
Comput Visual Sci 1:41–52 (1997) Computing and
Visualization in Science
c© Springer-Verlag 1997

NETGEN
An advancing front 2D/3D-mesh generator based on abstract rules
Joachim Scḧoberl?

Institut für Mathematik, Johannes-Kepler-Universität Linz, Altenberger Strasse 69, A-4040 Linz, Austria

Received: 11 December 1996 / Accepted: 21 February 1997
Communicated by G. Wittum

Abstract. In this paper, the algorithms of the automatic
mesh generator NETGEN are described. The domain is pro-
vided by a Constructive Solid Geometry (CSG). The whole
task of 3D mesh generation splits into four subproblems of
special point calculation, edge following, surface meshing
and finally volume mesh generation. Surface and volume
mesh generation are based on the advancing front method.
Emphasis is given to the abstract structure of the element
generation rules. Several techniques of mesh optimization
are tested and quality plots are presented.

1 Introduction

Many engineering disciplines require partial differential
equation (pde) modeling. Two of the most popular meth-
ods to treat pdes numerically are the finite element method
and the finite volume method. Both require partitioning the
domain of interest into a set of simple domains, the elements.
In two dimensions triangles and quadrilaterals are used, in
three dimensions tetrahedra, hexahedra and pentahedra are
the most popular elements. It is desirable to perform this par-
titioning automatically. There are several approaches work-
ing well in the plane, but cause a lot of difficulties in three
dimensions. Overviews of mesh generation algorithms are
given in [1], [13].

One of the most popular methods is the advancing front
technique, see e.g. [10], [14], [9], [8], [6]. The input to this
method is a boundary mesh. Starting with the original bound-
ary, element by element is cut off to reduce the domain it-
eratively. The state of the algorithm is always represented
by the advancing boundary front. In several papers, rules
for element generation are presented. We want to empha-
size, how to handle these rules by means of an abstract rule
description. The advancing front method can be applied for
plane, for surface as well as for three dimensional mesh gen-
eration. Our approach to rule application leads to a highly
unified code for these three kinds of mesh generation.

? This work is supported by the Austrian Science Fund – ’Fonds zur
Förderung der wissenschaftlichen Forschung’ – under project P 10643-TEC

Geometric model

?
� Nonlinear equations

Special points

?
� Curve following

Edges

?
� 2D mesh generation +

local transformation

Surface mesh

?
� 3D mesh generation

Volume mesh

Fig. 1. Subproblems in mesh generation

Advancing front mesh generation starts with a given
boundary mesh. In 3D, boundary mesh generation is also a
non-trivial task. It can be solved by an advancing front sur-
face mesh generator starting at the boundaries of the smooth
pieces of the surface, namely the edges. Edge finding can
be split into calculation of initial points and implicit curve
following. Depending on the geometric model, initial point
calculation can be complicated, too. We use the Constructive
Solid Geometry (CSG) - model, defining complicated solids
by the Boolean operations applied to simple primitives [11].
For this model we have to solve many nonlinear equations in
three variables to calculate initial points for edge detection.
The whole mesh generation problem is sketched in Fig. 1.

The paper is organized accordingly to the several sub-
problems. In Sect. 2 the geometric model in use is described.
The problem of calculating corners and more special points
is described in Sect. 3, edge detection in Sect. 4. Our imple-
mentation of the advancing front method for plane, surface

42

Fig. 2.Examples for points of intersection and points of extreme coordinates

and volume mesh generation is explained in Sect. 5. The
used mesh optimization strategies are discussed in Sect. 6.
In Sect. 7 examples are given and in Sect. 8 the current work
is summarized.

2 Geometric modeling

The wide field of computational geometry provides several
possibilities for geometric modeling [11]. The different mod-
els have complementary properties with respect to ease of
solid description and ease of mesh generation algorithms.

The Constructive Solid Geometry (CSG) - model uses
smooth primitives like cylinders and spheres to build more
complex solids by the Boolean operations. In the computer,
the solid is represented by a binary tree. The leaves are
the primitives, and the nodes are the operations intersection,
union and complement. A lot of mechanical production parts
can be described by this model very simply, but it takes some
numerical effort to find the corners and edges.

Explicit surface description, e.g. by spline patches, is
very well suited for smooth surfaces like car bodies and
airplane wings [7]. It is difficult to describe geometries
with cutting edges, but mesh generation for explicit surfaces
can be much simpler. The flexibility of both methods can
be combined by using CSG primitives described by spline
patches.

To apply mesh generation algorithms for the CSG model,
some operations have to be implemented for every class of
primitives. For globally convergent algorithms to find the
corners we need the test ’Is a given cube contained in the
primitive ?’ The possible answers are ’no’, ’partially’ and
’yes’. For edge detection as well as surface meshing we
need local quantities like the normal vector to the smooth
boundary of a primitive.

3 Special point calculation

The first step in mesh generation is the calculation of spe-
cial points. For reasons of numerical approximation it is
important to place mesh nodes at the corners of the geome-
try. These ’points of intersection’ are points, where at least
three surfaces intersect (Fig. 2). The computation of them is
explained in Sect. 3.1.

Starting at these points, one can follow the edges. But
not every edge is terminated by two points of intersection.
E.g., a cylinder has closed edges (Fig. 2). To get uniquely
defined points on these curves one can choose the points

Fig. 3. Bisection algorithm

with minimal or maximal x, y or z coordinates. The com-
putation of the ’points of extreme coordinates’ is described
in Sect. 3.2. There are more types of special points arising
from some kind of degeneration. These points are discussed
in Sect. 3.3. Together with the special points, tangents to the
edges are calculated.

3.1 Points of intersection

Points of intersection are points, where at least three surfaces
intersect. For implicitly defined surfaces these are the roots
of the nonlinear system

f1 (x, y, z) = 0,

f2 (x, y, z) = 0, (1)

f3 (x, y, z) = 0.

Robust and flexible solving procedures for this problem are
bisection algorithms based on geometric tests. We start with
a cube containing the whole solid. This cube is cut into
eight cubes of half the size recursively, until a necessary
criterion to have a point of intersection in the cube is not
fulfilled anymore or the prescribed precision is reached. A
very cheap criterion is the number of surfaces cutting the
cube, which has to be at least three. The evolution of a
bisection algorithm for a 2D example is given in Fig. 3. If
the point of intersection is regular, the bisection algorithm
converges with linear rate.

3.1.1 Localization.The bisection algorithm uses only infor-
mation of the solid contained in a cube. If we use a CSG
model, the solid can be reduced to a local model in the cube
by a recursive algorithm on the binary solid tree. The lo-
cal model is0 , if the cube is outside of the solid,S, if
the cube is partially contained in the solid, or1, if the cube
is fully contained in the solid. The stateS is described by
a smaller CSG model again. A primitive has to provide a
function to determine the relation of a cube to the solid. For
the Boolean operations, the localization can be expressed by
the localization of the operands:

∩ 0 S1 1

0 0 0 0
S2 0 S1∩S2 S2

1 0 S1 1

∪ 0 S1 1

0 0 S1 1
S2 S2 S1∪S2 1
1 1 1 1

\
0 1
S \S
1 0

43

A minimal number of three primitives in the local model
is used as necessary condition in the bisection algorithm.

3.1.2 Newton’s method.Let us assume, we can evaluate the
functions fi as well as their derivatives. If we are close
to a root of the nonlinear system (1), we can use the lo-
cally quadratic convergent Newton method to calculate the
coordinates in just a few steps within machine precision
[12]. With F (x) := (f1 (x, y, z) , f2 (x, y, z) , f3 (x, y, z)) and
a given initial pointx0 Newton’s method is defined by

xk+1 = xk − (F ′ (xk))−1
F
(
xk
)
.

For (1), the geometric interpretation of Newton’s method
is as following. In the limit, the components ofF (x) mea-
sure the distance ofx to the corresponding surface, and the
columns of the matrixF ′ are scalar multiples of the nor-
mal vectors of the surfaces. The new pointxk+1 is the point
of intersection of the three tangential plains. We need the
regularity of the solution to apply Newton’s method.

We see, which operations a primitive has to provide. In
a small environment of the surface, we need a linear ap-
proximation to an implicit representation of the surface. For
explicitly given surfaces we can define an implicit function
by

f (x) = (x− P (x), n(P (x))) , (2)

whereP (x) is the projection ofx onto the surface, andn is
the normal vector to the surface. The derivative off is

∇f (x) = n(P (x)).

The non-trivial step for explicit surfaces is the imple-
mentation of the projectionP (x). For spline surfaces this
projection can be implemented fast and robust by using the
convex hull property and zoom-in algorithms [7].

Before starting Newton’s method one has to check
whether it converges to a unique solution. This test is given
in Kantorovich’s theorem [12]:

Let B(x0, r) be a sphere containing the current box.
Assume thatF ′

(
x0
)

is regular and the conditions

‖F ′ (y)− F ′ (x) ‖ ≤ γ‖y − x‖
∀x, y ∈ B(x0, r),

‖F ′ (x0
)−1 ‖ ≤ β,

‖F ′ (x0
)−1

F
(
x0
) ‖ ≤ η,

are fulfilled such that

α := βγη <
1
2
, (3)

t∗ :=
1
βγ

(
1−√1− 2α

)
< r. (4)

Then Newton’s method with initial pointx0 is well
defined andxk converges to a root ofF in B

(
x0, t∗

)
.

The root is unique inB(x0, t∗∗) with

t∗∗ =
1
βγ

(
1 +

√
1− 2α

)
.

In a small environment of a regular solution the constantsβ
andγ are bounded. By further subdivision we can reduceη
until (3) and (4) are fulfilled and the solution is unique in
the bisection interval.

To implement the convergence test we have to evaluate
the constantsβ, γ andη. For this we need in addition to the
implicit function value and its derivative an estimate for the
local Lipschitz - constantγ of ∇f . For the implicit function
f defined in (2), the bound can be calculated by means of the
main curvatureκ. In the (2κ)−1 environment of the surface
the Hessian∇2f is bounded by 2κ.

3.2 Points of extreme coordinates

As mentioned above, we also want to find points of minimal
and maximalx, y andz coordinates on an edge. The problem
of finding the maximalx coordinate on the edge defined by
the intersection of the surfacesf1 and f2 is the constraint
maximization problem

max
f1=f2=0

x.

The corresponding Lagrangian for this problem is

L (x, y, z, λ1, λ2) = x + λ1f1 (x, y, z) + λ2f2 (x, y, z) .

Necessary conditions for points of extreme coordinates are
the Kuhn-Tucker conditions of first order

∇(x,y,z)L = (1, 0, 0)t + λ1∇f1 + λ2∇f2 = 0,

f1 = 0,

f2 = 0.

By the elimination of the Lagrange multipliers we get the
non-linear 3× 3 system

f1 = 0,

f2 = 0, (5)

f3 := (∇f1 ×∇f2)x = 0.

For degenerated edges, e.g., if a sphere is put on top of a
cylinder, the third equationf3 = 0 is fulfilled on the whole
edge. The following algorithms are not able to handle de-
generated edges, so we demand edge regularity in the form
of

‖∇f1 ×∇f2‖ ≥ ε1‖∇f1‖ ‖∇f2‖, (6)

with the application specific, small parameterε1. If the edge
is parallel to the y-z plane, then every point on that edge
fulfills the necessary Kuhn-Tucker conditions of first order.
So we demand the numerically sufficient Kuhn-Tucker con-
dition of second order

sT∇2L (x, λ) s ≥ ε2‖s‖2 ∀s ∈ C. (7)

The tangential coneC is the one dimensional space spanned
by∇f1×∇f2. The sufficient Kuhn-Tucker condition ensures
isolated solutions.

44

Fig. 4. Two intersecting cylinders

3.2.1 Bisection criteria.To calculate the points of extreme
coordinates, the first step is again a bisection algorithm.
A necessary condition is that there are at least two sur-
faces in the localization of the solid. To make use of the
third equationf3 = 0, we apply the mean value theorem
‖f (x)− f (x∗) ‖ ≤ ‖x− x∗‖ supξ∈[x,x∗] ‖f ′ (ξ) ‖. A neces-
sary condition for a solution in the ballB(c, r) containing
the bisection cube is

|f3(c)| ≤ r sup
ξ∈B(c,r)

‖∇f3(ξ)‖. (8)

This can be estimated by the computable bound

‖∇f3‖ ≤
(‖∇2f1‖‖∇f2‖ + ‖∇2f2‖‖∇f1‖

)
.

These necessary conditions are only sufficient, if the edge is
regular according to (6) and the second order Kuhn-Tucker
condition (7) is fulfilled. Both conditions are specified for
the solution of (5), but they can be checked only for a given
point in the bisection cube. While we can give necessary
conditions to (6) in terms of bounds for second order deriva-
tives, we need third order derivatives to give necessary con-
ditions to (7). Therefore we perform the bisection algorithm
until the cube is ’small’ in comparison to geometric details
and check condition (7) in the center of the cube.

If we are close to an edge, we want to switch to Newton’s
method again. Due to the fact just mentioned, we cannot
apply Kantorovich’s theorem. For reasons of numerical ap-
proximation, it is important to solve the first two equations
of (5). The third one is used only to get a finite number
of points on the edges. So we apply Newton’s method to
f1(x) = 0, f2(x) = 0, sT (x − c) = 0 with the approximation
s = ∇f1(c) × ∇f2(c) of the tangential vector evaluated in
the centerc of the cube. For this equation, we can apply
Kantorovich’s theorem using just bounds for second order
derivatives. By defining an application specific, minimal dis-
tance for special points, we get one numerical solution per
point of extreme coordinate.

Although the described algorithm cannot handle degen-
erated edges formed by two surfaces, we can handle solids
with degenerated edges by using a third surface belonging to
the same edge. E.g., if we put a sphere on top of a cylinder,
we already need the plane terminating the cylinder. While
the algorithm applied to the first two surfaces stops because
of (6), it calculates the proper point, if it is applied to the
third surface together with one of the first two.

3.3 Degenerated points

A further kind of a special point is a degenerated point spec-
ified by

f1 = 0,

f2 = 0, (9)

∇f1 ×∇f2 = 0.

This means that the tangential planes are parallel in a point of
intersection. We are interested in isolated degenerated points,
like seen in Fig. 4, only. Degenerated edges fulfill equation
(9) on the whole edge.

The classification of degenerated points needs a second
order approximation. Therefore we introduce a local coor-
dinate system spanned by the orthogonal unit vectorse1, e2
ande3, such thate3 is parallel to the common normal vector
of f1 and f2. The surfacesf1 and f2 are approximated by
the two, pure quadratic graphs

ξ(i)
3 =

1
2

(ξ1 ξ2)A(i)

(
ξ1
ξ2

)
, i = 1, 2.

The matricesA(i) are given by the implicit function theorem
as

A(i) =

[
eTk∇2fiel
eT3 ∇f

]
k,l=1,2

.

The intersection of the surfaces is approximated by the in-
tersection of the approximationsξ(1)

3 = ξ(2)
3 . The intersection

is classified by the eigenvalues ofA(1) − A(2). If both have
the same sign, i.e., det

(
A(1) −A(2)

)
is positive, the intersec-

tion is only one point. If at least one eigenvalue is 0, the
degeneration is of higher order, like in the case of a degen-
erated edge. If there are two eigenvalues of opposite sign,
i.e., the determinant is negative, then two edges intersect in
this point. The tangential vectors of both edges are given by
the non-trivial solutions of the quadratic equation

(ξ1 ξ2)
(
A(1) −A(2)

)(ξ1
ξ2

)
= 0.

The bisection criteria for degenerated point calculation are
analogous to the criteria for points of extreme coordinates.
Only condition (8) is extended to all three components and
the tests for non-degeneration differ. We check, whether
det
(
A(1) −A(2)

) ≤ −ε in the center of the bisection cube is
fulfilled.

4 Calculating edges

The second step after special point calculation is edge de-
tection. If we speak of a special point now, we mean a tuple
(pi, ti) of a geometric pointpi together with the tangential
vectorti pointing in the direction of an edge starting in that
point. There are always several special points within one
geometric point.

For edge detection one has to choose an initial point
for every edge and has to follow it, until the corresponding
terminal point is reached. Then the edge is subdivided into
segments of the demanded mesh size as good as possible.
Selecting initial and terminal points is explained in Sect. 4.1
and edge following in Sect. 4.2.

45

4.1 Selecting start points

We start with two sets of special points, with the set of
unconditional special pointsSu and the set of conditional
special pointsSc. Unconditional points have to appear in
the generated mesh, while conditional points are only used,
if the edge would not be found without them. Points of in-
tersection are of unconditional type, while points of extreme
coordinates are conditional special points.

As long asSu is non-empty, we choose one point from
Su as initial point on an edge. Otherwise, if onlySc is non-
empty, we choose one of them. All special points within this
geometric point are moved fromSc to Su.

Starting in tangential direction, we follow the edge, until
we reach the corresponding terminal point on the edge con-
tained inSu. If there are some conditional special points on
the edge, they are removed fromSc.

When we finished one edge, the initial point and the
final point are removed fromSu. As long asSu or Sc are
non-empty, we go on with the next edge.

4.2 Following curves

Implicit curve following is mainly investigated for homotopy
methods to solve nonlinear equations [12]. The principle is to
start at a given pointx0 on the curve, and follow the curve in
small steps until some terminal point on the curve is reached.
The search is done by a predictor - corrector method. In the
current pointxk, we compute the unit tangential vectortk

to the curve. Up to a scalar factor, it is the vector product
of the normal vectors of the two surfaces defining the edge.
As predictor, we use the point

x̃k+1 = xk + τkt
k

with the adaptively controlled step-lengthτk. This point is
projected back onto the curve by the reduced Newton method
to get the new valuexk+1.

On smooth curves, we have

‖xk+1 − x̃k+1‖ = O
(‖x̃k+1 − xk‖2

)
,

which can be used for adaptive step-length control. As long
as the relation

‖xk+1 − x̃k+1‖ ≤ c‖x̃k+1 − xk‖ (10)

is not fulfilled, we halve the step-lengthτk and test a new
x̃k+1. Because the left hand side depends quadratically on
the right hand side, (10) will be fulfilled for a sufficiently
small τk. A proper choice is, e.g.c = 0.1. If condition (10)
is fulfilled with c/4, we try with a doubled step-length for
the next step.

The points along the curve are stored in a list. As we
have reached the terminal point, this approximative curve is
subdivided into the segments of the prescribed grid-size as
good as possible. The points generated are projected onto
the exact edge.

Fig. 5. Example meshing problem

5 Surface and volume mesh generation

For a human being, 2D mesh generation is a boring, but
trivial task. Let us analyze, howwemight solve the following
problem. Some plane domain is given in terms of a boundary
mesh consisting of line segments. The goal is to fill the area
with nearly equilateral triangles (see Fig. 5). One might cut
off the corner on the left hand side by one triangle. On the
right hand side, one might fill in three triangles as sketched
in the Fig. 5. The new point should be chosen such that the
shape of the triangles is optimal. On the top we can connect
to the inner boundary by one triangle. We go on until the
whole domain is meshed. But, how do we decide where to
put a triangle? We recognize a specific image formed by
the boundary elements and decide to cut off one or more
triangles simultaneously. That is the task we have to teach
the computer: If the boundary looks like a certain image,
then cut off these triangles and get that new boundary.

This algorithm is the well known advancing front method,
see e.g. [10], [14], [9], [8], [6]. The action performed for a
certain boundary image is described by geometric rules. Our
version of the advancing front method differs from others
in the way, how the rules are applied. The approach is to
separate the concrete rules form the rule application code.
The algorithm has to check rules stored in data structures.
Therefore the code complexity is independent of the num-
ber of rules. The algorithm is complicated, but well defined
and can be, at least theoretically, implemented failsafe. Es-
pecially in 3D, the choice of the concrete rules is based
on heuristics, which is put into an easily maintainable rule
description data-base.

We proceed as follows. First, we describe the overall
algorithm, we continue with the abstract rule description and
the rule application algorithm. Finally, we concentrate on the
extensions for surface and volume mesh generation.

5.1 The overall algorithm

The whole advancing front algorithm is stated in Fig. 6. The
input data to the mesh generator is the boundary description.
It consists of the vector ofnP points

X = (X1, . . . , XnP) ∈ RD×nP ,

whereD = 2 for plane meshing andD = 3 for surface and
volume meshing, and the vector ofnBE boundary elements
(as usual,Nn denotes the set of natural numbers≤ n)

R = (R1, . . . , RnBE) ∈ Nd×nBE
nP .

46

load boundary mesh (starting front)
initialize quality classes
while front is not empty

choose base-element from front
get environment of base-element
transform to local coordinate system
test for applicable rules
if a rule is applicable

generate new points in local coordinates
transform new points to global coordinates
store new inner elements
update front

else
decrease quality class for base-element

Fig. 6. Overall algorithm

A simplicial boundary element is identified with thed in-
dices of the corner points. For plane and surface meshing
we have boundary segments (d = 2), for volume meshing
the boundary elements are triangles (d = 3).

To every boundary element, the quality class, a natural
number, is associated. It is initialized to one, which means
highest quality.

The state of the preceding algorithm is always repre-
sented by the current boundary element vector. The algo-
rithm performs as long as the length of the vector is positive.

We choose one of the boundary elements minimizing the
criterion

quality class + distance to boundary.

This element will be calledbase-element. The distance to
the boundary is determined by the minimal number of inner
elements needed to draw an open path from the element to
an arbitrary element of the original boundary. This distance
term ensures a nearly uniform growing of the mesh over
the whole boundary. The quality term prefers elements, on
which better fitting rules can be applied.

The examination of the boundary is a local process. For
the following steps, we have to know the environment of
the base-element. This environment consists of all bound-
ary elements closer to the base-element than a prescribed
radius, and the accompanying corner points. Depending on
the rules, the radius is chosen between three and five times
the desired edge-length parameterh. This step is a geomet-
ric search process, it defines the asymptotic complexity of
the whole algorithm. While one has to test each point of the
current boundary in a straight forward approach, a quadtree
or octree search tree for 2D or 3D, respectively, reduces
the complexity of point searches to a logarithmic behavior.
By the use of an alternating digital tree (ADT), also bound-
ary elements can be found fast [2]. ThenLP points and the
nLBE boundary elements in the environment are marked by
the vectorslP and lE , respectively

XlP (i), 1≤ i ≤ nLP , RlE (i), 1≤ i ≤ nLBE .

Without loss of generality, we letRlE (1) be the base-element
andXlP (1), XlP (2) and, for the 3D case,XlP (3), are the cor-
ners of the base-element. For the rest of the loop, we only

have to work with a bounded number of points and boundary
elements.

To simplify the following steps, we transform thenLP
points of the environment to a local coordinate system

xi = F (XlP (i)), 1≤ i ≤ nLP .

The coordinate transformationF is chosen such thatx1 = 0,
x2 is a point on the localξ1-axis and, for the 3D case,x3 is a
point in the localξ1-ξ2-plane. If we choose unit-length in the
local coordinate system corresponding to the desired edge-
length h, the edge-length of well sized elements in local
coordinates is about one. The various possibilities of the
coordinate transformation will be discussed in Sect. 5.4. The
nLBE boundary elements in the environment are described
by local boundary elementsri using local point indices

lP (ri,j) = RlE (i),j , 1≤ i ≤ nLBE , 1≤ j ≤ d

To the local boundary description the rule testing algo-
rithm is applied. This key-step of our approach is described
in Sect. 5.3. Here we only mention, that the tolerances of
the rules are given by the quality class of the base-element.
A high quality allows only good elements, which can make
any rule application impossible.

If an applicable rule is found, it describes where to gen-
erate new points in local coordinates.

The nNP new pointsy1, . . . , ynNP are transformed to
global coordinates and appended to the point vector

XnP +i = F−1(yi), 1≤ i ≤ nNP .

The rule describes the creation of new inner elements.
After converting the local to global point indices, the ele-
ments are stored in the element list.

The rule also prescribes the necessary changes in the
advancing front. Some boundary elements must be deleted,
some others are added to the global boundary element vector
R.

If no rule is applicable for the base element, its quality
class is decreased. This enables either the application of a
worse fitting rule later on, or a rule applied to a neighbor
boundary element also removes the current one.

5.2 Abstract rule description

Next, the abstract description for 2D and 3D element genera-
tion rules is explained. Due to the coordinate transformation,
2D and surface meshing can be handled by the same rules.
A rule is always specified in reference position, such that the
elements have optimal shape. A rule involvesnEP existing
points given by the vectorxR.

xR = (xR1 , . . . x
R
nEP) ∈ Rd×nEP .

The connection of these points by elements is specified by
the vector of existing boundary elements

rR = (rR1 , . . . , r
R
nEBE) ∈ Nd×nEBE

nEP .

Some rules generate new points whose coordinates are given
by the vector

47

Fig. 7. Example for old points, new point and free-zone, base element is
(1, 2)

yR = (yR1 , . . . , y
R
nNP) ∈ Rd×nNP ,

and new boundary elements connecting existing and new
points

sR = (sR1 , . . . , s
R
nNBE) ∈ Nd×nNBE

nEP +nNP .

The corner with indexi, 1≤ i ≤ nEP +nNP of the bound-
ary element isxi for i ≤ nEP , or yi−nEP , otherwise. The
generation ofnNE inner elements is specified by the vector

tR = (tR1 , . . . , t
R
nNE) ∈ N(d+1)×nNE

nEP +nNP .

To be able to apply a rule, we need some free space
containing no existing point and no existing boundary el-
ement. We define the free-zone by the convex hull of the
nFP pointsfRi combined to the vector

fR = (fR1 , . . . , fRnFP) ∈ Rd×nFP .

An example for a rule filling a corner of 120 degree by
two triangles is shown in Fig. 7. This example is described
by the data structure

xR = ((0, 0), (1, 0), (−0.5, 0.866)),

yR = ((0.5, 0.866)),

rR = ((1, 2), (3, 1)),

sR = ((3, 4), (4, 2)),

tR = ((1, 2, 4), (1, 4, 3)),

fR = ((0, 0), (1, 0), (1.5, 0.866), (1, 1.732), (0, 1.732),

(−0.5, 0.866)),

with constantsnEP = 3, nNP = 1, nEBE = 2, nNBE = 2,
nNE = 2, nFP = 6. Without loss of generality, we can
always setxR1 = 0, xR2 = (xR2,1, 0) andrR1 = (1, 2) for the 2D
case andxR1 = 0, xR2 = (xR2,1, 0, 0), xR3 = (xR3,1, x

R
3,2, 0) and

rR1 = (1, 2, 3) for the 3D case.
The rules are specified for elements of optimal shape.

But in a real situation, we will not have a corner of exact
120 degree. The real existing points will deviate form the
reference positionxR. Let us denote the real existing points
by x′. We define the deviationu ∈ Rd×nEP by

u = x′ − xR.

A deviation of the existing points should also lead to a move-
ment of the new points. The simplest case is given by a liner
mapping of movements. We generate new points at the po-
sition

y′ = yR +Lyu.

Analogously, the corners of the free-zonefR are moved to
f ′ by the linear mappingLf

f ′ = fR +Lfu.

For the 120 degree corner, the linear mapping

Lyu = −u1 + u2 + u3

leads to two congruent, isosceles triangles. The linear map-
ping for the corners of the free-zone is constructed as fol-
lows. The pointsf ′1, f ′2 andf ′6 have to match the pointsx′1,
x′2 andx′3. The other three are mirrored at the new pointy′1.

f ′1 − fR1 = u1,

f ′2 − fR2 = u2,

f ′3 − fR3 = 2Lyu− u3 = −2u1 + 2u2 + u3,

f ′4 − fR4 = 2Lyu− u1 = −3u1 + 2u2 + 2u3,

f ′5 − fR5 = 2Lyu− u2 = −2u1 + u2 + 2u3,

f ′6 − fR6 = u3.

Mention, it is not ensured to achieve properly oriented inner
elements. In the case of wrong orientation, we reject the
application of the rule.

5.3 The rule application algorithm

We need an algorithm applying rules defined by the data
structure to a boundary image given in local coordinates.
This is to find injective mappings

mP : NnEP → NnLP

and

mE : NnEBE → NnLBE

assigning each point (boundary element) in reference posi-
tion a point (boundary element) in the environment of the
base-element. In the 3D case, the three possible rotations of
a triangle are handled by the mapping

mO : NnEBE → N3.

For the 2D case, we setmO = 0. The mappingmP defines
the vectorx′ of local points in reference numbering by

x′ = (xmP (i))1≤i≤nEP ,

it also specifies the deviationu, the position of the new
points in local coordinatesy′ and the corner points of the
free-zonef ′.

If the restrictions listed below are fulfilled, we can apply
that rule.

– The quality class of the base-element must be worse
then a prescribed value. This enables rules necessary for
the termination of the algorithm, but which should be
avoided if possible.

– Because of the compatible placement of the local coor-
dinate system and the position of boundary element one
in reference position we can set

mE(1) = 1.

48

– The boundary in the rule description has to be topologi-
cally equivalent to its image in the local boundary, which
means

mP (rRi,j) = rmE (i),j+mO(i), 1 ≤ i ≤ nNBE ,

1 ≤ j ≤ d. (11)

To avoid additional complication, we assume to take the
corner index modulod.

– The point deviation must not exceed a limit depending
on the quality class

|ui| ≤ fd(qual. cl.),

wherefd(.) is a monotone increasing function such that
f (x) → ∞ as x → ∞. For example, we usef (x) =
0.2x2.

– Each local boundary element not contained in the image
of mE must not intersect the free-zone.

– And finally, each generated inner elementti must be
properly oriented and the element error functionalE(ti)
measuring the well-shapedness of the element must be
below a limit depending on the quality class

E(ti) ≤ fs(qual. cl.), 1≤ i ≤ NE.

Element error functionals will be discussed in Sect. 6.
For example, we chosefs(x) = x.

To construct the mappingsmP , mE andmO we essen-
tially have to test each of thenLP nEP ×nLBEnEBE×3nEBE
possibilities. In an average 3D case we havenEP = 5,
nEBE = 3, nLP = 30 andnLBE = 50 leading to 8.2 · 1013

possibilities.
But by a good ordering of the trials, we can reduce the

work to a realistic amount. It is advantageous to start with
the mapping of elements. The algorithm performing this task
for the 2D case is stated in Fig. 8. It simulatesnEBE nested
loops from 1 tonLBE , but the loop for elementei is only
started, if the elements 1, . . . , ei−1 are compatible mapped.
Compatible is understood in the sense of (11).

Every loop mapping a boundary element connected to an
already mapped one will find only one (or, in exceptional
cases a few) hits. Only separated boundary elements in the
rule description will produce nearlynLBE hits. This gives
a complexity ofO(nEBE × nLBE) for connected boundary
elements and an additional factornLBE for each separated
group.

The mapping of most points in the rule description is
determined by the mapping of elements. Only the mapping
of separated points in the rule description must be tried for
each local point.

5.4 Possibilities of the transformation

The difference between plane and surface mesh generation
is essentially contained in the coordinate transformations
F : S ∩ Ub.e. → R2 used in the overall algorithm (Fig. 6).
It maps the environmentUb.e. of the base-element from the
surfaceS into the plane. In the plane the 2D rules are ap-
plied. If new points must be inserted, they have to be mapped
by F−1 from the plane to the surface. The whole task is

ei = 2, mE (1) = 1,mE (2) = 0
while ei ≥ 2

while mE (ei) < nLBE
incrementmE (ei)
if mE (ei) compatible tomE (1), . . . ,mE (ei− 1)

if ei < nEBE
incrementei
mE (ei) = 0

else
all elements are compatibly mapped !!!

decrementei

Fig. 8. Element mapping algorithm

Fig. 9. Surface mesh generation

sketched in Fig. 9. Because we can choose individual, lo-
cal transformations, we do not have the problems of global
coordinate transformations as non-uniform point distribution
and singularities.

For small edge-lengthh compared to the radius of cur-
vature, the transformation can be implemented numerically
using the surface-operations defined in Sect. 3. For an edge-
length of about the curvature radius, individual bijective
transformations have to be implemented for every class of
surface.

Beside surface mesh generation, the local coordinate
transformation can be used for other mesh generation vari-
ants:

– Graded mesh generation can be achieved by varying the
unit-length in the local coordinate system.

– (Local) anisotropic meshes can be produced by anisotro-
pic coordinate transformations.

5.5 The rules in 2D

The nine rules used for 2D are drawn in Fig. 10. The first
seven rules have a free-zone to ensure enough space for

49

Existing/new bound. el.

Existing points

New points

Free-zone

Fig. 10. Rules for 2D

further, well shaped elements. The last two ensure the ter-
mination of the algorithm. They have enough free space to
build a new triangle, but do not take care of the remaining
rest domain. To avoid the application of the last two rules
at the beginning, the minimal quality class of them is set to
a higher value (e.g. 5).

A dead lock cannot appear, because in 2D it is always
possible to cut off a triangle without inserting a new point
by one of the last three rules.

5.6 Closure for 3D mesh generation

In 3D, it is not always possible to cut off one element without
inserting new points. These boundaries can cause difficulties
to the advancing front method. An example taken from [8]
is a pentahedron, which cannot be dissected into tetrahedra
without inserting a point in the inner (see Fig. 11).

We could not define rules for a robust handling of these
type of geometries. Therefore it is necessary to recognize the
problem, and to have an alternative algorithm. The problem
is identified, if we cannot apply any rule up to a certain
quality class. The alternative algorithm has to insert one
point in the inner of the rest domain, such that elements can
be built to this new point.

Experiments have shown, that in most of the exceptional
cases star shaped rest domains can be achieved. For these
domains, we can find an inner point, which can be connected
to each boundary triangle by a tetrahedron. A star pointx

has to be in front of each boundary element of one rest
domain, which means

nTi (x−XRi,1) ≤ 0

has to be fulfilled for all boundary elementsRi with outer
normal vectorsni. The solutionx is calculated by the Sim-
plex method applied to the linear optimization problem

min
x∈R3

max
i

nTi (x−XRi,1).

6 Mesh optimization

The quality of the generated mesh can be improved dra-
matically by several techniques of mesh optimization [3].
We distinguish between metric optimization, where points
are moved to increase the quality, and topological changes
to the mesh, where points are reconnected by different ele-
ments.

To quantify the quality of the mesh, we need an error
functional for the elements. Because the standard finite el-
ement functional maximal edge-length over in-radius is ex-
pensive to calculate for 3D, we use a cheaper one dominating
the standard functional. For a triangular elementT we use
the term

E(T) =

√
3

36

(∑
i li
)2

Area
+
∑
i

(
li
h

+
h

li
− 2

)
,

50

Fig. 11. Example for a difficult boundary

Fig. 12. Point collapsing and edge swapping

for a tetrahedral element we use

E(T) =
1

64
√

2

(∑
i li
)3

V ol
+
∑
i

(
li
h

+
h

li
− 2

)
,

with the 3 or 6 edge lengthsli, respectively. The constants
are chosen such that an equilateral element has error 1. The
first term of each functional penalizes flat elements, the sec-
ond one too large or too small elements. As one element
degenerates, the functional tends to infinity. If the orienta-
tion of the element nodes is negative, we set the error to
infinity, too. The total error functional of the meshT is the
sum of the element errors

E(T) =
∑
T∈T

E(T).

6.1 Metric optimization

In two dimensions, Laplacian smoothing is the standard
mesh improvement algorithm. The inner points are moved
into the center of gravity of the neighbors iteratively. Lapla-
cian smoothing cannot be applied for surfaces, and it does
not work well in 3D. Theoretically, the optimal topological
equivalent mesh can be calculated by minimizing the error
functionalE(T). A global minimization is too expensive,
but we can apply point-wise relaxation of the error func-
tional. Therefore we have to solve a set of minimization
problems of maximal size three. We use the BFGS method,
a member of the Broyden family (see [4]). It is globally con-
vergent with locally quadratic convergence rate, although it
does not need second derivatives.

One step of the relaxation method for an inner point is
to solve the three dimensional problem

min
x∈R3

Ei(T , x),

whereEi(T , x) is the global error functionalE(T) with
the pointXi moved tox. Of course, only the elements con-
nected toXi have to be used in the optimization procedure.
Because we start with a valid finite element mesh and the

Fig. 13. Face swapping in 3D

solid cube =
plane (0, 0, 0; 0, 0, -1)

and plane (0, 0, 0; 0, -1, 0)
and plane (0, 0, 0; -1, 0, 0)
and plane (100, 100, 100; 0, 0, 1)
and plane (100, 100, 100; 0, 1, 0)
and plane (100, 100, 100; 1, 0, 0);

solid all =
cube

and sphere (50, 50, 50; 75)
and not sphere (50, 50, 50; 60);

Fig. 14. Input to ’Cube and Spheres’

error of a wrong oriented element is defined as infinity, the
mesh minimizingEi is a valid mesh.

Points in the surfaces are optimized by the two dimen-
sional problem

min
t∈R2

Ei(T , F−1(t)),

whereF is the local transformation from the surface to the
two dimensional parameter set. The pointXi is moved to
F−1(t). Analogous points on edges are optimized by the
solution of

min
t∈R

Ei(T , G−1(t)),

with the local transformationG from the edge into the pa-
rameter interval.

6.2 Topological optimization

When point movement cannot increase the mesh quality any-
more, some changes in the mesh topology may help a lot.

Fig. 15. Cube and spheres

51

.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1
0

50

100

150

200

250

300

350

400

.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1
0

50
100
150
200
250
300
350
400
450
500

Fig. 16. Quality classes for ’Cube and Spheres’

Table 1. Cubes per level for point of intersection calculation

Level 1 2 3 4 5 6 7 8 9 10 11
Intervals 1 7 19 56 200 664 1712 1824 1896 1128 384

Fig. 17. Crankshaft

.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1
0

20

40

60

80

100

120

140

160

Fig. 18. Quality classes for crankshaft

Therefore a few elements are removed and the points are
connected in a new manner. This actions may be described
by local rules also.

The simplest technique working in two as well as in three
dimensions is point collapsing (Fig. 12). If the mesh quality
increases, if two points are collapsed in the center and the
elements between are removed, we perform this change to
the mesh.

The common technique in two dimensions is edge swap-
ping [5]. Often two flat triangles can be improved by swap-
ping the common edge (Fig. 12). We get two new triangles
connecting the same four points in a different manner. To
generalize edge swapping to three dimensions, we have to
distinguish different cases. Five points can be connected by
two as well as by three tetrahedra (see Fig. 13). The opti-
mizer can select the better one. Six points forming an oc-
tahedron can be cut into four tetrahedra in three different
manners, where we can choose the best one. The optimal
connection is a valid mesh, because otherwise at least one

tetrahedron with wrong orientation would occur and there-
fore the error functional is infinite.

7 Examples

Finally, we give several examples showing the performance
of the mesh generator. The first example, called ’Cube and
Spheres’, shows a cube intersected by a sphere and by the
complement of a sphere. The information given to the mesh
generator consists of the text file shown in Fig. 14 describing
the geometry, and the desired mesh size parameter.

The ’plane’ command defines half-spaces by a point in
the plane and the outer normal vector. Spheres are defined
by the center and the radius. By the Boolean operations,
more complex objects can be formed and assigned to named
solids. The solid called ’all’ is the main object used by NET-
GEN.

The edges as well as the surface mesh of this example
are drawn in Fig. 15. First the convergence behavior of the
bisection algorithm for special point calculation is investi-
gated. There are 24 points of intersection (three in each of
the eight corners) and also 24 points of extreme coordinates
(four on each of the six circles). The number of cubes per
level used for point of intersection and point of extreme
coordinates calculation are shown in Table 1 and 2, respec-
tively. We can see a bounded number independent of the
level. The final mesh according to an edge-length parameter
h = 10 consists of 1418 surface triangles, 1898 tetrahedra
and 813 points. The classification of the elements with re-
spect to the quality measureE(T) is drawn in Fig. 16. The
left hand side shows the quality before, the right hand side
after optimization. CPU times on a SUN Ultra 1 workstation
for the individual subproblems are given in Table 3.

To apply efficient geometric multigrid methods, we re-
quire a coarse mesh, which will be hierarchically refined.
Our version of the advancing front method is well suited to
the generation of very coarse meshes, because by the abstract
rules many special cases can be handled without coding. For
the same object, a mesh with edge-lengthh = 50 was gener-
ated consisting only of 124 surface triangles, 74 tetrahedra
and 54 points.

52

Fig. 19. Sculpture in St. Gallen and surface mesh

Table 2. Cubes per level for point of extreme coordinates calculation

Level 1 2 3 4 5 6 7 8 9 10 11
Intervals 1 7 19 56 200 688 2120 2880 3048 2928 2976

Table 3. CPU times for individual subproblems for ’Cube and Spheres’

Step Points Edges Surface Surf. Opt. Volume Vol. Opt. total
Seconds 5 1 13 15 220 150 394

A second example is the crankshaft drawn in Fig. 17. The
mesh consists of 592 surface elements, 853 volume elements
and 335 mesh nodes. Figure 18 shows the quality classes
of the volume elements. The total CPU time need for the
generation of the mesh was 140 seconds. The final example
is a surface mesh (Fig. 6.1) of some Sculpture in St. Gallen.

8 Concluding remarks

In this paper, we proposed the separation of element gen-
eration rules from the code. The functionality of the imple-
mented code is precise specified, while all the heuristics of
the rules is moved to an extern rule description. Tools for
graphical editing of the rules may be developed. By means
of these tools it should be possible to develop a proper set
of rules for mixed tetrahedral, pentahedral and hexahedral
mesh generation.

We can use the same rules for plane and surface mesh
generation as well as for uniform, graded or anisotropic mesh
generation. The distinction is contained in two transforma-
tions. At current time we have implemented only two di-
mensional graded mesh generation.

The corner-, edges- and surface mesh generation algo-
rithms are based on abstract geometric primitives. Therefore
new geometric objects can be implemented without changing
the main code.

The software as well as the examples are available via
anonymous ftp from the address:

ftp.numa.uni-linz.ac.at
/pub/software/netgen.tar.gz

References

1. T. J. Baker: Developments and trends in three-dimensional mesh gen-
eration. Appl. Numer. Math.5:275–304 (1989)

2. J. Bonet, J. Peraire: An alternating digital tree (ADT) algorithm for 3D
geometric searching and intersection problems. Int. J. Numer. Methods
Eng. 31:1–17 (1991)

3. E. B. de l’Isle, P. L. George: Optimization of tetrahedral meshes. In
I. Babuska, J. E. Flaherty, W. D. Henshaw, J. E. Hopcroft, J. E. Oliger,
T. Tezduyar (eds.) Modeling, Mesh Generation, and Adaptive Numer-
ical Methods for Partial Differential Equations, volume 75, pages 97–
127. New York: Springer 1995

4. R. Fletcher: Practical Methods of Optimization, Volume 1: Uncon-
strained Optimization. Chichester - New York: John Wiley & Sons
1980

5. W. H. Frey, D. A. Field: Mesh relaxation: A new technique for im-
proving triangulations. Int. J. Numer. Methods Eng.31:1121–1133
(1991)

6. P. L. George, E. Seveno: The advancing-front mesh generation method
revisited. Int. J. Numer. Methods Eng.37:3605–3619 (1994)

7. J. Hoschek, D. Lasser: Grundlagen der geometrischen Datenverar-
beitung. Stuttgart: Teubner 1989

8. H. Jin, R. I. Tanner: Generation of unstructured tetrahedral meshes by
advancing front technique. Int. J. Numer. Methods Eng.36:1805–1823
(1993)

9. B. P. Johnston, J. M. Sullivan, Jr.: A normal offsetting technique for
automatic mesh generation in three dimensions. Int. J. Numer. Methods
Eng. 36:1717–1734 (1993)

10. S. H. Lo: A new mesh generation scheme for arbitrary planar domains.
Int. J. Numer. Methods Eng.21:1403–1426 (1985)

11. M. E. Mortenson: Geometric Modeling. New York: John Wiley &
Sons (1985)

12. H. Schwetlick: Numerische Lösung nichtlinearer Gleichungen. Berlin:
Deutscher Verlag der Wissenschaften 1979

13. J. f. Thompson, N. P. Weatherill: Aspects of numerical grid gen-
eration: Current science and art. Technical report, NSF Engineering
Research Center for Computational Field Simulation, Mississippi State
University, and Department of Civil Engineering, University College
of Swansea, UK, 1993

14. J. Z. Zhu, O. C. Zienkiewicz, E. Hinton, J. Wu: A new approach to
the development of automatic quadrilateral mesh generation. Int. J.
Numer. Methods Eng.32:849–866 (1991)

