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ABSTRACT 

The ability to predict local structural features of a protein from the primary sequence is of 

paramount importance for unravelling its function in absence of experimental structural 

information. Two main factors affect the utility of potential prediction tools: their accuracy 

must enable extraction of reliable structural information on the proteins of interest, and 

their runtime must be low to keep pace with sequencing data being generated at a 

constantly increasing speed. 
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Here, we present NetSurfP-2.0, a novel tool that can predict the most important local 

structural features with unprecedented accuracy and runtime. NetSurfP-2.0 is sequence-

based and uses an architecture composed of convolutional and long short-term memory 

neural networks trained on solved protein structures. Using a single integrated model, 

NetSurfP-2.0 predicts solvent accessibility, secondary structure, structural disorder, and 

backbone dihedral angles for each residue of the input sequences. 

We assessed the accuracy of NetSurfP-2.0 on several independent test datasets and 

found it to consistently produce state-of-the-art predictions for each of its output features. 

We observe a correlation of 80% between predictions and experimental data for solvent 

accessibility, and a precision of 85% on secondary structure 3-class predictions. In 

addition to improved accuracy, the processing time has been optimized to allow predicting 

more than 1,000 proteins in less than 2 hours, and complete proteomes in less than 1 day.  

Keywords: local structure prediction, solvent accessibility, secondary structure, disorder, 

deep learning 

 

INTRODUCTION 

The Anfinsen experiment, showing that the structural characteristics of a protein are 

encoded in its primary sequence alone, is more than 50 years old (Anfinsen, Haber, Sela, 

& White, 1961). As a practical application of it, several methods have been developed over 

the last decades to predict from sequence only several protein structural features, 

including solvent accessibility, secondary structure, backbone geometry, and disorder 

(Cuff, Clamp, Siddiqui, Finlay, & Barton, 1998; Hanson, Yang, Paliwal, & Zhou, 2017; 
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Heffernan, Yang, Paliwal, & Zhou, 2017; Jones, 1999; McGuffin, Bryson, & Jones, 2000; 

Rost, 1996). These tools have tremendously impacted biology and chemistry, and some 

are among the most cited works in the field. They have been extensively used to annotate 

novel sequences, thus facilitating their characterisation. The accuracy of said methods 

plays a central role here: the rate of errors in many computationally-generated annotations 

is a well-known and unresolved problem affecting public databases (Schnoes, Brown, 

Dodevski, & Babbitt, 2009). Such errors often propagate through databases and sequence 

annotations, and the availability of high-quality predictions is hence of primary importance 

to limit their occurrence. 

On the other hand, the amount of novel sequences has been steadily increasing over the 

last years (Kodama, Shumway, Leinonen, & International Nucleotide Sequence Database 

Collaboration, 2012), and not only experimental methods, but also computational 

predictions of structural and functional features have a hard time keeping up with it. This 

creates a conflict between the need for accurate predictions, and the pace at which we 

can generate them. 

 

NetSurfP-1.0 (Petersen, Petersen, Andersen, Nielsen, & Lundegaard, 2009) is a tool 

published in 2009 for prediction of solvent accessibility and secondary structure using a 

feed-forward neural network architecture. Since then, deep learning techniques have 

affected the application of machine learning in biology expanding the ability of prediction 

tools to produce more accurate results on complex datasets (Almagro Armenteros, 

Sønderby, Sønderby, Nielsen, & Winther, 2017; Esteva et al., 2017; V. I. Jurtz et al., 2017; 
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V. Jurtz et al., 2017; Min, Lee, & Yoon, 2017; S. Wang, Sun, Li, Zhang, & Xu, 2017). Here, 

we present NetSurfP-2.0, a new extended version of NetSurfP, that uses a deep neural 

network approach to accurately predict absolute and relative solvent accessibility, 

secondary structure using both 3- and 8-class definitions (Kabsch & Sander, 1983), φ and 

ψ dihedral angles, and structural disorder (Linding et al., 2003a), of any given protein from 

its primary sequence only. By having an integrated deep model with several outputs, 

NetSurfP-2.0 can not only significantly reduce the computational time, but also achieve an 

improved accuracy that could not be reached by having separate models for each feature. 

In fact, when assessed on various test sets with less than 25% sequence identity to any 

protein used in the training, its accuracy was consistently on par with or better than that of 

other state-of-the-art tools (Drozdetskiy, Cole, Procter, & Barton, 2015; Hanson et al., 

2017; Heffernan et al., 2017; S. Wang, Li, Liu, & Xu, 2016; S. Wang, Peng, Ma, & Xu, 

2016). In particular, we observed a significant increase in the accuracy of solvent 

accessibility, secondary structure, and disorder over all the other tested methods.  

NetSurfP-2.0 uses different approaches to make predictions for small and large sets of 

sequences, thus improving its time efficiency without compromising its accuracy. It has a 

user-friendly interface allowing non-expert users to obtain and analyse their results via a 

browser, thanks to its graphical output, or to download them in several common formats 

for further analysis.  

 

MATERIALS AND METHODS 
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We describe briefly the dataset and method used for training NetSurfP-2.0, and the 

validations performed.  

 

Structural dataset 

A structural dataset consisting of 12,185 crystal structures was obtained from the Protein 

Data Bank (PDB) (Berman et al., 2000), culled and selected by the PISCES server (G. 

Wang & Dunbrack, 2005) with 25% sequence similarity clustering threshold and a 

resolution of 2.5 Å or better. To avoid overfitting, any sequence that had more than 25% 

identity to any sequences in the test datasets (see “Evaluation” section for details) was 

removed, as well as peptide chains with less than 20 residues, leaving 10,837 sequences. 

Finally, we randomly selected 500 sequences (validation set) left out for early stopping and 

parameter optimization, leaving 10,337 sequences for training. 

  

Structural Features 

For all residues in each chain in the training dataset, we calculated its absolute and 

relative solvent accessibility (ASA and RSA, respectively), 3- and 8-class secondary 

structure classification (SS3 and SS8, respectively), and the backbone dihedral angles φ 

and ψ using the DSSP software (Kabsch & Sander, 1983). Finally, each residue that was 

present in the chain refseq sequence, but not in the solved structure, was defined as 

disordered. It is important to mention that disordered residues cannot be annotated with 

any of the other features, since no atomic coordinates are available for these residues. 
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Protein sequence profiles 

NetSurfP-2.0, like its predecessor, exploits sequence profiles of the target protein for its 

predictions. We used two different ways for generating such profiles. The first exploits the 

HH-suite software (Remmert, Biegert, Hauser, & Söding, 2011), that runs quickly on 

individual sequences, while the second uses the MMseqs2 software (Steinegger & Söding, 

2017), that is optimized for searches on large data sets. In both cases, the profile-

generation tools were run with default parameters, except MMseqs2 which used 2 

iterations with the `--max-seqs` parameter set to 2,000. 

  

Deep Network architecture 

The model was implemented using the Keras library. The input layer of the model consists 

of the one-hot (sparse) encoded sequences (20 features) plus the full HMM profiles from 

HH-suite (30 features in total, comprising 20 features for the amino acid profile, 7 features 

for state transition probabilities, and 3 features for local alignment diversity), giving a total 

of 50 input features. This input is then connected to two Convolutional Neural Network 

(CNN) layers, consisting of 32 filters each with size 129 and 257, respectively. The CNN 

output is concatenated with the initial 50 input features and connected to two bidirectional 

long short-term memory (LSTM) layers with 1024 nodes (Figure 1, panel A). 

 

Each output (RSA, SS8, SS3, φ, ψ, and disorder) is calculated with a Fully Connected 

(FC) layer using the outputs from the final LSTM layer. RSA is encoded as a single output 

between 0 and 1. ASA output is not directly predicted, but calculated by multiplying RSA 
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and ASAmax (Ahmad, Gromiha, & Sarai, 2003). SS8, SS3, and disorder, are encoded as 

8, 3, or 2 outputs with the target encoded as a sparse vector (target is set to 1, while rest 

of the elements are 0). φ and ψ are each encoded as a vector of length 2, where the first 

element is the sine of the angle and the second element is the cosine. This encoding 

reduces the effect of the periodicity of the angles (Lyons et al., 2014), and the predicted 

angle can be calculated with the arctan2 function. 

  

Training 

The training was performed using mini-batches of size 15. The individual learning rate of 

each neuron was optimized using the Adam function (Kingma & Ba, 2014). Early stopping 

was performed on the validation set. Since the different target values for each output have 

different distributions, a weighted sum of different loss functions was used: SS8, SS3 and 

disorder use cross entropy loss, while RSA, φ and ψ use mean squared error loss. Such 

weights were adjusted so each loss contribution was approximately equal and then fine-

tuned for maximum overall performance. When the target value for a feature of a given 

residue was missing, e.g. for secondary structure of disordered residues, or φ angles of N-

terminal residues, the loss for that output was set to 0. 

  

Evaluation  

The final two models, one trained with the HH-suite and one with MMseqs2 profiles, were 

tested on 3 independent datasets: the TS115 dataset (115 proteins) (Yang et al., 2016), 

the CB513 dataset (513 protein regions from 434 proteins) (Cuff & Barton, 1999), and a 
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dataset consisting of all the free-modeling targets (21 proteins) at the CASP 12 experiment 

(Abriata et al., 2018). No protein with more than 25% sequence identity to the proteins in 

these datasets was present in the training. Disorder prediction was not performed on the 

CB513 dataset since it contains very few disordered regions. 

We used different metrics to evaluate each feature: Pearson’s correlation coefficient (PCC) 

for solvent accessibilities, Q3 and Q8 accuracy for SS3 and SS8 respectively (Kabsch & 

Sander, 1983), mean absolute error in degrees for φ and ψ angles (MAE), Matthews 

correlation coefficient (MCC) and False Positive Rate (FPR) for disorder. In each dataset, 

the performance was calculated both as the average over all the residues in the dataset 

(per residue) and as the average of the performances per structure, the latter being 

defined as the average of the metric on all the residue of each given structure. The p-

values between the top-scoring method and all the other methods on a given feature in a 

dataset were calculated using a 2-tailed paired Student’s t-test on the corresponding 

performances per structure. 

 

DISPROT dataset 

We retrieved all the entries in DisProt (Piovesan et al., 2017), a database containing 

proteins annotated with several experimentally validated disorder types. All proteins with 

an available solved structure were removed to avoid overlaps with the training set. For 

each residue of each protein, we compare its experimental disorder annotation to the 

disorder prediction from NetSurfP-2.0. We classified proteins with more than 75% of their 

residues being disordered as completely disordered proteins. 
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RESULTS 

We have compared the performance of NetSurfP-2.0 to other state-of-the-art tools with 

similar functionality: NetSurfP-1.0 (Petersen et al., 2009), Spider3 (Heffernan et al., 2017), 

SPOT-Disorder (Hanson et al., 2017), RaptorX (S. Wang, Li, et al., 2016; S. Wang, Peng, 

et al., 2016), and JPred4 (Drozdetskiy et al., 2015). In order to check whether the results 

of the methods were significantly different, we calculated a p-value for each feature by 

using a pairwise Student’s t-test on the results of the two methods. Results on the 

independent test sets CASP12 (Abriata, Tamò, Monastyrskyy, Kryshtafovych, & Dal 

Peraro, 2018), TS115 (Yang et al., 2016), and CB513 (Cuff & Barton, 1999) are presented 

in Table 1, and in an extended version in Supplementary table S1. They match to a very 

high degree with the results obtained by using a 4-fold cross validation on the training set 

(Supplementary table S2). 

 

We give here the results for each individual feature, and a benchmark of the time 

performance of the tool. An example of the ASA and SS3 predictions for the human 

Orotate phosphoribosyltransferase (OPRTase) domain, displayed on its solved structure 

(PDB id 2WNS) is illustrated in Figure 2. 

 

Solvent accessibility 

The main focus of the original NetSurfP-1.0 and of its updated version is to predict solvent 

accessibility for individual residues. Both tools predict RSA, and also calculate the 
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corresponding ASA as described in the Methods section. We have compared the 

performance of the old and updated version of our tool, and compared to that of Spider3, a 

recent tool with a similar architecture that only predicts the ASA, and RaptorX, which 

performs a 3-class prediction of Buried (RSA<.1), Medium (.1<RSA<.4) and Exposed 

(.4<RSA) residues. RaptorX 3-class predictions were transformed to numeric predictions 

by assigning to each class the middle of its RSA interval. We have also calculated 

NetSurfP-2.0 accuracy by projecting its predictions to RaptorX 3-class RSA classes 

(Supplementary Figure S1). The results shown in Table 1 demonstrate a consistently 

improved performance of NetSurfP-2.0, compared to the other methods, with a PCC of 

approximately 0.8 on the test datasets TS115 and CB513 and on the validation set. The 

PCC of NetSurfP-2.0 on the CASP12 dataset is approximately 0.72, inferior to the other 

data sets but still significantly better than all other methods. It has to be noted that many of 

the structures in the CASP12 dataset are not obtained through X-ray crystallography, and 

they contain a number of disordered regions (as defined in the Methods) substantially 

larger than both the other external dataset and the training data. We see in general 

(Supplementary table S3) that all the predictions are less accurate in the few residues 

before and after a disordered region. We will further discuss this later.  

 

Secondary structure 

Many tools for secondary structure prediction have been published over the last 20 years, 

with their reported accuracy improving over time (Yang et al., 2016). In many cases, these 

tools have been subject of independent validation studies (Cuff & Barton, 1999; Zhang et 
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al., 2011) to get an independent assessment of their actual capabilities. We have decided 

to compare our tool with Spider3, RaptorX, and Jpred4, as these are among the most 

commonly used and accurate tools available. All the aforementioned tools perform 3-class 

prediction of secondary structure, while only NetSurfP-2.0 and RaptorX also provide an 8-

class prediction. The results of the benchmark are given in Table 1. In all cases, NetSurfP-

2.0 produce significantly more accurate predictions than all the other tools, with an 

average Q3 accuracy of approximately 85%, and a Q8 accuracy between 72% and 75% 

(Supplementary table S1, Supplementary figure S2). As for solvent accessibility prediction, 

the results on the CASP12 dataset are less accurate for all tested tools. A difference 

between the old version of the tool and its successor is that the latter is trained including 

disordered regions. We have also tested whether this affects the accuracy of the prediction 

of features other than disorder in the proximity of the disordered regions. This is actually 

the case for Q3 and Q8, which are significantly higher for our tool when compared to a 

modified version of it in which the disordered regions have been completely removed from 

the training sequences (Supplementary table S4). This effect is more pronounced for the 

datasets that have more disordered regions (CASP12 and TS115) and less so for the 

CB513 dataset. Even though such residues constitute a very small portion of the total 

amount, these results suggest that including the disordered regions in general help our 

model to achieve a better internal representation of the protein sequences. 

 

Disorder 
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There is nowadays a general support that disorder plays a fundamental role in the function 

and dynamics of proteins, and several different types of disorder have been described and 

annotated. Our tool is focused on protein regions with missing atomic coordinates in their 

solved structures, corresponding to the REMARK-465 regions in the DisEMBL annotation 

(Linding et al., 2003b). We have compared our prediction to both RaptorX and SPOT-

disorder, a method developed by the same group that developed Spider-3. As customary 

in cases where the amount of negative data points greatly outnumbers the amount of 

positive data points (Chicco, 2017), we have decided to use the Matthew’s correlation 

coefficient (MCC) to compare the tools. In all cases, NetSurfP-2.0 produces the most 

accurate results, with an average MCC of 0.65 (see Table 1). It has to be noted that this 

difference, though large, is not statistically significant. This might be partially due to the 

limited number of proteins that contain disordered regions among all the datasets, and on 

which the MCC and the corresponding statistical tests could be calculated. On the other 

hand, if we extend our evaluation of the disorder prediction by including the FPR, we see 

that our tool produces far less false positives than all the other tools, and in this case the 

difference is statistically significant. 

 

This improved performance could be due to the specific training method we used, that 

includes many non-disordered proteins. We will show in the following that this however 

does not reflect in a general underprediction tendency of the tool, as exemplified in 

disorder-enriched proteins. 
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As we mentioned above, we focus on one particular definition of disorder, while many 

more are available. To check if our tool can produce meaningful predictions on different 

types of protein disorder (e.g. intrinsically disordered proteins, functional disorder), we 

conducted a benchmark against the proteins in the DisProt database (Piovesan et al., 

2017), a resource containing experimentally annotated disordered regions of different 

types. The results of this benchmark are reported in Table 2 and demonstrate that our tool 

performs well also on other types of disorder, and that it can also be used to identify 

completely disordered proteins, which were not used in its training. NetSurfP-2.0, when 

compared to the other tools, presents a much lower level of false positives, that is 

particularly evident in proteins that contain few or no disordered region at all. This, 

however, does not affect NetSurfP-2.0 accuracy on proteins that contain many disordered 

regions or that are intrinsically disordered. By comparing the recall on the TS115, the 

whole DisProt data set, and the subset of completely disordered proteins, we see that the 

tool not only performs well also on proteins enriched in disordered regions, but that the low 

level of false positives noticed before is not trivially linked to a general underprediction 

effect. 

Another way to define disordered regions is by the so called “hot loops” (Linding et al., 

2003b), i.e. loop regions that present high temperature factors (B factor) for their Cα 

atoms. We tested if our prediction captures this definition by analysing its correlation to the 

B factor of backbone atoms for the TS115 dataset. To compare B factors from different 

structures, each B factor was normalised by the average B factor of the protein chain it 

belongs to. We see a Spearman correlation of 0.43 (Supplementary figure S3), confirming 
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the ability of our model to produce a meaningful and consistent internal representation of 

the protein characteristics. 

 

Backbone dihedral angles 

To complete the evaluation of our tool, we report its performance on the prediction of the 

backbone dihedral angles φ and ψ. We compared the results of NetSurfP-2.0 and Spider3. 

In this case, the two tools performed almost identically, with NetSurfP-2.0 producing only 

marginally better predictions, with no statistically significant difference. Both tools 

produced more accurate prediction of the φ angle compared to ψ. This is expected, given 

the much broader distribution of the ψ angle in the Ramachandran plot compared to the φ 

angle, that is almost always confined to values between -180 and -40 degrees.  

We also observed a very poor prediction accuracy for both angles in the proximity of 

disordered regions (Supplementary table S3), and, to a lower extent, in loop and coil 

regions (Table 3, Supplementary figure S4). 

  

Individual vs integrated model 

Thanks to the multi-task architecture and training strategy used, it is possible to predict all 

the features concurrently using a single model. Though this architecture improves the time 

optimization of our tool, this could potentially be sub-optimal with respect to accuracy. In 

order to test this, we trained single-output models for RSA, Secondary Structure (3- and 8-

class), and disorder. We see (Supplementary Table S4) that the performance of the 

integrated model is comparable or better than that of the individual models. 
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It is also interesting to notice that the hyperparameter optimisation described in Methods 

plays an important role in the training of the integrated model: if no relative weight is 

assigned to the different output, we observe a small degradation of the performance of the 

RSA with respect to both the integrated model and the individual ones.  

 

Time performance 

We have shown that NetSurfP-2.0 outperforms all other methods in all the tests. 

This is the case for both the NetSurfP-2.0 models trained using different profile generation 

tools, namely HH-suite and MMseqs2. Moreover, both the HH-suite and MMseqs2 models 

perform similarly on all datasets tested. However, they have very different running time: 

the runtime on a single protein sequence for the HH-suite model is approximately 2 

minutes, but it scales linearly with the number of sequences. MMseqs2, conversely, is 

slower for small datasets, but on large datasets it provides a speed-up of up to 50 times 

and the ability to parallelise on multiple processors (Figure 1, panel B). Given this, 

NetSurfP-2.0 is implemented to use the HH-suite model for searches of less than 100 

sequences, and the MMseqs2 model otherwise, thus offering a good trade-off between 

computation time and resource demand, without sacrificing the method’s accuracy. 

 

Tool availability 

NetSurfP-2.0 is available both as a web-server, and as an independent software 

(http://www.cbs.dtu.dk/services/NetSurfP-2.0/). The web-server version accepts up to 

4,000 sequences or 4,000,000 residues per job.  
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DISCUSSION 

The NetSurfP-2.0 web server provides state-of-the-art sequence-based predictions for 

solvent accessibility, secondary structure, disorder, and backbone geometry. Its superior 

performance is likely due to a few different characteristics: its architecture, its training 

strategy, and its data representation. The core of NetSurfP-2.0 architecture is composed 

by the two bidirectional LSTM layers. Thanks to their memory, these elements can keep 

track of the context around a residue better than convolutional elements. In fact, in 

preliminary analyses, we observed that the CNN layers that precede the LSTMs only 

provide a minor improvement to the overall prediction accuracy. We have also tested the 

effect of including a Conditional Random Field (CRF) layer downstream of the LSTM 

layers to enforce a more robust grammar of the different structural elements, but this did 

not bring any advantage (data not shown). On the other hand, by training a multi-task 

weight-sharing integrated model with several structural features, we improve the accuracy 

of disorder with respect to models trained on individual features. This improvement likely 

results from a more robust and informative internal state of the system, which is extremely 

valuable for features, such as disorder, where only a few positives are present on average.  

This integration was enabled by using improved representations of the structural data. The 

previous version of NetSurfP, as well as other tools, are trained only on the residues that 

are observed in the solved structure. In this way, the models are presented with cases that 

are neither physically nor biologically meaningful, such as residues divided by a disordered 
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region, that are far apart in primary and tertiary structure but presented to the model as 

consecutive. In contrast, by using a recent training procedure strategy (V. Jurtz et al., 

2017), we can train the model on all residues, including the disordered ones, thus 

increasing the accuracy of annotated features in the data and reduce the frustration during 

training. 

 

The NetSurfP-2.0 framework is extremely flexible and allows to potentially include many 

more structural features. We have shown that the disorder prediction of our model has a 

fair correlation with the residues’ B factor. Given this result, we believe that including the 

latter as an additional output for the system might actually improve the disorder prediction 

itself. Other possible features to be added are proline cis/trans conformation, metal binding 

sites, phosphorylation, glycosylation, and many others. 

Having an integrated model has an effect on the accuracy of the tool, but most importantly 

makes it much more time-efficient. On top of that, our software uses two different profile 

creation strategies in order to achieve an even better efficiency both for small sets of 

sequences, and for large batches of thousands of proteins. This allows the tool to annotate 

a single proteome in less than a day, a very important feature in present day biology.  

 

Thanks to its accuracy, its fast computation time, and its easy and intuitive interface, we 

believe that NetSurfP-2.0 will become a valuable resource that will aid researchers both 

with and without extensive computational knowledge to analyse and understand protein 

structure and function. 
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TABLES 
 

CASP12 
RSA 
[PCC] 

ASA 
[PCC] 

SS3 
[Q3] 

SS8 
[Q8] 

Disorder 
[MCC] 

Disorder 
[FPR] 

Phi 
[MAE] 

Psi 
[MAE] 

NetSurfP-2.0 (mmseqs) 0.726 0.735 0.820 0.703 0.660 0.015 20.3 31.8 

NetSurfP-2.0 (hhblits) 0.725 0.737 0.824 0.711 0.604 0.011 20.0 31.2 

NetSurfP-1.0 0.617 0.641 0.709          

Spider3   0.688 0.791   0.582 0.026 21.6 33.2 

RaptorX 0.594   0.786 0.661 0.621 0.045     

Jpred4     0.760          

TS115 
RSA 
[PCC] 

ASA 
[PCC] 

SS3 
[Q3] 

SS8 
[Q8] 

Disorder 
[MCC] 

Disorder 
[FPR] 

Phi 
[MAE] 

Psi 
[MAE] 

NetSurfP-2.0 (mmseqs) 0.778 0.797 0.857 0.750 0.656 0.006 17.2 25.8 

NetSurfP-2.0 (hhblits) 0.775 0.795 0.853 0.744 0.663 0.008 17.5 26.5 

NetSurfP-1.0 0.661 0.691 0.779          

Spider3   0.769 0.839   0.575 0.027 18.5 27.3 

RaptorX  0.651   0.822 0.716 0.567 0.044     

Jpred4     0.767          

CB513 
RSA 
[PCC] 

ASA 
[PCC] 

SS3 
[Q3] 

SS8 
[Q8] 

Disorder 
[MCC] 

Disorder 
[FPR] 

Phi 
[MAE] 

Psi 
[MAE] 

NetSurfP-2.0 (mmseqs) 0.794 0.807 0.854 0.723    20.1 28.0 

NetSurfP-2.0 (hhblits) 0.788 0.803 0.853 0.720    20.2 28.6 

NetSurfP-1.0 0.700 0.723 0.788          

Spider3   0.797 0.845      20.4 28.2 

RaptorX  0.676   0.827 0.706        

Jpred4     0.779          
 

Table 1. Results of the method’s validation on independent test datasets. The performance of NetSurfP-2.0 

(using HH-suite and MMSeqs2 profiles), NetSurfP-1.0, Spider3, SPOT-disorder, RaptorX, and JPred4, is 

displayed for the CASP12, TS115, and CB513 datasets. SPOT-disorder and Spider3 predictions are 

reported as a single row. The following performance metrics are used: Pearson Correlation Coefficient 

(PCC), Q3 and Q8 accuracy, Matthew’s Correlation Coefficient (MCC), False Positive Rate (FPR), and mean 

absolute error (MAE) in degrees. RaptorX RSA prediction classes B (buried), M (medium), and E (exposed), 

are mapped to the middle of the corresponding interval used to define them, i.e. to 0.05, 0.25, and 0.7, 

respectively. The different predicted features are reported in the column header, together with the 

corresponding performance metric. For each feature and each dataset, the best score is reported in bold. 

Scores in italics are the ones for which no significant difference with respect to the top scoring method is 

observed (p-value>.05). Greyed-out cells represent predictions that were not performed, either because not 

part of a method’s output, or because the feature was not present in the corresponding dataset. 
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Dataset #Proteins %disordered Recall 

TS115 115 7.4% 51.7% 

DisProt Proteins 803 24.2% 54.7% 

Completely Disordered Proteins  138 95.0% 58.0% 

Table 2. Comparison of the disorder prediction on TS115, Disprot, and completely disordered proteins. The 

#Proteins, %disordered, and Recall column report the number of proteins, the average content of disorder, 

and the recall per dataset. The recall is calculated on all the disordered residues using the default 0.5 

threshold. 
 

 

  Helices Strands Coils 

  G H I B E S T C 

Phi 17.35 8.75 15.72 29.39 18.43 34.59 27.65 28.67 

9.69 18.89 29.91 

Psi 30.18 15.51 16.11 33.73 20.95 60.73 33.54 52.54 

16.93 21.49 50.13 

Phi 17.74 6.85 15.49 23.69 17.60 31.85 23.33 27.72 

7.94 17.94 27.38 

Psi 32.39 11.15 17.27 40.83 19.16 54.73 33.83 42.87 

13.13 20.35 42.89 

 

Phi 19.35 7.88 16.78 26.14 17.98 35.67 27.20 28.66 

9.24 18.46 29.89 

Psi 32.66 10.90 18.14 40.22 20.18 56.00 36.35 41.87 

13.32 21.36 43.64 

Table 3: Accuracy of phi and psi prediction according to the secondary structure for the CASP12, TS115, 

and CB513 datasets. In each cell we report the MAE for all residues with a specific secondary structure, 

either based on the 3-class (grey cells) or 8-class (white cells) definition. For the 8 class definition: G= 3-10 

helix, H= 𝝰𝝰 helix, I= 𝞹𝞹 helix, B= 𝝱𝝱 bridge, E= extended strand, S= bend, T= h-bonded turn, C= coil. 
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