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Abstract— Given a set of k networks, possibly with differ-
ent sizes and no overlaps in nodes or edges, how can we
quickly assess similarity between them, without solving the node-
correspondence problem? Analogously, how can we extract a
small number of descriptive, numerical features from each graph
that effectively serve as the graph’s “signature”? Having such
features will enable a wealth of graph mining tasks, including
clustering, outlier detection, visualization, etc.

We propose NETSIMILE – a novel, effective, and scalable
method for solving the aforementioned problem. NETSIMILE has
the following desirable properties: (a) It gives similarity scores
that are size-invariant. (b) It is scalable, being linear on the
number of edges for “signature” vector extraction. (c) It does
not need to solve the node-correspondence problem. We present
extensive experiments on numerous synthetic and real graphs
from disparate domains, and show NETSIMILE’s superiority over
baseline competitors. We also show how NETSIMILE enables sev-
eral mining tasks such as clustering, visualization, discontinuity
detection, network transfer learning, and re-identification across
networks.

I. INTRODUCTION

We address the problem of network similarity. Specifically,
given a set of networks of (possibly) different sizes, and
without knowing the node-correspondences, how can we effi-
ciently provide a meaningful measure of structural similarity
(or distance)? For example, how structurally similar are the
SDM and SIGKDD co-authorship graphs? How does their
structural similarity compare with the similarity between the
SDM and ICDM co-authorship graphs? Such measures are
extremely useful for numerous graph-mining tasks. One such
task is clustering: given a set of graphs, find groups of
similar ones; conversely, find anomalies or discontinuities –
i.e., graphs that stand out from the rest. Transfer learning is
another application, if graphs G1 and G2 are similar, we can
transfer conclusions from one to the other to perform across-
network classification with better classification accuracy. Yet
another application is re-identification across two graphs –
where if the two graphs are similar, we can use information
in one to re-identify nodes in the other.

We define the network similarity / distance problem as
follows. Input: A set of k anonymized networks of potentially
different sizes, which may have no overlapping nodes or edges.
Output: The structural similarity (or distance) scores of any
pair of the given networks (or better yet, a feature vector for

each network).1

The core of our approach, NETSIMILE, is a careful extrac-
tion and evaluation of structural features. For every graph G,
we derive a small number of numerical features, which capture
the topology of the graph as moments of distributions over its
structural features. The similarity score between two graphs
then is just the similarity of their “signature” feature vectors.
Once we have the similarity function, we can do a wealth
of data mining tasks, including clustering, visualization, and
anomaly detection.

Our empirical study includes experiments on more than
30 real-world networks and various synthetic networks gener-
ated by four different graph generators (namely, Erdös-Rényi,
Forest Fire, Watts-Strogatz, and Barabási Preferential Attach-
ment). We compare NETSIMILE with two baselines. The first
baseline extracts frequent subgraphs from the given graphs and
performs pairwise comparison on the intersection of the two
sets of frequent patterns. The second baseline computes the
k largest eigenvalues of each network’s adjacency matrix and
measures the distance between them.

Our experiments provide answers to the following ques-
tions: How do the various methods compare w.r.t. their sim-
ilarity scores? Are their results intuitive (e.g., is a social
network more similar to another social network than to a
technological network)? How do they compare to null models?
Are the methods just measuring the sizes of the networks in
their comparisons? How scalable are the various methods?
Can we build a useful taxonomy for networks based on their
similarities?

Proof of Concept. When measuring similarity, having a
representative set of features for each graph is very pow-
erful. The simplest way to illustrate this power is through
visualization. Given a set of k graphs (which we describe
in Section III-A; and which include co-authorship networks,
autonomous systems networks, Erdös-Rényi graphs, etc), we
can use NETSIMILE to extract a graph × feature matrix,
and then project this matrix into its principal component space
through Singular Value Decomposition (SVD).

Figure 1 depicts the scatterplots of the NETSIMILE graph×
feature matrix’ 1st vs. 2nd principal components, 3rd vs. 4th
principal components, and 5th vs. 6th principal components.

1Throughout the paper, we assume similarity and distance are interchange-
able.
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(a) 1st vs. 2nd principal components (b) 3rd vs. 4th principal components (c) 5th vs. 6th principal components
of NETSIMILE features of NETSIMILE features of NETSIMILE features

Fig. 1. An illustration of the visualization power of NETSIMILE’s features. After doing SVD on the aggregated-feature matrix W [k graphs × fr aggregated-
features] (where f = # features and r = # aggregators), we get k points in low-dimensional space, where similar graphs naturally cluster. (a) The query-log
graphs (in red) fall on a line. (b) The Erdös-Rényi graphs (brown) fall on the vertical line. (c) The “autonomous systems” graphs (in green) group together.

As the plot clearly shows, NETSIMILE’s graph “signature”
vectors are discriminative enough to separate out the various
types of graphs and to find anomalous graphs among the set
of input graphs. For example, in Figure 1(a), the synthetic
“Barabási-100K-nodes” stands out, while a group of “query-
log” graphs align (red circles). In Figure 1(b), the Erdös-Rényi
graphs (in brown) occupy the vertical axis, while in Figure 1(c)
the green points (“Oregon AS” graphs) cluster together.

a) Contributions:
• Novelty: By using moments of distribution as aggregators,

NETSIMILE generates a single “signature” vector for each
graph based on the local and neighborhood features of its
nodes.

• Effectiveness: NETSIMILE produces similarity / distance
measures that are size-independent, intuitive, and inter-
pretable.

• Scalability: The runtime complexity for generating NET-
SIMILE’s “signature” vectors is linear on the number of
edges.

• Applicability: NETSIMILE’s “signature” vectors are use-
ful in many graph mining tasks.

The paper is organized into the following sections: Proposed
Method, Experiments, Related Work, and Conclusions.

II. PROPOSED METHOD

Algorithm 1 outlines NETSIMILE, which has three steps:
feature extraction (Algorithm 2), feature aggregation (Algo-
rithm 3), and comparison (Algorithm 4).

Feature extraction. NETSIMILE’s feature extractor (see
Algorithm 2) generates a set of structural features for each
node based on its local and egonet-based features – a node’s
egonet is the induced subgraph of its neighboring nodes.
Specifically, NETSIMILE computes the following 7 features.

• di = |N(i)|: number of neighbors (i.e. degree) of node
i; N(i) denotes the neighbors of node i.

• ci: clustering coefficient of node i, defined as the number
of triangles connected to node i over the number of
connected triples centered on node i.

• d̄N(i): average number of node i’s two-hop away neigh-
bors, computed as 1

di

∑
∀j∈N(i) dj .

Algorithm 1 NETSIMILE

Require: {G1, G2, · · · , Gk}, doClustering
1: // extract features from nodes
2: {FG1 , FG2 , · · · , FGk}:=GETFEATURES({G1, G2, · · · , Gk})
3: // generate “signature” vectors for each graph
4: {~sG1 , ~sG2 , · · · , ~sGk}:=AGGREGATOR({FG1 , FG2 , · · · , FGk})
5: // do comparison and return similarity/distance values or cluster-

ings for the given graphs
6: return COMPARE({~sG1 , ~sG2 , · · · , ~sGk}, doClustering)

Algorithm 2 NETSIMILE’s GETFEATURES

Require: {G1, G2, · · · , Gk}
1: for all j ∈ {G1, G2, · · · , Gk} do
2: FGj =[] // initialize feature matrix for Gj

3: // extract features for all nodes in Gj

4: for all i ∈ Vj do
5: FGj =FGj ∪
6: {{di, ci, d̄N(i), c̄N(i), |Eego(i)|, |Eo

ego(i)|, |N(ego(i))|}}
7: end for
8: end for
9: // return a set of node × feature matrices

10: return {FG1 , FG2 , · · · , FGk}

• c̄N(i): average clustering coefficient of N(i) , calculated
as 1

di

∑
∀j∈N(i) cj .

• |Eego(i)|: number of edges in node i’s egonet; ego(i)
returns node i’s egonet.

• |Eo
ego(i)|: number of outgoing edges from ego(i).

• |N(ego(i))|: number of neighbors of ego(i).

Note that NETSIMILE is flexible enough to incorporate
additional features. We choose these seven local and egonet-
based features because they satisfy our constraints in terms
of effectiveness (namely, size-independence, intuitiveness, and
interpretability) and scalability (see Section III). Also empiri-
cally, we observed the aforementioned features to be sufficient
for measuring similarity across graphs from various domains
(details in Section III).

Feature aggregation. After the feature extraction step,
NETSIMILE has extracted a node× feature matrix, FGj

, for
each graph Gj ∈ {G1, G2, · · · , Gk}. We can measure similar-
ity between graphs by comparing their feature matrices (see



Algorithm 3 NETSIMILE’s AGGREGATOR

Require: {FG1 , FG2 , · · · , FGk}
1: for all j ∈ {FG1 , FG2 , · · · , FGk} do
2: ~sGj =[] // initialize “signature” vector for Gj

3: // for each feature column in FGj , compute a set of aggregates
4: for all feat ∈ FGj do
5: ~sGj =~sGj ∪
6: {median(feat), mean(feat), stdev(feat),
7: skewness(feat), kurtosis(feat)}
8: end for
9: end for

10: // return a set of “signature” vectors for the graphs
11: return {~sG1 , ~sG2 , · · · , ~sGk}

Algorithm 4 NETSIMILE’s COMPARE

Require: {~sG1 , ~sG2 , · · · , ~sGk}, doClustering
1: if doClustering then
2: // return clusterings of the given graphs
3: return CLUSTER({~sG1 , ~sG2 , · · · , ~sGk})
4: else
5: // return similarity/distance values of the graphs
6: return PAIRWISECOMPARE({~sG1 , ~sG2 , · · · , ~sGk})
7: end if

discussion below). However, we discovered that generating a
single “signature” vector for each graph produces more effi-
cient and effective comparisons. To this end, NETSIMILE uses
the following five aggregators on each feature (i.e., on each
column of FGj ): median, mean, standard deviation, skewness,
and kurtosis. Note that the latter four of the five aggregators are
moments of distribution of each feature. NETSIMILE is flexible
enough to use other aggregators as well, though we found
these five to be sufficient for the task of network comparison
and satisfy our effectiveness and scalability constraints (see
Section III).

Comparison. After the feature aggregation step, NETSIM-
ILE has produced a “signature” vector ~sGj for every graph
Gj ∈ {G1, G2, · · · , Gk}. NETSIMILE now has the whole ar-
senal of clustering techniques and pairwise similarity / distance
functions at its disposal. Amongst the collection of pairwise
similarity / distance functions, we found Canberra Distance
(dCan(P,Q) =

∑d
i=1

|Pi−Qi|
Pi+Qi

) to be very discriminative
(a good property for a distance measure). This is because
Canberra Distance is sensitive to small changes near zero;
and it normalizes the absolute difference of the individual
comparisons (see discussion in Section III).

Computational complexity. Let k = number of graphs
given to NETSIMILE (i.e., k = |{G1, · · · , Gk}|), nj = the
number of nodes in Gj , mj = the number of edges in Gj , f
= number of structural features extracted, and r = number of
aggregators used.2

Lemma 1: The runtime complexity for generating NET-
SIMILE’s “signature” vectors is linear on the number of edges

2Note that f , r, and k are in the 10s.

in {G1, · · · , Gk}, and specifically

O(
k∑

j=1

(fnj + fnj log(nj))) (1)

where f � nj � mj and nj log(nj) ≈ mj in real-world
graphs.

Proof: To generate NETSIMILE’s “signature” vectors,
features need to be extracted and then aggregated.

Feature Extraction: Recall that NETSIMILE is computing
local and neighborhood-based structural features. As proved
in [1], computation of neighborhood-based features is expected
to take O(nj) for real-world graphs. Therefore to compute f
neighborhood-based features on a graph Gj , it takes O(fnj).

Feature Aggregation: This is O(fnj log(nj)) for each graph
Gj . Recall that NETSIMILE’s aggregators are median, mean,
standard deviation, skewness, and kurtosis. The latter four
can be computed in one-pass through the f feature val-
ues. The most expensive computation is the median which
cannot be done in one-pass. However, it can be computed
in O(nlog(n) + n) for n numbers. Basically, one needs
O(nlog(n)) to sort the n numbers. Then, a selection algorithm
can be used to get the median with only O(n) operations.

Remark: Network comparison through statistical hy-
pothesis testing. Given the node× feature matrices of two
graphs, FG1 and FG2 , NETSIMILE can use statistical hypothe-
sis testing to see if the two graphs are samples from the same
underlying distribution. Specifically, NETSIMILE normalizes
each column (i.e. feature) in FG1 and FG2 by its L2 norm.
Then, NETSIMILE does pairwise hypothesis testing across
the features of the graphs. For example, it does hypothesis
testing between the degree columns in G1 and G2; between the
clustering coefficient columns in G1 and G2; and so on. This
process produces seven p-values (corresponding to the seven
features extracted by NETSIMILE). To decide whether the two
graphs are from the same underlying distribution, NETSIMILE
uses the maximum p-value. We also tried the average of the p-
values, though that analysis did not produce as discriminative
results as the maximum p-value.

For the statistical hypothesis tests, NETSIMILE can use
any test available. We tried the Mann-Whitney Test [2] and
the Kolmogorov-Smirnov Test [3]. The Mann-Whitney Test
is nonparametric. It assumes two samples are independent
and measures whether the two samples of observations have
equally large values. The Kolmogorov-Smirnov Test is also
nonparametric. We used the two-sample Kolmogorov-Smirnov
Test which compares two samples w.r.t. the location and shape
of the empirical cumulative distribution functions of the two
samples. We found that neither test generated enough dis-
criminative power3 to effectively capture differences between
graphs (though the Mann-Whitney Test was more discrimina-
tive). See Section III for details.

Remark: Network comparison at the local- vs. global-
level. Whether one prefers local-level network similarity to

3We informally define discriminative power to be the power to make fine
distinctions. More details in Section III.



global-level network similarity depends on the application for
which the similarity is being used. NETSIMILE is designed
such that it can take either local-level or global-level features.
Here, we emphasis NETSIMILE’s local-level network similar-
ity. The advantages of local-level comparison is that node-
level and egonet-level features are often more interpretable
than global features – e.g., consider average degree of a node
vs. the number of distinct eigenvalues of the adjacency matrix.
Also, local-level features are computationally less expensive
than global-level features – e.g., consider clustering coefficient
of a node vs. diameter of the graph. Moreover, looking at
local-level features answers the question: “are the given two
networks from similar linking models?” For example, consider
the Facebook and Google+ social networks. Even though
Google+ is a smaller network than Facebook, are its users
linking in a similar way to the users of the Facebook network?
In other words, is the smaller Google+ network following
a similar underlying model as the lager Facebook network?
Local-level features can capture any similarity present in the
linking models of the two networks, but global-level features
cannot.

III. EXPERIMENTS

This section is organized as follows. First, we outline
the real and synthetic datasets used in our experiments, as
well as our experimental setup. Second, we describe two
baseline methods “FSM” (Frequent Subgraph Mining) and
“EIG” (Eigenvalues Extraction). Third, we present results
that answer the following questions: How do the different
approaches compare? Is there a particular method which
clearly outperforms the others? If yes, to which extent? How
can we interpret the results? Can we build a taxonomy over the
networks based on our results? Is NETSIMILE affected by the
sizes of the networks? How do the proposed methods scale?
How well does NETSIMILE perform in various graph mining
applications?

A. Data and Experimental Setup

Real Networks. Table I lists the basic statistics of the real
networks used in our experiments. Here is a short description
of each network.

• arXiv (http://arxiv.org): Five different co-
authorship networks corresponding to the following
fields: Astro Physics, Condensed Matter, General Rel-
ativity, High Energy Physics and High Energy Physics
Theory.

• DBLP-C (http://dblp.uni-trier.de): Six dif-
ferent co-authorship networks from VLDB, SIGKDD,
CIKM, ICDM, SIGMOD and WWW conferences, each
spanning over 5 years (2005-2009).

• DBLP-Y: Five different co-authorship networks, each
corresponding to one of the years from 2005 to 2009
and consisting of data from 31 conferences.

• IMDb (http://www.imdb.com): Five collaboration
networks for movies issued from 2005 to 2009. Each node
represents a person who took part in the movie (i.e., cast

Network |V| |E| k Net c c̄ |LCC| #CC

ar
X

iv

a-AstroPh 18,772 396,160 42.21 0.318 0.677 17,903 290
a-CondMat 23,133 186,936 16.16 0.264 0.706 21,363 567

a-GrQc 5,242 28,980 11.06 0.630 0.687 4,158 355
a-HepPh 12,008 237,010 39.48 0.659 0.698 11,204 278
a-HepTh 9,877 51,971 10.52 0.284 0.600 8,638 429

D
B

L
P-

C

d-vldb 1,306 3,224 4.94 0.597 0.870 769 112
d-sigmod 1,545 4,191 5.43 0.601 0.856 1,092 116
d-cikm 2,367 4,388 3.71 0.560 0.873 890 361

d-sigkdd 1,529 3,158 4.13 0.505 0.879 743 189
d-icdm 1,651 2,883 3.49 0.518 0.887 458 281
d-sdm 915 1,501 3.28 0.540 0.870 243 165

D
B

L
P-

Y

d-05 39,357 79,114 4.02 0.415 0.642 29,458 3,229
d-06 44,982 94,274 4.19 0.379 0.632 35,223 3,140
d-07 47,465 103,957 4.38 0.373 0.628 38,048 3,078
d-08 47,350 107,643 4.55 0.378 0.612 38,979 2,849
d-09 45,173 102,072 4.52 0.331 0.595 36,767 2,920

IM
D

b

i-05 13,805 130,295 18.88 0.506 0.774 13,075 258
i-06 14,228 142,955 20.09 0.480 0.760 13,458 269
i-07 13,989 133,930 19.15 0.476 0.757 13,091 256
i-08 14,055 132,007 18.78 0.469 0.750 13,313 273
i-09 14,372 128,926 17.94 0.442 0.728 13,601 277

Q
ue

ry
L

og

ql-1 138,976 1,102,606 15.87 0.055 0.599 132,012 3,238
ql-2 108,420 876,517 16.17 0.055 0.594 103,095 2,482
ql-3 89,406 707,579 15.83 0.053 0.588 85,246 1,941
ql-4 75,838 582,703 15.37 0.051 0.583 72,396 1,600
ql-5 42,946 253,469 11.80 0.047 0.573 40,691 1,027

O
re

go
n

A
S o-1 10,900 31,181 5.72 0.039 0.501 10,900 1

o-2 11,019 31,762 5.76 0.040 0.495 11,019 1
o-3 11,113 31,435 5.66 0.034 0.490 11,113 1
o-4 11,260 31,304 5.56 0.032 0.487 11,260 1
o-5 11,461 32,731 5.71 0.037 0.494 11,461 1

TABLE I
REAL NETWORKS: #NODES, #EDGES, AVG DEGREE, NETWORK

CLUSTERING COEFFICIENT (TRANSITIVITY), AVG NODE CLUSTERING

COEFFICIENT, #NODES IN THE LARGEST CONNECTED COMPONENT,
#CONNECTED COMPONENTS.

and crew). Edges connect people who collaborated on a
movie.

• QueryLog (http://www.gregsadetsky.com/
aol-data): Five word co-occurrence networks built
from a query-log of approximately 20 millions web-
search queries submitted by 650,000 users over 3
months.

• Oregon AS (http://snap.stanford.edu/
data/): Five Autonomous Systems (AS) routing graphs
between March 31st and May 26th 2001.

Synthetic Networks. Apart from the real networks, we
also produced several synthetic networks by using the follow-
ing generators from the igraph library (http://igraph.
sourceforge.net):

• Barabási-Albert [4]: With a non-assortative version of
the generator, we created graphs with 1K, 10K, and 100K
nodes, adding 4 edges in each iteration.

• Forest-Fire [5]: We generated graphs of size 1K, 10K,
and 100K nodes, with 20% forward burning probability,
40% backward burning probability, and 4 ambassador
vertices.

• Erdös-Rényi [6]: We used the G(n, m) generator, where
n is the number of nodes and m the number of edges,



and produced graphs G(n, 2n) with 1K, 10K, and 100K
nodes.

• Watts-Strogatz [7]: We built graphs of size 200, 2K,
and 20K nodes by setting the lattice dimension to 1, the
degree to 4, and the rewiring probability to 0.3.

For each generator and for each node-set size, we built five
networks. Our results report the average values obtained across
the five networks per generator and node-set size.

Experimental Setup. We implemented our approach in
C++ and Matlab, making use of the GNU Statistic Libraries
and igraph. The code was run on a server equipped with 8
Intel Xeon processors at 3.0GHz, with 16GB of RAM, and
running CentOS 5.2 Linux.

B. Baseline Methods

We compare NETSIMILE with (a) Frequent Subgraph Min-
ing and (b) Eigenvalues Extraction. We chose these two meth-
ods because they are intuitive and widely applicable. Many
methods discussed in Section IV are application-dependent.

FSM (Frequent Subgraph Mining): Given two graphs,
we take the intersection of their frequent pattern-sets and
build two vectors (one per graph) of relative supports of their
patterns [8]. We compare these FSM vectors with NETSIM-
ILE’s “signature” vectors using Cosine Similarity and Canberra
Distance. A clear drawback of FSM is its lack of scalability
(since it relates to subgraph isomorphism).

EIG (Eigenvalues Extraction): This is an intuitive measure
of network similarity that is based on global feature extraction
(as opposed to the local feature extraction of NETSIMILE).
For each graph, we compute the k largest eigenvalues4 of its
adjacency matrix, and thus we obtain a vector of size k per
graph. Then, we use the Canberra Distance in order to compare
these vectors and find the pairwise similarities between the
graphs. A disadvantage of EIG is that it is size dependent:
larger networks - or ones with larger LCC (Largest Connected
Component) - have higher eigenvalues. Thus, EIG will lead
to higher similarity between networks with comparable sizes.
Moreover, there is no global upper-bound for eigenvalues,
making distance values hard to compare.

Desired Properties NETSIMILE FSM EIG
Scalable X X
Size-independent X X
Intuitive X X X
Interpretable X X

TABLE II
PROPERTIES OF NETSIMILE AND BASELINES

C. Comparative Results

Table II summarizes the basic properties of NETSIMILE,
FSM, and EIG. NETSIMILE is the only one having the desired
properties of being scalable, size-independent, intuitive, and
interpretable. Here, being intuitive means providing results that

4We tried a few values for k and saw no significant changes around 10; so
we selected k = 10.

are comparable with the background knowledge that we have
about the data. For example, intuitively, a co-authorship net-
work should be more similar to another co-authorship network
than to a technological network like autonomous systems.
Moreover, interpretability is given by the low complexity of
the theory behind the concepts that build NETSIMILE. In fact,
the signature vectors returned by NETSIMILE are comparing
the moments of distributions of local (i.e. neighborhood-
based) features of the two graphs, and these are commonly
understandable measures. Empirical support follows next.

For each method (NETSIMILE, FSM, and EIG), after
extracting features from the graphs and obtaining one (ag-
gregated) feature vector per graph, we apply the Canberra
Distance.5 We also report results of the Mann-Withney U test
on NETSIMILE’s local feature distributions. This statistical test
is unsuitable for EIG and non-trivial for FSM.

Figure 2 depicts the results of a set of experiments involving
the Canberra Distance on the DBLP-C datasets. The columns
in Figure 2 correspond to the heatmaps we obtained from
NETSIMILE, FSM and EIG, respectively. The first row reports
the results from the Canberra Distance. The second row reports
the results from the scaled Canberra Distance, where each
value is in [0,1].

Inspecting Figures 2(a)-(b), we observe that the results of
NETSIMILE are similar to FSM. For instance, according to
both, the d-vldb network is similar to d-sigmod, which is not
so similar to d-sdm. However, the discriminative power of
NETSIMILE becomes evident when we inspect Figures 2(d)-
(e). In these figures, the Canberra Distance is scaled, so the
results can be compared on an equal footing. We observe that
the scaled values of FSM are much less discriminative.

Reexamining Figure 2, we also observe that the results
from EIG differ from the ones from NETSIMILE and FSM.
According to EIG, d-vldb has no significant differences with
d-sigmod, d-cikm, and d-sigkdd; while NETSIMILE and FSM
found differences. Moreover, there is no global normalization
for the EIG values.6 Thus, global comparisons of a set of net-
works are harder to interpret with EIG than with NETSIMILE
and FSM.

As another point of comparison, we measure the entropy in
feature vectors generated by NETSIMILE, FSM, and EIG on
the DBLP-C co-authorship networks. As Figure 3 shows, NET-
SIMILE’s feature vectors have higher entropy than FSM’s or
EIG’s. Higher entropy means more uncertainty (i.e., we need
more bits to store the desired information). So, NETSIMILE’s
feature vectors capture the nuances (i.e. uncertainty) in the
graphs bettern than FSM or EIG, which then leads to more
discriminative power when comparing graphs.

Figure 5(a) depicts results of NETSIMILE (Scaled Canberra
Distance) on all datasets described in Section III-A. Fig-
ure 5(b) shows the maximum p-values on NETSIMILE’s local-

5For brevity, we do not report results on Cosine Similarity and the
other similarity/distance measures, which we tried. Most results are highly
correlated [9].

6It is possible to do pairwise normalization by the number of nodes, but
this is not general for any set of networks.
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Fig. 2. Comparative results: Canberra Distance scores between the DBLP-C networks by NETSIMILE (1st col.), FSM (2nd col.), and EIG (3rd col.). Second
row is the scaled Canberra Distance ∈ [0, 1]. The baseline methods do not have the discriminative power of NETSIMILE.
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on the DBLP-C co-authorship networks. NETSIMILE’s feature vectors have
higher entropy than FSM’s or EIG’s, which implies that they are capturing
the nuances in the graphs better than FSM or EIG.

feature distributions obtained by running the Mann-Withney U
Test. The former (NETSIMILE Scaled Canberra Distance) is
more discriminative in teasing out graph similarity than the
latter (Mann-Whitney U Test). For instance, Figure 5(b) has
many black grids corresponding to a maximum p-value of
0. So, even though some pairwise comparisons are possible,
the Mann-Whithney U Test is not able to capture differences
between any two networks. For brevity, we have omitted

Cluster 1
o-1 o-2 o-3 o-4 o-5

ql-1 ql-2 ql-3 ql-4 ql-5
r-1-bara r-10-bara r-100-bara

Cluster 2
r-1-er r-10-er r-100-er
r-1-ff r-10-ff r-100-ff

r-1-ws r-10-ws r-100-ws
Cluster 3 d-vldb d-sigmod d-cikm d-sigkdd d-icdm d-sdm

Cluster 4
a-AstroPh a-CondMat a-GrQc a-HepPh a-HepTh

d-05 d-06 d-07 d-08 d-09
i-05 i-06 i-07 i-08 i-09

TABLE III
NETSIMILE WITH x-MEANS CLASSIFIES THE NETWORKS IN AN INTUITIVE

WAY.

the average p-value results, which were comparable with the
maximum p-value results.

D. Interpretability of Results

To make sense of our results, we exploit the background
knowledge about the networks used in our experiments. Amid
the real networks, we have three sets of collaboration networks
(DBLP-C, DBLP-Y and IMDb), one technological network
(Oregon AS), and a word co-occurrence network (Query Log).
In addition, we have different synthetic networks generated
by various commonly used models. One would expect these
networks to be “clustered” by their types. This idea was



inspired by the considerations found in [10], where a large set
of networks of different types are analyzed, together with their
typical global and local features. For these experiments, we use
two clustering algorithms: (1) agglomerative clustering [11]
with Canberra Distance and unweighted average linking and
(2) x-means clustering [12]. We chose the former since hi-
erarchical clustering allows for easy interpretation of results.
We chose the latter because it is a nonparametric version of k-
means, where the number of clusters k is picked automatically
through model selection.

Figure 4(a) presents the dendrogram of all of our networks
built by hierarchical agglomerative clustering with unweighted
average linking and the Canberra Distance and using NET-
SIMILE’s graph “signature” vectors. The network names are
colored by data set. As evident in Figure 4(a), there is a
clear distinction between the clusters. The collaboration net-
works appear all together, along with the forest fire synthetic
networks. The Oregon AS forms a cluster that only at the
height of 0.45 joins with the Query Log. The Erdös-Rényi and
Watts-Strogatz form a separate cluster. This, in turns, reflects
our aforementioned intuition about following our background
knowledge of the data. Similar results are obtained by applying
the x-means clustering on the vectors of local features, for
which we report the outcome in Table III. A part from the
distribution of the random networks, the clusters reflect what
we observe in Figure 4(a).

Figure 4(b) shows the dendrogram for the above experi-
ment (hierarchical agglomerative clustering with unweighted
average linking and the Canberra Distance) for graph vectors
generated by EIG. This figure clearly shows a different
picture, where the networks are grouped differently (see how
the distribution of the colors is mixed). For example, in the
leftmost cluster, two collaboration networks from arXiv are
put together with four Query Log networks, while the missing
Query Log network is placed together with the Oregon AS
networks. The EIG results are not intuitive, thus making EIG
not suitable for interpreting graph-similarity results.

E. Similarity of Networks with Different Sizes

One question that may arise regarding NETSIMILE is
whether its results are affected by the differences in sizes or
other basic statistics of the two networks being compared. We
do not want the size to play an important role in our solutions
given that our interpretation of the question “are two networks
similar?” leads to the question “do the two networks follow
the same (or similar) underlying linking model?”.

To answer the aforementioned questions, we compared the
relationships between the NETSIMILE with Canberra Distance
and some basic statistics of our real and synthetic networks.
Specifically, we compared NETSIMILE values of two networks
with the ratio between their (1) number of nodes, (2) number
of edges, (3) average clustering coefficients of the nodes,
(4) average degree, (5) maximum degree, and (6) network
clustering coefficient. In all of them, we saw no correlation.
For brevity, we only show the scatterplot for the NETSIMILE
values and the ratio between the number of nodes of the two

networks (see Figure 6(a)) and the scatterplot for the NET-
SIMILE values and the ratio between the average clustering
coefficients of the nodes of the two networks (see Figure 6(b)).
As evident in these scatterplots, NETSIMILE’s results are not
merely reflecting the difference in sizes of the networks. If
they were, we would expect to observe correlations among the
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(b)Mann-Whitney U Test:
Maximum p-values on Local-Feature Distributions

Fig. 5. NETSIMILE outperforms the Mann-Whitney U test on local feature
distributions by producing more discriminative results. Plots are heatmaps of
scores of all pairs of networks. Grid lines indicate ground truth, marking
groups of networks. The ideal methods should have high scores (white in (a),
yellow in (b)) on the diagonal blocks.
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Fig. 4. Hierarchical dendrograms of all network based on (a) NETSIMILE with Canberra Distance, and (b) EIG with Canberra Distance. Network names
are colored by data set. Homogeneity in colors (NETSIMILE’s dendrogram) indicates better and more intuitive groupings (than EIG’s dendrogram).
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Fig. 6. NETSIMILE Canberra Distance is not measuring size, as there is no
clear evidence of correlation between the two axes.

points in each scatterplot. This implies that we can generate
two networks of the same kind, with different sizes (e.g., two
Forest-Fire networks [5] of sizes 10K and 100K nodes) and
NETSIMILE would find them similar.

F. Scalability

Table IV reports the run times (in seconds) of NETSIMILE
and the two baselines (FSM and EIG) when applied to our
real networks. Note that for NETSIMILE the run times refer to
all the three steps described in Section II, with the comparison
step constituted by the pairwise computation of both the
Cosine Similarity and the Canberra Distance. For FSM we
do not report running time longer than two days.

NETSIMILE and EIG are able to compare graphs in a
matter of seconds, though EIG produces results that are size-
dependent. FSM pays for its subgraph isomorphism, which
considerably affects the performances. Note that FSM is
affected not only by the size of the network, but also by its
type. While DBLP is a set of collaboration networks (with
sparsely connected cliques), the Oregon AS (being a technol-
ogy network) is made of one single connected component,
thus the cost for the isomorphism becomes much higher.

Network |V| |E| NETSIMILE FSM EIG

ar
X

iv

a-AstroPh 18,772 396,160 9 > 2 days 6
a-CondMat 23,133 186,936 2 > 2 days 4

a-GrQc 5,242 28,980 1 > 2 days 1
a-HepPh 12,008 237,010 6 > 2 days 3
a-HepTh 9,877 51,971 1 > 2 days 2

D
B

L
P-

C

d-vldb 1,306 3,224 1 15 1
d-sigmod 1,545 4,191 1 28 1
d-cikm 2,367 4,388 1 11 1

d-sigkdd 1,529 3,158 1 42 1
d-icdm 1,651 2,883 1 17 1
d-sdm 915 1,501 1 7 1

D
B

L
P-

Y

d-05 39,357 79,114 1 2231 2
d-06 44,982 94,274 1 2856 2
d-07 47,465 103,957 1 4603 2
d-08 47,350 107,643 1 9859 3
d-09 45,173 102,072 1 9209 2

IM
D

b

i-05 13,805 130,295 1 > 2 days 3
i-06 14,228 142,955 1 > 2 days 3
i-07 13,989 133,930 1 > 2 days 2
i-08 14,055 132,007 1 > 2 days 3
i-09 14,372 128,926 1 > 2 days 2

O
re

go
n

A
S o-1 10,900 31,181 2 > 2 days 1

o-2 11,019 31,762 2 > 2 days 1
o-3 11,113 31,435 2 > 2 days 1
o-4 11,260 31,304 2 > 2 days 1
o-5 11,461 32,731 2 > 2 days 1

Q
ue

ry
L

og

ql-1 138,976 1,102,606 209 > 2 days 14
ql-2 108,420 876,517 119 > 2 days 11
ql-3 89,406 707,579 107 > 2 days 9
ql-4 75,838 582,703 68 > 2 days 8
ql-5 42,946 253,469 11 > 2 days 5

TABLE IV
RUN TIMES (IN SECONDS, UNLESS OTHERWISE NOTED) OF NETSIMILE,

FSM, AND EIG ON OUR REAL NETWORKS

G. Applications

NETSIMILE can be used in numerous graph mining appli-
cations. Here we discuss three of them.



NETSIMILE as a Measure of Node-Overlap. Given three
graphs GA, GB , and GC of the same domain (e.g., co-
authorship networks in SIGMOD, VLDB and ICDE), can we
use only their NETSIMILE’s “signature” vectors to gauge the
amount of node-overlap between them? Our hypothesis is
that if graph GA is more similar to graph GB than graph
GC , then GA will have more overlap in terms of nodes with
GB than GC . To test this hypothesis, we ran NETSIMILE
with Canberra Distance on our real networks. Figure 7(a)
depicts the scatterplot of NETSIMILE results on graphs within
each comparable group (i.e., arXiv, DBLP-C, DBLP-Y, IMDb,
Query Log, and Oregon AS graphs). The y-axis is the nor-
malized node overlap and is equal to |VGA

∩VGB
|√

|VGA
|×|VGB

|
. As the

figure shows the lower the NETSIMILE Canberra Distance,
the higher the normalized node intersection. This confirms our
hypothesis that NETSIMILE can be used to gauge node-overlap
between two graphs without node correspondence information.
Figure 7(b) shows the same scatter plot, but computed using
the EIG Canberra Distance approach. In this case, there is no
correlation between node overlap and the distance. Due to its
scalability issues, the FSM approach could not be computed
on all the networks in Figure 7.

NETSIMILE as a Network Labeler. Given a new (never
before seen) graph, can we use the Canberra Distance be-
tween its NETSIMILE’s “signature” vector to known graphs’
NETSIMILE “signature” vectors to accurately predict its label?
To answer this question, we setup and ran the following 4-
step experiment. In step 1, we created a set of test graphs by
generating 50 synthetic graphs of types Erdös-Rényi, Watts-
Strogatz, Barabási, and Forest Fire. In step 2, for each test
graph, we compared its NETSIMILE score using the normal-
ized Canberra Distance with existing graphs (as reported in
Table I). In step 3, we assigned to the test graph the label of
its most similar graph. In step 4, we computed the accuracy
of our predictions.

The predictive accuracy of NETSIMILE was 100% – i.e.,
NETSIMILE was able to label all 50 test graphs accurately.
For each of the 50 test graphs, we inspected the NETSIMILE
normalized Canberra Distance between the most similar graph
(whose label we chose) and the second most similar graph
(whose label we did not choose). Let’s call the former dist1
and the latter dist2. The minimum difference between dist1
and dist2 across the 50 test graphs was 0.001. The maximum
was 0.428. The mean difference was 0.143; and the standard
deviation was 0.112. Thus, the answer to the aforementioned
question of whether NETSIMILE can be used effectively as a
network labeler is yes.

We ran the same experiments using EIG with Canberra
Distance on the same networks. The predictive accuracy
of EIG was 72%, i.e., 14 graphs were uncorrectly labeled.
Figure 8 shows the distribution of the ranking for the correct
labels of graphs. There are two cases, in which the correct
(i.e. true) labels for the graphs are ranked 11th by EIG. Due
to scalability issues, FSM could not be performed on all the
networks in this experiment.
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Fig. 7. (a) NETSIMILE Canberra Distance on DBLP, IMDb, Oregon and
QueryLog. (b) EIG Canberra Distance on the same networks. NETSIMILE
is an effective measure for node overlap without any node-correspondence
information. The lower the NETSIMILE Canberra Distance, the higher the
normalized node intersection. This correlation does not hold for EIG. The
points in both plots are along the fitted lines. For NETSIMILE (a), the root
mean square of residuals are 6.5E−2 for DBLP-C, 2.6E−2 for DBLP-Y,
9.0E−3 for IMDb, 1.4E−2 for Oregon AS, and 6.5E−2 for Query Log. For
EIG (b), the root mean square of residuals are 8.2E−2 for DBLP-C, 4.2E−2
for DBLP-Y, 1.3E−3 for IMDb, 1.2E−2 for Oregon AS, and 6.7E−2 for
Query Log.

NETSIMILE as a Discontinuity Detector. Given a time-
series of graphs {G1, G2, G3, ..., Gt}, can NETSIMILE detect
any discontinuity (i.e. temporal outliers) present in the data?
To answer this question, we utilize NETSIMILE Canberra
Distance to compute the difference between graphs in a time
series. For this experiment, we used data coming from two
different messaging services, Yahoo! IM and Twitter.

The first dataset contains 28 days of Yahoo! IM communica-
tions (http://sandbox.yahoo.com), starting Tuesday,
April 1, 2008. Each graph is a collection of instant messages
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Fig. 8. Distribution of the rankings of the correct labels for the synthetic
graphs by EIG with Canberra Distance. EIG’s accuracy is only 72%. There
are two graphs whose correct labels are ranked 11.

(IMs) per day, with nodes representing IM users and links
denoting communication events. The graphs are of varying
sizes: number of nodes from 29K to 100K and number of
edges from 80K to 280K. We computed the NETSIMILE
normalized Canberra Distance between Day 0 (April 1, 2008)
and the other 27 days. Figure 9(a) shows our results, with
the x-axis representing days and the y-axis representing NET-
SIMILE (with normalized Canberra Distance) between Day 0
and the other 27 days. Figure 9(b) shows NETSIMILE (with
normalized Canberra Distance) between Day 8 (April 9, 2008)
and all the other days. As the figures illustrate, NETSIMILE
detects the weekday vs. weekend discontinuities. It also detects
a discontinuity on Wednesday April 9, 2008. The following
event explains this discontinuity. Flickr announced that it will
add video to its popular photo-sharing community7 on April
8, 2008; but its news spread on April 9, 2008.8 This event
is reflected in the graph for April 9, 2008, where the number
of connected components decreases by 4× as the news about
Flickr spreads among the IM users.

The second dataset contains 30 days of Twitter9 @replies
(i.e., messages that begin with a direct mention to “@user”),
starting Monday, June 1, 2009. The sizes of these graphs vary
less than in the Yahoo! data: number of nodes range from 4K
to 8K, and number of edges range from 2K to 5K. Similar
to the Yahoo! experiments (detailed above), we computed
the NETSIMILE normalized Canberra Distance between Day
0 and the other 30 days. Figure 10(a) shows our results,
with the x-axis representing days and the y-axis representing
NETSIMILE (with normalized Canberra Distance) between
Day 0 and the other 30 days. Figure 10(b) shows NETSIMILE
(with normalized Canberra Distance) between Day 6 (June 7,
2009) and all the other days. Figure 10 shows no particular

7http://yhoo.client.shareholder.com/releasedetail.
cfm?releaseid=303857

8http://searchengineland.com/
flickr-launches-video-its-not-a-youtube-clone-13727

9http://www.twitter.com
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Fig. 9. NETSIMILE detects discontinuities in time-evolving graphs. (a)
Distance of day 1, day 2, · · · , day 27 IM graphs from day 0 (Tuesday April
1, 2008) IM graph. Weekdays are distinguished from weekends (yellow line=
Saturday, blue line = Sunday). The peak on the 2nd Wednesday (April, 9,
2008) corresponds to a big Flicker announcement and a Microsoft offer to
buy Yahoo!. (b) Distance of the other days from day 8 (April 9, 2008) IM
graph. All the other days are distant from April 9, 2008.

periodicity. This is not surprising since Twitter @replies
are semi-private conversations between two people and their
common followers (unlike instant messages that are private).
The @replies tweets have less of the “news amplification”
effect as regular tweets [13]. However, NetSimile is still able
to spot a significant discontinuity on day 6 (June 7, 2009).
On that day, the largest cross-country election in the history
took place (namely, the European parliamentary elections),
affecting almost 500M people; parliamentary elections also
took place in Lebanon; high school students graduated in the
U.S.; and Roger Federer became the sixth man in tennis history
to complete a career Grand Slam (by winning the French Open
on that day) and tied Pete Sampras’ Grand Slam record.

IV. RELATED WORK

Assessing the similarity between two “objects” comes up
in numerous settings. Thus, the literature is rich in simi-
larity measures for various domains: distributions or multi-
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Fig. 10. NETSIMILE detects discontinuities in time-evolving graphs. (a)
Distance of day 1, day 2, · · · , day 30 Twitter graphs from day 0 (Monday
June 1 2009) graph. Weekdays are distinguished from weekends (yellow line=
Saturday, blue line = Sunday). (b) Distance of the other days from day 6
(June 7, 2009) Twitter graph. All the other days are distant from June 7,
2009. Twitter @replies are semi-private conversations; thus, we do not expect
to see periodicity (like in IM conversations). On June 7, 2009, elections were
held for the European Parliament and for the Lebanese Parliament, Roger
Federer wins the French Open and makes tennis history, and high-schoolers
graduate in the U.S.

dimensional points [9], datacubes [14], and graphs, such as
social ([15], [16]), information [17], and biological networks
[18]. Here, we focus on graph similarity when the node
correspondence is unknown. The proposed methods can be
divided into three main classes.

(1) Graph isomorphism. The similarity of the graphs
depends on whether the graphs are isomorphic to each other
[19]; or one graph is a subgraph of the other ([20], [21]); or
they have common subgraphs [22]. The exact algorithms of
these problems are exponential, rendering them inapplicable
to the large graphs on which our research focuses. Graph
edit distance is a generalization of the graph isomorphism
problem which consists of finding the minimum number of
operations (insertions, deletions, renaming of nodes, reversion

of edges) that is required to convert one graph to another.
Different cost functions ([23], [24]) have been proposed in the
literature. It is noteworthy to mention that graph isomorphism
addresses mainly the graph matching problem (roughly, given
two graphs, find the correspondence between their nodes). It
does not directly address the graph similarity problem, which
is the topic of this paper.

(2) Iterative methods. Two well known representatives of
this category are SimRank [25] and similarity flooding [26].
The former computes all the pairwise similarities between the
nodes. The latter attempts to find the correspondences between
the nodes of the graphs in order to assess their similarity. Zager
et al. [27] proposed a method that computes the similarity of
the graphs by coupling the pairwise similarities between the
nodes with the similarities between the corresponding edges.

(3) Feature Extraction. These methods, which are based
on comparing specific graph features, are popular due to their
scalability. The challenge here is the appropriate selection
of features/patterns, since some features, such as frequent
subgraphs ([8], [28], [18], [29], [30]), can be computationally
expensive to extract. Macindoe et al. [16] and Faust [15] focus
on comparing social networks by extracting socially relevant
features. GraphGrep [31] extracts paths by doing random
walks on the graphs. GString [32] converts the graphs into
sequences and extracts features from the latter. G-Hash [33]
applies a wavelet matching kernel to indirectly extract infor-
mation about the neighborhoods of the nodes. Papadimitriou
et al. [17] compare web graphs, where the correspondence of
the nodes is known. Henderson et al. [1] propose a method
for mining recursive structural features. NETSIMILE is easily
extensible to incorporate these features. Lastly, Li et al. [34]
propose a classification approach of attributed graphs, which
is based on global feature extraction. The weakness of the
proposed method is that some features (e.g., eccentricity and
shortest paths) are computationally expensive, and, thus, it is
not scalable on large graphs. Moreover, the method is domain-
specific and focuses in databases of graphs, such as chemical
compounds, while our work aims at comparing graphs of
different domains.

In this work, we focus on the local feature extraction
approach. We aggregate a number of carefully chosen, in-
terpretable, intuitive, and computationally inexpensive local
features that capture the nuances in the structural information,
and then employ various techniques (similarity measures [9],
hierarchical clustering, and hypothesis testing) in order to find
the pairwise similarity scores of the given (possibly, cross-
domain) networks.

V. CONCLUSIONS

We introduced NETSIMILE, a novel, effective, size-
independent, and scalable method for comparing large net-
works. NETSIMILE has three components: (1) feature extrac-
tion, (2) feature aggregation, and (3) comparison. The heart
of our contribution is in components (1) and (2), where we
discovered that moments of distributions of structural features
computed on the nodes and their egonets provide an excellent



“signature” vector for a graph. These “signature” vectors can
be used to effectively and quickly assess the similarity of two
or more graphs.

Our broader contributions are:

• Novelty: NETSIMILE avoids the (expensive) node corre-
spondence problem, as well as adjusts for graph size.

• Effectiveness: NETSIMILE gives results that agree with
intuition and the ground-truth.

• Scalability: NETSIMILE generates its “signature” vectors
in time linear on the input size (i.e., number of edges of
the input graphs).

• Applicability: NETSIMILE’s “signature” vectors are use-
ful in numerous graph mining tasks. In addition, NET-
SIMILE is easily extensible to include features and ag-
gregators besides the ones presented.
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