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Abstract 

Cytotoxic T cells are of central importance in the immune system’s response to disease. They 

recognize defective cells by binding to peptides presented on the cell surface by MHC (major 

histocompatibility complex) class I molecules. Peptide binding to MHC molecules is the single 

most selective step in the antigen presentation pathway. On the quest for T cell epitopes, the 

prediction of peptide binding to MHC molecules has therefore attracted large attention. 

In the past, predictors of peptide-MHC interaction have in most cases been trained on binding 

affinity data. Recently an increasing amount of MHC presented peptides identified by mass 

spectrometry has been published containing information about peptide processing steps in the 

presentation pathway and the length distribution of naturally presented peptides. Here, we 

present NetMHCpan-4.0, a method trained on both binding affinity and eluted ligand data 

leveraging the information from both data types. Large-scale benchmarking of the method 

demonstrates an increased predictive performance compared to state-of-the-art when it comes 

to identification of naturally processed ligands, cancer neoantigens, and T cell epitopes. 

.CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/149518doi: bioRxiv preprint first posted online Jun. 13, 2017; 

.CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/149518doi: bioRxiv preprint first posted online Jun. 13, 2017; 

.CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/149518doi: bioRxiv preprint first posted online Jun. 13, 2017; 

.CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/149518doi: bioRxiv preprint first posted online Jun. 13, 2017; 

.CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/149518doi: bioRxiv preprint first posted online Jun. 13, 2017; 

.CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/149518doi: bioRxiv preprint first posted online Jun. 13, 2017; 

.CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/149518doi: bioRxiv preprint first posted online Jun. 13, 2017; 

.CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/149518doi: bioRxiv preprint first posted online Jun. 13, 2017; 

.CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/149518doi: bioRxiv preprint first posted online Jun. 13, 2017; 

.CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/149518doi: bioRxiv preprint first posted online Jun. 13, 2017; 

.CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/149518doi: bioRxiv preprint first posted online Jun. 13, 2017; 

.CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/149518doi: bioRxiv preprint first posted online Jun. 13, 2017; 

.CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/149518doi: bioRxiv preprint first posted online Jun. 13, 2017; 

http://dx.doi.org/10.1101/149518
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1101/149518
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1101/149518
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1101/149518
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1101/149518
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1101/149518
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1101/149518
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1101/149518
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1101/149518
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1101/149518
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1101/149518
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1101/149518
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1101/149518
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Introduction 

Cytotoxic T cells play a central role in the immune regulation of pathogenesis and malignancy.  

They perform the task of scrutinizing the surface of cells for the non-self peptides presented in 

complex with MHC (major histocompatibility complex) molecules. In cases such peptides are 

recognized, an immune response can be initiated potentially leading to killing of the infected 

(mal-functioning) cell. The most selective step in the pathway leading to this peptide 

presentation is the binding to MHC.  

 

Over the last decades, large efforts have been dedicated to the development of computational 

methods capable of accurately predicting this event. The accuracy of these methods has 

improved substantially over the last years, and most recent benchmark results demonstrate that 

more than 90% of naturally presented MHC ligands are identified at an impressive specificity of 

98%1. This gain in performance is achieved partly by the extended experimental binding data 

sets made available in the IEDB2, and partly by the development of novel machine-learning 

algorithms capable of capturing the information in the experimental binding data in a more 

effective manner. One such novel method is NNAlign-2.0, allowing the integration of peptides of 

variable length into the machine-learning framework 3. This novel training approach allows both 

the incorporation of a larger set of training data, but also and maybe more importantly enables 

the method to directly learn the length preference presented peptides for each MHC molecule 

from the experimental binding data 4. Even though most presented MHC class I ligands are of 

length 9 amino acids, the ability to incorporate length preferences directly into the model is 

critical as experimental data demonstrate that the length profiles of presented ligands can vary 

substantially between MHC molecules; prominent examples are the mouse H-2-Kb, with a 

preference for eight amino acids-long peptides 5 and HLA-A*01:01, where close to one third of 

MHC presented peptides have a length longer than nine amino acids 6.   

 

Some of the most well documented and applied of methods for predicting peptide binding to 

MHC class I include NetMHC 7,8, and NetMHCpan 4,9. These tools have over the last years 

gained increasing interest due to the recent focus on neoantigen identification within the field of 

personalized immunotherapy 10,11. However, as underlined in several studies including the 

recent Nature Biotechnology Editorial 12, “neoantigen discovery and validation remains a 

daunting problem”, mostly due to the relative high false positive rate of predicted epitopes.  

 

One potential cause for this relatively high rate of false positive epitope predictions is the fact 

that most methods are trained on binding affinity data, and as a consequence only model the 

single event of peptide-MHC binding. As stated above this binding to MHC is the most selective 

step in peptide antigen presentation. However, other factors including antigen processing 13 and 

the stability of the peptide:MHC complex 14 could influence the likelihood of a given peptide to 

be presented as an MHC ligand. Similarly, the length distribution of peptides available for 

binding to MHC molecules is impacted by other steps in the processing and presentation 

pathway, such as TAP transport and ERAP trimming, which are not reflected in binding data in 
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itself 6. Advances in mass spectrometry (MS) have allowed the field of MS peptidomics to move 

forward. In this context, recent studies 15,16 have suggested that training prediction methods on 

such data rather than binding affinity data could improve the ability to accurately identify MHC 

ligands. As such, MS peptidome data would contain the comprehensive signal of antigen 

processing and presentation rather than just MHC binding affinity. Moreover MS peptidome data 

generated by immunopeptidomic studies would contain precise information about the allele-

specific peptide length profile preferences not available in the MHC binding affinity data sets.  

 

Identification of MHC bound peptides by mass spectrometry thus holds great promise for the 

generation of large scale data sets characterizing the peptidome specific for individual MHC 

molecules 17, and potentially also for the identification of T cell epitopes 18.  It is however clear 

that, within the foreseeable future, the number of MHC molecules characterized by such MS 

studies will remain limited. In this context, large efforts have over the last decades been 

dedicated to experimentally characterize the peptide binding space of MHC molecules using 

semi high-throughput MHC-peptide binding affinity assays 19,20, enabling binding specificity 

characterization of a large set of MHC molecules from different species.  

 

The IEDB contains a comprehensive set of MHC binding and ligand data available in the public 

domain. While this data set contains binding affinity data characterizing more than 150 different 

MHC class I molecules (from human, non-human primates, mouse, and life-stock), at the onset 

of this study only 55 MHC class I molecules were characterized by MS peptidome data. This 

imbalance made us suggest a novel machine learning approach integrating information from 

both types of data (binding affinity and MS ligands) into a combined framework benefitting from 

information from the two worlds. The proposed framework is “pan-specific” as it can leverage 

information across MHC molecules, data types, and peptide lengths into one single model. We 

hence expect this approach to achieve superior predictive performance compared to models 

trained on the two data types individually, and also achieve an improved performance when it 

comes to predicting length profile preferences of different MHC molecules.  

 

While recent works have demonstrated the improved ability to identify MHC ligands using 

methods trained on MS peptidome data 15,16, limited data is available on their impact for the 

identification of T cell epitopes.  In this work, we focus on demonstrating the improved prediction 

performance not only on large sets of MS peptidome data but also on T cell epitope data 

independent from the data used to train the new predictor.  
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Results 

We trained the NetMHCpan method version 4.0 for the prediction of the interaction of peptides 

with MHC class I molecules integrating binding affinity and MS eluted ligand data. Combined 

training was achieved by adding a second output neuron to the NNAlign approach described 

previously 4. In this setup, the first output neuron returns a score of binding affinity, and the 

second output neuron a score of ligand elution. As described in the online methods section, the 

model parameters between the input and hidden layer of the artificial neural network are shared 

between the two input types. Thanks to this network architecture, we expect the model to be 

able to combine informative patterns found in the two data types, boosting performance for both 

output neurons. To demonstrate this, we compared the performance of the BA+EL method to 

the BA method, trained only on binding affinity data and the EL method trained only on eluted 

ligand data. Figure 1 shows the mean performance per MHC allele of the four methods on four 

different data sets given in in terms of AUC (for details see Supplementary Tables 1-3). From 

this analysis, it is clear that especially the BA+EL method with EL predictions performs much 

better on binding affinity data than the EL only method.  This observation strongly suggests that 

the EL only method, as a results of the small number of only 55 different MHC molecules 

included in the eluted ligand data set, has limited pan-specific potential compared to the BA+EL 

EL method trained on data from 169 MHC molecules included in the combined binding and MS 

eluted ligand data set.   
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Figure 1: Mean performance per MHC molecule measured in terms of AUC for the four methods; BA (trained on 

binding affinity data only), EL (trained on eluted ligand data only), BA+EL BA (the binding affinity prediction value of 

the model trained on the combined binding affinity and eluted ligand data), and BA+EL EL (the eluted ligand 

likelihood prediction value of the model trained on the combined binding affinity and eluted ligand data) The methods 

were evaluated on all binding affinity (all_BA) data and all eluted ligand (all_EL) data including negative peptides 

derived from source proteins, and on data sets restricted to alleles occurring in both binding affinity and eluted ligand 

data sets (shared_BA, and shared_EL).  

Peptide length preference of MHC molecules 

We next set out to investigate how well the different methods could capture the peptide length 

preferences of individual MHC molecules. For this, we predicted binding scores for a set of 

random natural peptides of lengths 8-15 amino acids and calculated the frequencies of peptides 

of different lengths in the top 2% of predictions. In figure 2a-c, we visualize examples of such 

peptide length preference profiles predicted by the BA, BA+EL BA, BA+EL EL, and EL only 

methods. The depicted MHC molecules are known to have preferences for different peptide 

lengths. All HLAs have a preference for 9mer peptides. However HLA-A*01:01 has an increased 

preference for 10-mers compared to average, HLA-A*02:01 has a strong preference for  9-mers 

only, and HLA-B*51:01 has an increased preference for  8-mers compared to average 4,6,17. 

Binding affinity predictors often overestimate the amount of binding 10-mer peptides due to their 

over-representation in the binding affinity data set 7,8, which is also visualized in figure 2. 
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Figure 2:  a-c) Predicted length preference of selected MHC molecules according to different models. Binding to 

selected HLA molecules was predicted for 80,000 8-15-mer peptides and the frequency of peptide lengths in the top 

2% predicted peptides calculated. d) Correlation of predicted and observed ligand length for different models. Binding 

to all HLA alleles present in both binding affinity and eluted ligand data sets was predicted using the four different 

prediction methods for 80,000 8-15-mer peptides. Subsequently the occurrence of different peptide lengths in the top 

2% predicted peptides for each molecule was calculated, and the correlation coefficient between these frequencies 

and the length frequencies in the eluted ligand data set calculated. 

 

Next, we extended the analysis to all MHC molecules included in the eluted ligand data set, 

calculating the correlation between observed and predicted length frequencies for each 

prediction method. This analysis (figure 2d) clearly confirms the results obtained from the 3 case 

examples, namely that the two methods BA+EL EL and EL only show significantly higher power 

for predicting the peptide length preference of individual MHC molecules compared to the two 

methods trained to predict binding affinity (BA, and BA+EL BA).    
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The predictions for the two eluted ligand likelihood models only show low performance for one 

molecule; HLA-B41:04. This molecule is however only characterized by 52 eluted ligands, 

whose length profile forms an unusual bimodal distribution with peaks at length 9 and 11 (data 

not shown).   

Leave-one-out experiments on eluted ligand data 

In the above experiment, the MHC molecules used for the peptide length preference evaluation 

were also included as training data of the EL prediction methods. This naturally leads to a bias 

in the performance evaluation. To address this, and to access the pan-specific potential of the 

BA+EL EL prediction method, we conducted a leave-one-out experiment. Here, a given MHC 

molecule was removed from the eluted ligand data set, and the BA+EL method retrained as 

described in material and methods. Next, both the predictive performance (estimated in terms of 

AUC for separating the known ligands from the artificial negatives) and the ability to predict the 

peptide length preference were evaluated. The result of the benchmark is shown in figure 3. 

This figure clearly confirms the pan-specific power of the BA+EL method. In terms of the 

predictive performance (figure 3a), the LOO methods display, as expected, a slight decrease in 

performance compared to a method trained and evaluated on all data (the all data method). 

When looking at the performance for predicting the peptide length profile (figure 3b), the LOO 

methods display a very high performance. Only in one case, the EL LOO method shows a 

substantial drop in performance for the left out MHC molecule. This case is H2-Kb, the only 

mouse molecule in the MS ligand data set with a strong preference for 8mer ligands. The 

BA+EL EL LOO method is able to predict the length profile of H2-Kb due to the H2-Kb affinity 

data present in the BA training data set. 

 

 
 

Figure 3: Eluted ligand leave-one-out experiments. a) Performance per MHC allele of a model trained on all data and 

a model where the eluted ligand data of a given allele was left out of the training process. b) Correlation of predicted 

and observed ligand length for a model trained on all data and the leave-one-out models. 
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The NetMHCpan-4.0 method 

Having demonstrated the increased predictive power of the BA+EL method when it comes to 

prediction of peptide binding affinity (the BA+EL BA model), likelihood of being an eluted ligand 

(BA+EL EL model), and the ability of capturing the MHC specific peptide length binding 

preferences (also the BA+EL EL model), we set out to construct the final NetMHCpan-4.0 

method. This method was trained as the BA+EL method, using 5 fold cross-validation as 

described in materials and methods. The method is accessible at 

www.cbs.dtu.dk/services/NetMHCpan-4.0. The functionality is identical to the earlier 

NetMHCpan implementations with the important additional functionality that two different output 

options (binding affinity and eluted ligand likelihood) are available. By default, the program 

returns eluted ligand likelihood scores. An example of the output of the method is shown in 

Supplementary figure 1.  

Validation on external data sets 

The performance of the updated NetMHCpan method was assessed on two independent 

external data sets; one consisting of 15,965 eluted ligands covering 27 HLA molecules, and 

another consisting of 1,251 validated CTL epitopes covering 80 HLA molecules reported in the 

IEDB. The validation data sets were constructed as described in online methods. The source 

protein sequence was identified for each ligand/epitope, and all overlapping 8-14 mer peptides 

except the ligand/epitope were annotated as negatives. All data points included in the binding 

affinity and eluted ligand training data sets were excluded from the validation data set. A Frank 

value was calculated for each positive-HLA pair as described in online methods as the ratio of 

the number of peptides with a prediction score higher than the positive peptide to the number of 

peptides contained within the source protein. In this manner, we can construct the sensitivity 

curves presented in figure 4. Two observations are striking from these results. First and 

foremost, the results clearly demonstrated the increased predictive power of integrating eluted 

ligand data into the training data of NetMHCpan. In the left panel (the analysis of the eluted 

ligand data), we can observe that the gain in sensitivity at a Frank threshold of 1% for the EL 

models (NetMHCpan-4.0 EL or EL only) compared to NetMHCpan-3.0 is 10% (95% versus 

85%), and 15% at a Frank threshold of 0.5% (90% versus 75%). These numbers mean that a 

ligand will have a prediction score within the top 0.5% of its source protein peptides in 90% of 

the cases using the EL models, compared to only 75% using NetMHCpan-3.0. The results 

shown in the left panel of figure 4 however also suggest that the two EL models achieve very 

similar predictive performance when it come to identification of eluted ligands. This is in strong 

contrast to the results obtained from the IEDB epitope data set (figure 4, right panel). Here, only 

the NetMHCpan-4.0 EL model demonstrates an improved predictive performance compared to 

NetMHCpan-3.0. The reasons for this inconsistency stem from the large overlap between the 

HLA molecules shared between the evaluation data sets and the training data. 20 of the 25 HLA 

molecules in the eluted ligand evaluation data are included in the eluted ligand training data, 

and this number only increases to 23 by adding in the binding affinity training data. This large 

overlap in MHC coverage between training and evaluation data makes the reduced pan-specific 

potential of the “EL (only)” model of limited importance.  In contrast to this, only 37 of the 80 
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HLA molecules in the IEDB T cell epitope data set are part of the eluted ligand training data, 

and this number is increased to 64 by including the binding affinity training data. So for this data, 

the performance of the “EL (only)” model is clearly compromised by its limited pan-specific 

power.  

 

 
Figure 4: Sensitivity of different models as a function of the Frank threshold on a) eluted ligands published by 

Pearson et al. 
17

 and b) T-cell epitope data downloaded from IEDB. 

To be or not to be a ligand 

We investigated what prediction threshold to use to best separate ligand from non-ligand 

peptides. Earlier work by others and us  suggests that different MHC molecules present 

peptides at different predicted binding affinity thresholds 4,21. Given this, it was interesting to 

investigate to what degree a similar observation could be made for the eluted ligand likelihood 

predictions produced by the NetMHCpan-4.0 method. To address the question, we compared 

the predicted ligand likelihood scores of all 15,965 ligands in the Pearson data set. The result of 

this analysis is displayed as box-plots in the left panel of Supplementary figure 2. This figure 

reveals that the likelihood prediction scores for known ligands come out very different for 

different HLA molecules. The large difference in prediction values between HLA molecules can 

to a high degree be linked to their absence from the eluted ligand training data. The molecules 

with lowest median eluted ligand likelihood scores in this figure are molecules absent from the 

eluted ligand training data set.  However, as demonstrated in figure 3 and 4, the fact that an 

HLA molecule has not been characterized with eluted ligand training data does not impair its 

predictability. Given this, a natural measure to correct for this great imbalance in prediction 

score is use percentile rank scores to reconcile and make prediction score comparable between 

different MHC molecules. The right panel of Supplementary figure 2 shows the results of such a 

transformation. Here, eluted ligand likelihood prediction values for each ligand in the Pearson 

data are transformed to percentile rank scores, and the score distribution is visualized as box 

plots for each HLA molecule. Given that percentile rank values fall in the range 0-100%, it is 

apparent that transforming the prediction values into such rank scores, allows for a direct score 

comparison between HLA molecules.  

 

In light of these results, we next investigated what percentile rank threshold to apply to optimally 

identify MHC ligands. We assess this by calculating sensitivity/specificity curves as a function of 

the percentile rank score threshold for a balanced set (max 100 ligands per HLA) of eluted 
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ligands and source protein negatives from the Pearson evaluation data set. The results are 

shown in figure 5 and confirm earlier findings that the vast majority (96.5%) of natural ligands 

are identified at a very high specificity (98.5) using a percentile rank threshold of 2%.  

 

 
Figure 5: Sensitivity and specificity performance curves for the NetMHCpan-4.0 eluted ligand likelihood predictions. 

Curves are estimated from a balanced set of eluted ligands from the 
17

 data set. The insert shows the complete 

sensitivity and specificity curves as a function of the percentile rank score. The main plot shows the curves in the 

high-scoring range for 0-5 percentile scores. Dotted vertical and horizontal lines are guides to the eye indicating 

sensitivity and specificity and the 2% rank score threshold. 

Identification of cancer neoantigens 

A research field where prediction of naturally processed and presented eluted ligand has 

attracted large recent attention is rational identification of cancer neoantigens. In contrast to 

tumor-associated self-antigens, cancer neoantigen are naturally presented ligands containing 

tumour-specific mutations. Such neoantigens are attracting large attention since these peptides 

are new to the immune system and not found in normal tissues, and hence are ideal potential 

cancer vaccine candidates or targets for adoptive T cell therapy. Depending on the mutational 

load, the number of potential tumour-specific neopeptides (peptides containing one or more 

missense mutations) can be in the order of many thousands 22. This large number of potential 

peptide candidates clearly underlines the need for tools to rationally downsize the peptide space 

in the search for cancer neoepitopes. A recent study by Bassani-Sternberg et al.18 

demonstrated how this downsizing could be effectively achieved by a prediction method trained 

on a large set of MS eluted ligands. Here, we repeated this benchmark analysis using 

NetMHCpan-4.0. The results are shown in figure 6 and confirm the finding by Bassani-
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Sternberg et al., that predictors trained on MS eluted ligand data information in most cases 

show very high predictive power for the identification of cancer neoantigens. Both the 

NetMHCpan-4.0 and Bassani-Sternberg methods identify the known neoantigen within the top 

25 peptides in 6 out out 10 cases. NetMHCpan-3.0 only achieves this in 2 out of 10 cases. The 

results also confirm the earlier findings presented here, that NetMHCpan-4.0 achieves improved 

performance compared to that of version 3.0, and that the ligands in all cases are predicted with 

very strong eluted ligand likelihood values (all percentile rank values are less than 1, and the 

majority are less than or equal to 0.02).  

 

 
Figure 6: Predictive performance evaluated in terms of rank of neo-antigens identified in four melanoma samples. A 

rank value of 1 corresponds to the ligand obtaining the highest score (lowest percentile rank) of all peptides from the 

given sample. Data and performance value for Bassani-Sternberg is from 
18

. NetMHCpan-4.0 and NetMHCpan-3.0 

are performance values obtained by assigning to each peptide in the given data set the lowest percentile rank score 

to each of the HLA-A and B molecules expressed by the given cell line. The values in parentheses for NetMHCpan-

4.0 are the predicted percentile rank values.  Lowest rank value for each ligand is highlighted in bold.  

Discussion 

In this work, we have demonstrated how a relatively simple pan-specific machine learning 

method based on the NNAlign framework can be constructed integrating information from 

binding affinity data with MS peptidome data. Benefitting from the larger set of peptide binding 

affinity data with very broad MHC coverage (more than 150 molecules), and the additional 

information contained within MS peptideome data (information about both antigen processing 

and presentation, and allele specific peptide length profile), we could demonstrate that the 

proposed method, NetMHCpan-4.0, achieved improved predictive performance not only when it 

comes to characterizing the binding specificity of a given MHC molecule, but also when it comes 

to predicting the peptide length profile. Due to the pan-specific potential of the method, the 

improved performance was extended beyond the relatively few MHC molecules characterized 

by MS binding data included in the training of the method. Given this, we thus conclude that the 

proposed framework is able to benefit from the best of the two data sets; MHC coverage from 

the binding affinity data, and antigen processing and presentation, and allele specific peptide 

length profile from the MS data.  

 

Sample Ligand NetMHCpan-4.0 NetMHCpan-3.0 Bassani-Sternberg et al.  #peptides 

Mel8 SPGPVKLEL 1 (0.0124) 12 2  1340 

Mel5 YIDERFERY 15 (0.0077) 33 3  25807 

Mel5 ETSKQVTRW 189 (0.1156) 464 13  25807 

Mel15 GRIAFFLKY 21 (0.0098) 224 3  24766 

Mel15 LPIQYEPVL 10 (0.0071) 24 7  24766 

Mel15 KLKLPIIMK 6 (0.0061) 34 21  24766 

Mel15 GRTGAGKSFL 1226 (0.6909) 2186 243  24766 

Mel15 KLILWRGLK 457 (0.2364) 112 527  24766 

Mel15 ASWVVPIDIK 1629 (0.9723) 1278 3978  24766 

12T DANSFLQSV 19 (0.0205) 944 38  15750 

	



Our benchmarks confirmed earlier findings that prediction values for known ligands vary 

substantially between MHC molecules 4, and that only by the use of percentile rank scores can 

predictions between different MHC molecules be readily compared. 

 

The improved peptide-MHC tool is made publicly available at 

www.cbs.dtu.dk/services/NetMHCpan-4.0. The tool was benchmarked on two large independent 

data sets; one consisting of ~16,000 MS identified MHC restricted ligands 17 and one consisting 

of more than 1,250 validated T cell epitopes described in the IEDB. For both data sets, the 

updated version 4.0 of NetMHCpan significantly outperformed the earlier method (3.0). In 

particular, the benchmark on T cell epitope data - to the best of our knowledge - demonstrated 

for the first time how integration of MS peptidome data into a prediction method of MHC peptide 

presentation, can lead to improved predictive performance for T cell epitope discovery. The 

improved performance on this data set was only observed for the method trained on the 

combined data, and was not observed for the method trained on MS peptidome data alone. This 

observation underlines the large benefit of merging the two data sets, gaining pan-specific 

potential from the large MHC coverage of the binding affinity data.    

 

The machine-learning framework proposed here is not limited to the integration of MHC class I 

peptide binding affinity and MS peptidome data. The approach can readily be extended to 

integrate other types of relevant data including MHC binding stability 23, and epitope data. Also, 

the approach can in its current form be directly applied to the MHC class II system. The only 

critical limitation for such data integrations is the criteria that each data point must be associated 

with a specific MHC element. This information is not always readily available, but can in most 

cases be inferred by unsupervised clustering of the available data (using GibbsCluster 24, 

position weight matrix mixture models 25, or similar approaches), and association of each cluster 

to an MHC molecule of the given host.  

 

In conclusion, we have here described a new framework for training of prediction methods for 

MHC peptide presentation prediction integrating information from two data sources (MS eluted 

ligand and peptide binding affinity). The framework was used to develop an updated version of 

NetMHCpan (version 4.0, available at www.cbs.dtu.dk/services/NetMHCpan-4.0) with improved 

predictive performance for identification of validated eluted ligands, cancer neoantigens and T 

cell epitopes. 

 

 

  



 

Online Methods 

Data sets 

 

Data on all class I MHC ligand elution assays available in IEDB database (www.iedb.org) were 

collected including the ligand sequence, details of the source protein, position of the ligand in 

the source protein and the restricting allele of the ligand. There were 160,527 distinct assays in 

total and the length of the ligands ranged from 4-37. All lengths with a count of ligands at least 

0.5% of total ligands were selected for further analysis which included lengths 8-15 and 

comprised of 99% of the assay entries. 

 

The restricting MHC molecule of the ligands were analyzed and entries with alleles listed 

unambiguously were selected. For example, some entries where the HLA alleles are listed as 

just the gene name and alleles from chicken, horse, cow and mouse for which we did not have 

binding prediction algorithms were excluded. Representative alleles were assigned for entries 

where only supertypes were listed (e.g. HLA-A*26:01 for HLA-A26). Thus there were 127 class I 

molecules from human and mouse in the selected data set. Redundant entries with same ligand 

sequence and MHC molecule were removed and MHC molecules with at least 50 ligand entries 

were selected. This included 55 class I molecules and the number of available ligands per 

molecule varied widely from 50 to 9500.  

 

We hypothesized that some of the ligands could be artifacts of the elution assays and therefore 

their source proteins could be false positive as antigens. A protocol was designed to identify 

such false positive antigens and exclude them from the final data selected. The protocol 

identified proteins that had significantly lesser number of predicted binders among ligands than 

expected of random peptides using binomial probability distribution. Five sets of random 

peptides were generated from the ligand sequences by shuffling the amino acid residues within 

the ligands. Binding affinity was then predicted for the original ligands and random peptide sets 

for their corresponding alleles. The median of the predicted percentile ranks of the five random 

sets was estimated and assigned as the binding affinity of the random peptides. Based on a 

predicted binding affinity cutoff of percentile rank 1.0, the number of predicted binders among 

the original ligands and the random peptide sets were estimated. Five proteins were thus 

identified as false positives and ligand entries from these proteins were excluded from the data 

set. 

 

The final data set had 85,217 entries in total with ligand length ranging from 8 to 15. The ligands 

originated from 14,797 source antigens and were restricted by 55 unique HLA molecules.  

 

Random artificial negatives were generated for each MHC molecule covered by eluted ligand 

data by sampling randomly 10*N peptides of each length 8-15 amino acids from the antigen 

source protein sequences, where N is the number of 9mer ligands for the given MHC molecule. 



Neural network training 

The NNAlign training approach with insertions and deletions 4 was extended by adding a 

second output neuron as shown in figure 7. This was done to allow combined training on 

binding affinity and MS eluted ligand data. Binding affinity values are measured as IC50 values 

in nM (aff) and can be rescaled to the interval [0,1] by applying 1-log(aff)/log(50,000), 

representing continuous target values 26. For eluted ligands the strength of the interaction 

between peptide and MHC molecules is unknown, therefore a target value of 1 is assigned to 

binders and 0 to artificial negative peptides (see above).  

 

 
Figure 7: Visualization of the neural networks with two output neurons used for combined 

training on binding affinity and eluted ligand data. 

 

In this network architecture weights between the input and hidden layer are shared between the 

two input types (binding affinity/ligand), and weights connecting the hidden and output layer are 

specific for each input type. During neural network an example is randomly selected from either 

data set and submitted to forward- and backpropagation according to the NNAlign algorithm 4. In 

this setting, we define one training epoch as the average number of iterations needed to 

process each data point in the smaller data once.  

 

A neural network ensemble was trained as described by Andreatta et al. 4 using 5-fold nested 

cross-validation. Networks with 60 and 70 hidden neurons were trained leading to an ensemble 

of 40 networks in total. 

 

The inputs to the neural networks consisted of the peptide and the MHC molecule in terms of a 

pseudo sequence 9. All peptides were represented as 9-mer binding cores by the use of 

insertions and deletions as described by Andreatta et al.  4 and are were represented using 

BLOSUM encoding 26. As in the earlier work by Andreatta et al., additional features for the 

encoding of peptides included: the length of the deletion/insertion; the length of peptide flanking 

regions, which are larger than zero in the case of a predicted extension of the peptide outside 



either terminus of the binding groove; and the length L of the peptide, encoded with four input 

neurons corresponding to the four cases L<=8, L=9, L=10, L>=11. 

Performance 

In order to benchmark the combined training method described above (referred to as BA+EL), 

additional methods with only one output but otherwise identical setup were trained on binding 

affinity data only (BA data) and eluted ligand data only (EL method). 

AUC values were calculated for each MHC alleles separately and subsequently binomial tests 

were performed to compare the different models. 

Length preference of MHC molecules 

For all MHC molecules shared between the binding affinity and eluted ligand data sets, we 

generated predictions for 80,000 random natural peptides of lengths 8-15 amino acids (10,000 

of each length). From the top 2% predictions, the frequency of each peptide length was 

estimated. Subsequently Pearson's correlation coefficient was calculated between the 

frequencies observed in the eluted ligand data set and the frequencies predicted by 4 models 

(BA only, EL only, binding affinity of BA+EL, and eluted ligand predictions of BA+EL) 

Leave-one-out validation 

Leave-one-out experiments were performed for all MHC molecules present in the eluted ligand 

data set. For this, a given MHC molecule was removed from the eluted ligand data set, then the 

BA+EL method was trained in five fold-cross validation as described above, omitting multiple 

random initializations, resulting in an ensemble of 10 networks. Performance of the leave-one-

out models is compared to an ensemble of neural networks of the same size trained on the 

complete data set. Further predictions are made for 80,000 peptides of lengths 8-15 amino 

acids derived from natural proteins to evaluate a model’s ability to predict the length preference 

of an MHC allele that was not part of the eluted ligand training data. 

The final NetMHCpan-4.0 method implementation 

The final neural network ensemble of the NetMHCpan-4.0 method is trained on binding affinity 

and eluted ligand data as described above using 5-fold cross-validation. Networks with 56 and 

66 hidden neurons (in accordance with earlier NetMHCpan implementations) were trained using 

10 distinct random initial configurations, leading to an ensemble of 100 networks in total. 

 

Percentile rank scores was estimated from predicted EL and BA binding values from a set of 

125,000 8-12mer random natural peptides (25,000 of each length) 

Validation on external data sets 

 

A dataset of eluted ligands was obtained from Pearson et al. 17. Also, a set of positive CD8 

epitopes was downloaded from the IEDB. The epitope set was identified using the following 



search criteria “T cell assays: IFNg", "positive assays only", "MHC restriction Type: Class I". 

Only entries with fully typed HLA restriction, peptides length in the range 8-14 amino acids, and 

with annotated source protein sequence were included. Positive entries with a predicted rank 

score greater than 10% using NetMHCpan-3.0 were excluded to filter out likely noise 6. For both 

the T-cell epitope and eluted ligand data sets, negative peptides were obtained by extracting all 

8-14 mer peptides from the source proteins of the eluted ligands and subsequently excluding 

peptides-MHC combination found with an exact match in the training data (both binding affinity 

and eluted ligand data sets). The final eluted data set contained 15,965 positive ligands 

restricted to 27 different HLA molecules, and the IEDB T cell epitope data set 1,251 positive T 

cell epitopes restricted to 80 HLA molecules.  

 

A Frank value was calculated for each positive-HLA pair as the ratio between the number of 

peptides with a prediction score higher than the positive peptide and the number of peptides 

contained within the source protein. The Frank value is hence 0 if the positive peptide has the 

highest prediction value of all peptides within the source protein, and a value of 0.5 in cases 

where an equal amount of peptides has a higher and lower prediction value compared to the 

positive peptide.  

 

  



 

Figure legends 

Figure 1: Mean performance per MHC molecule measured in terms of AUC for the four 

methods; BA (trained on binding affinity data only), EL (trained on eluted ligand data only), 

BA+EL BA (the binding affinity prediction value of the model trained on the combined binding 

affinity and eluted ligand data), and BA+EL EL (the eluted ligand likelihood prediction value of 

the model trained on the combined binding affinity and eluted ligand data) The methods were 

evaluated on all binding affinity (all_BA) data and all eluted ligand (all_EL) data including 

negative peptides derived from source proteins, and on data sets restricted to alleles occurring 

in both binding affinity and eluted ligand data sets (shared_BA, and shared_EL).  

 

Figure 2:  a-c) Predicted length preference of selected MHC molecules according to different 

models. Binding to selected HLA molecules was predicted for 80,000 8-15-mer peptides and the 

frequency of peptide lengths in the top 2% predicted peptides calculated. d) Correlation of 

predicted and observed ligand length for different models. Binding to all HLA alleles present in 

both binding affinity and eluted ligand data sets was predicted using the four different prediction 

methods for 80,000 8-15-mer peptides. Subsequently the occurrence of different peptide 

lengths in the top 2% predicted peptides for each molecule was calculated, and the correlation 

coefficient between these frequencies and the length frequencies in the eluted ligand data set 

calculated. 

 

Figure 3: Eluted ligand leave-one-out experiments. a) Performance per MHC allele of a model 

trained on all data and a model where the eluted ligand data of a given allele was left out of the 

training process. b) Correlation of predicted and observed ligand length for a model trained on 

all data and the leave-one-out models. 

 

Figure 4: Sensitivity of different models as a function of the Frank threshold on a) eluted ligands 

published by Pearson et al. 17 and b) T-cell epitope data downloaded from IEDB. 

 

Figure 5: Sensitivity and specificity performance curves for the NetMHCpan-4.0 eluted ligand 

likelihood predictions. Curves are estimated from a balanced set of eluted ligands from the 17 

data set. The insert shows the complete sensitivity and specificity curves as a function of the 

percentile rank score. The main plot shows the curves in the high-scoring range for 0-5 

percentile scores. Dotted vertical and horizontal lines are guides to the eye indicating sensitivity 

and specificity and the 2% rank score threshold. 

 

Figure 6: Predictive performance evaluated in terms of rank of neo-antigens identified in four 

melanoma samples. A rank value of 1 corresponds to the ligand obtaining the highest score 

(lowest percentile rank) of all peptides from the given sample. Data and performance value for 

Bassani-Sternberg is from 18. NetMHCpan-4.0 and NetMHCpan-3.0 are performance values 

obtained by assigning to each peptide in the given data set the lowest percentile rank score to 

each of the HLA-A and B molecules expressed by the given cell line. The values in parentheses 



for NetMHCpan-4.0 are the predicted percentile rank values.  Lowest rank value for each ligand 

is highlighted in bold.  

 

  



Supplementary Figures 
 

 
Supplementary Figure 1: Output example from NetMHCpan-4.0. The protein sequence for ENSP00000363746 was 

screened for potential HLA-B*44:03 binders of length 8-12 using the eluled ligand prediction mode of NetMHCpan-

4.0. Only strong predictions (SB) are shown. For each peptide the binding core is reported (the peptide sequence 

predicted to be “seen” by the MHC molecule after accommodating indels), the Icore (the biological fragment predicted 

to form complex with the MHC including indels), the location and length of gaps, Gp/Gl (deletions) and insertions, 

Ip/Il, as well as the prediction score and predicted rank value. The two entries highlighted in red corresponds to eluted 

ligands contained within the Pearson data set 
17. 

 

 

 
Supplementary Figure 2: Motivation for using percentile rank score predictions. Box-plot representation of prediction 

values for the ligands in the Pearson data set. Left panel: Eluted ligand likelihood prediction scores. Right panel: 

Percentile rank values.  

 

 

  

# NetMHCpan version 4.0 

 

# Input is in FSA format 

 

# Peptide length 8,9,10,11,12 

 

# Make Eluted ligand likelihood predictions 

 

HLA-B44:03: Distance to training data  0.000 (using nearest neighbor HLA-B44:03) 

 

# Rank Threshold for Strong binding peptides   0.500 

# Rank Threshold for Weak binding peptides   2.000 

----------------------------------------------------------------------------------------------------- 

Pos         HLA      Peptide      Core Of Gp Gl Ip Il        Icore        Identity Score %Rank BLevel  

----------------------------------------------------------------------------------------------------- 

534 HLA-B*44:03    KEQIERLGY KEQIERLGY  0  0  0  0  0    KEQIERLGY ENSP00000363746 0.906  0.06  <= SB      

498 HLA-B*44:03    QEWEVKALL QEWEVKALL  0  0  0  0  0    QEWEVKALL ENSP00000363746 0.835  0.10  <= SB     

236 HLA-B*44:03    MEAVRDIRF MEAVRDIRF  0  0  0  0  0    MEAVRDIRF ENSP00000363746 0.829  0.10  <= SB     

247 HLA-B*44:03 SEALLAVAQNRW SEALAQNRW  0  4  3  0  0 SEALLAVAQNRW ENSP00000363746 0.779  0.13  <= SB      

294 HLA-B*44:03    SETGFLTYL SETGFLTYL  0  0  0  0  0    SETGFLTYL ENSP00000363746 0.741  0.15  <= SB     

294 HLA-B*44:03     SETGFLTY SET-GFLTY  0  0  0  3  1     SETGFLTY ENSP00000363746 0.651  0.21  <= SB     

522 HLA-B*44:03     AEVDVISL AEVDVI-SL  0  0  0  6  1     AEVDVISL ENSP00000363746 0.625  0.24  <= SB     

533 HLA-B*44:03   KKEQIERLGY KEQIERLGY  0  1  1  0  0   KKEQIERLGY ENSP00000363746 0.520  0.33  <= SB     

 51 HLA-B*44:03 RELRPQRPKNAY RELRPQRAY  0  7  3  0  0 RELRPQRPKNAY ENSP00000363746 0.415  0.43  <= SB 
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