
NETTAILOR: Tuning the architecture, not just the weights

Pedro Morgado ∗ Nuno Vasconcelos

Department of Electrical and Computer Engineering

University of California, San Diego

{pmaravil,nuno}@ucsd.edu

Abstract

Real-world applications of object recognition often require

the solution of multiple tasks in a single platform. Under the

standard paradigm of network fine-tuning, an entirely new CNN

is learned per task, and the final network size is independent

of task complexity. This is wasteful, since simple tasks require

smaller networks than more complex tasks, and limits the num-

ber of tasks that can be solved simultaneously. To address these

problems, we propose a transfer learning procedure, denoted

NETTAILOR
1, in which layers of a pre-trained CNN are used as

universal blocks that can be combined with small task-specific

layers to generate new networks. Besides minimizing classifi-

cation error, the new network is trained to mimic the internal

activations of a strong unconstrained CNN, and minimize its

complexity by the combination of 1) a soft-attention mechanism

over blocks and 2) complexity regularization constraints. In

this way, NETTAILOR can adapt the network architecture, not

just its weights, to the target task. Experiments show that net-

works adapted to simple tasks, such as character or traffic sign

recognition, become significantly smaller than those adapted to

hard tasks, such as fine-grained recognition. More importantly,

due to the modular nature of the procedure, this reduction in

network complexity is achieved without compromise of either

parameter sharing across tasks, or classification accuracy.

1. Introduction

Real-world applications of machine learning for vision often

involve the ability to solve multiple recognition tasks. For

example, a robot should be able to decide if a door is open

or closed, whether an object can be picked up or not, what

is the expression on a person’s face, among others. However,

attempting to design a single recognizer for all tasks is often

impractical, since datasets for different tasks are not always

available at the same time, and state-of-the-art models use

∗This work was partially funded by graduate fellowship

SFRH/BD/109135/2015 from the Portuguese Ministry of Sciences and Educa-

tion, NRI Grants IIS-1546305 and IIS-1637941, and NVIDIA GPU donations.
1Source code and pre-trained models available at:

https://pedro-morgado.github.io/nettailor.

Figure 1: Architecture fine-tuning with NETTAILOR. Pre-trained

blocks shown in gray, task-specific in green. Left: Pre-trained

CNN augmented with low-complexity blocks that introduce skip

connections. Center: Optimization prunes blocks of poor trade-off

between complexity and impact on recognition. Right: The final

network is a combination of pre-trained and task-specific blocks.

different training procedures (e.g. face recognition is solved

through an embedding approach [57], while object recognition

uses a classification loss [20]). Instead, the standard solution is

to use an off-the-shelf convolutional neural network (CNN) pre-

trained on a large dataset such as ImageNet [9], MS-COCO [33]

or MIT-Places [73], and fine-tune it to each task [70, 27, 15].

Although fine-tuning often achieve good performance on the

target task [70], this practice is quite wasteful. First, fine-tuning

produces a large network per task, independently of the task

complexity. Hence, computing and storage requirements

increase linearly with the number of tasks, with simpler tasks

like optical character recognition (OCR) being as demanding

as hard tasks like fine-grained recognition. Second, although

the resulting networks are derived from a common pre-trained

model, they differ in all their parameters. Hence, as the robot

switches between tasks, large arrays of parameters need to be

reloaded, which may hinder operation in real-time. Other smart

computing platforms, such as consumer electronics devices,

mobile devices or smart cars, also face similar problems.

In this work, we seek a solution to these problems. Layers of

a large pre-trained neural network are viewed as universal blocks

that can be combined to generate new networks. The universal

blocks implement universal filters shared by all tasks. They are

3044



complemented by task-specific blocks that enable adaptation to

new tasks. Given a new target task, we propose to search for the

best architecture that combines any number of large pre-trained

blocks and small task-specific blocks. While pre-trained blocks

are responsible for the bulk of feature extraction, task-specific

blocks are used to 1) build the final (classification) layer, 2)

simplify or even replace pre-trained blocks when possible,

or 3) adjust network activations to compensate for domain

differences between the source and target tasks.

Evidence for the feasibility of this idea was recently provided

in [49], where a pre-trained network is successfully adapted to

multiple tasks without changing its parameters by adding a small

number of residual adaptation layers. In this work, however,

instead of merely adding layers, we seek to adapt the network

architecture, to tailor the network to the complexity of the new

task. Because the process is analogous to a tailor that adjusts a

pre-made suit to fit a new customer, we denote the procedure

NETTAILOR. The main idea is illustrated in Fig. 1. First, we

augment a pre-trained CNN with low-complexity blocks that

introduce skip connections throughout the network, and a soft-

attention mechanism that controls the selection of which blocks

to use. Then, we train the augmented CNN with a loss that pe-

nalizes both classification error and complexity. The complexity

penalty favors the small task-specific blocks over the large pre-

trained ones, encouraging the minimum amount of computation

required by the target task. Good classification performance is

promoted with a combination of the cross-entropy loss and a

variant of model distillation [21], which encourages the simpli-

fied CNN to match the performance of a classically fine-tuned

CNN. This optimization eliminates blocks with a poor trade-off

between complexity and impact on recognition performance.

In sum, NETTAILOR seeks an architecture that matches the

performance of standard fine-tuning, but that is as small as pos-

sible and mostly composed of universal blocks shared by many

tasks. This procedure has three important properties. First, it

enables the deployment of networks of different complexity for

different tasks. For example, in simpler recognition problems

such as digit recognition (SVHN dataset), NETTAILOR removed

73.4% parameters, while in high-level tasks such as the recog-

nition of everyday objects (Pascal VOC dataset) only 36.1%

of the parameters are removed. Second, because the majority

of the parameters required per task belong to shared pre-trained

blocks, NETTAILOR solves more tasks with the same resources

and allows task switching to be more efficient. On average,

NETTAILOR only introduces 8% of new task-specific param-

eters per task, when compared to the size of the pre-trained

network. Third, we show that pre-trained blocks can be

discarded without a significant loss in performance, achieving

accuracy similar to previous transfer learning techniques.

2. Related work

NETTAILOR is related to various CNN topics.

Transfer learning: CNNs are routinely transferred by fine-

tuning. NETTAILOR is a flexible transfer procedure that adjusts

the network architecture (not just the weights) while keeping

the majority of the parameters unchanged.

Life-long learning & learning without forgetting Intelligent

systems integrate knowledge over time, leveraging what they

know to solve new tasks. This ability is known as lifelong

learning [62] or never-ending learning [42] and is usually

incremental, i.e. with tasks learned sequentially. Fine-tuning has

two main problems for lifelong learning. First, since the original

weights are modified, the number of parameters increases

linearly with the number of tasks. This is wasteful since low and

mid-level features can be shared across very different image do-

mains [58]. Second, after fine-tuning, network performance can

degrade substantially on the source task [16]. This degradation

is known as “catastrophic forgetting” and has been the subject

of various recent works, which we categorize into two groups.

The first group forces the CNN to “remember” the source

task when training on target data [32, 24, 1]. This is done either

by 1) preventing network responses for source classes from

changing significantly on images of the new task [32, 1], 2)

maintaining an “episodic memory” of images from previous

tasks [36, 51], 3) preventing the reconstruction of features

crucial to the source task from changing [48], or 4) identifying

and protecting weights critical for previous tasks [24, 30]. The

second group retains previous task knowledge by freezing the

source network and adding a small number of parameters for

adaptation to the new task. For example, progressive neural

networks [55] and dynamically expandable networks [69]

expand the original network by adding hidden units to each

layer, and Rebuffi et al. [49, 50] add small task-specific layers,

denoted residual adapters, that adapt the activations of the

source network to the target task. Finally, Mallya et al. [39, 38]

identify a small set of source weights that can be pruned or

retrained to improve performance on the target task.

NETTAILOR has similarities with the second group, since

it freezes pre-trained layers. Also, similarly to some methods

in the first group, NETTAILOR uses source activations of

intermediate layers as guidance for the activations of the new

network. The main difference is that prior techniques do not

seek to adapt the network complexity to the task requirements,

which results in wasted computation when target tasks are

simpler than the source task.

Multi-task learning Multi-task learning (MTL) aims to im-

prove generalization by leveraging relations between tasks [6].

MTL is widely used for problems like object detection, where

sharing representations between object location and classifica-

tion [15, 52] or even segmentation [19] has led to significant

gains. Other examples of successful MTL are head orientation

and facial attribute detection [72, 47], scene geometry, instance,

and semantic segmentation [23, 41], among others. The main

difference between MTL and transfer techniques is that MTL

assumes that all tasks are performed on the same domain,

usually all operating on the same image. This is not the case

3045



for transfer, where the target task belongs to a different domain,

possibly very dissimilar from that of the source images.

Domain adaptation Domain adaptation addresses the transfer

of a task across two domains. When labels are available for

both domains, this is usually done by fine-tuning. NETTAILOR

addresses the problem that, depending on the gap between

domains, there may be a need to adjust the architecture. This

is, however, different from unsupervised domain adapta-

tion [14, 63, 64], where there are no labeled data for the target

domain. Unlike general transfer techniques like NETTAILOR,

unsupervised domain adaptation is designed to bridge the gap

between two datasets with exactly the same classes, and to

maximize performance on the target (unsupervised) dataset

with no concern for source domain performance.

Network compression Network compression aims to reduce

the size of a neural network by removing weights. Early

works [29, 18] derived near-optimal strategies to identify and re-

move weights of low impact on network performance. However,

because these methods rely on second order derivatives of the

loss function, they are impractical for deep networks. Recently,

good results have been shown with simpler procedures, such as

pruning weights of low magnitude [17] or introducing sparsity

constraints during training [74]. These methods reduce model

size considerably but do not improve the speed of inference,

due to the irregular sparsity of pruned weights. Alternative ap-

proaches advocate for “structured sparsity” as a means to remove

entire filters [31, 43]. NETTAILOR adopts the standard training

methodology of iterative pruning (pre-train, prune, re-train), but

takes the concept of structured sparsity one step further, pruning

entire layers instead of weights or filters. However, NETTAILOR

is not a network compression procedure, as layer pruning is only

feasible in transfer learning, specifically when the target task is

simpler than the source. Existing compression methods could

also be used to compress the pre-trained network, further reduc-

ing the complexity of networks fine-tuned with NETTAILOR.

Distillation Model distillation algorithms seek to emulate a

model with a simpler, smaller or faster one. In [4], a strong

ensemble model is used to label a large unlabeled dataset, which

is then used to train a simpler model that mimics the ensemble

predictions. Similar ideas have been used to transfer knowledge

between networks with different characteristics. For example,

Ba et al. [2] demonstrate that shallow networks can mimic

deeper networks while using the same amount of parameters

for stronger parallelization, [21] and [53] replicate complex

networks with significantly smaller or thinner ones, and [7]

transfers a previous network to a new deeper or wider network

without retraining for a faster development workflow. The stu-

dent teacher paradigm used by NETTAILOR is similar to that of

FitNets [53], as teacher supervision is added both at the network

output and internal activations. However, instead of training a

new network from scratch, NETTAILOR adapts the architecture

of a pre-trained network without changing most of its weights.

Cascaded classifiers & Adaptive inference graphs Cascaded

classifiers [66], can also significantly accelerate inference, by

quickly rejecting easy negatives. Recent works developed these

ideas within a deep learning framework, both for classifica-

tion [61, 22] and detection [5, 68]. By introducing early-exits,

the network can classify images as soon as it reaches the desired

degree of confidence [22, 61], or anytime the decision output

is expected [22]. Closer to NETTAILOR is the work on adaptive

inference graphs (AIG) [65, 13], which dynamically adjusts

the network topology at test time conditioned on the image

alone. Thus, similar to NETTAILOR, both cascades and AIG

methods can select which parts of the network to evaluate for

each image. However, these methods cannot effectively solve

the multi-domain classification problem. When networks are

trained independently, a different network is generated per task.

Training networks jointly requires simultaneous access to all

datasets. This drastically restricts the training of networks by

different developers, for different tasks, at different times, since

different developers 1) may not have access to each other’s

data, and 2) usually lack the resources and desire to train for

tasks other than their own. NETTAILOR addresses this problem

by reusing a set of universal blocks shared across datasets,

allowing each developer to focus on the single task of interest.

It reduces both inference times and space requirements without

the need for joint training on all datasets.

Neural architecture search Neural architecture search (NAS)

is devoted to learning new network architectures in a data-driven

manner. Typically, this is accomplished using reinforcement

learning or evolutionary algorithms to update a model respon-

sible for generating architectures so as to maximize perfor-

mance [75, 76]. Since the space of possible architectures is

extremely large, NAS can be quite slow and recent developments

focus on accelerating the search process [34, 35]. NETTAILOR

can be seen as a differentiable NAS procedure, since the net-

work architecture is optimized for a given task. However, unlike

general NAS, we seek a solution that reuses a set of pre-trained

blocks in order to address the storage and computing inefficien-

cies associated with multi-domain transfer learning problems.

Curriculum learning Curriculum learning techniques use

variations of back-propagation to improve learning effectiveness.

This can be done by controlling the order in which examples

are introduced [3]. Other approaches use a teacher network to

enhance the learning of a student network [12, 40]. NETTAILOR

uses a replica of the source network, fine-tuned on the target

task, as a teacher for the learning of the simplified network.

3. Method

In this section, we introduce NETTAILOR.

3.1. Task transfer

A CNN implements a function

f(x)=(GL◦GL−1◦···◦G1)(x). (1)

by composing L computational blocks Gl(x) consisting

of simple operations, such as convolutions, spatial pooling,

3046



normalization among others. For object recognition, x is an

image from a class y ∈ {1,...,C}, and f(x)∈ [0,1]C models

the posterior class probability P(y|x). While the blocks Gl(x)
differ with the CNN model, they are often large, both in terms

of computation and storage. For example, under the ResNet

model, each Gl(x) is formed by two 3×3 convolutions, or in

deeper versions a “bottleneck” block containing two 1×1 and

one 3×3 convolutions [20].

Since CNN training requires a large dataset, such as

ImageNet [9], Places [73] or COCO [33], not available for most

applications, CNNs are rarely learned from scratch. Instead,

a CNN pre-trained on a large dataset is fine-tuned on a new

task. In this case, the original task is denoted as the source

and the new one as the target task. Fine-tuning adjusts the

weights of the blocks of (1), while maintaining the network

architecture. Hence, independently of the complexity of the new

task, the computational and storage complexity remain large.

This is undesirable for target tasks simpler than the source task,

especially for applications that have computational or storage

constraints, such as mobile devices.

3.2. NetTailor

In order to avoid these problems, task transfer should ideally

have two properties. First, rather than reusing entire networks, it

should reuse network blocks. In particular, it should be possible

to add or remove blocks to best adapt the architecture to the new

task, not just its weights. This way, if the target task is much

simpler than the source task, network size could decrease signif-

icantly. Second, new networks should reuse existing pre-trained

blocks to the largest possible extent, in order to minimize the

number of parameters to be learned. Reusing blocks is partic-

ularly crucial for memory constrained implementations (e.g.,

robotics or mobile devices), because it allows sharing of blocks

across tasks. In this case, since only a fraction of (task-specific)

parameters need to be switched and stored per task, both the

costs of task switching and model storage remain low.

In this work, we introduce a new transfer technique, denoted

NETTAILOR that aims to achieve these goals. The NETTAILOR

procedure illustrated in Fig. 1 can be summarized as follows.

1. Train the teacher network by fine-tuning a pre-trained

network on the target task.

2. Define the student network by augmenting the pre-trained

network with task-specific low-complexity proxy layers.

3. Train the task-specific parameters of the student network

on the target task to mimic the internal activations of

the teacher, while imposing complexity constraints that

encourage the use of low-complexity proxy layers over

high-complexity pre-trained blocks.

4. Prune layers with low impact on network performance.

5. Fine-tune the remaining task-specific parameters.

While we only experimented with teacher networks that are

learned by fine-tuning (step 1), NETTAILOR could also be used

…

𝒙𝑙−1
𝛼1𝑙𝛼2𝑙
𝛼𝑙𝑙𝐺𝑙 + 𝒙𝑙𝛼𝑙−1𝑙

∗ BN
Max

Pool ∗ BN
Max

Pool ∗ BN
Max

Pool

𝐴1𝑙𝐴2𝑙𝐴𝑙−1𝑙𝒙2𝒙1…

[]+

Figure 2: Augmentation of pre-trained block Gl at layer l with multiple

proxy layers Al
p. xi represents the network activation after layer i.

with any transfer technique that produces a teacher that preserves

the architecture of the pre-trained network. We focused on fine-

tuning due to its popularity and high performance for most tasks

where a reasonably sized dataset is available for training [27, 70].

Layer pruning (steps 4 and 5) is performed using operations com-

mon in the network compression literature [17, 74], and is briefly

described in Section 3.5. We now discuss steps 2 and 3 in detail.

3.3. Architecture of the student network

The main architectural component introduced in this work

is the augmentation of the pre-trained network f(x)= (GL◦
GL−1 ◦···◦G1)(x) with the complexity-aware pooling block

of Figure 2. Starting from the pre-trained model, each layer

Gl is augmented with a set of lean proxy layers {Al
p(·)}

l−1
p=1

that introduce a skip connection between layers p and l. As the

name suggests, proxy layers aim to approximate and substitute

the large pre-trained blocks Gl(·) whenever possible. The

output activation xl of layer l is then computed by pooling the

output of the lth pre-trained block Gl(·) and proxies Al
p(·)

xl=αl
lGl(xl−1)+

∑l−1
p=1α

l
pA

l
p(xp), (2)

where {αl
p}

l
p=1∈ [0,1] are a set of scalars that enable or disable

the different network paths.

Two steps are taken to reduce the number of task-specific

parameters. The first is to use proxy layers of low-complexity.

Specifically, Al
p(·) is composed of 1) a spatial max-pooling

block that converts activations from the spatial resolution of xp

into that of xl, and 2) a 1×1 convolution (with batch normal-

ization) that projects the input feature map xp into the desired

number of channels for xl. Thus, in comparison to the standard

ResNet block which contains two 3×3 convolutions, each proxy

Al
p(·) contains only 1

18 of the parameters and performs only
1
18 of floating point operations. Second, proxy layers are forced

to compete with each other to minimize the propagation of re-

dundant information through the network. This is accomplished

by introducing a set of auxiliary parameters alp and computing

αl
p as the softmax across all paths merging into layer l

αl
p=

e
alp

∑
k
e
al
k

. (3)

Finally, while the description above implies a dense set of

low-complexity proxies, connecting the outputs of all layers

i < l to that of layer l, we found this to be often unnecessary

(see Section 4.1). Therefore, we limit the number of proxies

3047



…

𝒙𝑖−1 𝐺𝑖 𝒙𝑖𝐴𝑖−1𝑖𝒙1

…

𝒙𝑗𝐵𝑖𝑗𝛼𝑖−1𝑖
𝐴1𝑖

𝛼𝑖𝑖
𝛼1𝑖

𝒙𝑗+𝒙𝑖 𝐵𝑖𝑗 𝛼𝑖𝑗
…

𝐺𝑗+1𝒙𝑖 𝒙𝑗𝐵𝑖𝑗 𝐴𝑗𝑗+1
𝐴𝑗𝑗+𝑛 𝛼𝑗𝑗+𝑛𝛼𝑗𝑗+1𝛼𝑗+1𝑗+1

(a)

…

𝒙𝑖−1 𝐺𝑖 + 𝒙𝑖𝐴𝑖−1𝑖𝒙1

…

𝒙𝑗𝐵𝑖𝑗𝛼𝑖−1𝑖
𝐴1𝑖

𝛼𝑖𝑖
𝛼1𝑖

+𝒙𝑗𝒙𝑖 𝐵𝑖𝑗 𝛼𝑖𝑗
…

𝐺𝑗+1𝒙𝑖 𝒙𝑗𝐵𝑖𝑗 𝐴𝑗𝑗+1
𝐴𝑗𝑗+𝑛 𝛼𝑗𝑗+𝑛𝛼𝑗𝑗+1𝛼𝑗+1𝑗+1

(b)

…

𝒙𝑖−1 𝐺𝑖 𝒙𝑖𝐴𝑖−1𝑖𝒙1

…

𝒙𝑗𝐵𝑖𝑗𝛼𝑖−1𝑖
𝐴1𝑖

𝛼𝑖𝑖
𝛼1𝑖

𝒙𝑗𝒙𝑖 𝐵𝑖𝑗 𝛼𝑖𝑗
…

𝐺𝑗+1𝒙𝑖 𝒙𝑗𝐵𝑖𝑗 +

𝐴𝑗𝑗+1
𝐴𝑗𝑗+𝑛 𝛼𝑗𝑗+𝑛𝛼𝑗𝑗+1𝛼𝑗+1𝑗+1
(c)

Figure 3: Block removal criteria. (a) Self-exclusion. (b) Input exclusion. (c) Output exclusion.

in (2) to the closest k, and use

xl=αl
lGl(xl−1)+

∑l−1
p=max(l−k,1)α

l
pA

l
p(xp). (4)

Figure 1 illustrates the initial student architecture for k=3.

3.4. Tailoring the student to the target task

The student network seeks a trade-off of two goals: low

complexity and performance similar to the teacher.

3.4.1 Constraining student complexity

In the complexity-aware pooling block of Fig. 2, scalars

{αl
p}

l
p=1 act as a soft-attention mechanism that selects which

blocks to use for the target task. Let B
j
i (·) denote the com-

putational block associated with path i→ j, i.e. B
j
i (·)=Gi(·)

if i=j or B
j
i (·)=A

j
i(·) otherwise. Then, block B

j
i (·) can be

removed if one of three conditions hold:

• Self-exclusion (Fig. 3a): path i→j is excluded, i.e. α
j
i =0;

• Input exclusion (Fig. 3b): all paths merging into node i

are excluded, i.e. αi
k=0,∀k≤i;

• Output exclusion (Fig. 3c): all paths departing from node

j are excluded, i.e. αk
j =0,∀k>j and α

j+1
j+1=0.

Note that while self-exclusion only allows the removal of a

single block, both input and output exclusion remove multiple

blocks simultaneously. For example, if all paths merging into

node i are excluded, then all blocks departing from this node

have no viable input and can be removed. Similarly, if all paths

departing from node j are excluded, then all blocks merging into

this node will end up being ignored and can be removed as well.

To tailor the architecture to the target task, the set of scalars

{αl
p}

l
p=1 should enable high performance, but minimize the

expected network complexity. Let R
i,j
self , Ri

inp and R
j
out denote

the events associated with conditions 1, 2 and 3, respectively,

and Cji the complexity of block B
j
i . Then, the expected

complexity of block B
j
i is

E
[

Cji

]

=Cji

(

1−P(Ri,j
self∪R

i
inp∪R

j
out)

)

. (5)

Under the assumptions that events R
i,j
self , Ri

inp and R
j
out are

disjoint, and events R
i,k
self are all independent, the probability

of (5) is given by

P(Ri,j

self∪R
i
inp∪R

j
out)=P(Ri,j

self)+P(Ri
inp)+P(Rj

out) (6)

with

P(Ri
inp)=P

(

∩k≤iR
k,i
self

)

=
∏

k≤iP(Rk,i
self) (7)

P(Rj
out)=P

(

∩k>jR
j,k
self∩R

j+1,j+1
self

)

=P(Rj+1,j+1
self )·

∏

k>jP(Rj,k
self). (8)

Finally, by modeling the probability of self-exclusion by

P(Ri,j
self)=r

j
i =1−αj

i , then (5) becomes

E
[

Cji

]

=Cji

(

1−rji−
∏

k≤ir
i
k−r

j+1
j+1

∏

k>jr
k
j

)

, (9)

and the expected network complexity

E[C]=
∑

i,jE
[

Cji

]

. (10)

Although the exclusion events may not be disjoint or inde-

pendent, the minimization of (10) still provides the desired

incentive towards the use of low-complexity proxies. Hence,

we use (10) as a differentiable complexity penalty explicitly

enforced during training.

3.4.2 Mimicking the teacher

The teacher network is obtained by fine-tuning a pre-trained

network for the target task. To transfer this knowledge to the

student network, the latter is encouraged to match the internal

activations of the teacher, by adding an L2 regularizer

Ω=
∑

l‖x
t
l−xl‖

2, (11)

where x
t
l is the activation of lth block of the teacher network,

xl the corresponding activation of the student network given

by (2), and the sum is carried over all internal blocks as well

as network outputs (prior to the softmax).

3.4.3 Loss function

NETTAILOR optimizes all task-specific parameters of the

student network end-to-end to meet three goals: 1) minimize

classification loss on the target task, 2) minimize network com-

plexity and 3) minimize the approximation error to the teacher

network. Given a target datasetD={xi,yi} of images xi and

labels yi, this is accomplished by minimizing the loss function

L=
∑

iLcls(f(xi),yi)+γ1E[C]+γ2Ω, (12)

where f(·) denotes the output of the student network,

Lcls(f(x),y) is the cross-entropy loss between the network

prediction f(x) and ground-truth label y, E[C] is the expected

network complexity of (9) and (10), Ω is the teacher approx-

imation loss of (11), and γ1 and γ2 two hyper-parameters that

control the importance of each term.

3048



Dataset Accuracy Reduction in Complexity Learned Architecture

VOC Fine-tuning NETTAILOR M: Millions

B: Billions

82.82% 82.90%

Flowers

95.84% 95.51%

SVHN

96.59% 96.53%9 50.0% (9 layers)

45.8% (1.6B)

73.4% (15.6M)

64.6% (13.8M)

35.5% (1.3B)

38.9% (9 layers)

36.1% (7.7M)

10.3% (0.4B)

16.7% (3 layers)

# Parameters 

Removed

# FLOPs 

Removed

# Layers 

Removed

Pre-trained blocks Task-specific blocks

Figure 4: Reduction of network complexity and final architecture after adapting ResNet34 to three datasets using NETTAILOR.

3.5. Pruning and fine­tuning

After training the student network, the magnitude of the

scalars α
j
i reflects the importance of each block, with values

close to zero indicating a low impact on network performance.

Given this observation, we threshold the scalars α
j
i , and use

the three exclusion conditions outlined above to remove all

unnecessary blocks. In order to enable better control over

the trade-off between performance and complexity, proxies

and pre-trained blocks are removed using different pruning

schemes. Since proxy layers are both small and crucial for the

adaptation to the target task, we define a very low threshold

θ (typically 0.05) and only remove proxies with α
j
i <θ. As for

pre-trained layers, we first rank their importance by the values

of αi
i, and remove the k least important blocks. Finally, in

order to recover from the removal of network components, all

remaining task-specific layers are fine-tuned to minimize the

loss of (12) without complexity constraints (γ1=0).

4. Evaluation

We conducted a series of experiments to evaluate the

NETTAILOR procedure. Section 4.1 provides an in-depth

analysis of the impact of important variables such as the

complexity of the target task, the depth of the pre-trained

network, the importance of the teacher and the number of skips

in the student network. Then, to demonstrate the effectiveness

of the proposed procedure, Section 4.2 compares NET-TAILOR

to prior work on several datasets.

4.1. Analysis

We analyze NET-TAILOR using three classification datasets

of varying characteristics: SVHN, VGG-Flowers and Pascal

VOC 2012. SVHN [45] is a large digit recognition dataset

containing 100k images of street view house numbers.

VGG-Flowers [46] is a small fine-grained dataset composed

by 8k images distributed across 102 flower species. PASCAL

VOC 2012 [11] is a dataset for the detection of a small number

(20) of common objects. While VOC was designed for object

detection, we test our method on the classification task alone.

We used ground-truth bounding boxes to crop all objects with

a 20 % margin and re-sampled the dataset to avoid large class

imbalances. We used standard training and test sets in all cases.

Training details We now describe the standard implementation

of NETTAILOR which, unless otherwise specified, is used

throughout our experiments. Global blocks are obtained by

pre-training a large CNN model on ImageNet (ResNet34 in

most of our experiments) and remain unchanged afterward

in order to share them across tasks. For each target task, the

teacher is trained by fine-tuning the pre-trained network. The

student is assembled by augmenting the pre-trained blocks with

three skip connections per layer, and all task-specific parameters

(i.e. final classifier, proxy layers and scalars α) are trained to

minimize the loss of (12) with γ1=0.3 (complexity constraints)

and γ2 = 10 (teacher loss). In the complexity constraints of

(9), the complexity C
j
i is defined as the number of FLOPs

of each block normalized by the total number of FLOPs of

the pre-trained network. This definition makes pre-trained

layers about 20 times more expensive than proxy layers. One

critical detail is the initialization of the scalars α to initially

favor pre-trained over task-specific blocks. This initialization

provided a good starting point for learning (i.e. similar to the

pre-trained network alone) and reduced overfitting. Specifically,

we set the initial value of aii to 2 for all i (i.e. pre-trained blocks),

and a
j
i to−2 for all i 6=j (i.e. proxies). After training the student

network, we remove all proxies with α
j
i <0.05 and the k least

important pre-trained blocks (as ranked by the values of αi
i).

Finally, we fine-tune the remaining task-specific parameters to

minimize the loss of (12) without complexity constraints γ1=0.

The pruning and retraining steps are repeated multiple times

with different values of k, and the leanest model that achieves a

target accuracy within 0.5% of the teacher network is chosen as

the final architecture. All hyper-parameter values were chosen

based on early experiments and used for all three datasets, as

they tend to provide a good trade-off between accuracy and

network complexity. A study of some of these parameters is

provided below. As usual with classification problems, we used

stochastic gradient descent with momentum in all training steps.

Effectiveness of NETTAILOR on various datasets: To study

the impact of dataset complexity, we tuned the ResNet34

architecture using NETTAILOR and measured the maximum

achievable reduction in network complexity that retains perfor-

mance similar to fine-tuning. The results are shown in Fig. 4

for three different datasets. We list the total number of layers,

3049



70

75

80

85

90

95

100

2 5 8 11 14 17 20 23 26

A
cc

u
ra

cy
 [

%
]

# Parameters (Millions)

70

75

80

85

90

95

100

0 1 2 3 4 5
A

cc
u

ra
cy

 [
%

]
# FLOPs (Billions)

ResNet50

ResNet34ResNet18

SVHN Flowers VOCFine-tuning NETTAILOR

ResNet50

ResNet34ResNet18

Figure 5: Accuracy vs. complexity of models of increasing depth.

Diamonds represent the fine-tuned model and crosses the model

obtained with NETTAILOR. The lines connect fine-tuned models to

their adapted counterparts.

75

80

85

90

95

100

0 5 10 15 20 25

A
cc

u
ra

cy
 [

%
]

# Parameters (Millions)

75

80

85

90

95

100

0 1 2 3 4

A
cc

u
ra

cy
 [

%
]

# FLOPs (Billions)

SVHN Flowers VOCFine-tuning NETTAILOR No Teacher

Figure 6: Accuracy vs. complexity of models discovered by

NETTAILOR with and without the teacher. Right-most dots represent

unpruned networks and subsequent ones networks with increasing

numbers of removed layers.

parameters (global and task-specific) and FLOPs removed

from the pre-trained network by NETTAILOR. We also display

the final learned architecture for each task. Fig. 4 shows that

networks trained for simpler tasks, such as SVHN, are the most

heavily pruned, with 9 out of 18 pre-trained blocks removed.

This results in a drastic 73.4 % reduction in total parameters and

a 45.8 % reduction in FLOPs. For simpler tasks, most residual

blocks are unnecessary and fine-tuning likely converts them into

transformations close to the identity, which can be replaced by

low complexity proxies. NETTAILOR also obtains significant

reductions for the more complex Flowers and VOC datasets.

Overall, the results of Fig. 4 show that, for many applications,

large pre-trained networks can be significantly reduced, both

in size and speed, without loss of performance. Furthermore,

because the pre-trained blocks remain unchanged, only a small

number of new parameters is introduced per task: 1.90M

(million) for VOC, 1.88M for flowers and 1.85M for SVHN (pre-

trained ResNet34 blocks have a total of 21.29M parameters).

Depth of pre-trained model: To understand the effectiveness

of NETTAILOR when applied to networks of increasing depth,

we used the ResNet model family: ResNet18, ResNet34,

and ResNet50. Unlike ResNet18 and ResNet34, ResNet50

blocks have a bottleneck architecture, where input maps are

projected into a low-dimensional space by a 1×1 convolution,

then processed by a 3×3 convolution, projected back into

the high-dimensional space through a 1×1 convolution, and

added to the residual link. Due to the high-dimensionality of

Accuracy # Parameters # FLOPS # Blocks

Fine-tuning 96.59 % 21.29 M 3.58 B 18

1-Skip 96.60 % 5.13 M 1.79 B 9

3-Skip 96.53 % 5.65 M 1.94 B 9

5-Skip 96.79 % 6.14 M 1.62 B 7S
V

H
N

Dense-Skip 96.13 % 4.01 M 1.22 B 5

Fine-tuning 95.84 % 21.29 M 3.58 B 18

1-Skip 96.05 % 8.06 M 2.66 B 13

3-Skip 95.51 % 6.07 M 1.85 B 9

5-Skip 95.56 % 7.12 M 2.45 B 9F
lo

w
er

s

Dense-Skip 95.58 % 6.45 M 2.29 B 11

Fine-tuning 82.82 % 21.29 M 3.58 B 18

1-Skip 82.42 % 12.81 M 3.13 B 15

3-Skip 82.33 % 13.54 M 2.98 B 14

5-Skip 82.56 % 12.94 M 2.89 B 13V
O

C

Dense-Skip 82.56 % 14.85 M 3.30 B 15

Table 1: Effect of initial student architecture.

the output, this block architecture does not allow the use of

proxies as defined in Fig. 2, since 1×1 convolutions in the

high-dimensional space are still expensive. Instead, to keep the

complexity of each proxy at about 1
20 of the pre-trained block,

we employ a bottleneck structure to the proxy as well, i.e. we

employ two consecutive 1×1 convolutions with batch-norm.

The first projects the input into a low-dimension space (4 times

smaller than the bottleneck of the pre-trained block), and the

second restores the input dimensionality.

The results depicted in Fig. 5 show that NETTAILOR can

produce architectures that achieve the performance of a larger

CNN (e.g. ResNet50) with the same or fewer parameters as

a smaller one (ResNet18). This is especially important for more

complex problems, where network depth has a bigger impact on

performance. For example, for the VOC dataset, NETTAILOR is

able to reduce ResNet50 to only 11.7M parameters, only 0.5M

more than ResNet18, but with much higher performance (83.2 %

vs 79.6 % accuracy). Reduction in inference speed, however,

was not as drastic for the VOC dataset, since NETTAILOR

mostly removed high-level layers which contain most of the

parameters but only account for a small number of operations.

Teacher supervision: Fig. 6 shows the advantage of using a

fine-tuned network as the teacher. Each line in Fig. 6 shows

the performance achieved by the model after removing different

numbers of blocks k (smaller values of k produce models of

higher complexity). As can be seen, removing the teacher leads

to significant loss in performance, regardless of the number of

removed blocks, with the student network never achieving the

same performance as fine-tuning. The exception to this trend

is the SVHN dataset, which is a simple dataset with a large

number of images. This indicates that the skip architecture of

Fig. 1 is prone to overfitting in smaller datasets, but teacher

supervision provides an effective solution to this problem.

Student architecture: We also compare different student

architectures, by augmenting ResNet34 with 1, 3, 5 or a dense

set of skip proxies. The results presented in Table 1 show

that augmenting the student architecture with a dense set of

proxies can be beneficial for simpler datasets like SVHN. This

3050



CUB [67] Cars [25] Flowers [46] WikiArt [56] Sketch [10] Avg Avg Avg

Acc Params FLOPs Acc Params FLOPs Acc Params FLOPs Acc Params FLOPs Acc Params FLOPs Acc Params FLOPs

Feature [38] 70.03 23.9 4.11 52.80 23.9 4.11 85.99 23.9 24.0 55.60 23.9 4.11 50.86 23.9 4.11 63.05 23.9 4.11

PackNet→ [39] 80.31 23.9 4.11 86.11 23.9 4.11 93.04 23.9 4.11 69.40 23.9 4.11 76.17 23.9 4.11 81.01 23.9 4.11

PackNet← [39] 71.38 23.9 4.11 80.01 23.9 4.11 90.55 23.9 4.11 70.31 23.9 4.11 78.70 23.9 4.11 78.19 23.9 4.11

Piggyback [38] 81.59 24.3 4.11 89.62 24.3 4.11 94.77 24.3 4.11 71.33 24.3 4.11 79.91 24.3 4.11 83.44 24.3 4.11

NETTAILOR 82.52 13.7 3.31 90.56 12.9 3.31 95.79 8.5 2.37 72.98 15.4 3.55 80.48 15.1 3.44 84.47 13.1 3.20

Table 2: Accuracy and model complexity for prior transfer learning methods in five datasets. PackNet performance is sensitive to the order in

which datasets are presented.→ indicates the following order: CUB, Cars, Flowers, WikiArt and Sketch.← indicates reversed order.

ImNet [9] Airc [37] C100 [26] DPed [44] DTD [8] GTSR [60] Flwr [46] Oglt [28] SVHN [45] UCF [59] Mean Score Avg Params Avg FLOPS

LwF [32, 49] 59.87 61.15 82.23 92.34 58.83 97.57 83.05 88.08 96.10 50.04 76.93 2515 5.86 0.87

Piggyback [38] 57.69 65.29 79.87 96.99 57.45 97.27 79.09 87.63 97.24 47.48 76.60 2838 6.04 0.87

DAN [54] 57.74 64.12 80.07 91.30 56.54 98.46 86.05 89.67 96.77 49.38 77.01 2851 6.54 0.97

ResAdapt [50] 60.32 64.21 81.91 94.73 58.83 99.38 84.68 89.21 96.54 50.94 78.07 3412 6.44 0.96

NETTAILOR 61.42 75.07 81.84 94.68 61.28 99.52 86.53 90.09 96.44 49.54 79.64 3744 3.67 0.61

Table 3: Accuracy and model complexity of several methods on the visual decathlon challenge.

is because accurate digit classification depends largely on lower-

level features that are directly bypassed into the classification

layer by proxies that skip a large number of blocks. By contrast,

dense skips are unnecessary for harder datasets, such as Flowers

or VOC, with NETTAILOR removing most of the long reach

proxies. Also, as shown in Table 1, directly imposing a limit

on the number of proxies per layer leads to more significant

reductions in complexity for the same performance level.

4.2. Comparison to prior work

Finally, we compare NETTAILOR to prior transfer learning

methods designed for the efficient classification of multiple

domains. We follow two experimental protocols. The first

protocol described in [38] consists of five datasets: CUB [67],

Stanford Cars [25], Oxford Flowers [46], WikiArt [56] and

Sketch [10]. Following [38], we use the same train/test set

splits, and apply the NETTAILOR procedure to the same

backbone network, ResNet50, with an input size 224x224. The

second protocol is the visual decathlon benchmark [49] and

consists of ten different datasets including ImageNet, Omniglot,

German Traffic Signs, among others. We use the same

train/validation/test sets provided in [49] which contain images

resized to a common resolution of 72 pixels. Similar to [50], we

also use a wide residual network [71] with 26 layers pre-trained

on ImageNet. Results are reported using both top-1 accuracy

and the “decathlon score” [49] which pools all results in a single

metric that accounts for the different difficulty of each task.

Table 2 compares the results of NETTAILOR to several

methods. Feature extraction computes features from a

pre-trained network, which are then used to build a simple

classifier. While feature extraction shares most weights across

datasets, differences between the source and target domains

cannot be corrected, thus achieving low performance. More

refined methods, such as PackNet [39] and Piggyback [38], try

to selectively adjust the network weights in order to remember

previous tasks, or freeze the backbone network and learn a

small set of task-specific parameters (a set of masking weights

in the case of Piggyback) that is used to bridge the gap between

source and target tasks. All these methods ignore the fact that

source and target datasets can differ in terms of difficulty, and

thus the architecture itself should be adjusted to the target task,

not just the weights. As seen in Table 2, these methods are

not competitive with NETTAILOR, which can significantly

reduce the network complexity both in terms of model size and

inference speed. NETTAILOR outperforms all approaches in

all datasets, improving the classification accuracy of the second

best method in four out of five datasets, while requiring an

average of 46% fewer parameters and 22% fewer FLOPS.

Comparisons in the Visual Decathlon benchmark show

similar findings. In addition to Piggyback [38], we also

compared to Learning without Forgetting (LwF) [32], deep

adaptation networks (DAN) [54] and parallel Residual Adapters

(ResAdapt) [50]. LwF learns a new network per task that

retains the responses of the original ImageNet model. Hence,

similar to fine-tuning, the number of parameters in LwF also

grows linearly with the number of tasks. Both ResAdapt and

DAN address this problem by introducing a small amount of

extra parameters that adapt the source network to the target task.

This is accomplished by adjusting each layer’s activations in

the case of ResAdapt, or their parameters directly in the case

of DAN. Although both methods can share large blocks across

tasks, none try to adjust the model complexity to the target

task. As shown in Table 3, NETTAILOR outperforms ResAdapt

by 1.57% across 10 datasets and achieves 332 points higher

in the decathlon score. More importantly, NETTAILOR only

uses 3.67×106 parameters (43% fewer than ResAdapt) and

0.61×109 FLOPs (36% fewer than ResAdapt) per task.

5. Conclusion

In this work, we introduced a novel transfer learning ap-

proach, denoted NETTAILOR, which adapts the architecture of

a pre-trained model to a target task. NETTAILOR uses the layers

of the pre-trained CNN as universal blocks shared across tasks

and combines them with small task-specific layers to generate

a new network. Experiments have shown that NETTAILOR is

capable of learning architectures of increasing complexity for

increasingly harder tasks, while achieving performances similar

to that of transfer techniques like fine-tuning.

3051



References

[1] Rahaf Aljundi, Punarjay Chakravarty, and Tinne Tuytelaars.

Expert gate: Lifelong learning with a network of experts. In

Computer Vision and Pattern Recognition (CVPR), 2017.

[2] Jimmy Ba and Rich Caruana. Do deep nets really need to be

deep? In Advances in Neural Information Processing Systems

(NeurIPS), 2014.

[3] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason

Weston. Curriculum learning. In International Conference on

Machine Learning (ICML), 2009.

[4] Cristian Bucilu, Rich Caruana, and Alexandru Niculescu-Mizil.

Model compression. In International Conference on Knowledge

Discovery and Data Mining (SIGKDD), 2006.

[5] Zhaowei Cai, Mohammad Saberian, and Nuno Vasconcelos.

Learning complexity-aware cascades for deep pedestrian

detection. In International Conference on Computer Vision

(ICCV), 2015.

[6] Rich Caruana. Multitask learning. Machine learning,

28(1):41–75, 1997.

[7] Tianqi Chen, Ian Goodfellow, and Jonathon Shlens. Net2net:

Accelerating learning via knowledge transfer. arXiv preprint

arXiv:1511.05641, 2015.

[8] Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy

Mohamed, and Andrea Vedaldi. Describing textures in the wild.

In Computer Vision and Pattern Recognition (CVPR), 2014.

[9] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li

Fei-Fei. Imagenet: A large-scale hierarchical image database.

In Computer Vision and Pattern Recognition (CVPR), 2009.

[10] Mathias Eitz, James Hays, and Marc Alexa. How do humans

sketch objects? ACM Trans. Graph. (Proc. SIGGRAPH),

31(4):44:1–44:10, 2012.

[11] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,

and A. Zisserman. The PASCAL Visual Object Classes

Challenge 2012 (VOC2012) Results. http://www.pascal-

network.org/challenges/VOC/voc2012/workshop/index.html.

[12] Yang Fan, Fei Tian, Tao Qin, Xiang-Yang Li, and Tie-Yan Liu.

Learning to teach. arXiv preprint arXiv:1805.03643, 2018.

[13] Michael Figurnov, Maxwell D Collins, Yukun Zhu, Li Zhang,

Jonathan Huang, Dmitry Vetrov, and Ruslan Salakhutdinov.

Spatially adaptive computation time for residual networks. In

Computer Vision and Pattern Recognition (CVPR), 2017.

[14] Yaroslav Ganin and Victor Lempitsky. Unsupervised domain

adaptation by backpropagation. In International Conference on

Machine Learning (ICML), 2015.

[15] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra

Malik. Rich feature hierarchies for accurate object detection

and semantic segmentation. In Computer Vision and Pattern

Recognition (CVPR), 2014.

[16] Ian J Goodfellow, Mehdi Mirza, Da Xiao, Aaron Courville,

and Yoshua Bengio. An empirical investigation of catastrophic

forgetting in gradient-based neural networks. arXiv preprint

arXiv:1312.6211, 2013.

[17] Song Han, Jeff Pool, John Tran, and William Dally. Learning both

weights and connections for efficient neural network. In Advances

in Neural Information Processing Systems (NeurIPS), 2015.

[18] Babak Hassibi and David G Stork. Second order derivatives for

network pruning: Optimal brain surgeon. In Advances in Neural

Information Processing Systems (NeurIPS), 1993.

[19] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick.

Mask r-cnn. In International Conference on Computer Vision

(ICCV), 2017.

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep

residual learning for image recognition. In Computer Vision and

Pattern Recognition (CVPR), 2016.

[21] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the

knowledge in a neural network. arXiv preprint arXiv:1503.02531,

2015.

[22] Gao Huang, Danlu Chen, Tianhong Li, Felix Wu, Laurens

van der Maaten, and Kilian Q Weinberger. Multi-scale dense net-

works for resource efficient image classification. In International

Conference on Learning Representations (ICLR), 2018.

[23] Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-task learning

using uncertainty to weigh losses for scene geometry and seman-

tics. In Computer Vision and Pattern Recognition (CVPR), 2018.

[24] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel

Veness, Guillaume Desjardins, Andrei A Rusu, Kieran Milan,

John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al.

Overcoming catastrophic forgetting in neural networks. National

Academy of Sciences, 2017.

[25] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei.

3D object representations for fine-grained categorization. In

International IEEE Workshop on 3D Representation and

Recognition (3dRR), 2013.

[26] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers

of features from tiny images. Technical report, 2009.

[27] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Im-

agenet classification with deep convolutional neural networks. In

Advances in Neural Information Processing Systems (NeurIPS),

2012.

[28] Brenden M Lake, Ruslan Salakhutdinov, and Joshua B Tenen-

baum. Human-level concept learning through probabilistic

program induction. Science, 350(6266):1332–1338, 2015.

[29] Yann LeCun, John S Denker, and Sara A Solla. Optimal brain

damage. In Advances in Neural Information Processing Systems

(NeurIPS), 1990.

[30] Sang-Woo Lee, Jin-Hwa Kim, Jaehyun Jun, Jung-Woo Ha,

and Byoung-Tak Zhang. Overcoming catastrophic forgetting

by incremental moment matching. In Advances in Neural

Information Processing Systems (NeurIPS), 2017.

[31] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and

Hans Peter Graf. Pruning filters for efficient convnets. arXiv

preprint arXiv:1608.08710, 2016.

[32] Zhizhong Li and Derek Hoiem. Learning without forgetting.

IEEE Transactions on Pattern Analysis and Machine Intelligence

(TPAMI), 2017.

[33] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,

Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence

Zitnick. Microsoft coco: Common objects in context. In

European Conference on Computer Vision (ECCV), 2014.

[34] Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens,

Wei Hua, Li-Jia Li, Li Fei-Fei, Alan Yuille, Jonathan Huang,

and Kevin Murphy. Progressive neural architecture search. In

European Conference on Computer Vision (ECCV), 2018.

3052



[35] Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Dif-

ferentiable architecture search. arXiv preprint arXiv:1806.09055,

2018.

[36] David Lopez-Paz et al. Gradient episodic memory for continual

learning. In Advances in Neural Information Processing Systems

(NeurIPS), 2017.

[37] Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew Blaschko,

and Andrea Vedaldi. Fine-grained visual classification of aircraft.

arXiv preprint arXiv:1306.5151, 2013.

[38] Arun Mallya, Dillon Davis, and Svetlana Lazebnik. Piggyback:

Adapting a single network to multiple tasks by learning to mask

weights. In European Conference on Computer Vision (ECCV),

2018.

[39] Arun Mallya and Svetlana Lazebnik. Packnet: Adding multiple

tasks to a single network by iterative pruning. In Conference on

Computer Vision and Pattern Recognition (CVPR), 2018.

[40] Tambet Matiisen, Avital Oliver, Taco Cohen, and John Schul-

man. Teacher-student curriculum learning. arXiv preprint

arXiv:1707.00183, 2017.

[41] Ishan Misra, Abhinav Shrivastava, Abhinav Gupta, and Martial

Hebert. Cross-stitch networks for multi-task learning. In

Computer Vision and Pattern Recognition (CVPR), 2016.

[42] Tom Mitchell, William Cohen, Estevam Hruschka, Partha

Talukdar, Bo Yang, Justin Betteridge, Andrew Carlson, B

Dalvi, Matt Gardner, Bryan Kisiel, et al. Never-ending learning.

Communications of the ACM, 61(5):103–115, 2018.

[43] Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and

Jan Kautz. Pruning convolutional neural networks for resource

efficient inference. arXiv preprint arXiv:1611.06440, 2016.

[44] Stefan Munder and Dariu M Gavrila. An experimental study on

pedestrian classification. IEEE Transactions on Pattern Analysis

and Machine Intelligence (TPAMI), 28(11):1863–1868, 2006.

[45] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco,

Bo Wu, and Andrew Y Ng. Reading digits in natural images

with unsupervised feature learning. In Advances in Neural

Information Processing Systems Workshop (NeurIPS), 2011.

[46] M-E. Nilsback and A. Zisserman. Automated flower classifi-

cation over a large number of classes. In Indian Conference on

Computer Vision, Graphics and Image Processing, 2008.

[47] Rajeev Ranjan, Vishal M Patel, and Rama Chellappa. Hyperface:

A deep multi-task learning framework for face detection,

landmark localization, pose estimation, and gender recognition.

IEEE Transactions on Pattern Analysis and Machine Intelligence

(TPAMI), 2017.

[48] Amal Rannen, Rahaf Aljundi, Matthew B Blaschko, and Tinne

Tuytelaars. Encoder based lifelong learning. In International

Conference on Computer Vision (ICCV), 2017.

[49] Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea Vedaldi.

Learning multiple visual domains with residual adapters. In

Advances in Neural Information Processing Systems (NeurIPS),

2017.

[50] Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea Vedaldi.

Efficient parametrization of multi-domain deep neural networks.

In Computer Vision and Pattern Recognition (CVPR), 2018.

[51] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl,

and Christoph H Lampert. icarl: Incremental classifier and

representation learning. In Computer Vision and Pattern

Recognition (CVPR), 2017.

[52] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali

Farhadi. You only look once: Unified, real-time object detection.

In Computer Vision and Pattern Recognition (CVPR), 2016.

[53] Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou,

Antoine Chassang, Carlo Gatta, and Yoshua Bengio. Fitnets:

Hints for thin deep nets. arXiv preprint arXiv:1412.6550, 2014.

[54] Amir Rosenfeld and John K Tsotsos. Incremental learning

through deep adaptation. IEEE Transactions on Pattern Analysis

and Machine Intelligence (PAMI), 2018.

[55] Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins,

Hubert Soyer, James Kirkpatrick, Koray Kavukcuoglu, Razvan

Pascanu, and Raia Hadsell. Progressive neural networks. arXiv

preprint arXiv:1606.04671, 2016.

[56] Babak Saleh and Ahmed Elgammal. Large-scale classification of

fine-art paintings: Learning the right metric on the right feature.

arXiv preprint arXiv:1505.00855, 2015.

[57] Florian Schroff, Dmitry Kalenichenko, and James Philbin.

Facenet: A unified embedding for face recognition and clustering.

In Computer Vision and Pattern Recognition (CVPR), 2015.

[58] Ali Sharif Razavian, Hossein Azizpour, Josephine Sullivan,

and Stefan Carlsson. Cnn features off-the-shelf: an astounding

baseline for recognition. In Computer Vision and Pattern

Recognition Workshops (CVPRw), 2014.

[59] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah.

Ucf101: A dataset of 101 human actions classes from videos

in the wild. arXiv preprint arXiv:1212.0402, 2012.

[60] Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and Christian

Igel. Man vs. computer: Benchmarking machine learning

algorithms for traffic sign recognition. Neural networks,

32:323–332, 2012.

[61] Surat Teerapittayanon, Bradley McDanel, and HT Kung.

Branchynet: Fast inference via early exiting from deep neural

networks. In International Conference on Pattern Recognition

(ICPR), 2016.

[62] Sebastian Thrun. A lifelong learning perspective for mobile robot

control. In Intelligent Robots and Systems, pages 201–214, 1995.

[63] Eric Tzeng, Judy Hoffman, Trevor Darrell, and Kate Saenko.

Simultaneous deep transfer across domains and tasks. In

International Conference on Computer Vision (ICCV), 2015.

[64] Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell.

Adversarial discriminative domain adaptation. In Computer

Vision and Pattern Recognition (CVPR), 2017.

[65] Andreas Veit and Serge Belongie. Convolutional networks with

adaptive inference graphs. In European Conference on Computer

Vision (ECCV), 2018.

[66] Paul Viola, Michael Jones, et al. Rapid object detection using

a boosted cascade of simple features. In Computer Vision and

Pattern Recognition (CVPR), 2001.

[67] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie.

The Caltech-UCSD Birds-200-2011 Dataset. Technical Report

CNS-TR-2011-001, California Institute of Technology, 2011.

[68] Fan Yang, Wongun Choi, and Yuanqing Lin. Exploit all the

layers: Fast and accurate CNN object detector with scale

dependent pooling and cascaded rejection classifiers. In

Computer Vision and Pattern Recognition (CVPR), 2016.

[69] Jaehong Yoon, Eunho Yang, et al. Lifelong learning with dynam-

ically expandable networks. arXiv preprint arXiv:1708.01547,

2017.

3053



[70] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How

transferable are features in deep neural networks? In Advances

in Neural Information Processing Systems (NeurIPS), 2014.

[71] Sergey Zagoruyko and Nikos Komodakis. Wide residual

networks. In British Machine Vision Conference (BMVC), 2016.

[72] Zhanpeng Zhang, Ping Luo, Chen Change Loy, and Xiaoou

Tang. Facial landmark detection by deep multi-task learning. In

European Conference on Computer Vision (ECCV), 2014.

[73] Bolei Zhou, Agata Lapedriza, Jianxiong Xiao, Antonio Torralba,

and Aude Oliva. Learning deep features for scene recognition

using places database. In Advances in Neural Information

Processing Systems (NeurIPS), 2014.

[74] Hao Zhou, Jose M Alvarez, and Fatih Porikli. Less is more:

Towards compact cnns. In European Conference on Computer

Vision (ECCV), 2016.

[75] Barret Zoph and Quoc V Le. Neural architecture search with

reinforcement learning. arXiv preprint arXiv:1611.01578, 2016.

[76] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le.

Learning transferable architectures for scalable image recognition.

arXiv preprint arXiv:1707.07012, 2(6), 2017.

3054


