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Single-cell RNA-sequencing (scRNA-seq) enables high-throughput measurement of RNA expression in single cells.

However, because of technical limitations, scRNA-seq data often contain zero counts for many transcripts in individual cells.

These zero counts, or dropout events, complicate the analysis of scRNA-seq data using standard methods developed for

bulk RNA-seq data. Current scRNA-seq analysis methods typically overcome dropout by combining information across

cells in a lower-dimensional space, leveraging the observation that cells generally occupy a small number of RNA expression

states. We introduce netNMF-sc, an algorithm for scRNA-seq analysis that leverages information across both cells and

genes. netNMF-sc learns a low-dimensional representation of scRNA-seq transcript counts using network-regularized

non-negative matrix factorization. The network regularization takes advantage of prior knowledge of gene–gene interac-

tions, encouraging pairs of genes with known interactions to be nearby each other in the low-dimensional representation.

The resulting matrix factorization imputes gene abundance for both zero and nonzero counts and can be used to cluster cells

into meaningful subpopulations. We show that netNMF-sc outperforms existing methods at clustering cells and estimating

gene–gene covariance using both simulated and real scRNA-seq data, with increasing advantages at higher dropout rates

(e.g., >60%). We also show that the results from netNMF-sc are robust to variation in the input network, with more rep-

resentative networks leading to greater performance gains.

[Supplemental material is available for this article.]

Single-cell RNA-sequencing (scRNA-seq) technologies provide the

ability to measure gene expression within/among organisms,

tissues, and disease states at the resolution of a single cell. These

technologies combine high-throughput single-cell isolation tech-

niques with second-generation sequencing, enabling themeasure-

ment of gene expression in hundreds to thousands of cells in a

single experiment. This capability overcomes the limitations of

microarray and RNA-seq technologies, which measure the average

expression in a bulk sample, and thus have limited ability to quan-

tify gene expression in individual cells or subpopulations of cells

present in low proportion in the sample (Wang et al. 2009).

The advantages of scRNA-seq are tempered by undersampling

of transcript counts in single cells caused by inefficient RNA cap-

ture and low numbers of reads per cell. The result of scRNA-seq is

a gene × cell matrix of transcript counts containing many dropout

events that occurwhenno reads froma gene aremeasured in a cell,

even though the gene is expressed in the cell. The frequency of

dropout events depends on the sequencing protocol and depth of

sequencing. Cell-capture technologies, such as Fluidigm C1, se-

quence hundreds of cells with high coverage (1–2 million reads)

per cell, resulting in dropout rates ≈20%–40% (Ziegenhain et al.

2017).Microfluidic scRNA-seq technologies, suchas 10xGenomics

Chromium platform, Drop-Seq, and inDrops sequence thousands

of cells with low coverage (1000–200,000 reads) per cell, resulting

in higher dropout rates, up to 90% (Zilionis et al. 2017). Further-

more, transcripts are not dropped out uniformly at random, but

in proportion to their true expression levels in that cell.

In recent years, multiple methods have been introduced to

analyze scRNA-seq data in the presence of dropout events. The first

three steps that constitute most scRNA-seq pipelines are (1) impu-

tation of dropout events; (2) dimensionality reduction to identify

lower-dimensional representations that explain most of the vari-

ance in the data; and (3) clustering to group cells with similar ex-

pression. Imputation methods include MAGIC (Van Dijk et al.

2018), a Markov affinity-based graph method; scImpute (Li and

Li 2018), a method that distinguishes dropout events from true ze-

ros using dropout probabilities estimated by a mixture model; and

SAVER (Huang et al. 2018), amethod that uses gene–gene relation-

ships to infer the expression values for each gene across cells.

Dimensionality reduction methods include ZIFA (Pierson and

Yau 2015), a method that uses a zero-inflated factor analysis mod-

el; SIMLR (Wang et al. 2017), a method that uses kernel based
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similarity learning; and two matrix factorization methods, pCMF

(Durif et al. 2019) and scNBMF (Sun et al. 2019), which use a gam-

ma-Poisson andnegative binomialmodel factormodel, respective-

ly. Clustering methods include BISCUIT, which uses a Dirichlet

process mixture model to perform both imputation and clustering

(Azizi et al. 2017); andCIDR,which uses principal coordinate anal-

ysis to cluster and impute cells (Lin et al. 2017b). Other methods,

such as Scanorama, attempt to overcome limitations of scRNA-seq

by merging data across multiple experiments (Hie et al. 2019).

Supplemental Table S1 gives a list of these and other related

methods.

We introduce a newmethod, netNMF-sc, which leverages pri-

or information in the form of a gene coexpression or physical

interaction network during imputation and dimensionality reduc-

tion of scRNA-seq data. netNMF-sc uses network-regularized non-

negative matrix factorization (NMF) to factor the transcript count

matrix into two low-dimensionalmatrices: a genematrix and a cell

matrix. The network regularization encourages two genes connect-

ed in the network to have a similar representation in the low-di-

mensional gene matrix, recovering structure that was obscured

by dropout in the transcript count matrix. The resulting matrix

factors can be used to cluster cells and impute values for dropout

events. Although netNMF-sc may use any type of network as prior

information, a particularly promising approach is to leverage tis-

sue-specific gene coexpression networks derived from earlier

RNA-seq and microarray studies of bulk tissue and recorded in

large databases such as COXPRESdb (Okamura et al. 2015),

COEXPEDIA (Yang et al. 2017), GeneSigDB (Culhane et al.

2010), and others (Lee et al. 2004;Wu et al. 2010). netNMF-sc pro-

vides a flexible and robust approach for incorporating prior infor-

mation about genes in imputation and dimensionality reduction

of scRNA-seq data.

Results

netNMF-sc algorithm

Let X∈R
m×n be a matrix of transcript counts from an scRNA-seq

experiment for m transcripts and n single cells. It has been ob-

served that the majority of variation in transcript counts is ex-

plained by a small number of gene expression signatures that

represent cell types or cell states. Because X is a non-negative ma-

trix, non-negative matrix factorization (NMF) (Lee and Seung

1999) can be used to find a lower-dimensional representation.

NMF factors X into anm× d gene matrix W and a d×n cell matrix

H, where d≪m, n, and the elements of bothW andH arenon-neg-

ative. We formulate this factorization as a minimization problem,

min
W≥0,H≥0

∑

i,j

xij log
xij

WH|ij
− xij +WH|ij

( )
(1)

in which≥ indicates non-negative matrices whose entries are ≥0.

The original NMF publication (Lee and Seung 1999) proposed

two cost functions to measure the difference between X andWH:

the the Kullback-Leibler (KL) divergence given above and the

Euclidean distance, X−WH‖ ‖2. We use KL divergence because

it is equivalent to maximizing the likelihood of the Poissonmodel

xij ≏ Pois(x̂ij), where X̂ = WH (Févotte and Cemgil 2009). The

Poisson distribution (Townes et al. 2019) and the negative binomi-

al distribution (Hafemeister and Satija 2019; Svensson 2020) with-

out zero inflation have been shown to provide a good fit for

droplet-based transcript (UMI) count data. The Poisson model

can be applied directly to transcript count matrices, eliminating

the need to log-transform the transcript counts to better fit a

Gaussian distribution (Prabhakaran et al. 2016; Li and Li 2018).

Log-transformation has been shown to introduce bias tran-

script in count data (Hafemeister and Satija 2019; Townes et al.

2019). Because of high dropout rates and other sources of variabil-

ity in scRNA-seq data, the direct application of NMF to the tran-

script count matrix X may lead to components of W and H that

primarily reflect technical artifacts rather than biological variation

in the data. For example, Finak et al. (2015) observe that the num-

ber of dropped-out transcripts in a cell is the primary source of var-

iation in several scRNA-seq experiments.

To reduce the effect of technical artifacts on the factorization,

we propose to combine information across transcripts using prior

knowledge in the form of a gene–gene interaction network.We in-

corporate network information using graph-regularized NMF (Cai

et al. 2008), which includes a regularization term to constrain W

based on prior knowledge of gene coexpression. The resulting

method, netNMF-sc, performs matrix factorization by solving

the following optimization problem:

min
W≥0,H≥0

∑

i,j

xij log
xij

WH|ij
− xij +WH|ij

( )
+ lTr(WT

LW) (2)

where λ is a positive real constant, L is the Laplacian matrix of the

gene–gene interaction network, and Tr(·) indicates the trace of the

matrix.

netNMF-sc uses the resultingmatrixH to cluster cells and the

product matrix X̂ = WH to impute values in the transcript count

matrix X, including dropout events (Fig. 1).

We also derive a formulation of netNMF-sc with the

Euclidean distance cost function X−WH‖ ‖2 (Supplemental

Section S1), which is useful for (log-transformed) datawith zero in-

flation, for example, read count data lacking UMIs. We show that

netNMF-sc with the Euclidean distance cost function has similar

clustering performance (ARI) to netNMF-sc with the KL divergence

cost function on read count data from Supplemental Figure S1A–D

and Buettner et al. (2015).

We select the regularization parameter λ as well as the dimen-

sion d of the factor via holdout validation (Supplemental Section

S2; Supplemental Fig. S2).

Evaluation on simulated data

Wecompared netNMF-sc and several othermethods for scRNA-seq

analysis on a simulated data set containing 5000 genes and 1000

cells and consisting of six clusters with 300, 250, 200, 100, 100,

and 50 cells per cluster, respectively. We generated this data using

a modified version of the Splatter simulator (Zappia et al. 2017),

modeling gene–gene correlations using a gene coexpression net-

work from Yang et al. (2017). We simulated dropout events using

one of two models: a multinomial dropout model (Linderman

et al. 2018; Zhu et al. 2018) and a double exponential dropout

model (Azizi et al. 2017; Li and Li 2018). Further details are in

Methods.

We compared the performance of netNMF-sc to PCA,

scNBMF, MAGIC, scImpute, and NMF at dropout rates ranging

from 0 (no dropout) to 0.80 (80% of the values in the data are

zero), using 20 simulated data sets for each dropout rate. We clus-

tered the output from each method using k-means clustering with

k=6 to match the number of simulated clusters (for more details

on clustering, see Supplemental Section S4). We selected d=10
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for NMF, scNBMF, and netNMF-sc, and λ= 10 for netNMF-sc based

on holdout validation (Supplemental Section S2).

For netNMF-sc, we used a randomly selected subnetwork S=

(VS, ES) of the same gene coexpression network G= (V,E) (Yang

et al. 2017) used to create the simulated data (Supplemental

Section S5). This is intended as a positive control, to show the ben-

efit of netNMF-sc when a highly informative network is available.

We note that although Smay correlate more strongly with the un-

derlying coexpression structure of the data than we would expect

frombiological data sets, the edges in S donot perfectly correspond

to coexpressed genes in the simulated data. This is because only a

subset of genes from S are differentially expressed in the simulated

data and some pairs of differentially expressed genes in the simu-

lated data are not represented by an edge in S. When we compare

the correlation matrix of the simulated data to S, we observe 317

gene pairs with R2
≥0.5 are captured by edges in S, but 828 gene

pairs with R2
≥0.5 are not.

We found that the clusters identified using netNMF-sc across

all dropout rates had higher overlap with true clusters compared to

the clusters identified using othermethods (Fig. 2A). The improve-

ment for netNMF-sc was especially pronounced at higher dropout

rates; for example, at a dropout rate of 0.7, netNMF-sc had an ad-

justed Rand index (ARI) = 0.78, compared to 0.47 for the next

best performingmethod, NMF.We observe a similar improvement

in clustering performance using the double exponential dropout

model (Supplemental Fig. S8A,B). At a dropout rate of 0.7,

netNMF-sc had ARI = 0.79, compared to 0.41 for the next best per-

forming method, scImpute (Supplemen-

tal Fig. S8A).

We compared the performance of

netNMF-sc and other methods on the

task of imputation by computing the

RMSE between X′, the simulated tran-

script count matrix before dropout, and

the imputed matrix X̂ = WH. We first

compute RMSE0, the RMSE between X′

and the imputed matrix X̂ restricted to

entries for which dropout events were

simulated. At low dropout rates (<0.25),

netNMF-sc had similar RMSE0 as other

methods; at higher dropout rates,

netNMF-sc had lower values of RMSE0
(Fig. 2B). For example, at a dropout rate

of 0.7, netNMF-sc had RMSE0=4.8 compared to 7.4 for the next

best performing method, NMF (Fig. 2B). Similar results were ob-

served on data simulated using the double exponential dropout

model. At a dropout rate of 0.7, netNMF-sc had RMSE0= 8.3, slight-

ly above MAGIC (RMSE0=7.9) but substantially better than NMF

(RMSE0=15.9) and scImpute (RMSE0=18.3). When we compute

the RMSE between all entries of the transcript count matrix, scIm-

pute outperforms other methods at low dropout rates (<0.25)

because scImpute does not attempt to impute nonzero counts.

However, at dropout rates above 0.6, netNMF-sc has the lowest

RMSE (Supplemental Fig. S5). Additionally, we investigated the

contribution of the input network to the performance of

netNMF-sc.We found that the addition of up to 70% random edg-

es did not have a large effect on the performance (Supplemental

Fig. S7).

Evaluation on cell clustering

We compared netNMF-sc and other scRNA-seq methods in their

ability to cluster cells into meaningful cell types using three

scRNA-seq data sets. For all data sets, we normalized the transcript

countmatrices following Zheng et al. (2017) to reduce the effect of

differences in the library size or total number of transcripts se-

quenced in each cell (Supplemental Section S3). We used the nor-

malized count data for all methods except PCA and scImpute. For

these two methods, we applied a log-transformation (log 2(X+1))

Figure 1. Overview of netNMF-sc. Inputs to netNMF-sc are: a transcript count matrix X from scRNA-seq and a gene coexpression network. netNMF-sc
factors X into two lower-dimensional matrices, a gene matrixW and a cell matrix H, using the network to constrain the factorization. The product matrix
X̂ = WH imputes dropped-out values in the transcript count matrix X. H is useful for clustering and visualizing cells in lower-dimensional space, whereas
WH is useful for downstream analysis such as quantifying gene–gene correlations.

Dropout rate

B

Dropout rate
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Figure 2. Comparison of netNMF-sc and other methods on a simulated scRNA-seq data set containing
1000 cells and 5000 genes, with dropout simulated using a multinomial dropout model. (A) Adjusted
Rand Index (ARI) between the true and inferred cell clusters obtained as a function of dropout rate.
(B) RMSE at dropped-out entries (RMSE0) between true and imputed transcript counts.
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to the transcript count matrix because these methods assume the

data were generated from a Gaussian distribution.

The first data set contains 182 mouse embryonic stem cells

(mESCs) that were flow sorted into one of three cell cycle phases

—G, S, andG2/M—and sequenced using the FluidigmC1platform

combined with Illumina sequencing (Buettner et al. 2015). The

data contain 9571 genes and a zero-proportion of 0.41. We com-

puted cell clusters for each method as described in Supplemental

Section S4. We ran NMF, scNBMF, and netNMF-sc with d=5 di-

mensions, a value selected via holdout validation. For netNMF-

sc, we used a network from the ESCAPE database (Xu et al.

2014), which contains 153,920 protein-mRNA regulatory interac-

tions frommESCs, with edge weights of 1 for positive correlations

and −1 for negative correlations. We selected λ= 5 via holdout val-

idation. For PCA we used the top 136 principal components,

which explained 90% of the variance. We compared the cell clus-

ters obtained by running each method followed by k-means clus-

tering on the low-dimensional representation, using both the

true cluster number k= 3 as well as the value k that produced

the highest silhouette score in the range 2≤ k≤20. We also ran

PhenoGraph (Levine et al. 2015), a graph clustering method, but

found that performance was similar or worse than k-means

for all methods (Supplemental Fig. S10A–D). We found that

netNMF-sc outperformed other methods at clustering cells into

the three cell cycle stages with an adjusted Rand index (ARI) =

0.84 compared to 0.24 for MAGIC and 0.37 for scImpute (Fig.

3A,B). Although MAGIC did not perform as well as netNMF-sc in

clustering the cells into distinct cell cycle phases, it did identify a

trajectory between the phases of the cell cycle, which may be bio-

logically meaningful. However, MAGIC also identified a trajectory

between clusters in the simulated data above, although no trajec-

tory was present (Supplemental Fig. S6).

To quantify the contribution of the network to the perfor-

mance of netNMF-sc, we ran netNMF-sc with three additional net-

works: a generic gene coexpression network from COEXPEDIA

(Yang et al. 2017), a k-nearest neighbors network (KNN), and a ran-

domnetworkwith the samedegree distribution as the ESCAPEnet-

work. The k-nearest neighbors networkwas constructed by placing

an edge between the 10 nearest neighbors of each gene in the in-

put data matrix X, based on Euclidean distance (for more details,

see Supplemental Section S6). We found that the ESCAPE coex-

pression network gave the best performance, with an ARI of 0.84

compared to 0.76 for COEXPEDIA, 0.68 for KNN, 0.63 for the ran-

dom network, and 0.60 for NMF (Supplemental Fig. S9A,B). This

A C

B D

Figure 3. Clustering performance on scRNA-seq data. (A) Adjusted Rand index (ARI) for cell clusters obtained bymethods onmouse embryonic stem cell
(mESC) scRNA-seq data from Buettner et al. (2015), with cell cycle labels obtained by flow sorting. (B) t-SNE projections of cells in reduced dimensional
space. (C ) Clustering results on brain cell data set from Zeisel et al. (2015) into nine cell types. (D) t-SNE projections of cells in reduced dimensional space.
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result is consistent with the fact that the ESCAPE network was con-

structed using the same cell type as the scRNA-seq data, mESCs,

whereas the COEXPEDIA network was constructed using cells

from many different cell types. This shows the benefit of prior

knowledge that is matched to the cell types in the scRNA-seq

data. We note that netNMF-sc with any of the networks outper-

formed NMF, although the difference for the random network

was negligible, suggesting that some of the advantage of

netNMF-sc may result from enforcing sparsity on W.

The second data set, from Zeisel et al. (2015), contains 3005

mouse brain cells from nine cell types sequenced with the

Single-Cell Tagged Reverse Transcription (STRT-Seq) protocol.

The data contain 8345 genes and a zero-proportion of 0.60. For

netNMF-sc we used a gene coexpression network from McKenzie

et al. (2018) containing 157,306 gene–gene correlations across

brain cell types (astrocytes, neurons, endothelial cells, microglia,

and oligodendrodytes), and selected λ=1 via holdout validation.

NMF, scNBMF, and netNMF-sc were run with d=30 dimensions,

selected via holdout validation. For PCA we used the top 82 prin-

cipal components, which explained 90% of the variance. For

each method we ran k-means with k=9. We found that netNMF-

sc outperformed other methods with an ARI =0.82 compared to

the next best performing methods, NMF and MAGIC, with ARI =

0.72 and 0.71, respectively (Fig. 3C,D). netNMF-sc also outper-

formed other methods with k selected using the silhouette score

as well as using the clustering method PhenoGraph, with

scNBMF performing second best (Supplemental Fig. S11A–D).

The thirddata set contains2022brain cells fromanE18mouse

sequenced using 10x Genomics scRNA-seq platform (https://

support.10xgenomics.com/single-cell-gene-expression/datasets/2

.1.0/neuron_2000). The data contain 13,509 genes with transcript

counts≥10anda zero-proportionof 0.84.Because thisdata set does

not have known cell clusters, we compare the cell clusters comput-

ed by each method with the 16 brain cell types reported in a sepa-

rate 10x Genomics scRNA-seq data set of 1.3 million cells from the

forebrains of two different E18 mice that was analyzed using

bigSCale (Iacono et al. 2018), a framework for analyzing large-scale

transcript count data. For netNMF-sc, we used a gene coexpression

network from McKenzie et al. (2018) containing 157,306 gene–

gene correlations across brain cell types (astrocytes, neurons, endo-

thelial cells, microglia, and oligodendrodytes) and selected λ=50

via holdout validation. NMF and netNMF-sc were run with d=20

dimensions, selected via holdout validation. For PCA we used the

top 372 principal components, which explained 90% of the vari-

ance. We used k=16 in k-means clustering to match the number

of brain cell types reported in bigSCale. We matched the cell clus-

ters output by each method to the 16 cell types reported in

bigSCale as follows. We computed the overlap between the top

200 overexpressed genes in each cluster (calculated with a one-sid-

ed t-test between cells in and out of the cluster) and the published

marker genes for each of the 16 cell types, and selected the cell type

with the lowest P-value of overlap (Fisher’s exact test). If the cluster

was not enriched for any cell type with Bonferroni-corrected P<

0.05, then we marked the cluster as unclassified.

Although the true class assignment for each cell is unknown,

both scRNA-seq data sets were generated from the forebrains of

E18 mice, and thus we expect that the proportions of each cell

type should be similar across both data sets.We found that the pro-

portions of each cell type identified by netNMF-sc (Fig. 4E) were

the closest (many within 2%) to the proportions reported (Fig.

4F; Iacono et al. 2018). In both cases, the cell type with the largest

proportion is glutamatergic neurons, followed by interneurons,

and then radial glia and post-mitotic neuroblasts. Other cell types,

such as dividing GABAergic progenitors and Cajal–Retzius neu-

rons, were found in smaller proportions. In contrast, MAGIC

(Fig. 4B) finds a large population (13%) of Cajal–Retzius neurons,

but scImpute (Fig. 4C) finds a large population (18%) of dividing

GABAergic progenitor cells—both proportions more than three-

fold greater than in bigSCale or netNMF-sc. Clusters computed

from PCA (Fig. 4A) and from NMF (Fig. 4D) also differed substan-

tially from the proportions reported in bigSCale (Fig. 4F); for exam-

ple, the proportion of post-mitotic neuroblasts was 0% in PCA,

20% in NMF, but 10% in bigSCale. We found that the number of

unclassified cells varied substantially across the methods.

Clusters computed from scImpute and netNMF-sc had no unclas-

sified cells, whereas PCA, MAGIC, and NMF had 10%, 25%, and

1% of cells unclassified, respectively.

We further examined the smallest cell cluster identified

by netNMF-sc, containing only 14 cells. This cluster was enriched

(P≤2.2 ×10−16) for microglia marker genes reported by bigSCale,

E

FBA C

D

Figure 4. Identification ofmouse brain cell types. (A–E) t-SNE projections of scRNA-seq data from2022 brain cells from an E18mouse. Colors indicate cell
types as derived in bigSCale analysis of 1.3 million E18 mouse brain cells (Iacono et al. 2018). (F) Proportions of each cell type predicted by each method.
Entries highlighted in blue are within 2% of the proportions from bigSCale. Entries highlighted in orange differ by >10% from the proportions from
bigSCale.
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including well-studied marker genes such as Csf1r, Olfml3, and

P2ry12 (Wes et al. 2016). These 14 cells represented 0.7% of

the 2022 sequenced cells, closely matching the proportion of

microglia reported by bigSCale (1%). NMF andMAGIC also identi-

fied clusters of microglia cells, but the differentially expressed

genes in these clusters were less enriched for microglia marker

genes (P≤4.1 ×10−13 and P≤5.5 ×10−3, respectively). The NMF

cluster contained 65 cells but did not include any of the 14 cells

classified as microglia by netNMF-sc. In addition, these 65 cells

were equally enriched for erythrocyte marker genes (P≤3.2 ×

10−11). The MAGIC cluster contained 174 cells, a much larger pro-

portion (9%) of the cell population than the 1% reported by

bigSCale. This cluster included the 14 microglia identified by

netNMF-sc but also 160 other cells. The additional 160 cells pre-

sent in the cluster were not enriched for microglia marker genes

(P≤1.2 ×10−1) but were enriched for glutamatergic marker genes

(P≤1.5 ×10−2). This suggests thatMAGIC erroneously grouped to-

gether different types of cells.

We found 436 genes were differentially expressed between

the 14 microglia identified by netNMF-sc and the other 2008 cells

(FDR≤0.01). All 50microglia marker genes from bigSCale were in-

cluded in this set, including the two most highly differentially ex-

pressed genes Ccl4 (fold change 12.5) and C1qc (fold change 8.7).

Of the top 20 differentially expressed genes identified in the

netNMF-sc microglial cells, several were reported in other studies

as microglia genes (Sousa et al. 2017) but not in bigSCale; these in-

clude Hexb (fold change 7.8) and Lgmn (fold change 5.8). Several

potential novel marker genes were in the 20 differentially ex-

pressed genes, including Cstdc5 (fold change 4.5) and Stfa1 (fold

change 4.2). These results suggest that netNMF-sc improves clus-

tering of cells into biologically meaningful cell types from

scRNA-seq datawith high dropout—evenwhen the cell type is rep-

resented by only a small number (<20) of cells—and facilitates the

identification of potentially novel marker genes.

Recovering marker genes and gene–gene correlations

Finally, we investigated how well each method recovers differen-

tially expressed marker genes and gene–gene correlations from

scRNA-seq data. First, we examined cell cyclemarker genes.We ob-

tained a set of 67 periodicmarker geneswhose expression has been

shown to vary over the cell cycle across multiple cell types

(Dominguez et al. 2016). This set contains 16 genes with peak ex-

pression in G1/S phase and 51 genes with peak expression during

G2/Mphase.Weexpect toobserve a significantnumberof thesepe-

riodic genes among the top differentially expressed genes between

G1/S phase and G2/M phase cells in the cell cycle data set from

Buettner et al. (2015).We compared the ranked list of differentially

expressed genes from data imputed by netNMF-sc to the ranked

lists of differentially expressed genes from the untransformed

data and data imputedNMF,MAGIC, scImpute.We found that pe-

riodic genes ranked very highly in netNMF-sc results (P≤3.2 ×

10−11, Wilcoxon rank-sum test), an improvement compared to

their ranking in the untransformed data (P≤4.5 ×10−3, Wilcoxon

rank-sum test) (Fig. 5A). In contrast, the data imputed with NMF,

MAGIC, and scImpute resulted in a lower ranking of the periodic

genes (P≥0.05, Wilcoxon rank-sum test). Additionally, we found

that in data imputed by MAGIC, some periodic genes had expres-

sion patterns that were out of phase with the cell cycle. For exam-

ple, Exo1, which peaks in G1/S phase, had lower expression in

G1/S phase cells compared to G2/M phase cells (P≤2.2 ×10−16,

Wilcoxon rank-sum test) in MAGIC-imputed data (Fig. 5B).

In contrast, the peak in Exo1 expression during G1/S phase is ob-

served in the results from netNMF-sc (P≤6.7 ×10−12, Wilcoxon

rank-sum test), whereas Exo1 is not differentially expressed in the

untransformed data (P≤0.17, Wilcoxon rank-sum test) (Fig. 5B).

We also investigated whether each method could recover

gene–gene correlations between periodic marker genes in the cell

cycle data. We expect pairs of periodic genes whose expression

peaks during the same phase of the cell cycle to be positively cor-

related and pairs of genes that peak during different phases to be

negatively correlated. Across all 2211 pairs of periodic marker

genes, we found that the mean R2 was 0.54 for netNMF-sc, com-

pared to 0.73 for MAGIC, 0.29 for NMF, 0.02 for scImpute and

0.03 for untransformed data (Fig. 5C). Setting a stringent cutoff

for significant correlation (R2
≥0.8, P≤2.2 ×10−16), we found

that 15% of the pairs of periodic genes were correlated in data im-

puted by netNMF-sc compared to 68% in data imputed byMAGIC,

0.8% in data imputed by NMF, and nearly 0% in data imputed by

scImpute. Although the higher percentage of correlated gene pairs

in MAGIC seems to be an advantage, the MAGIC-imputed data

also contained a number of cell cycle marker genes, such as

Exo1, whose expression signaturewas the opposite of what was ex-

pected. Such cases can result in incorrect correlations between

pairs of marker genes. For example, marker genes Exo1 and Dtl

both peak during G1/S phase and are expected to be positively

correlated. However, MAGIC found negative correlation (R=

−0.58, P≤3.6 ×10−16) between these two genes. In contrast,

netNMF-sc recovers the positive correlation (R=0.56, P≤2.2 ×

10−16), but scImpute (R=0.03, P≤0.66) and NMF (R=0.06, P≤

0.46) do not (Fig. 5D).

Overall, we found that in the data imputed by MAGIC, 19%

of correlated periodic genes were correlated in the opposite direc-

tion than expected; that is, genes that peaked during the same

phasewere negatively correlated or geneswhich peaked during dif-

ferent phaseswere positively correlated. In contrast, in the data im-

puted by netNMF-sc, only 1%of the correlated periodic genes were

correlated in the opposite direction than expected (Table 1). These

results fromMAGIC may be explained by the fact that MAGIC in-

troduces a large number of gene–gene correlations during imputa-

tion, many of which may be spurious, as was previously reported

(Huang et al. 2018). In fact, the majority (78%) of the gene pairs

in the correlation matrix generated from data imputed by

MAGIC were correlated (R2
≥0.8, P≤2.2 × 10−16), compared to

only 0.2% in the correlation matrix generated from data imputed

by netNMF-sc and 0.005% in the correlation matrix generated

from the untransformed data (Table 1).

To examine whether these correlations identified by MAGIC

and netNMF-sc represented real biological signal, we ran both

methods on permuted data where the transcript counts were per-

muted independently in each cell. We found that 85% of the

gene pairs were correlated (R2
≥0.8, P≤2.2 ×10−16) in MAGIC-

imputed data compared to only 0.2% of gene pairs in netNMF-sc

imputed data (Table 1). This observation suggests that many of

the gene–gene correlations found in the MAGIC-imputed cell cy-

cle data may be spurious. Further investigation on simulated

data suggests that such spurious correlations may be a conse-

quence of the small number of cells: We found that MAGIC-im-

puted data had many correlations in transcript count matrices

with approximately 200 cells but fewer correlations in imputed

data withmany (∼1000) cells (Supplemental Fig. S13). We also ob-

served the number of gene–gene correlations found by MAGIC on

permuted data increased rapidly with the diffusion parameter t be-

fore reaching a plateau (Supplemental Fig. S12B). In contrast, the
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number of gene–gene correlations found by netNMF-sc on per-

muted data decreased as the number of latent dimensions d in-

creased (Supplemental Fig. S12A).

We performed a second analysis of differentially expressed

marker genes and gene–gene correlations in scRNA-seq data from

theMAGIC publication (Van Dijk et al. 2018) containing 7415 hu-

man transformed mammary epithelial cells (HMLEs), which were

induced to undergo epithelial to mesenchymal transition (EMT)

and then sequenced using the inDrops platform (Klein et al.

2015).Weassessedhowwell eachmethodrecovereddifferential ex-

pression of 16 canonical EMT marker genes from Gibbons and

Creighton (2018) (three genes with high expression in epithelial

[E] cells and 13 genes with high expression in mesenchymal [M]

cells). We found that the EMT marker genes ranked highly in

BA

C D

Figure 5. Comparison of differential expression of marker genes and gene–gene correlations in untransformed data from Buettner et al. (2015) and data
imputed using netNMF-sc, NMF, scImpute, andMAGIC. (A) Overlap between differentially expressed genes and periodic genes (log P-values from Fisher’s
exact test). (B) Expression of the G1/S phase marker gene Exo1 in cells labeled as G1/S (blue) and cells labeled as G2/M (green) in data imputed by each
method. In netNMF-sc inputed data, Exo1 is overexpressed in G1/S cells compared toG2/M cells (P≤6.7 × 10−12), as expected. In contrast, in data imputed
by MAGIC, Exo1 is underexpressed in G1/S cells compared to G2/M cells (P≤2.2 × 10−16). Exo1 shows no difference in expression in untransformed and
scImpute data. (C) Distribution of R2 correlation coefficients between pairs of periodic genes in the cell cycle data. (D) Scatter plot of expression of twoG1/S
phase genes, Dtl and Exo1, across cells. These genes are positively correlated in data imputed by netNMF-sc (P≤2.2 × 10−16), negatively correlated in data
imputed by MAGIC (P≤2.2 × 10−16), and uncorrelated in other methods.

Table 1. Fraction of all pairs of genes and pairs of periodic genes with correlations (R2
≥0.8, P≤2.2 × 10−16, Student’s t-test) in the cell

cycle data set

Method

Fraction of gene pairs with correlation

(R2
≥0.8)

Fraction of periodic gene pairs with correlation
(R2

≥0.8) in correct/incorrect orientation

Untransformed 1×10−5 0.00/0.00
MAGIC 0.78 0.49/0.19
scImpute 1 × 10−5 0.00/0.00
NMF 2×10−3 8×10−3/1 × 10−3

netNMF-sc 2 × 10−3 0.14/0.01
Bulk (COXPRESdb) 9 × 10−5 0.14/0.00

Permuted data 1 × 10−4 2×10−2/1 × 10−2

MAGIC on permuted data 0.85 0.40/0.39
netNMF-sc on permuted data 2 × 10−3 2×10−3/3 × 10−4

Pairs of genes and pairs of periodic genes are as defined by Dominguez et al. (2016). The cell cycle data set is from Buettner et al. (2015). Correct ori-
entation means that a pair of genes with peak expression in the same stage of the cell cycle has positive correlation, and a pair of genes with peak ex-
pression in different stages of the cell cycle has negative correlation. The last three rows (shaded in gray) denote correlations on permuted data.
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netNMF-sc results (P≤1.4 ×10−5, Wilcoxon rank-sum test), an im-

provement compared to their ranking in theuntransformeddata (P

≤3.1 ×10−3, Wilcoxon rank-sum test) (Supplemental Fig. S14A).

MAGIC was the second-best method, ranking EMT genes highly

(P≤1.1 ×10−4, Wilcoxon rank-sum test) but below the perfor-

mance of netNMF-sc. We observed that in data imputed by

MAGIC, the E marker gene TJP1 had higher average expression in

M cells than E cells (P≤2.2 ×10−16) (Supplemental Fig. S14B).

This resulted in TJP1 being negatively correlated (R=−0.57, P≤

2.2 ×10−16) with another epithelial marker gene, CDH1 in the

MAGIC-imputed data. In contrast, these E marker genes showed

positive correlation (R=0.66, P≤6.4 ×10−16) in the netNMF-sc im-

puted data and this correlation that was not apparent in the un-

transformed data (Supplemental Fig. S14C). We also investigated

whether netNMF-sc could recover gene–gene correlations between

EMTmarker genes in E and M cells. We expect that pairs of E or M

genes would show positive correlation, and pairs containing one E

andoneMgenewould shownegative correlations. In data imputed

bynetNMF-sc, 12%of the EMTgene pairswere correlated (R2
≥0.8,

P≤2.2 × 10−16), with all genepairs correlated in the expectedorien-

tation (Supplemental Fig. S15). In data imputed byMAGIC, 23%of

EMTgenepairswere correlated, but5%were correlated in theoppo-

site direction than expected (Supplemental Fig. S14D). Full details

of this analysis are in the Supplemental Section S7.

Discussion

We present netNMF-sc, a method for performing dimensionality

reduction and imputation of scRNA-seq data in the presence of

high (>60%) dropout rates. These high dropout rates are common

in droplet-based sequencing technologies, such as 10x Genomics

Chromium, which are becoming the dominant technology for

scRNA-seq. netNMF-sc leverages prior knowledge in the form of

a gene coexpression network. Such networks are readily available

for many tissue types, having been constructed from bulk RNA-se-

quencing data, or from other experimental approaches. To our

knowledge, the only other method that uses network information

to perform dimensionality reduction on scRNA-seq data is Lin

et al. (2017a). However, thismethod assumes that there is no drop-

out in the data, and its performance with high dropout rates is un-

known. Moreover, this method uses a neural network that is

trained on a specific protein–protein interaction (PPI) network,

whereas netNMF-sc can use any gene–gene interaction network.

Another method, netSmooth (published during the preparation

of this paper) (Ronen and Akalin 2018), uses network information

to smooth noisy scRNA-seq matrices but does not perform dimen-

sionality reduction.

We show that netNMF-sc outperforms state-of-the-art meth-

ods in clustering cells in both simulated and real scRNA-seq data.

In addition, netNMF-sc is better able to distinguish cells in differ-

ent stages of the cell cycle and to classify mouse embryonic brain

cells into distinct cell types whose proportions mirror the cellular

diversity reported in another study with a substantially greater

number of sequenced cells. netNMF-sc imputes values for every

entry in the input matrix, similar to MAGIC and in contrast to

scImpute, which imputes values only for zero counts. Because

transcript counts in scRNA-seq data are reduced for all genes, im-

putation of all values can improve clustering performance and bet-

ter recover biologically meaningful gene–gene correlations. On

multiple data sets, we show that netNMF-sc yields more biologi-

cally meaningful gene–gene correlations than other methods.

However, one potential downside of imputation is “oversmooth-

ing” of the data resulting in the introduction of artificial gene–

gene correlations.

There are multiple directions for future improvement of

netNMF-sc. First, netNMF-sc relies on existing gene–gene interac-

tion networks. Although we have shown that generic gene coex-

pression networks (Yang et al. 2017) can improve clustering

performance on human and mouse scRNA-seq data, netNMF-sc

may not offer substantial improvements over existing methods

on tissues or organisms where high-quality gene–gene interaction

networks are not available. In the future, other prior knowledge

could be incorporated into netNMF-sc, such as cell–cell correla-

tions, which might be obtained from underlying knowledge of

cell types or from spatial or temporal information. Second, there

are several additional sources of variation in scRNA-seq data in ad-

dition to dropout, such as cell cycle and batch effects. netNMF-sc

may be able to assist in removing these confounding effects by en-

couraging correlations between genes that are connected in the

network, thus down-weighting correlations induced by these or

other confounding effects. Evaluating the effectiveness of

netNMF-sc in the presence of these additional sources of variation

is left as future work. Finally, there remains the issue of whether

one should identify discrete cell clusters or continuous trajectories

in scRNA-seq data. Here, we focused on clustering cells in the low-

dimensional space obtained from netNMF-sc. A potential future

direction is to investigate how to leverage prior knowledge in tra-

jectory inference from scRNA-seq data.

Methods

netNMF-sc algorithm

netNMF-sc uses graph-regularized NMF (Cai et al. 2008) with KL

divergence, which solves the following optimization problem:

min
W≥0,H≥0

∑

i,j

xij log
xij

WH|ij
− xij +WH|ij

( )
+ lTr(WT

LW), (3)

for a positive real constant λ, whereL is the Laplacianmatrix of the

gene–gene interaction network, and Tr(·) indicates the trace of the
matrix. The regularization term Tr(WT

LW) encourages pairs of

genes to have similar representations in the matrix W when they
are connected in the network. Graph-regularized NMF has previ-
ously been used in bioinformatics to analyze somatic mutations

in cancer (Hofree et al. 2013).
We derive the graph Laplacian L for the gene–gene interac-

tion network as follows. Let S= [sij]∈R
m×m denote a gene–gene

similarity matrix whose entry sij is the weight of an interaction be-
tween genes i and j. A positive weight sij indicates a positive corre-

lation between gene i and gene j, whereas a negative weight
indicates negative correlation. We use the signed graph
Laplacian L=D−S, where D=Diag(|S|1) is the degree matrix and

|S| is the entrywise absolute value of S. The signed Laplacian, like
the Laplacian, is symmetric and positive semidefinite (Kunegis

et al. 2010; Gong et al. 2014). Performing Laplacian embedding us-
ing the signed version of the graph Laplacian produces an embed-
ding where positive edges between a pair of genes correspond to

high similarity and negative edges correspond to low similarity
(Kunegis et al. 2010).

We implemented netNMF-sc using the TensorFlow Python
library (Abadi et al. 2016) and tested the performance of
netNMF-sc with four different optimizers: Adam,momentum, gra-

dient descent, and Adagrad.We foundAdam to perform the best at
recovering clusters embedded in the data as well as reducing error

between the imputed data and the original data before dropout
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(Supplemental Fig. S3A–D). Adaptive moment estimation (Adam)

uses the first and secondmoments of gradient of the cost function
to adapt the learning rate for each parameter (Kingma and Ba
2014). This allows Adam to perform well on noisy data as well as

sparse matrices (Kingma and Ba 2014).
netNMF-sc has a shorter runtime on large-scale scRNA-seq

data sets than other methods. On a simulated data set with 5000
genes and 2000 cells, netNMF-sc ran in 1.2 min on one 2.60
GHz Intel Xeon CPU and in 34 sec on one NVidia Tesla P100

GPU. In comparison, MAGIC was the fastest method, taking
only 13 sec,whereas scNBMFand scImputewere both significantly

slower than netNMF-sc, taking 2.1 and 6.9 min, respectively
(Supplemental Fig. S4). On a real data set from Macosko et al.
(2015) with 9291 genes and 44,808 mouse retinal cells, netNMF-

sc ran in 34 min on one NVidia Tesla P100 GPU. In comparison,
MAGIC was the fastest, running in 1.3 min, but scNBMF and

scImpute were significantly slower than netNMF-sc, failing to
complete in 5 h.

Generation of simulated scRNA-seq data

We used the simulator Splatter (Zappia et al. 2017) to generate

transcript count data, estimating the parameters of the model
from mouse embryonic stem cell scRNA-seq data (Buettner et al.

2015) using the SplatEstimate command. We modified Splatter
to introduce correlations between genes that are differentially ex-
pressed in each cluster using a gene coexpression network from

Yang et al. (2017). See Supplemental Section S5 for further details.
After simulating transcript counts to obtain a count matrix

X
′, we generated dropout events using one of twomodels. The first

is amultinomial dropoutmodel, used previously tomodel dropout
in scRNA-seq data (Linderman et al. 2018; Zhu et al. 2018). In this

model, the observed transcript counts in a cell aremultinomial dis-
tributed, where the probability of observing a transcript from gene
i in cell j is x′ij/

∑
r,s x

′
rs and the number of trials is the sumof all tran-

scripts in the count matrix,
∑

r,s x
′
rs, multiplied by the capture effi-

ciency, ranging from 0 to 1. The resulting countmatrixX contains

dropout proportional to the capture efficiency. The second model
is the double exponential dropout model, used previously in the
scImpute (Li and Li 2018) and BISCUIT (Azizi et al. 2017) publica-

tions. In this model, an entry xij of the count matrix is set to zero
with probability P = exp(− dx′2ij ), where δ is the dropout rate.

Software availability

netNMF-sc is available as Supplemental Code and at GitHub (https
://github.com/raphael-group/netNMF-sc).
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