
ARTICLE

NetSquid, a NETwork Simulator for QUantum
Information using Discrete events
Tim Coopmans 1,2,5, Robert Knegjens 1,5, Axel Dahlberg1,2, David Maier 1,2, Loek Nijsten1,

Julio de Oliveira Filho1, Martijn Papendrecht1,2, Julian Rabbie1,2, Filip Rozpędek 1,2,3, Matthew Skrzypczyk 1,2,

Leon Wubben1,2, Walter de Jong 4, Damian Podareanu4, Ariana Torres-Knoop4, David Elkouss1,6✉ &

Stephanie Wehner1,2,6✉

In order to bring quantum networks into the real world, we would like to determine the

requirements of quantum network protocols including the underlying quantum hardware.

Because detailed architecture proposals are generally too complex for mathematical analysis,

it is natural to employ numerical simulation. Here we introduce NetSquid, the NETwork

Simulator for QUantum Information using Discrete events, a discrete-event based platform

for simulating all aspects of quantum networks and modular quantum computing systems,

ranging from the physical layer and its control plane up to the application level. We study

several use cases to showcase NetSquid’s power, including detailed physical layer simula-

tions of repeater chains based on nitrogen vacancy centres in diamond as well as atomic

ensembles. We also study the control plane of a quantum switch beyond its analytically

known regime, and showcase NetSquid’s ability to investigate large networks by simulating

entanglement distribution over a chain of up to one thousand nodes.

https://doi.org/10.1038/s42005-021-00647-8 OPEN

1QuTech, Delft University of Technology and TNO, Delft, The Netherlands. 2Kavli Institute of Nanoscience, Delft, The Netherlands. 3 Pritzker School of

Molecular Engineering, University of Chicago, Chicago, IL, USA. 4 SURF, Amsterdam, The Netherlands. 5These authors contributed equally: Tim Coopmans,

Robert Knegjens. 6These authors jointly supervised this work: David Elkouss, Stephanie Wehner. ✉email: d.elkousscoronas@tudelft.nl;s.d.c.wehner@tudelft.nl

COMMUNICATIONS PHYSICS | (2021) 4:164 | https://doi.org/10.1038/s42005-021-00647-8 | www.nature.com/commsphys 1

12
3
4
5
6
7
8
9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s42005-021-00647-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42005-021-00647-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42005-021-00647-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42005-021-00647-8&domain=pdf
http://orcid.org/0000-0002-9780-0949
http://orcid.org/0000-0002-9780-0949
http://orcid.org/0000-0002-9780-0949
http://orcid.org/0000-0002-9780-0949
http://orcid.org/0000-0002-9780-0949
http://orcid.org/0000-0001-5785-1402
http://orcid.org/0000-0001-5785-1402
http://orcid.org/0000-0001-5785-1402
http://orcid.org/0000-0001-5785-1402
http://orcid.org/0000-0001-5785-1402
http://orcid.org/0000-0003-2124-5835
http://orcid.org/0000-0003-2124-5835
http://orcid.org/0000-0003-2124-5835
http://orcid.org/0000-0003-2124-5835
http://orcid.org/0000-0003-2124-5835
http://orcid.org/0000-0002-2755-4623
http://orcid.org/0000-0002-2755-4623
http://orcid.org/0000-0002-2755-4623
http://orcid.org/0000-0002-2755-4623
http://orcid.org/0000-0002-2755-4623
http://orcid.org/0000-0003-2688-3780
http://orcid.org/0000-0003-2688-3780
http://orcid.org/0000-0003-2688-3780
http://orcid.org/0000-0003-2688-3780
http://orcid.org/0000-0003-2688-3780
http://orcid.org/0000-0002-6785-775X
http://orcid.org/0000-0002-6785-775X
http://orcid.org/0000-0002-6785-775X
http://orcid.org/0000-0002-6785-775X
http://orcid.org/0000-0002-6785-775X
mailto:d.elkousscoronas@tudelft.nl
mailto:s.d.c.wehner@tudelft.nl
www.nature.com/commsphys
www.nature.com/commsphys

Q
uantum communication can be used to connect distant
quantum devices into a quantum network. At short dis-
tances, networking quantum devices provides a path

towards a scalable distributed quantum computer1. At larger
distances, interconnected quantum networks allow for commu-
nication tasks between distant users on a quantum internet. Both
types of quantum networks have the potential for large societal
impact. First, analogous to classical computers, it is likely that any
approach for scaling up a quantum computer so that it can solve
real world problems impractical to treat on a classical computer,
will require the interconnection of different modules2–4. Fur-
thermore, quantum communication networks enable a host of
tasks that are impossible using classical communication5.

For both types of networks, many challenges must be overcome
before they can fulfil their promise. The exact extent of these
challenges remains unknown, and precise requirements to guide
the construction of large-scale quantum networks are missing. At
the physical layer, many proposals exist for quantum repeaters
that can carry qubits over long distances (see e.g.6–8 for an
overview). Using analytical methods9–30 and ad-hoc
simulations31–38 rough estimates for the requirements of such
hardware proposals have been obtained. Yet, while greatly valu-
able to set minimal requirements, these studies still provide
limited detail. Even for a small-scale quantum network, the
intricate interplay between many communicating devices, and the
resulting timing dependencies makes a precise analysis challen-
ging. To go beyond, we would like a tool that can incorporate not
only a detailed physical modelling, but also account for the
implications of time-dependent behaviour.

Quantum networks cannot be built from quantum hardware
alone; in order to scale they need a tightly integrated classical
control plane, i.e. protocols responsible for orchestrating quantum
network devices to bring entanglement to users. Fundamental
differences between quantum and classical information demand
an entirely new network stack in order to create entanglement,
and run useful applications on future quantum networks39–44. The
design of such a control stack is furthermore made challenging by
numerous technological limitations of quantum devices. A good
example is given by the limited lifetimes of quantum memories,
due to which delays in the exchange of classical control messages
have a direct impact on the performance of the network. To
succeed, we hence need to understand how possible classical
control strategies do perform on specific quantum hardware.
Finally, to guide overall development, we need to understand the
requirements of quantum network applications themselves. Apart
from quantum key distribution (QKD)45–49 and a few select
applications50–53, little is known about the requirements of
quantum applications5 on imperfect hardware.

Analytical tools offer only a limited solution for our needs.
Statistical tools (see e.g.54–57) have been used to make predictions
about certain aspects of large regular networks using simplified
models, but are of limited use for more detailed studies. Infor-
mation theory58 can be used to benchmark implementations
against the ideal performance. However, it gives no information
about how well a specific proposal will perform. As a con-
sequence, numerical methods are of great use to go beyond what
is feasible using an analytical study. Ad-hoc simulations of
quantum networks have indeed been used to provide further
insights on specific aspects of quantum networks (see e.-
g.31–38,59–61). However, while greatly informative, setting up ad-
hoc simulations for each possible networking scenario to a level of
detail that might allow the determination of more precise
requirements is cumbersome, and does not straightforwardly lend
itself to extensive explorations of new possibilities.

We would hence like a simulation platform that satisfies at least
the following three features: First, accuracy: the tool should allow

modelling the relevant physics. This includes the ability to model
time-dependent noise and network behaviour. Second, mod-
ularity: it should allow stacking protocols and models together in
order to construct complicated network simulations out of simple
components. This includes the ability to investigate not only the
physical layer hardware, but the entirety of the quantum network
system including how different control protocols behave on a
given hardware setup. Third, scalability: it should allow us to
investigate large networks.

Evaluating the performance of large classical network systems,
including their time-dependent behaviour is the essence of clas-
sical network analysis. Yet, even for classical networks, the pre-
dictive power of analytical methods is limited due to complex
emergent behaviour arising from the interplay between many
network devices. Consequently, a crucial tool in the design of
such networks are network simulators, which form a tool to test
new ideas, and many such simulators exist for purely classical
networks62–64. However, such simulators do not allow the
simulation of quantum behaviour.

In the quantum domain, many simulators are known for the
simulation of quantum computers (see e.g.65). However, the task
of simulating a quantum network differs greatly from simulating
the execution of one monolithic quantum system. In the network,
many devices are communicating with each other both quan-
tumly and classically, leading to complex stochastic behaviour,
and asynchronous and time-dependent events. From the per-
spective of building a simulation engine, there is also an impor-
tant difference that allows for gains in the efficiency of the
simulation. A simulator for a quantum computation is optimised
to track large entangled states. In contrast, in a quantum network
the state space grows and shrinks dynamically as qubits get
measured or entangled, but for many protocols, at any moment in
time the state space describing the quantum state of the network
is small. We would thus like a simulator capable of exploiting this
advantage.

In this paper we introduce the quantum network simulator
NetSquid: the NETwork Simulator for QUantum Information
using Discrete events. NetSquid is a software tool (available as a
package for Python and previously made freely available online66)
for accurately simulating quantum networking and modular
computing systems that are subject to physical non-idealities. It
achieves this by integrating several key technologies: a discrete-
event simulation engine, a specialised quantum computing
library, a modular framework for modelling quantum hardware
devices, and an asynchronous programming framework for
describing quantum protocols. We showcase the utility of this
tool for a range of applications by studying several use cases: the
analysis of a control plane protocol beyond its analytically
accessible regime, predicting the performance of protocols on
realistic near-term hardware, and benchmarking different quan-
tum devices. These use cases, in combination with a scalability
analysis, demonstrate that NetSquid achieves all three features set
forth above. Furthermore, they show its potential as a general and
versatile design tool for quantum networks, as well as for modular
quantum computing architectures.

Results and discussion
NetSquid in a nutshell. Simulating a quantum network with
NetSquid is generally performed in three steps. Firstly, the net-
work is modelled using a modular framework of components and
physical models. Next, protocols are assigned to network nodes to
describe the intended behaviour. Finally, the simulation is exe-
cuted for a typically large number of independent runs to collect
statistics with which to determine the performance of the net-
work. To explain these steps and the features involved further, we

ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-021-00647-8

2 COMMUNICATIONS PHYSICS | (2021) 4:164 | https://doi.org/10.1038/s42005-021-00647-8 | www.nature.com/commsphys

www.nature.com/commsphys

consider a simple use case for illustration. For a more detailed
presentation of the available functionality and design of the
NetSquid framework see section ‘Design and functionality of
NetSquid’ of the Methods.

The scenario we will consider is the analysis of an entangle-
ment distribution protocol over a quantum repeater chain with
three nodes. The goal of the analysis is to estimate the average
output fidelity of the distributed entangled pairs. The entangle-
ment distribution protocol is depicted in Fig. 1d, e. It works as
follows. First, the intermediate node generates two entangled
pairs with each of its adjacent neighbours. Entanglement
generation is modelled as a stochastic process that succeeds with
a certain probability at every attempt. When two pairs are ready
at one of the links, the DEJMPS entanglement distillation
scheme67 is run to improve the quality of the entanglement. If
it fails, the two links are discarded and the executing nodes restart
entanglement generation. Once both distilled states are ready, the
intermediate node swaps the entanglement to achieve end-to-end
entanglement. We remark that already this simple protocol is
rather involved to analyse.

We begin by modelling the network. The basic element of
NetSquid’s modular framework is the ‘component’. It is capable
of describing the physical model composition, quantum and
classical communication ports, and, recursively, any

subcomponents. All hardware elements, including the network
itself, are represented by components. For this example we
require three remote nodes linked by two quantum and two
classical connections, the setup of which is shown in Fig. 1a. In
Fig. 1b, c the nested structure of these components is highlighted.
A selection of physical models is used to describe the loss and
delay of the fibre optic channels, the decoherence of the quantum
memories, and the errors of quantum gates.

Quantum information in NetSquid is represented at the level of
qubits, which are treated as objects that dynamically share their
quantum states. These internally shared states will automatically
merge or ‘split’—a term we use to mean the separation of a tensor
product state into two separately shared sub-states—as qubits
entangle or are measured, as illustrated by the distillation
protocol in Fig. 1e. The states are tracked internally, i.e. hidden
from users, for two reasons: to encourage a node-centric
approach to programming network protocols, and to allow a
seamless switching between different quantum state representa-
tions. The representations offered by NetSquid are ket vectors,
density matrices, stabiliser tableaus and graph states with local
Cliffords, each with trade-offs in modelling versatility, computa-
tion speed and network (memory) scalability (see the subsection
‘Fast and scalable quantum network simulation’ below and
Supplementary Note 1).

Fig. 1 Illustrative example of a NetSquid use case. Each sub-figure explains part of the modelling and simulation process. For greater clarity the figures are

not based on real simulation data. The scenario shown is a quantum repeater utilising entanglement distillation (see main text). a The setup of a quantum

network using node and connection components. b A zoom in showing the subcomponents of the entangling connection component. The quantum

channels are characterised using fibre delay and loss models. The quantum source samples from an entangled bipartite state sampler when externally

triggered by the classical channel. c A zoom in of the quantum memory positions within a quantum processor illustrating their physical gate topology. The

physical single-qubit instructions possible on each memory in this example are the Pauli (X, Y, Z), Hadamard (H), and X-rotation (RX) gates, and

measurement. The blue-dashed arrows show the positions and control direction (where applicable) for which the two-qubit instructions controlled-X

(CNOT) and swap are possible. Noise and error models for the memories and gates are also assigned. d Illustration of a single simulation run. Time

progresses by discretely stepping from event to event, with new events generated as the simulation proceeds. Qubits are represented by circles, which are

numbered according to the order they were generated. A star shows the moment of generation. The curved lines between qubits denote their

entanglement with the colour indicating fidelity. The state of each qubit is updated as it is accessed during the simulation, for instance to apply time-

dependent noise from waiting in memory. e A zoom in of the distillation protocol. The shared quantum states of the qubits are combined in an entangling

step, which then shrinks as two of the qubits are measured. The output is randomly sampled, causing the simulation to choose one of two paths by

announcing success or failure. f A plot illustrating the stochastic paths followed by multiple independent simulation runs over time, labelled by their final

end-to-end fidelity Fi. The blue dashed line corresponds to the run shown in (d). The runs are typically executed in parallel. Their results are statistically

analysed to produce performance metrics such as the average outcome fidelity and run duration.

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-021-00647-8 ARTICLE

COMMUNICATIONS PHYSICS | (2021) 4:164 | https://doi.org/10.1038/s42005-021-00647-8 | www.nature.com/commsphys 3

www.nature.com/commsphys
www.nature.com/commsphys

Discrete-event simulation, an established method for simulat-
ing classical network systems68, is a modelling paradigm that
progresses time by stepping through a sequence of events—see
Fig. 2 for a visual explanation. This allows the simulation engine
to efficiently handle the control processes and feedback loops
characteristic of quantum networking systems, while tracking
quantum state decoherence based on the elapsed time between
events. A novel requirement for its application to quantum
networks is the need to accurately evolve the state of the quantum
information present in a network with time. This can be achieved
by retroactively updating quantum states when the associated
qubits are accessed during an event. While it is possible to
efficiently track a density matrix, quantum operations requiring a
singular outcome for classical decision making, for instance a
quantum measurement, must be probabilistically sampled. A
single simulation run thus consists of a sequence of random
choices that forms one of many possible paths. In Fig. 1d we show
such a run for the repeater protocol example, which demonstrates
the power of the discrete-event approach for tracking qubit
decoherence and handling feedback loops.

The performance metrics of a simulation are determined
statistically from many runs. Due to the independence of each
run, simulations can be massively parallelised and thereby
efficiently executed on computing clusters. For the example at
hand we choose as metrics the output fidelity and run duration.
In Fig. 1f the sampled run from Fig. 1d, which resulted in perfect
fidelity, is plotted in terms of its likelihood and duration together
with several other samples, some less successful. By statistically
averaging all of the sampled runs the output fidelity and duration
can be estimated.

In the following sections, we will outline three use cases of
NetSquid: first, a quantum switch, followed by simulations of
quantum repeaters based on nitrogen-vacancy technology or
atomic-ensemble memories. We will also benchmark NetSquid’s
scalability in both quantum state size and number of quantum
network nodes. Although the use cases each provide relevant

insights into the performance of the studied hardware and
protocols, we emphasise that one can use NetSquid to simulate
arbitrary network topologies.

Simulating a quantum network switch beyond its analytically
known regime. As a first use case showcasing the power of
NetSquid, we study the control plane of a recently introduced
quantum switch beyond the regime for which analytical results
have been obtained, including its performance under time-
dependent memory noise.

The switch is a node which is directly connected to each of k
users by an optical link. The communications task is distributing
Bell pairs and n-partite Greenberger–Horne–Zeilinger (GHZ)
states69 between n ≤ k users. The switch achieves this by
connecting Bell pairs which are generated at random intervals
on each link (See Fig. 3).

Intuitively, the switch can be regarded as a generalisation of a
simple repeater performing entanglement swapping with added
logic to choose which parties to link. Even with a streamlined
physical model, it is already rather challenging to analytically
characterise the switch use case56.

In the following, we recover via simulation a selection of the
results from Vardoyan et al.56, who studied the switch as the
central node in a star network, and extend them in two directions.
First, we increase the range of parameters for which we can
estimate entanglement rates using the same model as used in the
work of Vardoyan et al. Second, simulation enables us to
investigate more sophisticated models than the exponentially
distributed erasure process from their work, in particular we
analyse the behaviour of a switch in the presence of memory
dephasing noise.

The protocol for generating the target n-partite GHZ states is
simple. Entanglement generation is attempted in parallel across
all k links. If successful they result in bipartite Bell states that are
stored in quantum memories. The switch waits until n Bell pairs
have been generated until performing an n-partite GHZ

Fig. 2 Abstract example of simulating a quantum protocol with discrete events. When setting up the simulation, protocol actions are defined to occur

when a specific event occurs, as in the setup of a real system. Instead of performing a continuous time evolution, the simulation advances to the next event,

and then automatically executes the actions that should occur when the event takes place. Any action may again define future events to be triggered after a

certain (stochastic) amount of time has elapsed. For concreteness a simplified quantum teleportation example is shown where a qubit, shown as an orange

circle with arrow, is teleported between the quantum memories of Alice and Bob. Here, entanglement is produced using an abstract source sending two

qubits, shown as blue circles with arrows, to Alice and Bob. Once the qubit has traversed the fibre and reaches Alice’s lab, an event is triggered that invokes

the simulation of Alice’s Bell state measurement (BSM) apparatus. The simulation engine steps from event to events defined by the next action, which

generally occur at irregular intervals. This approach allows time-dependent physical non-idealities, such as quantum decoherence, to be accurately tracked.

ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-021-00647-8

4 COMMUNICATIONS PHYSICS | (2021) 4:164 | https://doi.org/10.1038/s42005-021-00647-8 | www.nature.com/commsphys

www.nature.com/commsphys

measurement, which converts the pairs into a state locally
equivalent to a GHZ state. An additional constraint is that the
switch has a finite buffer B of number of memories dedicated for
each user (see Fig. 3). If the number of pairs stored in a link is B
and a new pair is generated, the old one is dropped and the new
one is stored.

The protocol can be translated to a Markov chain. The state
space is represented by a k-length vector where each entry is
associated with a link and its value denotes the number of stored
links. The switch’s mean capacity, i.e. the number of states
produced per second, can be derived from the steady-state of the
Markov chain56.

Using NetSquid, it is straightforward to fully reproduce the
previous model and study the behaviour of the network without
constructing the Markov Chain (details can be found in
Supplementary Note 3). In Fig. 4a, we use NetSquid to study
the capacity of a switch network serving nine users. The figure
shows the capacity (number of produced GHZ-states per second),
which we investigate for three use cases. First we consider a switch
network distributing bipartite entanglement. Second, we consider
also a switch-network serving bipartite entanglement but with link
generation rates that do not satisfy the stability condition for the
Markov Chain if the buffer B is infinitely large, i.e. a regime so far
intractable. Third, we consider a switch-network distributing four-
partite entanglement where the link generation rates μ differ per
user, a regime not studied so far, and compute the capacity.

Beyond rate, it is important to understand the quality of the
states produced. Answering this question with Markov chain
models seems challenging. In order to analyse entanglement

quality, we introduce a more sophisticated decoherence model
where the memories suffer from decay over time. In particular, we
model decoherence as exponential T2 noise, which impacts the
quality of the state, as expressed in its fidelity with the ideal state.
In Fig. 4b, we show the effect of the time-dependent memory
noise on the average fidelity.

Sensitivity analysis for the physical modelling of a long range
repeater chain. The next use case is the distribution of long-
distance entanglement via a chain of quantum repeater nodes6,9

based on nitrogen-vacancy (NV) centres in diamond70,71. This
example consists of a more detailed physical model and more
complicated control plane logic than the quantum switch or the
distillation example presented at the start of this section. It is also
an example of how NetSquid’s modularity supports setting up
simulations involving many nodes; in this case the node model
and the protocol (which runs locally at a node) only need to be
specified once, and can then be assigned to each node in the
chain. Furthermore, the use of a discrete-event engine allows the
actions of the individual protocols to be simulated asynchro-
nously, in contrast to the typically sequential execution of
quantum computing simulators.

The NV-based quantum processor includes the following three
features. First, the nodes have a single communication qubit, i.e. a
qubit acting as the optical interface that can be entangled with a
remote qubit via photon interference. This seemingly small
restriction has important consequences for the communications
protocol. In particular, entanglement can not proceed in parallel
with both adjacent nodes. As a consequence, operations need to be
scheduled in sequence and the state of the communication qubit
transferred onto a storage qubit. Second, the qubits in a node are
connected with a star topology with the communication qubit
located in the centre. Two-qubit gates are only possible between the
communication qubit and a storage qubit. Third, communication
and storage qubits have unequal coherence times. Furthermore, the
storage qubits suffer additional decoherence when the node
attempts to generate entanglement. Previous repeater-chain ana-
lyses, e.g.22,23,43, did not take all three into account simultaneously.

Together with the node model, we consider two protocols:
SWAP-ASAP and NESTED-WITH-DISTILL. In SWAP-ASAP,
as soon as adjacent links are generated the entanglement is
swapped. NESTED-WITH-DISTILL is a nested protocol9 with
entanglement distillation at every nesting level. For a description
of the simulation, including the node model and protocols, see
Methods, section ‘Implementing a processing-node repeater
chain in NetSquid’.

The first question that we investigate is the distance that can be
covered by a repeater chain. For this we choose two sets of
hardware parameters that we dub near-term and 10× improved
(see Supplementary Note 4) and choose two configurations: one
without intermediate repeaters and one with three of them. We
observe, see Fig. 5a, that the repeater chain performs worse in
fidelity than the repeaterless configuration with near-term
hardware. For improved hardware, we see two regimes, for short
distances the use of repeaters increases rate but lowers fidelity
while from 750 km until 1500 km the repeater chain outperforms
the no-repeater setup.

The second question that we address is which protocol
performs best for a given distance. We consider seven protocols:
no repeater, and repeater chains implementing SWAP-ASAP or
NESTED-WITH-DISTILL over 1, 3 or 7 repeaters. The latter is
motivated by the fact that the NESTED-WITH-DISTILL protocol
is defined for 2n− 1 repeaters (n ≥ 1), and thus 1, 3 and 7 are the
first three possible configurations. In Fig. 5b, we sweep over the
hardware parameter space for two distances, where we improve

Fig. 3 A quantum switch in a star-shaped network topology as studied by

Vardoyan et al.56. The switch (central node) is connected to a set of users

(leaf nodes) via an optical fibre link that distributes perfect Bell pairs at random

times, following an exponential distribution with mean rate μ∝ e−βL, where L

denotes the distance of the link and β the attenuation coefficient. Associated

with each link there is a buffer that can store B qubits at each side of the link. As

soon as n Bell pairs with different leaves are available, the switch performs a

measurement in the n-partite Greenberger–Horne–Zeilinger (GHZ) basis, which

results in an n-partite GHZ state shared by the leaves. The GHZ-basis

measurement consists of: first, controlled-X gates with the same qubit as

control; next, a Hadamard (H) gate on the control qubit; finally, measurement of

all qubits individually. The figure shows four leaf nodes, GHZ size n= 3 and a

buffer size B= 2.

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-021-00647-8 ARTICLE

COMMUNICATIONS PHYSICS | (2021) 4:164 | https://doi.org/10.1038/s42005-021-00647-8 | www.nature.com/commsphys 5

www.nature.com/commsphys
www.nature.com/commsphys

Fig. 4 Performance analysis of the quantum switch with nine users using NetSquid. a Capacity as a function of the buffer size (number of quantum

memories that the switch has available per user) for either 2 −or 4− qubit Greenberger–Horne–Zeilinger (GHZ)-states. For each scenario, the generation

rate μ of pairs varies per user. For the blue scenario (2-partite entanglement, μ= [1.9, 1.9, 1.9, 1, 1, 1, 1, 1, 1] MHz), the capacity was determined analytically

by Vardoyan et al. using Markov Chain methods56. Here we extend this to 4-partite entanglement (orange scenario, same μs), for which Vardoyan et al.

have found an upper bound (by assuming unbounded buffer and each μ=maximum of original rates= 1.9MHz) but no exact analytical expression. The

green scenario (μ= [15, 1.9, 1.9, 1, 1, 1, 1, 1, 1] MHz) does not satisfy the stability condition for the Markov chain for unbounded buffer size (each leaf’s rate <

half of sum of all rates) so in that case steady-state capacity is not well-defined. We note that regardless of buffer size, the switch has a single link to each

user, which is the reason why the capacity does not scale linearly with buffer size. b Average fidelity of the produced entanglement on the user nodes (no

analytical results known) with unbounded buffer size. The fact that the green curve has lower fidelity than the blue one, while the former has higher rates,

can be explained from the fact that the protocol prioritises entanglement which has the longest storage time (see Supplementary Note 3). Each data point

represents the average of 40 runs (each 0.1 ms in simulation). Standard deviation is smaller than dot size.

Fig. 5 Performance of repeaters based on nitrogen-vacancy (NV) centres in diamond. a Fidelity and entanglement distribution rate achieved with near-

term and 10× improved hardware (Supplementary Note 4) with the SWAP-ASAP protocol. Dashed line represents classical fidelity threshold of 0.5. We

observe that for near-term hardware, the use of three repeaters yields worse performance in terms of fidelity than the no-repeater setup. For improved

hardware we observe (i) that for ~0–750 km, repeaters improve upon rate by orders of magnitude while still producing entanglement (fidelity > 0.5), while

(ii) for ~750–1500 km, repeaters outperform in both rate and fidelity. b, c Fidelity and rate achieved without and with repeaters (1, 3 or 7 repeaters) as

function of a hardware improvement factor (Methods, section ‘How we choose improved hardware parameters’) for two typical distances from both

distance regime (i) and (ii), for two protocols SWAP-ASAP and NESTED-WITH-DISTILL. For the repeater case, only the best-performing number-of-

repeaters and protocol in terms of achieved fidelity is shown in (b), accompanied by its rate in (c). Each data point represents the average over (a) 200 and

(b) 100 runs. Standard deviation is smaller than dot size.

ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-021-00647-8

6 COMMUNICATIONS PHYSICS | (2021) 4:164 | https://doi.org/10.1038/s42005-021-00647-8 | www.nature.com/commsphys

www.nature.com/commsphys

all hardware parameters simultaneously and the improvement is
quantified by a number we refer to as ‘improvement factor’ (see
section ‘How we choose improved hardware parameters’ of the
Methods). For 500 km, we observe that the no-repeater config-
uration achieves larger or equal fidelity for the entire range
studied. However, repeater schemes boost the rate for all
parameter values. If we increase the distance to 800 km, then
we see that the use of repeaters increases both rate and fidelity for
the same range of parameters. If we focus on the repeater scheme,
we observe for both distances that for high hardware quality, the
NESTED-WITH-DISTILL scheme, which includes distillation, is
optimal. In contrast, for lower hardware quality, the best-
performing scheme that achieves fidelities larger than the classical
bound 0.5 is the SWAP-ASAP protocol.

We note that beyond 700 km the entanglement rate decreases
when the hardware is improved. This is due to the presence of
dark counts, i.e. false signals that a photon has been detected. At
large distances most photons dissipate in the fibre, whereby the
majority of detector clicks are dark counts. Because a dark count
is mistakenly counted as a successful entanglement generation
attempt, improving (i.e. decreasing) the dark count rate in fact
results in a lower number of observed detector clicks, from which
the (perceived) entanglement rate plotted in Fig. 5a is calculated.

Lastly, in Fig. 6, we investigate the sensitivity of the
entanglement fidelity for the different hardware parameters. We
take as the figure of merit the best fidelity achieved with a SWAP-
ASAP protocol. The uniform improvement factor is set to 3,
while the following four hardware parameters are varied: a two-
qubit gate noise parameter, photon detection probability
(excluding transmission), induced storage qubit noise and
visibility. We observe that improving the detection probability
yields the largest fidelity increase from 2× to 50× improvement,
while this increase is smallest for visibility. We also see that
improving two-qubit gate noise or induced storage qubit noise on
top of an increase in detection probability yields only a small
additional fidelity improvement, which however boosts fidelity
beyond the classical threshold of 0.5. These observations indicate
that detection probability is the most important parameter for
realising remote-entanglement generation with the SWAP-ASAP
scheme, followed by two-qubit gate noise and induced storage
qubit noise.

Performance comparison between two atomic-ensemble
memory types through NetSquid’s modular design. Finally,
we showcase that NetSquid’s modular design greatly reduces the
effort of assessing possible hardware development scenarios. We
demonstrate the power of this modularity by simulating point-to-
point remote-entanglement generation based on either of two
types of atomic-ensemble based quantum memories: atomic fre-
quency combs (AFC)72 and electronically induced transparency
(EIT)73,74 memories. Both simulations are identical except for the
choice of a different quantum memory component.

The two types of memories are a promising building block for
high-rate remote entanglement generation through quantum
repeaters because of their high efficiency (EIT) or their ability for
multiplexing (AFC), i.e. to perform many attempts at entangle-
ment generation simultaneously without network components
having to wait for the arrival of classical messages that herald
successful generation. The first type of memories, AFCs, are based
on a photon-echo process, where an absorbed photon is re-
emitted after an engineered duration. In contrast, the second type,
EITs, emit the photon after an on-demand interval, due to optical
control. In principle the AFC protocol can be extended to offer
such on-demand retrieval as well. At this point both technologies
are promising candidates and it is not yet clear which outper-
forms the other and under what circumstances.

Atomic-ensemble based repeaters have been analytically and
numerically studied before with streamlined physical models19,75.
NetSquid’s discrete-event based paradigm allows us to go beyond
that by concurrently introducing several non-ideal characteristics.
In particular, we include the emission of more than one photon
pair, photon distinguishability and time-dependent memory
efficiency. Efficiency in this context is the probability that the
absorbed photon will be re-emitted. All these characteristics have
a significant impact on the performance of the repeater protocol.

In order to compare the two memory types, we simulate many
rounds of the BB84 quantum key distribution protocol76 between
two remote nodes, using a single repeater positioned precisely in
between them. Entanglement generation is attempted in syn-
chronised rounds over both segments in parallel. At the end of
each round, the two end nodes measure in the X- or Z-basis,
chosen uniformly at random, and the repeater performs a
probabilistic linear-optical Bell-state measurement. Upon a
successful outcome, we expect correlation between the measure-
ment outcomes if they were performed in the same basis. As a
figure of merit we choose the asymptotic BB84 secret-key rate.

The results of our simulations are shown in Fig. 7, where the
rate at which secret key between the two nodes can be generated

Fig. 6 Sensitivity of fidelity in various hardware parameters for nitrogen-

vacancy (NV) repeater chains. The NV hardware model consists of ~15

parameters and from those we focus on four parameters in this figure: (A)

two-qubit gate fidelity, (B) detection probability, (C) induced storage qubit

noise and (D) visibility. We start by improving all ~15 parameters, including

the four designated ones, using an improvement factor of 3 (Methods,

section ‘How we choose improved hardware parameters’). Then, for each

of the four parameters only, we individually decrease their improvement

factor to 2, or increase it to 10 or 50. The figure shows the resulting fidelity

(horizontal and vertical grid lines; dashed line indicates maximal fidelity

which can be attained classically). Note that at an improvement factor of 3

(orange line), all ~15 parameters are improved by three times, resulting in a

fidelity of 0.39. In addition, we vary the improvement factor for

combinations of two of the four parameters (diagonal lines). The 3 ×

improved parameter values can be found in Supplementary Table II. The

other values (at 2/10/50×) are approximately: two-qubit gate fidelity FEC

(0.985/0.997/0.9994), detection probability pnofibredet (6.8%/58%/90%),

induced storage qubit noise N1/e (2800/14,000/70,000), visibility V

(95%/99%/99.8%). The fidelities shown are obtained by simulation of the

SWAP-ASAP protocol (three repeaters) with a total spanned distance of

500 km. Each data point represents the average of 1000 runs (standard

deviation on fidelity < 0.002).

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-021-00647-8 ARTICLE

COMMUNICATIONS PHYSICS | (2021) 4:164 | https://doi.org/10.1038/s42005-021-00647-8 | www.nature.com/commsphys 7

www.nature.com/commsphys
www.nature.com/commsphys

is obtained as a function of the distance between the nodes. For
the parameters considered (see Supplementary Note 7), we
observe that EIT memories outperform AFC memories at short
distances. The crossover performance point is reached at ~50 km,
beyond which AFC memories outperform EIT memories.

In the use case above, we showcased NetSquid’s modularity by
only replacing the memory component. We emphasise that this
modularity also applies to different parts of the simulation. For
example, if the quantum switch should produce a different type of
multipartite state than GHZ states, then one only needs to change
the circuit at the switch node. A different example is the NV
repeater chain, where one could replace the protocol module
(currently either SWAP-ASAP or NESTED-WITH-DISTILL).

Fast and scalable quantum network simulation. NetSquid has
been designed and optimised to meet several key performance
criteria: to be capable of accurate physical modelling, to be

scalable to large networks, and to be sufficiently fast to support
multi-variate design analyses with adequate statistics. While it is
not always possible to jointly satisfy all the criteria for all use
cases, NetSquid’s design allows the user to prioritise them. We
proceed to benchmark NetSquid to demonstrate its capabilities
and unique strengths for quantum network simulation.

Benchmarking of quantum computation. To accurately model
physical non-idealities, it is necessary to choose a representation
for quantum states that allows a characterisation of general
processes such as amplitude damping, general measurements, or
arbitrary rotations. NetSquid provides two representations, or
‘formalisms’, that are capable of universal quantum computation:
ket state vectors (KET) and density matrices, both stored using
dense arrays. The resource requirements for storage in memory
and the computation time associated with applying quantum
operations both scale exponentially with the number of qubits.
While the density matrix scales less favourably, 22n versus 2n for n

Fig. 7 Performance comparison of a single quantum repeater with atomic frequency comb (AFC) or electronically induced transparency (EIT) quantum

memories. Shown are: (a) the secret key rate in secret bits per entanglement generation attempt, (b) the quantum bit error rate (QBER) in the X and Z

bases (c) the average number of attempts necessary for one successful end-to-end entanglement generation. Each data point is obtained using 10.000

(EIT) or 30.000 (AFC) successful attempts at generating entanglement between the end nodes. Solid lines are fits. Note that for the secret key plot we use

logarithmic scale with added 0 at the origin of the axes. Error bars denote standard deviation and are symmetrical.

Fig. 8 Runtime comparison of NetSquid’s quantum state formalisms. Runtime comparisons of the available quantum state formalisms in NetSquid as well

as ProjectQ ket vector for two benchmark use cases. The KET, DM, STAB and GSLC formalisms refer to the use of ket vectors, density matrices, stabiliser

tableaus and graph states with local Cliffords, respectively. a Generating a Greenberger-Horne-Zeilinger (GHZ) state. Qubits are split off from the shared

quantum state after a measurement. For the KET formalism the effect of turning off memoization (dotted line) is also shown. b Quantum computation

involved in a repeater chain. Each formalism is shown with qubits split (dotted lines) versus being kept in-place (solid lines) after measurement.

ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-021-00647-8

8 COMMUNICATIONS PHYSICS | (2021) 4:164 | https://doi.org/10.1038/s42005-021-00647-8 | www.nature.com/commsphys

www.nature.com/commsphys

qubits, its ability to represent mixed states makes it more versatile
for specific applications. Given the exponential scaling, these
formalisms are most suitable for simulations in which a typical
qubit lifetime involves only a limited number of (entangling)
interactions.

When scaling to large network simulations it can happen that
hundreds of qubits share the same entangled quantum state. For
such use cases, we need a quantum state representation that scales
sub-exponentially in time and space. NetSquid provides two such
representations based on the stabiliser state formalism: ‘stabiliser
tableaus’ (STAB) and ‘graph states with local Cliffords’
(GSLC)77,78 that the user can select. Stabiliser states are a subset
of quantum states that are closed under the application of Clifford
unitaries and single-qubit measurement in the computational
basis. In the context of simulations for quantum networks
stabiliser states are particularly interesting because many network
protocols consist of only Clifford operations and noise can be well
approximated by stochastic application of Pauli gates. For a
theoretical comparison of the STAB and GSLC formalisms see
Supplementary Note 1.

The repetitive nature of simulation runs due to the collection of
statistics via random sampling allows NetSquid to take advantage
of ‘memoization’ for expensive quantum operations, which is a
form of caching that stores the outcome of expensive operations
and returns them when the same input combinations reoccur to
save computation time. Specifically, the action of a quantum
operator onto a quantum state for a specific set of qubit indices
and other discrete parameters can be efficiently stored, for
instance as a sparse matrix. Future matching operator actions can
then be reduced to a fast lookup and application, avoiding several
expensive computational steps—see the Methods, section ‘Qubits
and quantum computation’ for more details.

In the following we benchmark the performance of the
available quantum state formalisms. For this, we first consider
the generation of an n qubit entangled GHZ state followed by a
measurement of each qubit (see section ‘Benchmarking’ of the
Methods). For a baseline comparison with classical quantum
computing simulators we also include the ProjectQ79 package for
Python, which uses a quantum state representation equivalent to
our ket vector. We show the average computation time for a
single run versus the number of qubits for the different quantum
computation libraries in Fig. 8a. The exponential scaling of the
universal formalisms in contrast to the stabiliser formalisms is
clearly visible, with the density matrix formalism performing
noticeably worse. For the ket formalism we also show the effect of
memoization, which gives a speed-up roughly between two and
five.

Let us next consider a more involved benchmarking use case:
the quantum computation involved in simulating a repeater chain
i.e. only the manipulation of qubits, postponing all other
simulation aspects, such as event processing and component
modelling, to the next section. This benchmark involves the
following steps: first the N− 1 pairs of qubits along an N node
repeater chain are entangled, then each qubit experiences
depolarising noise, and finally adjacent qubits on all but the
end-nodes do an entanglement swap via a Bell state measurement
(BSM). If the measured qubits are split from their shared
quantum states after the BSM, then the size of any state is limited
to four qubits.

The average computation time for a single run versus the
number of qubits in the chain are shown for the different
quantum computation libraries in Fig. 8b, where we have again
included ProjectQ. We observe that for the NetSquid formalisms
(but not for ProjectQ) keeping qubits ‘in-place’ after each
measurement is more performant than ‘splitting’ them below a
certain threshold due to the extra overhead of doing the latter.

The ket vector formalism is seen to be the most efficient for this
benchmarking use case if states are split after measurement.
When the measurement operations are performed in-place the
GSLC formalism performs the best beyond 15 qubits.

Benchmarking of event-driven simulations. As explained in the
results section, a typical NetSquid simulation involves repeatedly
sampling many independent runs. As such NetSquid is ‘embar-
rassingly parallelisable’: the reduction in runtime scales linearly
with the number of processing cores available, assuming there is
sufficient memory available. Nonetheless, given the computa-
tional requirements associated with collecting sufficient statistics
and analysing large parameter spaces it remains crucial to opti-
mise the runtime performance per core.

Depending on the size of the network, the detail of the physical
modelling, and the duration of the protocols under consideration,
the number of events processed for a single simulation run can
range anywhere from a few thousand to millions. To efficiently
process the dynamic scheduling and handling of events NetSquid
uses the discrete-event simulation engine PyDynAA80 (see
section ‘Discrete event simulation’ of the Methods). NetSquid
aims to schedule events as economically as possible, for instance
by streamlining the flow of signals and messages between
components using inter-connecting ports.

To benchmark the performance of an event-driven simulation
run in NetSquid we consider a simple network that extends the
single repeater (without distillation) shown in Fig. 1 into an N
node chain—see Supplementary Note 2 for further details on the
simulation setup. For the quantum computation we will use the
ket vector formalism based on the benchmarking results from the
previous section, and split qubits from their quantum states after
measurement to avoid an exponential scaling with the number of
nodes. In Fig. 9 we show the average computation time for
deterministically generating end-to-end entanglement versus the
number of nodes in the chain. Also shown is a relative breakdown
in terms of the time spent in the NetSquid sub-packages involved,
as well as the PyDynAA and NumPy packages. We observe that
the biggest contribution to the simulation runtime is the
components sub-package, which accounts for 30% of the total
at 1000 nodes. The relative time spent in each of the NetSquid
sub-packages, as well as NumPy and PyDynAA, is seen to remain

Fig. 9 Runtime profile of a repeater chain simulation using Netsquid.

Runtime profile for a repeater chain simulation with a varying number of

nodes in the chain. The maximum quantum state size is four qubits. The

total time spent in the functions of each NetSquid subpackage and its main

package dependencies (in italics) is shown. The dark hatched bands show

the largest contribution from a single function in each NetSquid sub-

package, as well as in NumPy and uncategorised (other) functions. The sub-

packages are stacked in the same order as they are listed in the legend.

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-021-00647-8 ARTICLE

COMMUNICATIONS PHYSICS | (2021) 4:164 | https://doi.org/10.1038/s42005-021-00647-8 | www.nature.com/commsphys 9

www.nature.com/commsphys
www.nature.com/commsphys

constant with the number of nodes. The total runtime of each of
the NetSquid sub-packages is the sum of many small contribu-
tions, with the costliest function for the components sub-package
for a 1000 node chain, for example, contributing only 7% to the
total.

Extending this benchmark simulation with more detailed
physical modelling may shift the relative runtime distribution and
impact the overall performance. For example, more time may be
spent in calls to the ‘components’ and ‘components.models’ sub-
packages, additional complexity can increase the volume of events
processed by the ‘pydynaa’ engine, and extra quantum character-
istics can lead to larger quantum states. In case of the latter,
however, the effective splitting of quantum states can still allow
such networks to scale if independence among physical elements
can be preserved.

Comparison with other quantum network simulators. Let us
compare NetSquid to other existing quantum network simulators.
First, SimulaQron81 and QuNetSim82 are two simulators that do
not aim at realistic physical models of channels and devices, or
timing control. Instead, SimulaQron’s main purpose is applica-
tion development. It is meant to be run in a distributed fashion
on physically-distinct classical computers. QuNetSim focuses on
simplifying the development and implementation of quantum
network protocols.

In contrast with SimulaQron and QuNetSim, the simulator
SQUANCH83 allows for quantum network simulation with
configurable error models at the physical layer. However,
SQUANCH, similar to SimulaQron and QuNetSim, does not
use a simulation engine that can accurately track time. Accurate
tracking is crucial for e.g. studying time-dependent noise such as
memory decoherence.

Other than NetSquid, there now exist three discrete-event
quantum simulators: the QuISP84, qkdX85 and SeQUeNCe86

simulators. With these simulators it is possible to accurately
characterise complex timing behaviour, however they differ in
goals and scope. Similarly to NetSquid, QuISP aims to support
the investigation of large networks that consist of too many
entangled qubits for full quantum-state tracking. In contrast to

NetSquid, which achieves this by managing the size of the state
space, and providing the stabiliser representation as one of its
quantum state formalisms, QuISP’s approach is to track an error
model of the qubits in a network instead of their quantum state.
qkdX, on the other hand, captures the physics more closely
through models of the quantum devices but is restricted to the
simulation of quantum key distribution protocols. Lastly,
SeQUeNCe, similar to NetSquid, aims at simulation at the level
of hardware, control plane or application. It has a fixed control
layer consisting of reprogrammable modules. In contrast,
NetSquid’s modularity is not tied to a particular network stack
design. Furthermore, it is unclear to us how performant
SeQUeNCe’s quantum simulation engine is: currently, at most a
9-node network has been simulated, whereas NetSquid’s
flexibility to choose a quantum state representation enables
scalability to simulation of networks of up to 1000 nodes.

Conclusions. In this work we have presented our design of a
modular software framework for simulating scalable quantum
networks and accurately modelling the non-idealities of real
world physical hardware, providing us with a design tool for
future quantum networks. We have showcased its power and also
its limitations via example use cases. Let us recap NetSquid’s main
features.

First, NetSquid allows the modelling of any physical device in
the network that can be mapped to qubits. To demonstrate this
we studied two use cases involving nitrogen-vacancy centres in
diamond as well as atomic-ensemble based memories.

Second, NetSquid is entirely modular, allowing users to set up
large scale simulations of complicated networks and to explore
variations in the network design; for example, by comparing how
different hardware platforms perform in an otherwise identical
network layout. Moreover, this modularity makes it possible to
explore different control plane protocols for quantum networks
in a way that is essentially identical to how such protocols would
be executed in the real world. Control programmes can be run on
any simulated network node, exchanging classical and quantum
communication with other nodes as dictated by the protocol.
That allows users to investigate the intricate interplay between
control plane protocols and the physical devices dictating the
performance of the combined quantum network system. As an
example, we studied the control plane of a quantum network
switch. NetSquid has also already found use in exploring the
interplay between the control plane and the physical layer
in39,87,88.

Finally, to allow large scale simulations, the quantum
computation library used by NetSquid has been designed to
manage the dynamic lifetimes of many qubits across a network. It
offers a seamless choice of quantum state representations to
support different modelling use cases, allowing both a fully
detailed simulation in terms of wave functions or density
matrices, or simplified ones using certain stabiliser formalisms.
As an example use case, we explored the simulation run-time of a
repeater chain with up to one thousand nodes.

In light of the results we have presented, we see a clear
application for NetSquid in the broad context of communication
networks. It can be used to predict performance with accurate
models, to study the stability of large networks, to validate
protocol designs, to guide experiment, etc. While we have only
touched upon it in our discussion of performance benchmarks,
NetSquid would also lend itself well to the study of modular
quantum computing architectures, where the timing of control
plays a crucial role in studying their scalability. For instance, it
might be used to validate the microarchitecture of distributed

Fig. 10 Overview of NetSquid’s software architecture. The sub-packages

that make up the NetSquid package are shown stacked in relation to each

other and the PyDynAA package dependency. The main classes in each

(sub-)package are highlighted, and their relationships in terms of

inheritance, composition and aggregation are shown. Also shown are the

key modules users interact with, which are described in the main text. In

this paper NetSquid version 0.10 is described.

ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-021-00647-8

10 COMMUNICATIONS PHYSICS | (2021) 4:164 | https://doi.org/10.1038/s42005-021-00647-8 | www.nature.com/commsphys

www.nature.com/commsphys

quantum computers or more generally to simulate different
components in modular architectures.

Methods
Design and functionality of NetSquid. The NetSquid simulator is available as a
software package for the Python 3 programming language. It consists of the sub-
packages ‘qubits’, ‘components’, ‘models’, ‘nodes’, ‘protocols’ and ‘util’, which are
shown stacked in Fig. 10. NetSquid depends on the PyDynAA software library to
provide its discrete-event simulation engine80. Under the hood speed critical
routines and classes are written in Cython89 to give C-like performance, including
its interfaces to both PyDynAA and the scientific computation packages NumPy
and SciPy. In the following subsections we highlight some of the main design
features and functionality of NetSquid; for a more detailed presentation see Sup-
plementary Note 1.

Discrete event simulation. The PyDynAA package provides a fast, powerful, and
lightweight discrete-event simulation engine. It is a C++ port of the core engine
layer from the DynAA simulation framework80, with bindings added for the
Python and Cython languages. DynAA defines a concise set of classes and concepts
for modelling event-driven simulations. The simulation engine manages a timeline
of ‘events’, which can only be manipulated by objects that are sub-classes of the
‘entity’ base class. Simulation entities can dynamically schedule events on the
timeline and react to events by registering an ‘event handler’ object to wait for
event(s) with a specified type, source entity, or identifier to be triggered.

To deal with the timing complexities encountered in NetSquid simulations, an
‘event expression’ class was introduced to PyDynAA to allow entities to also wait
on logical combinations of events to occur. Atomic event expressions, which
describe regular wait conditions for standard events, can be combined to form
composite expressions using logical ‘and’ and ‘or’ operators to any depth. This
feature has been used extensively in NetSquid to model both the internal behaviour
of hardware components, as well as for programming network protocols.

Qubits and quantum computation. The qubits sub-package of NetSquid defines the
‘qubit’ object that is used to track the flow of quantum information. Qubits
internally share quantum state (‘QState’) objects, which grow and shrink in size as
qubits interact or are measured. The ‘QState’ class is an interface that is imple-
mented by a range of different formalisms, as presented in section ‘Benchmarking
of quantum computation’ of the Results and Discussion. Via the qubit-centric API,
which provides functions to directly manipulate qubits without knowledge of their
shared quantum states, users can programme simulations in a formalism agnostic
way. Functionality is also provided to automatically convert between quantum
states that use different formalisms, and to sample from a distribution of states,
which is useful for instance for pure state formalisms.

The ket and density matrix formalisms use dense arrays (vectors or matrices,
respectively) to represent quantum states. Applying a k qubit operator to an n qubit
ket vector state generally involves the computationally expensive task of
performing 2n−k matrix multiplications on 2k temporary sub-vectors and
aggregating the result (only in special cases can this be done in-place)90,91. The
analogous application of an operator to a density matrix is more expensive due to
the extra dimension involved. However, as discussed in section ‘Fast and scalable
quantum network simulation’ of the Results and Discussion, the repetitive nature
of NetSquid simulations allows us to take advantage of operators frequently being
applied to the same qubit indices for states of a given size. For these operators, we
compute a 2n × 2n dimensional sparse matrix representation of the k qubit operator
via tensor products with the identity and memoize this result for the specific
indices and size. When the memoization is applicable the computational cost of
applying a quantum operator can then be reduced to just sparse matrix
multiplication onto a dense vector or matrix. Memoization is similarly applicable to
general Clifford operators in the stabiliser tableau formalism. To use memoization
on operators that depend on a continuous parameter, such as arbitrary rotations,
the parameter can be discretised i.e. rounded to some limited precision.

Physical modelling of network components. All physical devices in a quantum
network are modelled by a ‘component’ object, and are thereby also all simulation
entities, as shown in Fig. 10. Components can be composed of subcomponents,
which makes setting up networks in NetSquid modular. The network itself, for
instance, can be modelled as a composite component containing ‘node’ and
‘connection’ components; these composite components can in turn contain com-
ponents such as quantum memories, quantum and classical channels, quantum
sources, etc., as illustrated in Fig. 1. The physical behaviour of a component is
described by composing it of ‘models’, which can specify physical characteristics
such as transmission delays or noise such as photon loss or decoherence. Com-
munication between components is facilitated by their ‘ports’, which can be con-
nected together to automatically pass on messages.

NetSquid also allows precise modelling of quantum computation capable
devices. For this it provides the ‘quantum processor’ component, a subclass of the
quantum memory. This component is capable of executing ‘quantum programmes’
i.e. sequences of ‘instructions’ that describe operations such as quantum gates and
measurements or physical processes such as photon emission. Quantum

programmes fully support conditional and iterative statements, as well as
parallelisation if the modelled device supports it. When a programme is executed
its instructions are mapped to the physical instructions on the processor, which
model the physical duration and errors associated to carrying out the operation. A
physical instruction can be assigned to all memory positions or only to a specific
position, as well as directionally between specific memory positions in the case of
multi-qubit instructions.

Asynchronous framework for programming protocols. NetSquid provides a ‘proto-
col’ class to describe the network protocols and classical control plane logic run-
ning on a quantum network. Similarly to the component class, a protocol is a
simulation entity and can thereby directly interact with the event timeline. Pro-
tocols can be nested inside other protocols and may describe both local or remote
behaviour across a network. The ‘node protocol’ subclass is specifically restricted to
only operating locally on a single node. Inter-protocol communication is possible
via a signalling mechanism and a request and response interface defined by the
‘service protocol’ class. Protocols can be programmed using both the standard
callback functionality of PyDynAA and a tailored asynchronous framework that
allows the suspension of a routine conditioned on an ‘event expression’; for
example, to wait for input to arrive on a port, a quantum programme to finish, or
to pause for a fixed duration.

The ‘util’ sub-package shown in Fig. 10 provides a range of utilities for running,
recording and interacting with simulations. Functions to control the simulation are
defined in the ‘simtools’ module, including functions for inspecting and diagnosing
the timeline. A ‘data collector’ class supports the event-driven collection of data
during a simulation, which has priority over other event handlers to react to events.
The ‘simstats’ module is responsible for collecting a range of statistics during a
simulation run, such as the number of events and callbacks processed, the
maximum and average size of manipulated quantum states, and a count of all the
quantum operations performed. Finally, the ‘simlog’ module allows fine grained
logging of the various modules for debugging purposes.

Benchmarking. To perform the benchmarking described in section ‘Fast and
scalable quantum network simulation’ of the Results and Discussion we used
computing nodes with two 2.6 GHz Intel Xeon E5-2690 v3 (Haswell) 12 core
processors and 64 GB of memory. Because each process only requires a single core,
care was taken to ensure sufficient cores and memory were available when running
jobs in parallel. The computation time of a process is the arithmetic average of a
number of successive iterations; to avoid fluctuations due to interfering CPU
processes the reported time is a minimum of five such repeated averages. To
perform the simulation profiling the Cython extension modules of both NetSquid
and PyDynAA were compiled with profiling on, which adds some runtime over-
head. Version 0.10.0 and 0.3.5 of NetSquid and PyDynAA were benchmarked. We
benchmarked against ProjectQ version 0.4.2 using its ‘MainEngine’ backend. See
Supplementary Note 2 for further details.

Using the same machine, simulations for Fig. 5b, c were run, which took almost
260 core hours wallclock time in total, while simulations for Fig. 7 took roughly 625
core hours. For Fig. 4 (≈10 h in total), Fig. 5(a) (≈90 min) and Fig. 6 (≈30 min), a
single core Intel Xeon Gold 6230 processor (3.9 GHz) with 192 GB RAM was used.

Implementing a processing-node repeater chain in NetSquid. Here, we explain
the details of the most complex of our three use cases, namely the repeater chain of
Nitrogen-Vacancy-based processing nodes from section ‘Sensitivity analysis for the
physical modelling of a long range repeater chain’ of the Results and Discussion
(see Supplementary Notes 3 and 7 for details on the other two use cases). We first
describe how we modelled the NV hardware, followed by the repeater protocols
used. With regard to the physical modelling, let us emphasise that this is well
established (see e.g.92); the main goal here is to explain how we used this model in a
NetSquid implementation.

In our simulations the following NetSquid components model the physical
repeater chain: ‘nodes’, each holding a single ‘quantum processor’ modelling the
NV centre, and ‘classical channels’ that connect adjacent nodes and are modelled as
fibres with a constant transmission time. We choose equal spacing between the
nodes. If we were to simulate individual attempts at entanglement generation, we
would also need components for transmitting and detecting qubits such as was
used in previous NetSquid simulations of NV centres39. However, in order to speed
up simulations we insert the entangled state between remote NVs using a model.
We designed two types of protocols to run on each node of this network that differ
in whether they implement a scheme with or without distillation.

In the remainder of this section, we describe the components modelling. More
detailed descriptions of the hardware parameters and their values used in our
simulation can be found in Supplementary Note 4.

Modelling a nitrogen-vacancy centre in diamond. In NetSquid, the NV centre is
modelled by a quantum processor component, which holds a single communica-
tion qubit (electronic spin-1 system) and multiple storage qubits (13C nuclear
spins). The decay of the state held by a communication qubit or storage qubit is
implemented using a noise model, which is based on the relaxation time T1 and the
dephasing time T2. If a spin is acted upon after having been idle for time Δt, then to

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-021-00647-8 ARTICLE

COMMUNICATIONS PHYSICS | (2021) 4:164 | https://doi.org/10.1038/s42005-021-00647-8 | www.nature.com/commsphys 11

www.nature.com/commsphys
www.nature.com/commsphys

its state ρ we first apply a quantum channel

ρ 7!E0ρE
y
0 þ E1ρE

y
1

where

E0 ¼ 0j i 0h j þ
ffiffiffiffiffiffiffiffiffiffiffi

1� p
p

1j i 1h j;E1 ¼
ffiffiffi

p
p

0j i 1h j

and p ¼ 1� e�Δt=T1 . Subsequently, we apply a dephasing channel

N
deph
p : ρ 7! ð1� pÞρþ pZρZ ð1Þ

where Z ¼ 0j i 0h j � 1j i 1h j and the dephasing probability equals

p ¼ 1

2
1� e�Δt=T2 � eΔt=ð2T1Þ
� �

:

The electron and nuclear spins have different T1 and T2 times.
We allow the quantum processor to perform the following operations on the

electron spin: initialisation (setting the state to 0j i), readout (measurement in the
f 0j i; 1j ig basis) and arbitrary single-qubit rotation. In particular, the latter includes
Pauli rotations

RPðθÞ ¼ cosðθ=2Þ112 � isinðθ=2ÞP ð2Þ
where θ is the rotation angle, P∈ {X, Y, Z} and 112 ¼ 0j i 0h j þ 1j i 1h j,
X ¼ 0j i 1h j þ 1j i 0h j, Y ¼ �i 0j i 1h j þ i 1j i 0h j and Z ¼ 0j i 0h j � 1j i 1h j are the single-
qubit Pauli operators.

For the nuclear spin, we have only initialisation and rotations RZ(θ) for
arbitrary rotation angle θ. In addition, we allow the two-qubit controlled-RX(± θ)
gate between an electron (e) and a nuclear (n) spin:

0j i 0h je � RX ðθÞn þ 1j i 1h je � RX ð�θÞn:
We model each noisy operation Onoisy as the perfect operation Operfect followed

by a noise channel N :

Onoisy ¼ N � Operfect:

If O is a single-qubit rotation, then N is the depolarising channel:

N
depol
p : ρ 7! 1� 3p

4

� �

ρþ p

4
XρX þ YρY þ ZρZ
� �

ð3Þ

with parameter p= 4(1− F)/3 with F the fidelity of the operation.

If O is single-qubit initialisation, N ¼ N depol
p with parameter p= 2(1− F). The

noise map of the controlled-RX gate is an identical single-qubit depolarising

channel on both involved qubits, i.e. N ¼ N depol
p �N depol

p .

Finally, we model electron spin readout by a POVM measurement with the
Kraus operators

M0 ¼
ffiffiffiffiffi

f 0
p

0

0
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� f 1
p

 !

; M1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� f 0
p

0

0
ffiffiffiffiffi

f 1
p

 !

ð4Þ

where 1− f0 (1− f1) is the probability that a measurement outcome 0 (1) is flipped
to 1 (0).

Simulation speedup via state insertion. For generating entanglement between the
electron spins of two remote NVs, we simulate a scheme based on single-photon
detection, following its experimental implementation in93. NetSquid was used
previously to simulate each generation attempt of this scheme, which includes the
emission of a single photon by each NV, the transmission of the photons to the
midpoint through a noisy and lossy channel, the application of imperfect mea-
surement operators at the midpoint, and the transmission of the measurement
outcome back to the two involved nodes39. For larger internode distances, simu-
lating each attempt requires unfeasibly long simulation times due to the expo-
nential decrease in attempt success rate. To speed up our simulations in the
examples studied here, we generate the produced state between adjacent nodes
from a model which has shown good agreement with experimental results93. This
procedure includes a random duration and noise induced on the storage qubits, as
we describe below.

Let us define

p00 ¼ α2 2pdetð1� pdetÞð1� pdcÞ
	

þ 2pdcð1� pdcÞð1� pdetÞ
2

þp2det ð1� pdcÞ �
1

2
ð1þ VÞ

p10 ¼ αð1� αÞ � ð1� pdcÞ � pdet
	

þ2pdcð1� pdcÞð1� pdetÞ
�

p01 ¼ p01

p11 ¼ ð1� αÞ2 � pdc
where pdet is the detection probability, pdc the dark count probability, V denotes
photon indistinguishability and α is the bright-state parameter (see Supplementary
Note 4 for parameter descriptions). We follow the model of the produced

entangled state from the experimental work of 93, whose setup consists of a beam
splitter with two detectors located between the two adjacent nodes. In their model,
the unnormalised state is given by

ρ ¼

p00 0 0 0

0 p01 ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Vp01p10
p

0

0 ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Vp01p10
p

p10 0

0 0 0 p11

0

B

B

B

@

1

C

C

C

A

where ± denotes which of the two detectors detected a photon (each occurring with
probability 1

2
). We also follow the model of93 for double-excitation noise and optical

phase uncertainty, by applying a dephasing channel to both qubits with parameter
p= pdexc/2, followed by a dephasing channel of one of the qubits, respectively.

The success probability of a single attempt is

psucc ¼ p00 þ p01 þ p10 þ p11:

The time elapsed until the fresh state is put on the electron spins is (k− 1)⋅Δt
with Δt ≔ (temission+ L/c), where temission is the delay until the NV centre emits a
photon, L the internode distance and c the speed of light in fibre. Here, k is the
number of attempts up to and including successful entanglement generation and is
computed by drawing a random sample from the geometric distribution

PrðkÞ ¼ psucc � ð1� psuccÞ
k�1 . After the successful generation, we wait for another

time Δt to mimic the photon travel delay and midpoint heralding message delay.
Every entanglement generation attempt induces dephasing noise on the storage

qubits in the same NV system. We apply the dephasing channel (eq. (1)) at the end
of the successful entanglement generation, where the accumulated dephasing
probability is

1� ð1� 2psingleÞ
k

2
ð5Þ

where psingle is the single-attempt dephasing probability (see eq. 46 in
Supplementary Note 4).

How we choose improved hardware parameters. Here, we explain how we choose
‘improved’ hardware parameters. Let us emphasise that this choice is independent
of the setup of our NetSquid simulations and only serves the purpose of showcasing
that NetSquid can assess the performance of hardware with a given quality.

By ‘near-term’ hardware, we mean values for the above defined parameters as
expected to be achieved in the near future by NV hardware. If we say that an error
probability is improved by an improvement factor k, we mean that its
corresponding no-error probability equals

ffiffiffiffiffiffi

pne
k
p

, where pne is the no-error

probability of the near-term hardware. For example, visibility V is improved as
ffiffiffiffi

Vk
p

while the probability of dephasing p of a gate is improved as 1� ffiffiffiffiffiffiffiffiffiffiffi

1� pk
p

. A factor
k= 1 thus corresponds to ‘near-term’ hardware. By ‘uniform hardware
improvement by k’, we mean that all hardware parameters are improved by a factor
k. We do not improve the duration of local operations or the fibre attenuation. The
near-term parameter values as well as the individual improvement functions for
each parameter can be found in Supplementary Note 4.

NV repeater chain protocols. For the NV repeater chain, we simulated two proto-
cols: SWAP-ASAP and NESTED-WITH-DISTILL. Both protocols are composed of
five building blocks: ENTGEN, STORE, RETRIEVE, DISTILL and SWAP. By
ENTGEN, we denote the simulation of the entanglement generation protocol based
on the description in the previous subsection: two nodes wait until a classical
message signals that their respective electron spins hold an entangled pair. In
reality, such functionality would be achieved by a link layer protocol39. STORE is
the mapping of the electron spin state onto a free nuclear spin, and RETRIEVE is
the reverse operation. The DISTILL block implements entanglement distillation
between two remote NVs for probabilistically improving the quality of entangle-
ment between two nuclear spins (one at each NV), at the cost of reading out
entanglement between the two electron spins. It consists of local operations fol-
lowed by classical communication to determine whether distillation succeeded. The
entanglement swap (SWAP) converts two short-distance entangled qubit pairs
A−M and M− B into a single long-distance one A− B, where A, B and M are
nodes. It consists of local operations at M, including spin readout, and commu-
nicating the measurement outcomes to A and B, followed by A and B updating
their knowledge of the precise state A− B they hold in the perfect case. We opt for
such tracking as opposed to applying a correction operator to bring A− B back to a
canonical state since the correction operator generally cannot be applied to the
nuclear spins directly. Details of the tracking are given in Supplementary Note 6.
The circuit implementations for the building blocks, ‘quantum programmes’ in
NetSquid, are given in Supplementary Note 5.

Let us explain the SWAP-ASAP and NESTED-WITH-DISTILL protocols in
spirit; the exact protocols run asynchronously on each node and can be found in
Supplementary Note 5. In the SWAP-ASAP protocol, a repeater node performs
ENTGEN with both its neighbours, followed by SWAP as soon as it holds the two
entangled pairs. Next, NESTED-WITH-DISTILL is a nested protocol on 2n+ 1
nodes (integer n ≥ 0) with distillation at each nesting level which is based on the

ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-021-00647-8

12 COMMUNICATIONS PHYSICS | (2021) 4:164 | https://doi.org/10.1038/s42005-021-00647-8 | www.nature.com/commsphys

www.nature.com/commsphys

BDCZ protocol9. For nesting level n= 0, there are no repeaters and the two nodes
only perform ENTGEN once. For nesting level n > 0, the chain is divided into a left
part and a right part of 2n−1+ 1 nodes, and the middle node (included in both
parts) in the chain generates twice an entangled pair with the left end node
following the (n− 1)-level protocol; STORE is applied in between to free the
electron spin. Subsequently, DISTILL is performed with the two pairs as input
(restart if distillation fails), after which the same procedure is performed on the
right. Once the right part has finished, the middle node performs SWAP to connect
the end nodes. If needed, STORE and RETRIEVE are applied prior to DISTILL and
SWAP in order achieve the desired configuration of qubits in the quantum
processor, e.g. for DISTILL to ensure that the two involved NVs hold an
electron–electron and nuclear–nuclear pair of qubits, instead of electron-nuclear
for both entangled pairs.

Data availability
The data presented in this paper have been made available at https://doi.org/10.34894/

URV16994.

Code availability
The NetSquid-based simulation code that was used for the simulations in this paper has

been made available at https://doi.org/10.34894/DU3FTS95.

Received: 23 December 2020; Accepted: 20 May 2021;

References
1. Van Meter, R. & Devitt, S. J. The path to scalable distributed quantum

computing. Computer 49, 31–42 (2016).
2. Lekitsch, B. et al. Blueprint for a microwave trapped ion quantum computer.

Sci. Adv. 3, e1601540 (2017).
3. Monroe, C. et al. Large-scale modular quantum-computer architecture with

atomic memory and photonic interconnects. Phys. Rev. A 89, 022317 (2014).
4. Stephens, A. M. et al. Deterministic optical quantum computer using photonic

modules. Phys. Rev. A 78, 032318 (2008).
5. Wehner, S., Elkouss, D. & Hanson, R. Quantum internet: a vision for the road

ahead. Science 362 https://science.sciencemag.org/content/362/6412/
eaam9288. https://science.sciencemag.org/content/362/6412/eaam9288.full.
pdf (2018).

6. Munro, W. J., Azuma, K., Tamaki, K. & Nemoto, K. Inside quantum repeaters.
IEEE J. Selec. Top. Quantum Electron. 21, 78–90 (2015).

7. Muralidharan, S. et al. Optimal architectures for long distance quantum
communication. Sci. Rep. 6, 20463 https://doi.org/10.1038/srep20463 EP—
(2016).

8. Gisin, N. & Thew, R. Quantum communication. Nat. Photon. 1, 165 https://
doi.org/10.1038/nphoton.2007.22. EP—(2007).

9. Briegel, H.-J., Dür, W., Cirac, J. I. & Zoller, P. Quantum repeaters: the role of
imperfect local operations in quantum communication. Phys. Rev. Lett. 81,
5932–5935 (1998).

10. Dür, W., Briegel, H.-J., Cirac, J. I. & Zoller, P. Quantum repeaters based on
entanglement purification. Phys. Rev. A 59, 169–181 (1999).

11. Duan, L.-M., Lukin, M. D., Cirac, J. I. & Zoller, P. Long-distance quantum
communication with atomic ensembles and linear optics. Nature 414, 413
https://doi.org/10.1038/35106500 EP – (2001).

12. Amirloo, J., Razavi, M. & Majedi, A. H. Quantum key distribution over
probabilistic quantum repeaters. Phys. Rev. A 82, 032304 (2010).

13. Kimiaee Asadi, F. et al. Quantum repeaters with individual rare-earth ions at
telecommunication wavelengths. Quantum 2, 93 (2018).

14. Bernardes, N. K., Praxmeyer, L. & van Loock, P. Rate analysis for a hybrid
quantum repeater. Phys. Rev. A 83, 012323 (2011).

15. Borregaard, J., Kómár, P., Kessler, E. M., Sørensen, A. S. & Lukin, M. D.
Heralded quantum gates with integrated error detection in optical cavities.
Phys. Rev. Lett. 114, 110502 (2015).

16. Bruschi, D. E., Barlow, T. M., Razavi, M. & Beige, A. Repeat-until-success
quantum repeaters. Phys. Rev. A 90, 032306 (2014).

17. Chen, Z.-B., Zhao, B., Chen, Y.-A., Schmiedmayer, J. & Pan, J.-W. Fault-
tolerant quantum repeater with atomic ensembles and linear optics. Phys. Rev.
A 76, 022329 (2007).

18. Collins, O. A., Jenkins, S. D., Kuzmich, A. & Kennedy, T. A. B. Multiplexed
memory-insensitive quantum repeaters. Phys. Rev. Lett. 98, 060502 (2007).

19. Guha, S. et al. Rate-loss analysis of an efficient quantum repeater architecture.
Phys. Rev. A 92, 022357 (2015).

20. Hartmann, L., Kraus, B., Briegel, H.-J. & Dür, W. Role of memory errors in
quantum repeaters. Phys. Rev. A 75, 032310 (2007).

21. Jiang, L. et al. Quantum repeater with encoding. Phys. Rev. A 79, 032325
(2009).

22. Nemoto, K. et al. Photonic quantum networks formed from NV-centers. Sci.
Rep. 6, 26284 https://doi.org/10.1038/srep26284 EP – (2016).

23. Razavi, M., Piani, M. & Lütkenhaus, N. Quantum repeaters with imperfect
memories: cost and scalability. Phys. Rev. A 80, 032301 (2009).

24. Razavi, M. & Shapiro, J. H. Long-distance quantum communication with
neutral atoms. Phys. Rev. A 73, 042303 (2006).

25. Simon, C. et al. Quantum repeaters with photon pair sources and multimode
memories. Phys. Rev. Lett. 98, 190503 (2007).

26. Vinay, S. E. & Kok, P. Practical repeaters for ultralong-distance quantum
communication. Phys. Rev. A 95, 052336 (2017).

27. Wu, Y., Liu, J. & Simon, C. Near-term performance of quantum repeaters with
imperfect ensemble-based quantum memories. Phys. Rev. A 101, 042301
(2020).

28. Sangouard, N. et al. Long-distance entanglement distribution with single-
photon sources. Phys. Rev. A 76, 050301 (2007).

29. Sangouard, N. et al. Robust and efficient quantum repeaters with atomic
ensembles and linear optics. Phys. Rev. A 77, 062301 (2008).

30. Sangouard, N., Dubessy, R. & Simon, C. Quantum repeaters based on single
trapped ions. Phys. Rev. A 79, 042340 (2009).

31. Abruzzo, S. et al. Quantum repeaters and quantum key distribution: analysis
of secret-key rates. Phys. Rev. A 87, 052315 (2013).

32. Brask, J. B. & Sørensen, A. S. Memory imperfections in atomic-ensemble-
based quantum repeaters. Phys. Rev. A 78, 012350 (2008).

33. Muralidharan, S., Kim, J., Lütkenhaus, N., Lukin, M. D. & Jiang, L. Ultrafast
and fault-tolerant quantum communication across long distances. Phys. Rev.
Lett. 112, 250501 (2014).

34. Pant, M., Krovi, H., Englund, D. & Guha, S. Rate-distance tradeoff and
resource costs for all-optical quantum repeaters. Phys. Rev. A 95, 012304
(2017).

35. Ladd, T. D., van Loock, P., Nemoto, K., Munro, W. J. & Yamamoto, Y. Hybrid
quantum repeater based on dispersive CQED interactions between matter
qubits and bright coherent light. New J. Phys. 8, 184–184 (2006).

36. van Loock, P. et al. Hybrid quantum repeater using bright coherent light. Phys.
Rev. Lett. 96, 240501 (2006).

37. Zwerger, M. et al. Quantum repeaters based on trapped ions with
decoherence-free subspace encoding. Quantum Sci. Technol. 2, 044001 (2017).

38. Jiang, L., Taylor, J. M. & Lukin, M. D. Fast and robust approach to long-
distance quantum communication with atomic ensembles. Phys. Rev. A 76,
012301 (2007).

39. Dahlberg, A. et al. A link layer protocol for quantum networks. In Proceedings
of the ACM Special Interest Group on Data Communication, SIGCOMM ’19,
159–173 https://doi.org/10.1145/3341302.3342070 (Association for
Computing Machinery, New York, NY, USA, 2019).

40. Meter, R. V. Quantum networking and internetworking. IEEE Netw. 26, 59–64
(2012).

41. Aparicio, L., Van Meter, R. & Esaki, H. Protocol design for quantum repeater
networks. In Proceedings of the 7th Asian Internet Engineering Conference,
AINTEC ’11, 73–80 https://doi.org/10.1145/2089016.2089029 (Association for
Computing Machinery, New York, NY, USA, 2011).

42. Meter, R. V. & Touch, J. Designing quantum repeater networks. IEEE
Commun. Mag. 51, 64–71 (2013).

43. Meter, R. V., Ladd, T. D., Munro, W. J. & Nemoto, K. System design for a
long-line quantum repeater. IEEE/ACM Trans. Netw. 17, 1002–1013 (2009).

44. Pirker, A. & Dür, W. A quantum network stack and protocols for reliable
entanglement-based networks. New J. Phys. 21, 033003 (2019).

45. Acín, A. et al. Device-independent security of quantum cryptography against
collective attacks. Phys. Rev. Lett. 98, 230501 (2007).

46. Branciard, C., Cavalcanti, E. G., Walborn, S. P., Scarani, V. & Wiseman, H. M.
One-sided device-independent quantum key distribution: security, feasibility,
and the connection with steering. Phys. Rev. A 85, 010301 (2012).

47. Scarani, V. et al. The security of practical quantum key distribution. Rev. Mod.
Phys. 81, 1301–1350 (2009).

48. Xu, F., Ma, X., Zhang, Q., Lo, H.-K. & Pan, J.-W. Secure quantum key
distribution with realistic devices. Rev. Mod. Phys. 92, 025002 (2020).

49. Pirandola, S. et al. Advances in quantum cryptography. Adv. Optics Photon.
12, 1012–1236 (2020).

50. Barz, S. et al. Demonstration of blind quantum computing. Science 335,
303–308 (2012).

51. Nickerson, N. H., Fitzsimons, J. F. & Benjamin, S. C. Freely scalable quantum
technologies using cells of 5-to-50 qubits with very lossy and noisy photonic
links. Phys. Rev. X 4, 041041 (2014).

52. Lipinska, V., Murta, G. & Wehner, S. Anonymous transmission in a noisy
quantum network using the w state. Phys. Rev. A 98, 052320 (2018).

53. Khabiboulline, E. T., Borregaard, J., De Greve, K. & Lukin, M. D. Optical
interferometry with quantum networks. Phys. Rev. Lett. 123, 070504 (2019).

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-021-00647-8 ARTICLE

COMMUNICATIONS PHYSICS | (2021) 4:164 | https://doi.org/10.1038/s42005-021-00647-8 | www.nature.com/commsphys 13

https://doi.org/10.34894/URV169
https://doi.org/10.34894/URV169
https://doi.org/10.34894/DU3FTS
https://science.sciencemag.org/content/362/6412/eaam9288
https://science.sciencemag.org/content/362/6412/eaam9288
https://science.sciencemag.org/content/362/6412/eaam9288.full.pdf
https://science.sciencemag.org/content/362/6412/eaam9288.full.pdf
https://doi.org/10.1038/srep20463
https://doi.org/10.1038/nphoton.2007.22
https://doi.org/10.1038/nphoton.2007.22
https://doi.org/10.1038/35106500
https://doi.org/10.1038/srep26284
https://doi.org/10.1145/3341302.3342070
https://doi.org/10.1145/2089016.2089029
www.nature.com/commsphys
www.nature.com/commsphys

54. Shchukin, E., Schmidt, F. & van Loock, P. Waiting time in quantum repeaters
with probabilistic entanglement swapping. Phys. Rev. A 100, 032322 (2019).

55. Vinay, S. E. & Kok, P. Statistical analysis of quantum-entangled-network
generation. Phys. Rev. A 99, 042313 (2019).

56. Vardoyan, G., Guha, S., Nain, P. & Towsley, D. On the stochastic analysis of a
quantum entanglement switch. SIGMETRICS Perform. Eval. Rev. 47, 27–29
(2019).

57. Razavi, M., Thompson, K., Farmanbar, H., Piani, M. & Lütkenhaus, N.
Physical and architectural considerations in quantum repeaters. In Arakawa,
Y., Sasaki, M. & Sotobayashi, H. (eds.) https://doi.org/10.1117/12.811880
Quantum Communications Realized II, vol. 7236, 18–30. International Society
for Optics and Photonics (SPIE, 2009).

58. Wilde, M. M. Quantum Iinformation Theory. (Cambridge University Press, 2013).
59. Pant, M. et al. Routing entanglement in the quantum internet. npj Quantum

Inform. 5, 25 (2019).
60. Kuzmin, V., Vasilyev, D., Sangouard, N., Dür, W. & Muschik, C. Scalable repeater

architectures for multi-party states. npj Quantum Inform. 5, 1–6 (2019).
61. Khatri, S., Matyas, C. T., Siddiqui, A. U. & Dowling, J. P. Practical figures of

merit and thresholds for entanglement distribution in quantum networks.
Phys. Rev. Res. 1, 023032 (2019).

62. Varga, A. The OMNeT++ discrete event simulation system. In Proceedings of
the European Simulation Multiconference (ESM’2001) (2001).

63. Riley, G. F. & Henderson, T. R.The ns-3 Network Simulator, 15–34 https://doi.
org/10.1007/978-3-642-12331-3_2 (Springer Berlin Heidelberg, Berlin,
Heidelberg, 2010).

64. Lantz, B., Heller, B. & McKeown, N. A network in a laptop: rapid prototyping
for software-defined networks. In Proceedings of the 9th ACM SIGCOMM
Workshop on Hot Topics in Networks, 1–6 (2010).

65. Fingerhuth, M., Babej, T. & Wittek, P. Open source software in quantum
computing. PLOS One 13, e0208561 (2018).

66. Netsquid website and online documentation. https://netsquid.org. Access to
documentation requires registration.

67. Deutsch, D. et al. Quantum privacy amplification and the security of quantum
cryptography over noisy channels. Phys. Rev. Lett. 77, 2818 (1996).

68. Wehrle, K., Günes, M. & Gross, J. Modeling and Tools for Network
Simulation (Springer Science & Business Media, 2010).

69. Greenberger, D. M., Horne, M. A. & Zeilinger, A. Going beyond Bell’s
theorem. In Bell’s Theorem, Quantum Theory and Conceptions of the Universe,
69-72 (Springer, 1989).

70. Awschalom, D. D., Hanson, R., Wrachtrup, J. & Zhou, B. B. Quantum
technologies with optically interfaced solid-state spins. Nat. Photon. 12,
516–527 (2018).

71. Doherty, M. W. et al. The nitrogen-vacancy colour centre in diamond. Phys.
Rep. 528, 1–45 (2013).

72. Afzelius, M., Simon, C., De Riedmatten, H. & Gisin, N. Multimode quantum
memory based on atomic frequency combs. Phys. Rev. A 79, 052329 (2009).

73. Fleischhauer, M., Imamoglu, A. & Marangos, J. P. Electromagnetically
induced transparency: optics in coherent media. Rev. Mod. Phys. 77, 633
(2005).

74. Lukin, M. Colloquium: trapping and manipulating photon states in atomic
ensembles. Rev. Mod. Phys. 75, 457 (2003).

75. Krovi, H. et al. Practical quantum repeaters with parametric down-conversion
sources. Appl. Phys. B 122, 52 (2016).

76. Bennett, C. H. & Brassard, G. Quantum cryptography: public key distribution
and coin tossing. Theor. Comput. Sci. 560, 7–11 (2014).

77. Aaronson, S. & Gottesman, D. Improved simulation of stabilizer circuits. Phys.
Rev. A 70, 052328 (2004).

78. Anders, S. & Briegel, H. J. Fast simulation of stabilizer circuits using a graph-
state representation. Phys. Rev. A 73, 022334 (2006).

79. Steiger, D. S., Häner, T. & Troyer, M. ProjectQ: an open source software
framework for quantum computing. Quantum 2, 49 (2018).

80. de Oliveira Filho, J., Papp, Z., Djapic, R. & Oosteveen, J. Model-based design
of self-adapting networked signal processing systems. In Proceedings of IEEE
7th International Conference on Self-Adaptive and Self-Organizing Systems, 41-
50 (IEEE, 2013).

81. Dahlberg, A. & Wehner, S. SimulaQron—a simulator for developing quantum
internet software. Quantum Sci. Technol. 4, 015001 (2018).

82. Diadamo, S., Notzel, J., Zanger B., Bese, M. M., QuNetSim: A Software
Framework for Quantum Networks, IEEE Transactions on Quantum
Engineering https://doi.org/10.1109/TQE.2021.3092395 (2021).

83. Bartlett, B. A distributed simulation framework for quantum networks and
channels. arXiv:quant-ph/1808.07047 (2018).

84. Matsuo, T. Simulation of a dynamic, RuleSet-based quantum network.
arXiv:1908.10758 (2020).

85. Mailloux, L. O. et al. A modeling framework for studying quantum key
distribution system implementation nonidealities. IEEE Access 3, 110–130
(2015).

86. Wu, X. et al. SeQUeNCe: a customizable discrete-event simulator of quantum
networks. arXiv:2009.12000 (2020).

87. Lee, Y., Bersin, E., Dahlberg, A., Wehner, S. & Englund, D. A quantum router
architecture for high-fidelity entanglement flows in multi-user quantum
networks. arXiv:2005.01852 (2020).

88. Kozlowski, W., Dahlberg, A. & Wehner, S. Designing a quantum network
protocol. In Proceedings of the 16th International Conference on Emerging
Networking EXperiments and Technologies (CoNEXT ’20), 16 (ACM, 2020).

89. Behnel, S. et al. Cython: the best of both worlds. Comput. Sci. Eng. 13, 31–39
(2011).

90. De Raedt, K. et al. Massively parallel quantum computer simulator. Comput.
Phys. Commun. 176, 121–136 (2007).

91. Häner, T. & Steiger, D. S. 0.5 petabyte simulation of a 45-qubit quantum
circuit. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’17 https://doi.org/10.1145/
3126908.3126947 (Association for Computing Machinery, New York, NY,
USA, 2017).

92. Rozpędek, F. et al. Near-term quantum repeater experiments with NV centers:
overcoming the limitations of direct transmission. Phys. Rev. A 99, 052330
(2019).

93. Humphreys, P. C. et al. Deterministic delivery of remote entanglement on a
quantum network. Nature 558, 268–273 (2018).

94. Coopmans, T. et al. Replication Data for: NetSquid, a discrete-event
simulation platform for quantum networks https://doi.org/10.34894/URV169
(2021).

95. Coopmans, T. et al. Simulation Code for: NetSquid, a discrete-event
simulation platform for quantum networks https://doi.org/10.34894/DU3FTS
(2021).

Acknowledgements
This work was supported by the Dutch Research Cooperation Funds (SMO), the Eur-

opean Research Council through a Starting Grant (S.W.), the QIA project (funded by

European Union’s Horizon 2020, Grant Agreement No. 820445) and the Netherlands

Organisation for Scientific Research (NWO/OCW), as part of the Quantum Software

Consortium programme (project number 024.003.037/3368). The authors would like to

thank Francisco Ferreira da Silva, Wojciech Kozlowski and Gayane Vardoyan for critical

reading of the manuscript. The authors would like to thank Gustavo Amaral, Guus Avis,

Conor Bradley, Chris Elenbaas, Francisco Ferreira da Silva, Sophie Hermans, Roeland ter

Hoeven, Hana Jirovská, Wojciech Kozlowski, Matteo Pompili, Arian Stolk and Gayane

Vardoyan for useful discussions.

Author contributions
T.C. realised the NV repeater chain and the quantum switch simulations. R.K., L.W.

realised the benchmarking simulations. D.M., J.R. realised the atomic ensembles simu-

lations. R.K. and J.O. designed NetSquid’s software architecture and R.K. led its software

development. T.C, A.D, R.K., D.M., L.N., J.O., M.P., F.R, J.R., M.S., A.T., L.W., and S.W

designed use case driven architectures, and contributed to the development of NetSquid

and the modelling libraries used in the simulations. W.J., D.P., A.T. contributed to the

optimal execution of simulations on computing clusters. T.C., D.E., R.K., D.M., and S.W.

wrote the manuscript. All authors revised the manuscript. D.E. and S.W. conceived and

supervised the project.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material

available at https://doi.org/10.1038/s42005-021-00647-8.

Correspondence and requests for materials should be addressed to D.E. or S.W.

Peer review information Communications Physics thanks the anonymous reviewers for

their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.

ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-021-00647-8

14 COMMUNICATIONS PHYSICS | (2021) 4:164 | https://doi.org/10.1038/s42005-021-00647-8 | www.nature.com/commsphys

https://doi.org/10.1117/12.811880
https://doi.org/10.1007/978-3-642-12331-3_2
https://doi.org/10.1007/978-3-642-12331-3_2
https://netsquid.org
https://doi.org/10.1109/TQE.2021.3092395
https://doi.org/10.1145/3126908.3126947
https://doi.org/10.1145/3126908.3126947
https://doi.org/10.34894/URV169
https://doi.org/10.34894/DU3FTS
https://doi.org/10.1038/s42005-021-00647-8
http://www.nature.com/reprints
www.nature.com/commsphys

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give

appropriate credit to the original author(s) and the source, provide a link to the Creative

Commons license, and indicate if changes were made. The images or other third party

material in this article are included in the article’s Creative Commons license, unless

indicated otherwise in a credit line to the material. If material is not included in the

article’s Creative Commons license and your intended use is not permitted by statutory

regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder. To view a copy of this license, visit http://creativecommons.org/

licenses/by/4.0/.

© The Author(s) 2021

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-021-00647-8 ARTICLE

COMMUNICATIONS PHYSICS | (2021) 4:164 | https://doi.org/10.1038/s42005-021-00647-8 | www.nature.com/commsphys 15

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/commsphys
www.nature.com/commsphys

	NetSquid, a NETwork Simulator for QUantum Information using Discrete events
	Results and discussion
	NetSquid in a nutshell
	Simulating a quantum network switch beyond its analytically known regime
	Sensitivity analysis for the physical modelling of a long range repeater chain
	Performance comparison between two atomic-ensemble memory types through NetSquid’s modular design
	Fast and scalable quantum network simulation
	Benchmarking of quantum computation
	Benchmarking of event-driven simulations
	Comparison with other quantum network simulators
	Conclusions

	Methods
	Design and functionality of NetSquid
	Discrete event simulation
	Qubits and quantum computation
	Physical modelling of network components
	Asynchronous framework for programming protocols
	Benchmarking
	Implementing a processing-node repeater chain in NetSquid
	Modelling a nitrogen-vacancy centre in diamond
	Simulation speedup via state insertion
	How we choose improved hardware parameters
	NV repeater chain protocols

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information

