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Abstract. In this paper, the algorithms of the automatic

mesh generator NETGEN are described. The domain is pro- Geometric model

vided by a Constructive Solid Geometry (CSG). The whole

task of 3D mesh generation splits into four subproblems of - Nonlinear equations
special point calculation, edge following, surface meshing v

and finally volume mesh generation. Surface and volume
mesh generation are based on the advancing front method.
Emphasis is given to the abstract structure of the element

Special points

generation rules. Several techniques of mesh optimization « Curve following
are tested and quality plots are presented. v
Edges
- 2D mesh generation +

local transformation

1 Introduction
Surface mesh

Many engineering disciplines require partial differential
equation (pde) modeling. Two of the most popular meth- - 3D mesh generation
ods to treat pdes numerically are the finite element method v
and the finite volume method. Both require partitioning the
domain of interest into a set of simple domains, the elements.
In two dimensions triangles and quadrilaterals are used, "}Ei
three dimensions tetrahedra, hexahedra and pentahedra ar
the most popular elements. It is desirable to perform this par-
titioning automatically. There are several approaches work-
ing well in the plane, but cause a lot of difficulties in three
dimensions. Overviews of mesh generation algorithms ar
given in [1], [13].

\Volume mesh

8' 1. Subproblems in mesh generation

Advancing front mesh generation starts with a given
boundary mesh. In 3D, boundary mesh generation is also a
fion-trivial task. It can be solved by an advancing front sur-
face mesh generator starting at the boundaries of the smooth

One of the most popular methods is the advancing fron ieces of the surface. namel "
: : ; , y the edges. Edge finding can
technique, see e.g. [10], [14], [9], [8], [6]. The input to this split into calculation of initial points and implicit curve

method is a boundary mesh. Starting with the original bound- : . ; I :
ary, element by element is cut off to reduce the domain it_followmg. Depending on the geometric model, initial point

. . ; alculation can be complicated, too. We use the Constructive
eratively. The state of the algorithm is always represente olid Geometry (CSG) - model, defining complicated solids
by the advancing boundary front. In several papers, rule% y

; oy the Boolean operations applied to simple primitives [11].
for element generation are presented. We want to emph or this model we have to solve many nonlinear equations in

size, how to handle these rules by means of an abstract rult(ln‘lree variables to calculate initial points for edge detection.
description. The advancing front method can be applied fOLI'he whole mesh generation problem is sketched in Fig. 1.

plane, for surface as well as for three dimensional mesh gen- The paper is organized accordingly to the several sub-

eration. Our approach to rule application leads to a highl . ) X ;
unified code foF;pthese three kindpspof mesh generation. g yproblems. In Sect. 2 the geometric model in use is described.

The problem of calculating corners and more special points
* This work is supported by the Austrian Science Fund — 'Fonds zur IS deSC_”bed in Sect. 3, e_dge detection in Sect. 4. Our imple-
Forderung der wissenschaftlichen Forschung’ — under project P 10643-TE@nentation of the advancing front method for plane, surface
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Fig. 2. Examples for points of intersection and points of extreme coordinates

Fig. 3. Bisection algorithm

and volume mesh generation is explained in Sect. 5. The
used mesh optimization strategies are discussed in Sect. 6.

In Sect. 7 examples are given and in Sect. 8 the current worﬁ("Ith mlnlmal or, m?‘x'ma' X,y orz coordmate,s.' The com-
is summarized. putation of the 'points of extreme coordinates’ is described

in Sect. 3.2. There are more types of special points arising
from some kind of degeneration. These points are discussed
in Sect. 3.3. Together with the special points, tangents to the

2 Geometric modeling edges are calculated.

The wide field of computational geometry provides several

possibilities for geometric modeling [11]. The different mod- , ) )
els have complementary properties with respect to ease of-1 Points of intersection
solid description and ease of mesh generation algorithms.

The Constructive Solid Geometry (CSG) - model usesPoints of intersection are points, where at least three surfaces
smooth primitives like cylinders and spheres to build moreintersect. For implicitly defined surfaces these are the roots
complex solids by the Boolean operations. In the computerpf the nonlinear system
the solid is represented by a binary tree. The leaves ar _
the primitives, and the nodes are the operations intersectiorf ! (,,2) =0,
union and complement. A lot of mechanical production parts/2 (z, ¥ z) = 0, (1)
can be described by this model very simply, but it takes somef; (z, 3, 2) = 0.
numerical effort to find the corners and edges. ) ) )

Explicit surface description, e.g. by spline patches, iSR_obus_:t and er_X|bIe solving procedures_ for this problem are
very well suited for smooth surfaces like car bodies andPisection algorithms based on geometric tests. We start with
airplane wings [7]. It is difficult to describe geometries @ cube containing the whole solid. This cube is cut into
with cutting edges, but mesh generation for explicit surfaceight cubes of half the size recursively, until a necessary
can be much simpler. The flexibility of both methods can Cfiterion to have a point of intersection in the cube is not
be combined by using CSG primitives described by Sp“nefulﬂlled anymore or the prescribed precision is reached. A
patches. very chea_lp criterion is the number of surfaces Cut_tlng the

To apply mesh generation algorithms for the CSG modelCuP€, which has to be at least three. The evolution of a
some operations have to be implemented for every class dfisection algorithm for a 2D example is given in Fig. 3. If
primitives. For globally convergent algorithms to find the the point of intersection is regular, the bisection algorithm
corners we need the test 'Is a given cube contained in th€onverges with linear rate.
primitive ?’ The possible answers are 'no’, 'partially’ and
'yes'. For edge detection as well as surface meshing we
need local quantities like the normal vector to the smooth3.1.1 Localization. The bisection algorithm uses only infor-
boundary of a primitive. mation of the solid contained in a cube. If we use a CSG

model, the solid can be reduced to a local model in the cube
by a recursive algorithm on the binary solid tree. The lo-
3 Special point calculation cal model isO , if the cube is outside of the solid, if
the cube is partially contained in the solid, Drif the cube
The first step in mesh generation is the calculation of speis fully contained in the solid. The statis described by
cial points. For reasons of numerical approximation it is@ smaller CSG model again. A primitive has to provide a
important to place mesh nodes at the corners of the geomdtinction to determine the relation of a cube to the solid. For
try. These ’points of intersection’ are points, where at leasthe Boolean operations, the localization can be expressed by
three surfaces intersect (Fig. 2). The computation of them ighe localization of the operands:
explained in Sect. 3.1.

Starting at these points, one can follow the edges. But N 0 S 1 u o0 S 1 \
not every edge is terminated by two points of intersection. 0 0 0 0 o o0 St 1 0o 1
E.g., a cylinder has closed edges (Fig. 2). To get uniquely S 0 SiNS S S SUs 1 S \S
defined points on these curves one can choose the points1 0 S 1 11 11 1 0
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A minimal number of three primitives in the local model In a small environment of a regular solution the constghts

is used as necessary condition in the bisection algorithm. and-~ are bounded. By further subdivision we can redyce
until (3) and (4) are fulfilled and the solution is unique in
the bisection interval.

3.1.2 Newton’s methodLet us assume, we can evaluate the  To implement the convergence test we have to evaluate

functions f; as well as their derivatives. If we are close the constantg, v andn. For this we need in addition to the

to a root of the nonlinear system (1), we can use the loimplicit function value and its derivative an estimate for the

cally quadratic convergent Newton method to calculate thdocal Lipschitz - constany of V f. For the implicit function

coordinates in just a few steps within machine precisionf defined in (2), the bound can be calculated by means of the

[12]. With F (z) = (f1 (2, y, 2), fo (z,y,2), fa(z,y,2)) and  main curvatures. In the (2)~! environment of the surface

a given initial pointz® Newton’s method is defined by the Hessiarv?f is bounded by 2.

Pl = gF — (F' (:vk)) F (xk) :

For (1), the geometric interpretation of Newton's method 3.2 Points of extreme coordinates
is as following. In the limit, the components &f(xz) mea-
sure the distance aof to the corresponding surface, and the
columns of the matrixF” are scalar multiples of the nor-
mal vectors of the surfaces. The new paifit? is the point
of intersection of the three tangential plains. We need th
regularity of the solution to apply Newton’'s method.

We see, which operations a primitive has to provide. In
a small environment of the surface, we need a linear ap- "
proximation to an implicit representation of the surface. Forf=f,=0""
explicitly given surfaces we can define an implicit function

As mentioned above, we also want to find points of minimal
and maximalz, y andz coordinates on an edge. The problem
of finding the maximal: coordinate on the edge defined by
She intersection of the surfacefs and f> is the constraint
maximization problem

by The corresponding Lagrangian for this problem is
f(@) = (z = P(x), n(P(x))), (2 L(x,y,2,M,0) =+ Mfi(,y,2) + Nafa (2,9, 2).
where P(z) is the projection ofr onto the surface, andis  Necessary conditions for points of extreme coordinates are
the normal vector to the surface. The derivativefas the Kuhn-Tucker conditions of first order
Vi@ =n(P(). View % = (1,0.0) + MV f1+ 3V 2 =0,
The non-trivial step for explicit surfaces is the imple- f1=0,
mentation of the projectiorP(z). For spline surfaces this f=0
projection can be implemented fast and robust by using the '
convex hull property and zoom-in algorithms [7]. By the elimination of the Lagrange multipliers we get the

Before starting Newton's method one has to checknon-linear 3x 3 system
whether it converges to a unique solution. This test is given

in Kantorovich’s theorem [12]: J1=0,
Let B(z°,r) be a sphere containing the current box. . f2 i 0 ®)
Assume that?” (2°) is regular and the conditions fa=(VfixVf), =0
IF' (y) — F' (@) || < 7|y — || For degenerated edges, e.g., if a sphere is put on top of a
n 0 cylinder, the third equatiorf; = 0 is fulfilled on the whole
v,y € Ba",7), edge. The following algorithms are not able to handle de-
| F’ (mo)_l | <8, generated edges, so we demand edge regularity in the form
_1 of
1F" (%) " F (%) || <,
IVf1x Vfol| 2 eal VAIIV o], (6)

are fulfilled such that

o= By < 1 3) with the application specific, small parameter If the edge
TS o is parallel to the y-z plane, then every point on that edge
1 fulfills the necessary Kuhn-Tucker conditions of first order.

b 1= By (1 - Vi- 20‘) <7 ) So we demand the numerically sufficient Kuhn-Tucker con-
dition of second order
Then Newton’s method with initial point® is well
defined and:* converges to aroot of in B (29, t..). sTV2L (x,0) s > eo||s]|? Vs € C. ©
The root is unique iB(z°, t...) with
1 The tangential con€’ is the one dimensional space spanned
Lo = (1 +v1-— za) . by V f1xV f2. The sufficient Kuhn-Tucker condition ensures
By isolated solutions.



. 3.3 Degenerated points
A further kind of a special point is a degenerated point spec-
ified by
fl = 07
Z f2=0, 9)
Vfl X Vfg =0.

This means that the tangential planes are parallel in a point of
intersection. We are interested in isolated degenerated points,
like seen in Fig. 4, only. Degenerated edges fulfill equation
Fig. 4. Two intersecting cylinders (9) on the whole edge.
The classification of degenerated points needs a second
order approximation. Therefore we introduce a local coor-
3.2.1 Bisection criteria.To calculate the points of extreme dinate system spanned by the orthogonal unit veatgrs;
coordinates, the first step is again a bisection algorithmandes, such thakj is parallel to the common normal vector
A necessary condition is that there are at least two suref f; and f,. The surfacesf; and f, are approximated by
faces in the localization of the solid. To make use of thethe two, pure quadratic graphs
third equationf; = 0, we apply the mean value theorem 1 N7
15 @) = F @) < e = 2 Uy, o [ €). A meces- ) = (e £)40 ( 5;) =12

sary condition for a solution in the balB(c,r) containing

the bisection cube is The matricesd® are given by the implicit function theorem
as
ol <r su Vv . 8 To2 .
| fa(e)| < geB(Br)H EGI (8) 40 = {ekg f,,el] '
. . e3 Vf k=12
This can be estimated by the computable bound The intersection of the surfaces is approximated by the in-
tersection of the approximatio§” = ¢%. The intersection
1Vl < (IV2A0IV £l + V3£l 19 A2 PP B

is classified by the eigenvalues afY) — A@. If both have

These necessary conditions are only sufficient, if the edge i€ Same sign, i.e., deft® — A®) is positive, the intersec-
regular according to (6) and the second order Kuhn-Tuckefion is only one point. If at least one eigenvalue is 0, the
condition (7) is fulfilled. Both conditions are specified for degeneration is of higher order, like in the case of a degen-
the solution of (5), but they can be checked only for a givenerated edge. If there are two eigenvalues of opposite sign,
point in the bisection cube. While we can give necessary-€:: thg determinant is negative, then two edges intersect in
conditions to (6) in terms of bounds for second order deriva-his point. The tangential vectors of both edges are given by
tives, we need third order derivatives to give necessary conthe non-trivial solutions of the quadratic equation

ditions to (7). Therefore we perform the bisection algorithm ) on (&

until the cube is 'small’ in comparison to geometric details (61 &2) (A — A¥) (§2> =0.

and check condition (7) in the center of the cube.

If we are close to an edge, we want to switch to Newton’sThe bisection criteria for degenerated point calculation are

method again. Due to the fact just mentioned, we canno nalogous to the criteria for points of extreme coordinates.
apply Kantorovich's theorem. For reasons of mjmerical ap- nly condition (8) is extende_d to ‘?‘” three components and
proximation, it is important to solve the first two equations the tests for non-degeneration differ. We check, whether

7 - ) . ; X
of (5). The third one is used only to get a finite number ?ehfglA;) — A®) < —zin the center of the bisection cube is
of points on the edges. So we apply Newton’s method tounied.
fi(z) = 0, fo(x) = 0,57 (z — ¢) = 0 with the approximation
s = Vfi(c) x V fa(c) of the tangential vector evaluated in 4 Calculating edges
the centerc of the cube. For this equation, we can apply
Kantorovich’s theorem using just bounds for second orderThe second step after special point calculation is edge de-
derivatives. By defining an application specific, minimal dis- tection. If we speak of a special point now, we mean a tuple
tance for special points, we get one numerical solution pe(y,, ;) of a geometric poinp; together with the tangential
point of extreme coordinate. vectort; pointing in the direction of an edge starting in that
Although the described algorithm cannot handle degenpoint. There are always several special points within one
erated edges formed by two surfaces, we can handle solidgeometric point.
with degenerated edges by using a third surface belongingto For edge detection one has to choose an initial point
the same edge. E.qg., if we put a sphere on top of a cylinderfor every edge and has to follow it, until the corresponding
we already need the plane terminating the cylinder. Whileterminal point is reached. Then the edge is subdivided into
the algorithm applied to the first two surfaces stops becauseegments of the demanded mesh size as good as possible.
of (6), it calculates the proper point, if it is applied to the Selecting initial and terminal points is explained in Sect. 4.1
third surface together with one of the first two. and edge following in Sect. 4.2.
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4.1 Selecting start points

We start with two sets of special points, with the set of
unconditional special points*“ and the set of conditional
special pointsS©. Unconditional points have to appear in
the generated mesh, while conditional points are only used,
if the edge would not be found without them. Points of in-
tersection are of unconditional type, while points of extreme
coordinates are conditional special points. Fig. 5. Example meshing problem

As long asS™ is non-empty, we choose one point from
S* as initial point on an edge. Otherwise, if orfl§ is non- i
empty, we choose one of them. All special points within this® Surface and volume mesh generation
geometric point are moved froii® to S*“.

Starting in tangential direction, we follow the edge, until FOr @ human being, 2D mesh generation is a boring, but
we reach the corresponding terminal point on the edge contrivial task. Let us analyze, howemight solve the following
tained inS™. If there are some conditional special points on Problem. Some plane domain is given in terms of a boundary
the edge, they are removed froi. mesh consisting of line segments. The goal is to fill the area

When we finished one edge, the initial point and the With nearly equilateral triangles (see Fig. 5). Qne might cut
final point are removed frons®. As long asS* or S°¢ are o_ff the corner on the Ie_ft ha_nd_ side by one triangle. On the
non-empty, we go on with the next edge. right hand side, one might fill in three triangles as sketched

in the Fig. 5. The new point should be chosen such that the
shape of the triangles is optimal. On the top we can connect
to the inner boundary by one triangle. We go on until the
4.2 Following curves whole domain is meshed. But, how do we decide where to
put a triangle? We recognize a specific image formed by

Implicit curve following is mainly investigated for homoto the boundary elements and decide to cut off one or more

b ) yiur 9 omotopy triangles simultaneously. That is the task we have to teach

methods to solve nonlinear equations [12]. The principle |stoh “If the bound looks lik -

start at a given point® on the curve, and follow the curve in the computer: It the boundary looks like a certain image,
’ then cut off these triangles and get that new boundary.

small steps until some terminal point on the curve is reached. This algorithm is the well known advancing front method
The search is done by a predictor - corrector method. In the 9 9 '

current pointz*, we compute the unit tangential vectdr see e.g. [10], [14], [9], [8], [6]. The action performed for a

to the curve. Up to a scalar factor, it is the vector product\cjg:ts?g;]b;uphdeag dlvn:rlw?:ienls fdrg?\(t:nrgg?h% %?f?é?setfr;gr;uffhe?sr
of the normal vectors of the two surfaces defining the edge. 9 . )
; . in the way, how the rules are applied. The approach is to

As predictor, we use the point e
separate the concrete rules form the rule application code.
The algorithm has to check rules stored in data structures.

Therefore the code complexity is independent of the num-
with the adaptively controlled step-length. This point is ber of rules. The algorithm is complicated, but well defined

projected back onto the curve by the reduced Newton methognd can be, at least theoretically, implemented failsafe. Es-
to get the new value***. pecially in 3D, the choice of the concrete rules is based

on heuristics, which is put into an easily maintainable rule

description data-base.

254 — #4Y| = O (k1 — 2*|?) We proceed as follows. First, we describe the overall
’ algorithm, we continue with the abstract rule description and

which can be used for adaptive step-length control. As Iongthe rulg application algorithm. Finally, we concentrate on the
as the relation extensions for surface and volume mesh generation.

Fh =gk 4 gtk

On smooth curves, we have

”xk+1 _ :Ek+l|| § C||i‘k+1 _ ka (10)
5.1 The overall algorithm
is not fulfilled, we halve the step-length, and test a new
I**1. Because the left hand side depends quadratically orrhe whole advancing front algorithm is stated in Fig. 6. The
the right hand side, (10) will be fulfilled for a sufficiently input data to the mesh generator is the boundary description.
small 7. A proper choice is, e.g: = 0.1. If condition (10) |t consists of the vector ofp points
is fulfilled with ¢/4, we try with a doubled step-length for
the next step. X =(X1,..., Xp,) € RPXE,

The points along the curve are stored in a list. As We\yhere D = 2 for plane meshing an® = 3 for surface and

have reached the terminal point, this approximative curve i§,qjume meshing, and the vector of;z boundary elements
subdivided into the segments of the prescribed grid-size 835 usualN,, den,otes the set of natural numbetsz)
good as possible. The points generated are projected onto -

the exact edge. R=(Ry,...,Ry,,) € N&X"oE,
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have to work with a bounded number of points and boundary

load boundary mesh (starting front) elements.

initialize quality classes

while front is not empty To simplify the following steps, we transform the, p
choose base-element from front points of the environment to a local coordinate system

get environment of base-element

transform to local coordinate system r; = F(Xp ), 1<i<npp.

Itfe Z‘fj;?ﬁﬂ';;fﬁ;;‘;‘es The coordinate transformatiafi is chosen such that; = 0,
generate new points in local coordinates 2 is a point on the locaf;-axis and, for the 3D cases is a
transform new points to global coordinates point in the local;-&;-plane. If we choose unit-length in the
store new inner elements local coordinate system corresponding to the desired edge-

olse update front length &, the edge-length of well sized elements in local

coordinates is about one. The various possibilities of the
coordinate transformation will be discussed in Sect. 5.4. The
nrpg boundary elements in the environment are described
by local boundary elements using local point indices

P(ri;) =Ry, 1<i<nypgp, 1<j<d

decrease quality class for base-element

Fig. 6. Overall algorithm

A simplicial boundary element is identified with thein-

dices of the corner points. For plane and surface meshing To the local boundary description the rule testing algo-
we have boundary segments £ 2), for volume meshing rithm is applied. This key-step of our approach is described
the boundary elements are trianglés=(3). in Sect. 5.3. Here we only mention, that the tolerances of

To every boundary element, the quality class, a naturafhe rules are given by the quality class of the base-element.

number, is associated. It is initialized to one, which mean§A high quality aII_ows only gpod elements, which can make
highest quality. any rule application impossible.

The state of the preceding algorithm is always repre-era,:L?‘l\?vppg?nﬁglfnrggﬁ:fggg&?ﬁgtgsescnbes where to gen-
sented by the current boundary element vector. The algo- P :
rithm performs as long as the length of the vector is positive. ~ The nyp new pointsys, ..., y,,, are transformed to

We choose one of the boundary elements minimizing thegIObaI coordinates and appended to the point vector
criterion Xppri = F 7 Yy), 1<i<nyp.
quality class + distance to boundary. The rule describes the creation of new inner elements.
This element will be calledbase-elementThe distance to  After converting the local to global point indices, the ele-
the boundary is determined by the minimal number of innerments are stored in the element list.

elements needed to draw an open path from the element to The rule also prescribes the necessary changes in the

an arbitrary element of the original boundary. This diStanceadvancing front. Some boundary elements must be deleted,

term ensures a nearly uniform growing of the mesh overgome gthers are added to the global boundary element vector
the whole boundary. The quality term prefers elements, ony,

which better fitting rules can be applied.
If no rule is applicable for the base element, its quality

The examination of the boundary is a local process. For;|5ss is decreased. This enables either the application of a
the following steps, we have to know the environment of\yqrse fitting rule later on, or a rule applied to a neighbor
the base-element. This environment consists of all boundboundary element also removes the current one.

ary elements closer to the base-element than a prescribed
radius, and the accompanying corner points. Depending on
the rules, the radius is chosen between three and five times 2 Abstract rule description
the desired edge-length parameterThis step is a geomet-
ric search process, it defines the asymptotic complexity ofNext, the abstract description for 2D and 3D element genera-
the whole algorithm. While one has to test each point of thetion rules is explained. Due to the coordinate transformation,
current boundary in a straight forward approach, a quadtreeD and surface meshing can be handled by the same rules.
or octree search tree for 2D or 3D, respectively, reduces rule is always specified in reference position, such that the
the complexity of point searches to a logarithmic behavior.elements have optimal shape. A rule involvesp existing
By the use of an alternating digital tree (ADT), also bound- points given by the vectar’.
ary elements can be found fast [2]. Thgp points and the R= (R gR )eRixner

= (1, .. .

nrgr boundary elements in the environment are marked by* ““nep
the vectors” and(”, respectively The connection of these points by elements is specified by
, . the vector of existing boundary elements
Xiray, 1<i<npp, Ripyy, 1<i<nrpg. o i 9 . y
=, L) € NREERE,

Without loss of generality, we leR,; = (1) be the base-element
and X;ry, X;r(2) and, for the 3D caseX;r ), are the cor- Some rules generate new points whose coordinates are given
ners of the base-element. For the rest of the loop, we onlyy the vector
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f§p ________ Qf4R Analogously, the corners of the free-zofi€ are moved to
K Y f’ by the linear mappingd.
/,' yR \ f/ — fR +qu.
I, 1 \\
x§ = f§ Pf3 For the 120 degree corner, the linear mapping
/', Lyu=—ug +up+us

/’ leads to two congruent, isosceles triangles. The linear map-
xR= fR xB = fR ping for the corners of the free-zone is constructed as fol-
1= %1 2=

lows. The pointsf], f; and f§ have to match the points],
Fig. 7. Example for old points, new point and free-zone, base element isx/2 andz}. The other three are mirrored at the new pajt

12
f]/__fﬁf% = uz,

, I ¢R
yR = (y]}_%7 .. 7nyp) S RdanP, fZ f2 Uz,

/ R — —
. . — = — = _ + +
and new boundary elements connecting existing and new3 — 3 = 2Lyt — us = —2uy + 2up +us,

points fo— fF = 2L, u — uy = —3uy + 2up + 2us,

R _ (.R R dxn /R — _ - _ + +
$TE(S1 s Shypy) € N SINEE | fs— J5° = 2Lyu — up = —2uq +up + 2ug,

. . R _
The corner with index, 1 < i < ngp+nyp of the bound- fe—fe =us.

ary element isv; for i < npp, Of y;—ny,, Otherwise. The  \jention, it is not ensured to achieve properly oriented inner
generation ofuy g inner elements is specified by the vector glements. In the case of wrong orientation, we reject the

tR= (R, .. tB ye N@xnne application of the rule.

TTYUNNE neppinNp *

To be able to apply a rule, we need some free space
containing no existing point and no existing boundary eI-5 3 The rule application algorithm
ement. We define the free-zone by the convex hull of the™ uie appiicat gor

M .
nrp POINtS f;* combined to the vector We need an algorithm applying rules defined by the data

R = (ff, R )y e RIxnrp, structure to a boundary image given in local coordinates.

e . This is to find injective mappings
An example for a rule filling a corner of 120 degree by

two triangles is shown in Fig. 7. This example is describedm” : N,,,,, — Ny, ,
by the data structure

- and
=((0,0),(1,0),(—0.5,0.866
xR (( 9 )a( 9 )a( ) ))> mE : NnEBE _ NnLBE
y'* = ((0.5,0.866)),
R =((1,2), (3, 1)), assigning each point (boundary element) in reference posi-

tion a point (boundary element) in the environment of the

R —
s7=(3.4),(4.2)), base-element. In the 3D case, the three possible rotations of

t" =((1,2,4),(1,4,3)), a triangle are handled by the mapping
R —
7 =1(0,0),(1,0),(1.5,0.866),(1,1.732),(0,1.732), mO - Ny — Na.
(—0.5,0.866)),

For the 2D case, we set® = 0. The mappingn! defines

with constantsipp = 3, nvp = 1, nppr = 2,nNBE = 2, the vectors’ of local points in reference numbering by
nyg = 2, npp = 6. Without loss of generality, we can

always setrf’ = 0, 2§ = (24',0) andrff = (1,2) forthe 2D 2’ = (@nr()i<i<npr

case andry’ = 0, 23" = (241,0,0), 2§ = (1, 245,0) and it ai50 specifies the deviation, the position of the new

rit = (1,2,3) for the 3D case. points in local coordinateg’ and the corner points of the
The rules are specified for elements of optimal shapefree-zonef’.

But in a real situation, we will not have a corner of exact  |f the restrictions listed below are fulfilled, we can apply

120 degree. The real existing points will deviate form thethat rule.

reference position”*. Let us denote the real existing points

by =’. We define the deviation € R¥*"#r by — The quality class of the base-element must be worse
, R then a prescribed value. This enables rules necessary for
u=r - the termination of the algorithm, but which should be

A deviation of the existing points should also lead to a move- ~ @voided if possible.
ment of the new points. The simplest case is given by a liner — Because of the compatible placement of the local coor-

mapping of movements. We generate new points at the po- dinate system and the position of boundary element one
sition in reference position we can set

y/ = yR + Lyu mE(l) =1
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— The boundary in the rule description has to be topologi- . .
cally equivalent to its image in the local boundary, which ¢ =2,m~(1) =1,m"*(2) =0

while ei > 2

means while mE(ei) < NLBE

PRy = ; [ tmE (ed)
m(r:)=r. B e O 1§Z§nNBE Incrementm

(rij) = Tme@,4me o , ’ if m® (es) compatible tomZ(1), .. ., mZ(ei — 1)
. . . . incrementei
To avoid additional complication, we assume to take the mP (i) = OZ
corner index modulal. else
— The point deviation must not exceed a limit depending all elements are compatibly mapped !!!

on the quality class decrement;i

d
lui| < f(qual. cl.), Fig. 8. Element mapping algorithm

where f¢(.) is a monotone increasing function such that
f(x) — oo asx — oo. For example, we us¢(x) =
0.2z2.

— Each local boundary element not contained in the image
of m® must not intersect the free-zone.

— And finally, each generated inner elemepntmust be
properly oriented and the element error functiohdt;)
measuring the well-shapedness of the element must be
below a limit depending on the quality class

E(t;) < f°(qual.cl.), 1<i< NE.

Element error functionals will be discussed in Sect. 6. I local transformation
For example, we chosg®(z) = .

To construct the mappings”, m” andm® we essen-
tially have to test each of they p"2F xnygp"E8E x 3"EBE
possibilities. In an average 3D case we havgp = 5,
ngpe = 3, nrp = 30 andn;zr = 50 leading to & - 10%°
possibilities.

But by a good ordering of the trials, we can reduce the
work to a realistic amount. It is advantageous to start with
the mapping of elements. The algorithm performing this taskrig. 9. Surface mesh generation
for the 2D case is stated in Fig. 8. It simulatesg g nested
loops from 1 tongg, but the loop for element: is only
started, if the elements 1 ., ei — 1 are compatible mapped. sketched in Fig. 9. Because we can choose individual, lo-
Compatible is understood in the sense of (11). cal transformations, we do not have the problems of global

Every loop mapping a boundary element connected to arroordinate transformations as non-uniform point distribution
already mapped one will find only one (or, in exceptional and singularities.
cases a few) hits. Only separated boundary elements in the For small edge-length compared to the radius of cur-
rule description will produce nearly; s hits. This gives  vature, the transformation can be implemented numerically
a complexity ofO(nppr X nrpg) for connected boundary using the surface-operations defined in Sect. 3. For an edge-
elements and an additional factey 5 for each separated length of about the curvature radius, individual bijective
group. transformations have to be implemented for every class of

The mapping of most points in the rule description is surface.
determined by the mapping of elements. Only the mapping Beside surface mesh generation, the local coordinate
of separated points in the rule description must be tried fotransformation can be used for other mesh generation vari-
each local point. ants:

— Graded mesh generation can be achieved by varying the
5.4 Possibilities of the transformation unit-length in the local coordinate system.

— (Local) anisotropic meshes can be produced by anisotro-
The difference between plane and surface mesh generation PIC coordinate transformations.
is essentially contained in the coordinate transformations
F :SNU,. — R?used in the overall algorithm (Fig. 6).
It maps the environmerit, . of the base-element from the 5.5 The rules in 2D
surfacesS into the plane. In the plane the 2D rules are ap-
plied. If new points must be inserted, they have to be mappedhe nine rules used for 2D are drawn in Fig. 10. The first
by F~! from the plane to the surface. The whole task isseven rules have a free-zone to ensure enough space for
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> >

”~e e EXxisting points
P o New points

—— Existing/new bound. el.

77777 Free-zone
Fig. 10. Rules for 2D

further, well shaped elements. The last two ensure the terhas to be in front of each boundary element of one rest
mination of the algorithm. They have enough free space talomain, which means

build a new triangle, but do not take care of the remaining ..

rest domain. To avoid the application of the last two rules™: (z—Xg,,) <0

at the beginning, the minimal quality class of them is set tohas to be fulfilled for all boundary elemeng with outer

a higher value (e.g. 5). normal vectorsy;. The solutionz is calculated by the Sim-

A dead lock cannot appear, because in 2D it is alwaysylex method applied to the linear optimization problem
possible to cut off a triangle without inserting a new point

by one of the last three rules. rrean3 mlaXniT(x — XR, 1)
x

5.6 Closure for 3D mesh generation L
6 Mesh optimization

In 3D, itis not always possible to cut off one element without

inserting new points. These boundaries can cause difficultie$he quality of the generated mesh can be improved dra-

to the advancing front method. An example taken from [g] matically by several techniques of mesh optimization [3].

is a pentahedron, which cannot be dissected into tetrahedt@e distinguish between metric optimization, where points

without inserting a point in the inner (see Fig. 11). are moved to increase the quality, and topological changes
We could not define rules for a robust handling of theseto the mesh, where points are reconnected by different ele-

type of geometries. Therefore it is necessary to recognize thgents.

problem, and to have an alternative algorithm. The problem To quantify the quality of the mesh, we need an error

is identified, if we cannot apply any rule up to a certain functional for the elements. Because the standard finite el-

quality class. The alternative algorithm has to insert oneement functional maximal edge-length over in-radius is ex-

point in the inner of the rest domain, such that elements caensive to calculate for 3D, we use a cheaper one dominating

be built to this new point. the standard functional. For a triangular elem&ntve use
Experiments have shown, that in most of the exceptionathe term

cases star shaped rest domains can be achieved. For these 3 (Z l‘)z Lo

domains, we can find an inner point, which can be connectegz(T) = i)y Z < by 2) ;

to each boundary triangle by a tetrahedron. A star point 36 Area li
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Fig. 11. Example for a difficult boundary }(
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3

E I Fig. 13. Face swapping in 3D

solid cube =
Fig. 12. Point collapsing and edge swapping plane (0, 0, 0; 0, 0, -1)
and plane (0, O, O; O, -1, 0)
and plane (0, O, O; -1, 0, 0)
and plane (100, 100, 100; O, O, 1)
for a tetrahedral element we use and plane (100 100, 100. 0. 1 0)
3 d plane (100, 100, 100; 1, 0, 0)
L ) and p , , ; 1,0,
E(T) = 1 (k) +Z (ZZ + h _2> , solid all =
642 Vol ~\h cube
) ) and sphere (50, 50, 50; 75)
with the 3 or 6 edge lengthis, respectively. The constants and not sphere (50, 50, 50; 60);

are chosen such that an equilateral element has error 1. The

first term of each functional penalizes flat elements, the secFig. 14.Input to ‘Cube and Spheres’

ond one too large or too small elements. As one element

degenerates, the functional tends to infinity. If the orienta- _ . ) L

tion of the element nodes is negative, we set the error tgrror of a wrong oriented element is defined as infinity, the

infinity, too. The total error functional of the mesH is the ~ MeSN minimizingF; is a valid mesh.. .
sum of the element errors Points in the surfaces are optimized by the two dimen-

sional problem

E(7)= > B(D). min E,(7, F~X(1)),
Te7 teR?
where F' is the local transformation from the surface to the
two dimensional parameter set. The pokiit is moved to
6.1 Metric optimization F~(t). Analogous points on edges are optimized by the

solution of

In two dimensions, Laplacian smoothing is the standardminEi(.y G=Y(t)
mesh improvement algorithm. The inner points are moved:eR ’ ’
into the center of gravity of the neighbors iteratively. Lapla- with the local transformatioit from the edge into the pa-
cian smoothing cannot be applied for surfaces, and it doeggmeter interval.
not work well in 3D. Theoretically, the optimal topological
equivalent mesh can be calculated by minimizing the error
functional E(.7"). A global minimization is too expensive, 6.2 Topological optimization
but we can apply point-wise relaxation of the error func-
tional. Therefore we have to solve a set of minimization When point movement cannot increase the mesh quality any-
problems of maximal size three. We use the BFGS methodmore, some changes in the mesh topology may help a lot.
a member of the Broyden family (see [4]). It is globally con-
vergent with locally quadratic convergence rate, although it
does not need second derivatives.

One step of the relaxation method for an inner point is
to solve the three dimensional problem
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where E;(.7, ) is the global error functionak(.7") with

the pointX; moved tox. Of course, only the elements con-

nected toX; have to be used in the optimization procedure.

Because we start with a valid finite element mesh and théig. 15. Cube and spheres
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3501 450
3001 n 4001 _
250 1 350+
3001
200 2e0 |
1501 2001
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0 H H#H ﬂ#ﬂ H#H H# H# + + + t ﬂ# 0 + + + + = H#H + + H#
0.1.2.3.45.6.7.8.91 0.1.2.3.45.6.7.8.91

Fig. 16. Quality classes for 'Cube and Spheres’

Table 1. Cubes per level for point of intersection calculation

Level 1 2 3 4 5 6 7 8 9 10 11
Intervals 1 7 19 56 200 664 1712 1824 1896 1128 384

tetrahedron with wrong orientation would occur and there-
fore the error functional is infinite.

7 Examples

Finally, we give several examples showing the performance

Fig. 17. Crankshaft of the mesh generator. The first example, called 'Cube and
Spheres’, shows a cube intersected by a sphere and by the

1604 complement of a sphere. The information given to the mesh

140+ - generator consists of the text file shown in Fig. 14 describing

1204 the geometry, and the desired mesh size parameter.

100 The 'plane’ command defines half-spaces by a point in
80 1 the plane and the outer normal vector. Spheres are defined
60 1 by the center and the radius. By the Boolean operations,
401 more complex objects can be formed and assigned to named
201 HH solids. The solid called "all’ is the main object used by NET-

0 = =nnoflLHL, GEN.
01.2.3.45.6.7.8.91 The edges as well as the surface mesh of this example
Fig. 18.Quality classes for crankshaft are drawn in Fig. 15. First the convergence behavior of the

bisection algorithm for special point calculation is investi-
gated. There are 24 points of intersection (three in each of

Therefore a few elements are removed and the points argre eight corners) and also 24 points of extreme coordinates

connected in a new manner. This actions may be describeOUr 0N each of the six circles). The number of cubes per
by local rules also level used for point of intersection and point of extreme

) ] o ) coordinates calculation are shown in Table 1 and 2, respec-

~ The simplest technique working in two as well as in threetjyely. We can see a bounded number independent of the
dimensions is point collapsing (Fig. 12). If the mesh quality |eye|. The final mesh according to an edge-length parameter
increases, if two points are collapsed in the center and thg, - 10 consists of 1418 surface triangles, 1898 tetrahedra
elements between are removed, we perform this change tQnq 813 points. The classification of the elements with re-
the mesh. spect to the quality measuié(T’) is drawn in Fig. 16. The

The common technique in two dimensions is edge swapleft hand side shows the quality before, the right hand side

ping [5]. Often two flat triangles can be improved by swap- after optimization. CPU times on a SUN Ultra 1 workstation
ping the common edge (Fig. 12). We get two new trianglesfor the individual subproblems are given in Table 3.
connecting the same four points in a different manner. To To apply efficient geometric multigrid methods, we re-
generalize edge swapping to three dimensions, we have tquire a coarse mesh, which will be hierarchically refined.
distinguish different cases. Five points can be connected bpur version of the advancing front method is well suited to
two as well as by three tetrahedra (see Fig. 13). The optithe generation of very coarse meshes, because by the abstract
mizer can select the better one. Six points forming an octules many special cases can be handled without coding. For
tahedron can be cut into four tetrahedra in three differenthe same object, a mesh with edge-lenigth 50 was gener-
manners, where we can choose the best one. The optimaked consisting only of 124 surface triangles, 74 tetrahedra
connection is a valid mesh, because otherwise at least orend 54 points.
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Table 2. Cubes per level for point of extreme coordinates calculation
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Fig. 19. Sculpture in St. Gallen and surface mesh

Level 1 2 3 4 5 6 7 8 9 10 11
Intervals 1 7 19 56 200 688 2120 2880 3048 2928 2976
Table 3. CPU times for individual subproblems for 'Cube and Spheres’
Step Points Edges Surface Surf. Opt. Volume Vol. Opt. total
Seconds 5 1 13 15 220 150 394

A second example is the crankshaft drawn in Fig. 17. The 3.

mesh consists of 592 surface elements, 853 volume elements
and 335 mesh nodes. Figure 18 shows the quality classes
of the volume elements. The total CPU time need for the
generation of the mesh was 140 seconds. The final examplg,
is a surface mesh (Fig. 6.1) of some Sculpture in St. Gallen.

8 Concluding remarks

6.

In this paper, we proposed the separation of element gen-
eration rules from the code. The functionality of the imple-

mented code is precise specified, while all the heuristics of
the rules is moved to an extern rule description. Tools for
graphical editing of the rules may be developed. By means

of these tools it should be possible to develop a proper set9.

of rules for mixed tetrahedral, pentahedral and hexahedral
mesh generation.

0.
We can use the same rules for plane and surface mesjh
generation as well as for uniform, graded or anisotropic mesh .

generation. The distinction is contained in two transforma-

tions. At current time we have implemented only two di- 12.

mensional graded mesh generation.

The corner-, edges- and surface mesh generation algc}—?"

rithms are based on abstract geometric primitives. Therefore
new geometric objects can be implemented without changing
the main code.

The software as well as the examples are available vid4-

anonymous ftp from the address:

ftp.numa.uni-linz.ac.at
/pub/software/netgen.tar.gz
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