetFence Limits DoES

• All transfer finishes despite attackers >> users

• No per-sender queues

Cost of scalability is 
acceptable



Expr 2: DoNS Attacks

• In each source AS
– 25% legitimate users and 75% attackers

• In each destination AS
– One legitimate receiver or one colluding 

attacker

AS1

AS2

…
…

…

…AS10

10Gbps

AS20

AS12

AS11

…



NetFence Limits DoNS

• Throughput ratio = avg(user)/avg(attacker) 
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NetFence Limits DoNS

• Throughput ratio = avg(user)/avg(attacker) 

Per-receiver queuing. Topology 
dependent performance.



NetFence Limits DoNS

• Fairness index among legitimate users
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NetFence Limits DoNS

• Fairness index among legitimate users
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NetFence provides 
fairness



Conclusion

• NetFence
– First comprehensive solution combating DoES

and DoNS attacks scalably
–Design principle: inside-out, network-host 

joint lines of defense

–Goals: Scalable, robust, and open
– Key idea: Hierarchical, secure congestion 

policing coupled with network capabilities

Victim

(DoES) (DoNS)



Thank you!

• Questions
– xwy@cs.duke.edu

– xinl@cs.duke.edu

– xia_yong@nec.cn

mailto:xwy@cs.duke.edu
mailto:xwy@cs.duke.edu
mailto:xinl@cs.duke.edu
mailto:xia_yong@nec.cn

