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Abstract
NetVM brings virtualization to the Network by enabling
high bandwidth network functions to operate at near
line speed, while taking advantage of the flexibility and
customization of low cost commodity servers. NetVM
allows customizable data plane processing capabilities
such as firewalls, proxies, and routers to be embed-
ded within virtual machines, complementing the con-
trol plane capabilities of Software Defined Networking.
NetVM makes it easy to dynamically scale, deploy, and
reprogram network functions. This provides far greater
flexibility than existing purpose-built, sometimes propri-
etary hardware, while still allowing complex policies and
full packet inspection to determine subsequent process-
ing. It does so with dramatically higher throughput than
existing software router platforms.

NetVM is built on top of the KVM platform and In-
tel DPDK library. We detail many of the challenges
we have solved such as adding support for high-speed
inter-VM communication through shared huge pages
and enhancing the CPU scheduler to prevent overheads
caused by inter-core communication and context switch-
ing. NetVM allows true zero-copy delivery of data to
VMs both for packet processing and messaging among
VMs within a trust boundary. Our evaluation shows
how NetVM can compose complex network functional-
ity from multiple pipelined VMs and still obtain through-
puts up to 10 Gbps, an improvement of more than 250%
compared to existing techniques that use SR-IOV for vir-
tualized networking.

1 Introduction
Virtualization has revolutionized how data center servers
are managed by allowing greater flexibility, easier de-
ployment, and improved resource multiplexing. A simi-
lar change is beginning to happen within communication
networks with the development of virtualization of net-
work functions, in conjunction with the use of software
defined networking (SDN). While the migration of net-
work functions to a more software based infrastructure is
likely to begin with edge platforms that are more “con-
trol plane” focused, the flexibility and cost-effectiveness
obtained by using common off-the-shelf hardware and
systems will make migration of other network functions
attractive. One main deterrent is the achievable per-
formance and scalability of such virtualized platforms

compared to purpose-built (often proprietary) network-
ing hardware or middleboxes based on custom ASICs.

Middleboxes are typically hardware-software pack-
ages that come together on a special-purpose appliance,
often at high cost. In contrast, a high throughput platform
based on virtual machines (VMs) would allow network
functions to be deployed dynamically at nodes in the net-
work with low cost. Further, the shift to VMs would let
businesses run network services on existing cloud plat-
forms, bringing multiplexing and economy of scale ben-
efits to network functionality. Once data can be moved
to, from and between VMs at line rate for all packet sizes,
we approach the long-term vision where the line between
data centers and network resident “boxes” begins to blur:
both software and network infrastructure could be devel-
oped, managed, and deployed in the same fashion.

Progress has been made by network virtualization
standards and SDN to provide greater configurability in
the network [1–4]. SDN improves flexibility by allowing
software to manage the network control plane, while the
performance-critical data plane is still implemented with
proprietary network hardware. SDN allows for new flex-
ibility in how data is forwarded, but the focus on the con-
trol plane prevents dynamic management of many types
of network functionality that rely on the data plane, for
example the information carried in the packet payload.

This limits the types of network functionality that can
be “virtualized” into software, leaving networks to con-
tinue to be reliant on relatively expensive network appli-
ances that are based on purpose-built hardware.

Recent advances in network interface cards (NICs) al-
low high throughput, low-latency packet processing us-
ing technologies like Intel’s Data Plane Development Kit
(DPDK) [5]. This software framework allows end-host
applications to receive data directly from the NIC, elim-
inating overheads inherent in traditional interrupt driven
OS-level packet processing. Unfortunately, the DPDK
framework has a somewhat restricted set of options for
support of virtualization, and on its own cannot support
the type of flexible, high performance functionality that
network and data center administrators desire.

To improve this situation, we have developed NetVM,
a platform for running complex network functional-
ity at line-speed (10Gbps) using commodity hardware.
NetVM takes advantage of DPDK’s high throughput
packet processing capabilities, and adds to it abstractions
that enable in-network services to be flexibly created,
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chained, and load balanced. Since these “virtual bumps”
can inspect the full packet data, a much wider range of
packet processing functionality can be supported than
in frameworks utilizing existing SDN-based controllers
manipulating hardware switches. As a result, NetVM
makes the following innovations:

1. A virtualization-based platform for flexible network
service deployment that can meet the performance of
customized hardware, especially those involving com-
plex packet processing.

2. A shared-memory framework that truly exploits the
DPDK library to provide zero-copy delivery to VMs
and between VMs.

3. A hypervisor-based switch that can dynamically ad-
just a flow’s destination in a state-dependent (e.g.,
for intelligent load balancing) and/or data-dependent
manner (e.g., through deep packet inspection).

4. An architecture that supports high speed inter-VM
communication, enabling complex network services
to be spread across multiple VMs.

5. Security domains that restrict packet data access to
only trusted VMs.

We have implemented NetVM using the KVM and
DPDK platforms−all the aforementioned innovations
are built on the top of DPDK. Our results show how
NetVM can compose complex network functionality
from multiple pipelined VMs and still obtain line rate
throughputs of 10Gbps, an improvement of more than
250% compared to existing SR-IOV based techniques.
We believe NetVM will scale to even higher throughputs
on machines with additional NICs and processing cores.

2 Background and Motivation
This section provides background on the challenges of
providing flexible network services on virtualized com-
modity servers.

2.1 Highspeed COTS Networking
Software routers, SDN, and hypervisor based switching
technologies have sought to reduce the cost of deploy-
ment and increase flexibility compared to traditional net-
work hardware. However, these approaches have been
stymied by the performance achievable with commodity
servers [6–8]. These limitations on throughput and la-
tency have prevented software routers from supplanting
custom designed hardware [9–11].

There are two main challenges that prevent commer-
cial off-the-shelf (COTS) servers from being able to pro-
cess network flows at line speed. First, network pack-
ets arrive at unpredictable times, so interrupts are gen-
erally used to notify an operating system that data is
ready for processing. However, interrupt handling can
be expensive because modern superscalar processors use
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Figure 1: DPDK’s run-time environment over Linux.

long pipelines, out-of-order and speculative execution,
and multi-level memory systems, all of which tend to
increase the penalty paid by an interrupt in terms of cy-
cles [12, 13]. When the packet reception rate increases
further, the achieved (receive) throughput can drop dra-
matically in such systems [14]. Second, existing operat-
ing systems typically read incoming packets into kernel
space and then copy the data to user space for the applica-
tion interested in it. These extra copies can incur an even
greater overhead in virtualized settings, where it may be
necessary to copy an additional time between the hyper-
visor and the guest operating system. These two sources
of overhead limit the the ability to run network services
on commodity servers, particularly ones employing vir-
tualization [15, 16].

The Intel DPDK platform tries to reduce these over-
heads by allowing user space applications to directly poll
the NIC for data. This model uses Linux’s huge pages
to pre-allocate large regions of memory, and then allows
applications to DMA data directly into these pages. Fig-
ure 1 shows the DPDK architecture that runs in the ap-
plication layer. The poll mode driver allows applications
to access the NIC card directly without involving ker-
nel processing, while the buffer and ring management
systems resemble the memory management systems typ-
ically employed within the kernel for holding sk buffs.

While DPDK enables high throughput user space ap-
plications, it does not yet offer a complete framework for
constructing and interconnecting complex network ser-
vices. Further, DPDK’s passthrough mode that provides
direct DMA to and from a VM can have significantly
lower performance than native IO1. For example, DPDK
supports Single Root I/O Virtualization (SR-IOV2) to al-
low multiple VMs to access the NIC, but packet “switch-
ing” (i.e., demultiplexing or load balancing) can only be
performed based on the L2 address. As depicted in Fig-
ure 2(a), when using SR-IOV, packets are switched on

1 Until Sandy-bridge, the performance was close to half of native per-
formance, but with the next generation Ivy-bridge processor, the
claim has been that performance has improved due to IOTLB (I/O
Translation Lookaside Buffer) super page support [17]. But no per-
formance results have been released.

2 SR-IOV makes it possible to logically partition a NIC and expose to
each VM a separate PCI-based NIC called a “Virtual Function” [18].
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Figure 2: DPDK uses per-port switching with SR-IOV,
whereas NetVM provides a global switch in the hypervi-
sor and shared-memory packet transfer (dashed lines).

a per-port basis in the NIC, which means a second data
copy is required if packets are forwarded between VMs
on a shared port. Even worse, packets must go out of the
host and come back via an external switch to be trans-
mitted to a VM that is connected to another port’s virtual
function. Similar overheads appear for other VM switch-
ing platforms, e.g., Open vSwitch [19] and VMware’s
vNetwork distributed switch [20]. We seek to overcome
this limitation in NetVM by providing a flexible switch-
ing capability without copying packets as shown in Fig-
ure 2(b). This improves performance of communica-
tion between VMs, which plays an important role when
chained services are deployed.

Intel recently released an integration of DPDK and
Open vSwitch [21] to reduce the limitations of SR-IOV
switching. However, the DPDK vSwitch still requires
copying packets between the hypervisor and the VM’s
memory, and does not support directly-chained VM com-
munication. NetVM’s enhancements go beyond DPDK
vSwitch by providing a framework for flexible state- or
data-dependent switching, efficient VM communication,
and security domains to isolate VM groups.

2.2 Flexible Network Services
While platforms like DPDK allow for much faster pro-
cessing, they still have limits on the kind of flexibility
they can provide, particularly for virtual environments.
The NIC based switching supported by DPDK + SR-IOV
is not only expensive, but is limited because the NIC only
has visibility into Layer 2 headers. With current tech-
niques, each packet with a distinct destination MAC can
be delivered to a different destination VM. However, in
a network resident box (such as a middlebox acting as a
firewall, a proxy, or even if the COTS platform is acting
as a router), the destination MAC of incoming packets is
the same. While advances in NIC design could reduce
these limitations, a hardware based solution will never
match the flexibility of a software-based approach.

By having the hypervisor perform the initial packet
switching, NetVM can support more complex and dy-
namic functionality. For example, each application that
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Figure 3: Architectural Differences for Packet Delivery
in Virtualized Platform.

supports a distinct function may reside in a separate VM,
and it may be necessary to exploit flow classification
to properly route packets through VMs based on mech-
anisms such as shallow (header-based) or deep (data-
based) packet analysis. At the same time, NetVM’s
switch may use state-dependent information such as VM
load levels, time of day, or dynamically configured poli-
cies to control the switching algorithm. Delivery of pack-
ets based on such rules is simply not feasible with current
platforms.

2.3 Virtual Machine Based Networking
Network providers construct overall network function-
ality by combining middleboxes and network hardware
that typically have been built by a diverse set of vendors.
While NetVM can enable fast packet processing in soft-
ware, it is the use of virtualization that will permit this
diverse set of services to “play nice” with each other—
virtualization makes it trivial to encapsulate a piece of
software and its OS dependencies, dramatically simplify-
ing deployment compared to running multiple processes
on one bare-metal server. Running these services within
VMs also could permit user-controlled network func-
tions to be deployed into new environments such as cloud
computing platforms where VMs are the norm and isola-
tion between different network services would be crucial.

The consolidation and resource management benefits
of virtualization are also well known. Unlike hardware
middleboxes, VMs can be instantiated on demand when
and where they are needed. This allows NetVM to mul-
tiplex one server for several related network functions,
or to dynamically spawn VMs where new services are
needed. Compared to network software running on bare
metal, using a VM for each service simplifies resource
allocation and improves performance isolation. These
characteristics are crucial for network services that often
have strict performance requirements.

3 System Design
Figure 3 compares two existing, commonly implemented
network virtualization techniques against NetVM. In
the first case, representing traditional virtualization plat-
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Figure 4: NetVM only requires a simple descriptor to
be copied via shared memory (solid arrows), which then
gives the VM direct access to packet data stored in huge
pages (dashed arrow).

forms, packets arrive at the NIC and are copied into the
hypervisor. A virtual switch then performs L2 (or a
more complex function, based on the full 5-tuple packet
header) switching to determine which VM is the recip-
ient of the packet and notifies the appropriate virtual
NIC. The memory page containing the packet is then ei-
ther copied or granted to the Guest OS, and finally the
data is copied to the user space application. Not surpris-
ingly, this process involves significant overhead, prevent-
ing line-speed throughput.

In the second case (Figure 3(b)), SR-IOV is used to
perform L2 switching on the NIC itself, and data can be
copied directly into User Space of the appropriate VM.
While this minimizes data movement, it does come at the
cost of limited flexibility in how packets are routed to
the VM, since the NIC must be configured with a static
mapping and packet header information other than the
MAC address cannot be used for routing.

The architecture of NetVM is shown in Figure 3(c). It
does not rely on SR-IOV, instead allowing a user space
application in the hypervisor to analyze packets and de-
cide how to forward them. However, rather than copy
data to the Guest, we use a shared memory mechanism to
directly allow the Guest user space application to read the
packet data it needs. This provides both flexible switch-
ing and high performance.

3.1 Zero-Copy Packet Delivery
Network providers are increasingly deploying complex
services composed of routers, proxies, video transcoders,
etc., which NetVM could consolidate onto a single host.
To support fast communication between these compo-
nents, NetVM employs two communication channels to
quickly move data as shown in Figure 4. The first is a
small, shared memory region (shared between the hyper-
visor and each individual VM) that is used to transmit
packet descriptors. The second is a huge page region
shared with a group of trusted VMs that allows chained
applications to directly read or write packet data. Mem-
ory sharing through a “grant” mechanism is commonly

used to transfer control of pages between the hypervi-
sor and guest; by expanding this to a region of memory
accessible by all trusted guest VMs, NetVM can enable
efficient processing of flows traversing multiple VMs.

NetVM Core, running as a DPDK enabled user ap-
plication, polls the NIC to read packets directly into the
huge page area using DMA. It decides where to send
each packet based on information such as the packet
headers, possibly content, and/or VM load statistics.
NetVM inserts a descriptor of the packet in the ring
buffer that is setup between the individual destination
VM and hypervisor. Each individual VM is identified
by a “role number”−a representation of each network
function, that is assigned by the VM manager. The de-
scriptor includes a mbuf location (equivalent to a sk buff
in the Linux kernel) and huge page offset for packet re-
ception. When transmitting or forwarding packets, the
descriptor also specifies the action (transmit through the
NIC, discard, or forward to another VM) and role num-
ber (i.e., the destination VM role number when forward-
ing). While this descriptor data must be copied between
the hypervisor and guest, it allows the guest application
to then directly access the packet data stored in the shared
huge pages.

After the guest application (typically implementing
some form of network functionality like a router or fire-
wall) analyzes the packet, it can ask NetVM to forward
the packet to a different VM or transmit it over the net-
work. Forwarding simply repeats the above process—
NetVM copies the descriptor into the ring buffer of a dif-
ferent VM so that it can be processed again; the packet
data remains in place in the huge page area and never
needs to be copied (although it can be independently
modified by the guest applications if desired).

3.2 Lockless Design
Shared memory is typically managed with locks, but
locks inevitably degrade performance by serializing data
accesses and increasing communication overheads. This
is particularly problematic for high-speed networking: to
maintain full 10 Gbps throughput independent of packet
size, a packet must be processed within 67.2 ns [22], yet
context switching for a contested lock takes on the order
of micro-seconds [23, 24], and even an uncontested lock
operation may take tens of nanoseconds [25]. Thus a sin-
gle context switch could cause the system to fall behind,
and thus may result in tens of packets being dropped.

We avoid these issues by having parallelized queues
with dedicated cores that service them. When work-
ing with NICs that have multiple queues and Receive
Side Scaling (RSS) capability1, the NIC receives pack-

1 Modern NICs support RSS, a network driver technology to allow
packet receive processing to be load balanced across multiple pro-
cessors or cores [26].
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ets from the link and places them into one of several
flow queues based on a configurable (usually an n-tuple)
hash [27]. NetVM allows only two threads to manipulate
this shared circular queue—the (producer) DPDK thread
run by a core in the hypervisor and the (consumer) thread
in the guest VM that performs processing on the packet.
There is only a single producer and a single consumer, so
synchronization is not required since neither will read or
write simultaneously to the same region.

Our approach eliminates the overhead of locking by
dedicating cores to each queue. This still permits scal-
ability, because we can simply create additional queues
(each managed by a pair of threads/cores). This works
with the NIC’s support for RSS, since incoming flows
can automatically be load balanced across the available
queues. Note that synchronization is not required to
manage the huge page area either, since only one appli-
cation will ever have control of the descriptor containing
a packet’s address.

Figure 5(a) depicts how two threads in a VM de-
liver packets without interrupting each other. Each core
(marked as a circle) in the hypervisor receives packets
from the NIC and adds descriptors to the tail of its own
queue. The guest OS also has two dedicated cores, each
of which reads from the head of its queue, performs pro-
cessing, and then adds the packet to a transmit queue.
The hypervisor reads descriptors from the tail of these
queues and causes the NIC to transmit the associated
packets. This thread/queue separation guarantees that
only a single entity accesses the data at a time.

3.3 NUMA-Aware Design
Multi-processor systems exhibit NUMA characteristics,
where memory access time depends on the memory lo-
cation relative to a processor. Having cores on different
sockets access memory that maps to the same cache line
should be avoided, since this will cause expensive cache
invalidation messages to ping pong back and forth be-
tween the two cores. As a result, ignoring the NUMA
aspects of modern servers can cause significant perfor-
mance degradation for latency sensitive tasks like net-

work processing [28, 29].
Quantitatively, a last-level-cache (L3) hit on a 3GHz

Intel Xeon 5500 processor takes up to 40 cycles, but the
miss penalty is up to 201 cycles [30]. Thus if two sepa-
rate sockets in NetVM end up processing data stored in
nearby memory locations, the performance degradation
can potentially be up to five times, since cache lines will
end up constantly being invalidated.

Fortunately, NetVM can avoid this issue by carefully
allocating and using huge pages in a NUMA-aware fash-
ion. When a region of huge pages is requested, the mem-
ory region is divided uniformly across all sockets, thus
each socket allocates a total of (total huge page size /
number of sockets) bytes of memory from DIMMs that
are local to the socket. In the hypervisor, NetVM then
creates the same number of receive/transmit threads as
there are sockets, and each is used only to process data
in the huge pages local to that socket. The threads inside
the guest VMs are created and pinned to the appropriate
socket in a similar way. This ensures that as a packet is
processed by either the host or the guest, it always stays
in a local memory bank, and cache lines will never need
to be passed between sockets.

Figure 5 illustrates how two sockets (gray and white)
are managed. That is, a packet handled by gray threads
is never moved to white threads, thus ensuring fast mem-
ory accesses and preventing cache coherency overheads.
This also shows how NetVM pipelines packet process-
ing across multiple cores—the initial work of handling
the DMAed data from the NIC is performed by cores in
the hypervisor, then cores in the guest perform packet
processing. In a multi-VM deployment where complex
network functionality is being built by chaining together
VMs, the pipeline extends to an additional pair of cores
in the hypervisor that can forward packets to cores in the
next VM. Our evaluation shows that this pipeline can be
extended as long as there are additional cores to perform
processing (up to three separate VMs in our testbed).

3.4 Huge Page Virtual Address Mapping
While each individual huge page represents a large con-
tiguous memory area, the full huge page region is spread
across the physical memory both because of the per-
socket allocations described in Section 3.3, and because
it may be necessary to perform multiple huge page allo-
cations to reach the desired total size if it is bigger than
the default unit of huge page size−the default unit size
can be found under /proc/meminfo. This poses a prob-
lem since the address space layout in the hypervisor is
not known by the guest, yet guests must be able to find
packets in the shared huge page region based on the ad-
dress in the descriptor. Thus the address where a packet
is placed by the NIC is only meaningful to the hypervi-
sor; the address must be translated so that the guest will



450 11th USENIX Symposium on Networked Systems Design and Implementation  USENIX Association

HP#3 HP#4 HP#1 HP#2

HP#1 HP#2 HP#3 HP#4

Host Huge Page VA Mapping

VM Huge Page PCI Mapping

Packet

PacketOffset
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ory must be contiguously aligned within the VM. NetVM
must be able to quickly translate the address of a new
packet from the host’s virtual address space to an offset
within the VM’s address space.

be able to access it in the shared memory region. Further,
looking up these addresses must be as fast as possible in
order to perform line-speed packet processing.

NetVM overcomes the first challenge by mapping the
huge pages into the guest in a contiguous region, as
shown in Figure 6. NetVM exposes these huge pages
to guest VMs using an emulated PCI device. The guest
VM runs a driver that polls the device and maps its mem-
ory into user space, as described in Section 4.3. In effect,
this shares the entire huge page region among all trusted
guest VMs and the hypervisor. Any other untrusted VMs
use a regular network interface through the hypervisor,
which means they are not able to see the packets received
from NetVM.

Even with the huge pages appearing as a contiguous
region in the guest’s memory space, it is non-trivial to
compute where a packet is stored. When NetVM DMAs
a packet into the huge page area, it receives a descrip-
tor with an address in the hypservisor’s virtual address
space, which is meaningless to the guest application that
must process the packet. While it would be possible to
scan through the list of allocated huge pages to deter-
mine where the packet is stored, that kind of process-
ing is simply too expensive for high-speed packet rates
because every packet needs to go through this process.
To resolve this problem, NetVM uses only bit operations
and precomputed lookup tables; our experiments show
that this improves throughput by up to 10% (with 8 huge
pages) and 15% (with 16 huge pages) in the worst case
compared to a naive lookup.

When a packet is received, we need to know which
huge page it belongs to. Firstly, we build up an index
map that converts a packet address to a huge page index.
The index is taken from the upper 8 bits of its address
(31st bit to 38th bit). The first 30 bits are the offset in the
corresponding huge page, and the rest of the bits (left of
the 38th bit) can be ignored. We denote this function as
IDMAP(h) = (h >> 30)&0xFF , where h is a memory
address. This value is then used as an index into an array
HMAP[i] to determine the huge page number.

To get the address base (i.e., a starting address of

each huge page in the ordered and aligned region) of
the huge page where the packet belongs to, we need to
establish an accumulated address base. If all the huge
pages have the same size, we do not need this address
base−instead, just multiplying is enough, but since there
can be different huge page sizes, we need to keep track
of an accumulated address base. A function HIGH(i)
keeps a starting address of each huge page index i.
Lastly, the residual address is taken from last 30 bits of
a packet address using LOW (a) = a&0x3FFFFFFF .
OFFSET (p) = HIGH(HMAP[IDMAP(p)]) | LOW (p)
returns an address offset of contiguous huge pages in the
emulated PCI.

3.5 Trusted and Untrusted VMs
Security is a key concern in virtualized cloud platforms.
Since NetVM aims to provide zero-copy packet trans-
mission while also having the flexibility to steer flows
between cooperating VMs, it shares huge pages assigned
in the hypervisor with multiple guest VMs. A malicious
VM may be able to guess where the packets are in this
shared region to eavesdrop or manipulate traffic for other
VMs. Therefore, there must be a clear separation be-
tween trusted VMs and non-trusted VMs. NetVM pro-
vides a group separation to achieve the necessary secu-
rity guarantees. When a VM is created, it is assigned to
a trust group, which determines what range of memory
(and thus which packets) it will have access to.

While our current implementation supports only
trusted or untrusted VMs, it is possible to subdivide
this further. Prior to DMAing packet data into a huge
page, DPDK’s classification engine can perform a shal-
low analysis of the packet and decide which huge page
memory pool to copy it to. This would, for example, al-
low traffic flows destined for one cloud customer to be
handled by one trust group, while flows for a different
customer are handled by a second NetVM trust group
on the same host. In this way, NetVM enables not only
greater flexibility in network function virtualization, but
also greater security when multiplexing resources on a
shared host.

Figure 4 shows a separation between trusted VM
groups and a non-trusted VM. Each trusted VM group
gets its own memory region, and each VM gets a ring
buffer for communication with NetVM. In constrast,
non-trusted VMs only can use generic network paths
such as those in Figure 3 (a) or (b).

4 Implementation Details
NetVM’s implementation includes the NetVM Core En-
gine (the DPDK application running in the hypervisor),
a NetVM manager, drivers for an emulated PCI device,
modifications to KVM’s CPU allocation policies, and
NetLib (our library for building in-network functional-
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ity in VM’s userspace). Our implementation is built on
QEMU 1.5.0 (KVM included), and DPDK 1.4.1.

KVM and QEMU allow a regular Linux host to run
one or more VMs. Our functionality is split between
code in the guest VM, and code running in user space of
the host operating system. We use the terms host oper-
ating system and hypervisor interchangeably in this dis-
cussion.

4.1 NetVM Manager
The NetVM manager runs in the hypervisor and provides
a communication channel so that QEMU can pass infor-
mation to the NetVM core engine about the creation and
destruction of VMs, as well as their trust level. When
the NetVM manager starts, it creates a server socket to
communicate with QEMU. Whenever QEMU starts a
new VM, it connects to the socket to ask the NetVM
Core to initialize the data structures and shared mem-
ory regions for the new VM. The connection is im-
plemented with a socket-type chardev with “-chardev
socket,path=<path>,id=<id>” in the VM configura-
tion. This is a common approach to create a communica-
tion channel between a VM and an application running
in the KVM host, rather than relying on hypervisor-based
messaging [31].

NetVM manager is also responsible for storing the
configuration information that determines VM trust
groups (i.e., which VMs should be able to connect to
NetVM Core) and the switching rules. These rules are
passed to the NetVM Core Engine, which implements
these policies.

4.2 NetVM Core Engine
The NetVM Core Engine is a DPDK userspace applica-
tion running in the hypervisor. NetVM Core is initialized
with user settings such as the processor core mapping,
NIC port settings, and the configuration of the queues.
These settings determine how many queues are created
for receiving and transmitting packets, and which cores
are allocated to each VM for these tasks. NetVM Core
then allocates the Huge Page region and initializes the
NIC so it will DMA packets into that area when polled.

The NetVM core engine has two roles: the first role is
to receive packets and deliver/switch them to VMs (us-
ing zero-copy) following the specified policies, and the
other role is to communicate with the NetVM manager to
synchronize information about new VMs. The main con-
trol loop first polls the NIC and DMAs packets to huge
pages in a burst (batch), then for each packet, NetVM de-
cides which VM to notify. Instead of copying a packet,
NetVM creates a tiny packet descriptor that contains the
huge page address, and puts that into the private shared
ring buffer (shared between the VM and NetVM Core).
The actual packet data is accessible to the VM via shared
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Figure 7: NetVM’s architecture spans the guest and host
systems; an emulated PCI device is used to share mem-
ory between them.

memory, accessible over the emulated PCI device de-
scribed below.

4.3 Emulated PCI
QEMU and KVM do not directly allow memory to be
shared between the hypervisor and VMs. To overcome
this limitation, we use an emulated PCI device that al-
lows a VM to map the device’s memory—since the de-
vice is written in software, this memory can be redi-
rected to any memory location owned by the hypervisor.
NetVM needs two seperate memory regions: a private
shared memory (the address of which is stored in the de-
vice’s BAR#0 register) and huge page shared memory
(BAR#1). The private shared memory is used as ring
buffers to deliver the status of user applications (VM →
hypervisor) and packet descriptors (bidirectional). Each
VM has this individual private shared memory. The huge
page area, while not contiguous in the hypervisor, must
be mapped as one contiguous chunk using the mem-
ory region add subregion function. We illustrated how
the huge pages map to virtual addresses, earlier in Sec-
tion 3.4. In our current implementation, all VMs access
the same shared huge page region, although this could be
relaxed as discussed in 3.5.

Inside a guest VM that wishes to use NetVM’s high-
speed IO, we run a front-end driver that accesses this em-
ulated PCI device using Linux’s Userspace I/O frame-
work (UIO). UIO was introduced in Linux 2.6.23 and
allows device drivers to be written almost entirely in
userspace. This driver maps the two memory regions
from the PCI device into the guest’s memory, allowing
a NetVM user application, such as a router or firewall, to
directly work with the incoming packet data.

4.4 NetLib and User Applications
Application developers do not need to know anything
about DPDK or NetVM’s PCI device based communica-
tion channels. Instead, our NetLib framework provides
an interface between PCI and user applications. User
applications only need to provide a structure containing
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Figure 8: NetLib provides a bridge between PCI device
and user applications.

configuration settings such as the number of cores, and
a callback function. The callback function works similar
to NetFilter in the linux kernel [32], a popular frame-
work for packet filtering and manipulation. The callback
function is called when a packet is received. User appli-
cations can read and write into packets, and decide what
to do next. Actions include discard, send out to NIC,
and forward to another VM. As explained in Section 4.1,
user applications know the role numbers of other VMs.
Therefore, when forwarding packets to another VM, user
applications can specify the role number, not network ad-
dresses. This abstraction provides an easy way to imple-
ment communication channels between VMs.

Figure 8 illustrates a packet flow. When a packet is re-
ceived from the hypervisor, a thread in NetLib fetches it
and calls back a user application with the packet data.
Then the user application processes the packet (read
or/and write), and returns with an action. NetLib puts the
action in the packet descriptor and sends it out to a trans-
mit queue. NetLib supports multi-threading by provid-
ing each user thread with its own pair of input and output
queues. There are no data exchanges between threads
since NetLib provides a lockless model as NetVM does.

5 Evaluation
NetVM enables high speed packet delivery in-and-out of
VMs and between VMs, and provides flexibility to steer
traffic between function components that reside in dis-
tinct VMs on the NetVM platform. In this section, we
evaluate NetVM with the following goals:

• Demonstrate NetVM’s ability to provide high speed
packet delivery with typical applications such as:
Layer 3 forwarding, a userspace software router, and
a firewall (§ 5.2),

• Show that the added latency with NetVM functioning
as a middlebox is minimal (§ 5.3),

• Analyze the CPU time based on the task segment (§
5.4), and

• Demonstrate NetVM’s ability to steer traffic flexibly
between VMs(§ 5.5).

In our experimental setup, we use two Xeon CPU
X5650 @ 2.67GHz (2x6 cores) servers—one for the
system under test and the other acting as a traffic
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Figure 9: Huge page size can degrade throughput up to
26% (64-byte packets). NetVM needs 6GB to achieve
the line rate speed.

generator—each of which has an Intel 82599EB 10G
Dual Port NIC (with one port used for our performance
experiments) and 48GB memory. We use 8GB for huge
pages because Figure 9 shows that at least 6GB is needed
to achieve the full line-rate (we have seen in Intel’s per-
formance reports setting 8GB as a default huge page
size). The host OS is Red Hat 6.2 (kernel 2.6.32), and the
guest OS is Ubuntu 12.10 (kernel 3.5). DPDK-1.4.1 and
QEMU-1.5.0 are used. We use PktGen from WindRiver
to generate traffic [33]. The base core assignment other-
wise mentioned differently follows 2 cores to receive, 4
cores to transmit/forward, and 2 cores per VM.

We also compare NetVM with SR-IOV, the high per-
formance IO pass-through system popularly used. SR-
IOV allows the NIC to be logically partitioned into “vir-
tual functions”, each of which can be mapped to a differ-
ent VM. We measure and compare the performance and
flexibility provided by these architectures.

5.1 Applications
L3 Forwarder [34]: We use a simple layer-3 router. The
forwarding function uses a hash map for the flow classi-
fication stage. Hashing is used in combination with a
flow table to map each input packet to its flow at run-
time. The hash lookup key is represented by a 5-tuple.
The ID of the output interface for the input packet is read
from the identified flow table entry. The set of flows used
by the application is statically configured and loaded into
the hash at initialization time (this simple layer-3 router
is similar to the sample L3 forwarder provided in the
DPDK library).
Click Userspace Router [10]: We also use Click, a more
advanced userspace router toolkit to measure the perfor-
mance that may be achieved by ‘plugging in’ an existing
router implementation as-is into a VM, treating it as a
‘container’. Click supports the composition of elements
that each performs simple computations, but together can
provide more advanced functionality such as IP routing.
We have slightly modified Click by adding new receive
and transmit elments that use Netlib for faster network
IO. In total our changes comprise approximately 1000
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Figure 10: Forwarding rate as a function of input rate for
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and Native Linux Click-NetVM router (64-byte packets).

lines of code. We test both a standard version of Click
using Linux IO and our Netlib zero-copy version.
Firewall [35]: Firewalls control the flow of network traf-
fic based on security policies. We use Netlib to build
the foundational feature for firewalls—the packet filter.
Firewalls with packet filters operate at layer 3, the net-
work layer. This provides network access control based
on several pieces of information in a packet, including
the usual 5-tuple: the packet’s source and destination IP
address, network or transport protocol id, source and des-
tination port; in addition its decision rules would also
factor in the interface being traversed by the packet, and
its direction (inbound or outbound).

5.2 High Speed Packet Delivery
Packet Forwarding Performance: NetVM’s goal is to
provide line rate throughput, despite running on a virtu-
alized platform. To show that NetVM can indeed achieve
this, we show the L3 packet forwarding rate vs. the input
traffic rate. The theoretical value for the nominal 64-byte
IP packet for a 10G Ethernet interface−with preamble
size of 8 bytes, a minimum inter-frame gap 12 bytes−is
14,880,952 packets.

Figure 10 shows the input rate and the forwarded rate
in packets/sec for three cases: NetVM’s simple L3 for-
warder, the Click router using NetVM (Click-NetVM),
and Click router using native Linux (Click-Native-
Linux). NetVM achieves the full line-rate, whereas
Click-NetVM has a maximum rate of around 6Gbps.
This is because Click has added overheads for scheduling
elements (confirmed by the latency analysis we present
subsequently in Table 1). Notice that increasing the input
rate results in either a slight drop-off in the forwarding
rate (as a result of wasted processing of packets that are
ultimately dropped), or plateaus at that maximum rate.
We believe Click-NetVM’s performance could be further
improved by either adding multi-threading support or us-
ing a faster processor, but SR-IOV can not achieve better
performance this way. Not surprisingly, Click-Native-
Linux performance is extremely poor (max 327Mbps),
illustrating the dramatic improvement provided simply
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Figure 11: NetVM provides a line-rate speed regardless
of packet sizes. Due to large application overhead, Click-
NetVM achieves 6.8Gbps with 64-byte packet size.

by zero-copy IO. [10].
With SR-IOV, the VM has two virtual functions as-

sociated with it and runs DPDK with two ports using
two cores. SR-IOV achieves a maximum throughput of
5Gbps. We have observed that increasing the number of
virtual functions or cores does not improve the maximum
throughput. We speculate this limitation comes from the
speed limitation on hardware switching.

Figure 11 now shows the forwarding rate as the packet
size is varied. Since NetVM does not have further over-
heads as a consequence of the increased packet size (data
is delivered by DMA), it easily achieves the full line-rate.
Also, Click-NetVM also can provide the full line-rate for
128-byte and larger packet sizes.
Inter-VM Packet Delivery: NetVM’s goal is to build
complex network functionality by composing chains of
VMs. To evaluate how pipelining VM processing el-
ements affects throughput, we measure the achieved
throughput when varying the number of VMs through
which a packet must flow. We compare NetVM to a set
of SR-IOV VMs, the state-of-the-art for virtualized net-
working.

Figure 12 shows that NetVM achieves a significantly
higher base throughput for one VM, and that it is able
to maintain nearly the line rate for chains of up to three
VMs. After this point, our 12-core system does not have
enough cores to dedicate to each VM, so there begins
to be a processing bottleneck (e.g., four VMs require
a total of 14 cores: 2 cores−one from each processor
for NUMA-awareness−to receive packets in the host, 4
cores to transmit/forward between VMs, and 2 cores per
VM for application-level processing). We believe that
more powerful systems should easily be able to support
longer chains using our architecture.

For a more realistic scenario, we consider a chain
where 40% of incoming traffic is processed only by the
first VM (an L2 switch) before being transmitted out the
wire, while the remaining 60% is sent from the L2 switch
VM through a Firewall VM, and then an L3 switch VM
(e.g., a load balancer). In this case, our test machine
has sufficient CPU capacity to achieve the line-rate for
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Figure 12: Inter-VM communication using NetVM can
achieve a line-rate speed when VMs are well scheduled
in different CPU cores (here, up to 3 VMs).

the three VM chain, and sees only a small decrease if
additional L3 switch VMs are added to the end of the
chain. In contrast, SR-IOV performance is affected by
the negative impact of IOTLB cache-misses, as well as a
high data copy cost to move between VMs. Input/output
memory management units (IOMMUs) use an IOTLB to
speed up address resolution, but still each IOTLB cache-
miss renders a substantial increase in DMA latency and
performance degradation of DMA-intensive packet pro-
cessing [36, 37].

5.3 Latency
While maintaining line-rate throughput is critical for in-
network services, it is also important for the latency
added by the processing elements to be minimized. We
quantify this by measuring the average roundtrip la-
tency for L3 forwarding in each platform. The mea-
surement is performed at the traffic generator by looping
back 64-byte packets sent through the platform. We in-
clude a timestamp on the packet transmitted. Figure 13
shows the roundtrip latency for the three cases: NetVM,
Click-NetVM, and SR-IOV using identical L3 Forward-
ing function. Latency for Click-NetVM and SR-IOV in-
creases especially at higher loads when there are addi-
tional packet processing delays under overload. We spec-
ulate that at very low input rates, none of the systems are
able to make full benefit of batched DMAs and pipelin-
ing between cores, explaining the initially slightly worse
performance for all approaches. After the offered load
exceeds 5Gbps, SR-IOV and Click are unable to keep up,
causing a significant portion of packets to be dropped. In
this experiment, the queue lengths are relatively small,
preventing the latency from rising significantly. The drop
rate of SR-IOV rises to 60% at 10Gbps, while NetVM
drops zero pockets.

5.4 CPU Time Breakdown
Table 1 breaks down the CPU cost of forwarding a packet
through NetVM. Costs were converted to nanoseconds
from the Xeon’s cycle counters [38]. Each measurement
is the average over a 10 second test. These measurements
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are larger than the true values because using Xeon cycle
counters has significant overhead (the achieved through-
put drops from 10Gbps to 8.7Gbps). Most of the tasks
performed by a NetVM’s CPU are included in the table.

“NIC → Hypervisor” measures the time it takes
DPDK to read a packet from the NIC’s receive DMA
ring. Then NetVM decides which VM to send the packet
to and puts a small packet descriptor in the VM’s re-
ceive ring (“Hypervisor → VM”). Both of these actions
are performed by a single core. “VM → APP” is the
time NetVM needs to get a packet from a ring buffer and
delivers it to the user application; the application then
spends “APP (L3 Forwarding)” time; the forwarding ap-
plication (NetVM or Click) sends the packet back to the
VM (“APP → VM”) and NetVM puts it into the VM’s
transmit ring buffer (“VM → Hypervisor”). Finally, the
hypervisor spends “Hypervisor → NIC” time to send out
a packet to the NIC’s transmit DMA ring.

The Core# column demonstrates how packet descrip-
tors are pipelined through different cores for different
tasks. As was explained in Section 3.3, packet process-
ing is restricted to the same socket to prevent NUMA
overheads. In this case, only “APP (L3 Forwarding)”
reads/writes the packet content.

5.5 Flexibility
NetVM allows for flexible switching capabilities, which
can also help improve performance. Whereas Intel SR-
IOV can only switch packets based on the L2 address,
NetVM can steer traffic (per-packet or per-flow) to a spe-

Time (ns/packet)
Core# Task Simple Click

0 NIC → Hypervisor 27.8 27.8
0 Hypervisor → VM 16.7 16.7
1 VM → APP 1.8 29.4
1 APP (L3 Forwarding) 37.7 41.5
1 APP → VM 1.8 129.0
1 VM → Hypervisor 1.8 1.8
2 Hypervisor → NIC 0.6 0.6

Total 88.3 246.8

Table 1: CPU Time Cost Breakdown for NetLib’s Sim-
ple L3 router and Click L3 router.
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balancing enables flexible steering of traffic. The graph
shows a uniformly distributed load-balancing.

cific VM depending on system load (e.g., using the oc-
cupancy of the packet descriptor ring as an indication),
shallow packet inspection (header checking), or deep
packet inspection (header + payload checking) in the face
of performance degradation. Figure 14 illustrates the for-
warding rate when load-balancing is based on load of
packets queued−the queue with the smallest number of
packets has the highest priority. The stacked bars show
how much traffic each VM receives and the total. NetVM
is able to evenly balance load across VMs. Click-NetVM
shows a significant performance improvement with mul-
tiple VMs (up to 20%) since additional cores are able to
load balance the more expensive application-level pro-
cessing. The SR-IOV system is simply unable to make
use of multiple VMs in this way since the MAC ad-
dresses coming from the packet generator are all same.
Adding more cores to the single SR-IOV VM does also
not improve performance. We believe this will be a real-
istic scenario in the network (not just in our testbed) as
the MAC addresses of incoming packets at a middlebox
or a router will likely be the same across all packets.

We also have observed the same performance graph
for NetVM’s shallow packet inspection that load-
balances based on the protocol type; deep-packet inspec-
tion overhead will depend on the amount of computation
required while analyzing the packet. With many different
network functions deployed, more dynamic workloads
with SDN capability are left for the future works.

6 Discussion
We have shown NetVM’s zero-copy packet delivery
framework can effectively bring high performance for
network traffic moving through a virtualized network
platform. Here we discuss related issues, limitations, and
future directions.
Scale to next generation machines: In this work, we
have used the first CPU version (Nehalem architecture)
that supports Intel’s DPDK. Subsequent generations of
processors from Intel, the Sandy-bridge and Ivy-bridge
processors have significant additional hardware capabil-
ities (i.e., cores), so we expect that this will allow both

greater total throughput (by connecting to multiple NIC
ports in parallel), and deeper VM chains. Reports in the
commercial press and vendor claims indicate that there is
almost a linear performance improvement with the num-
ber of cores for native Linux (i.e., non-virtualized). Since
NetVM eliminates the overheads of other virtual IO tech-
niques like SR-IOV, we also expect to see the same linear
improvement by adding more cores and NICs.

Building Edge Routers with NetVM: We recognize
that the capabilities of NetVM to act as a network ele-
ment, such as an edge router in an ISP context, depends
on having a large number of interfaces, albeit at lower
speeds. While a COTS platform may have a limited
number of NICs, each at 10Gbps, a judicious combina-
tion of a low cost Layer 2 (Ethernet) switch and NetVM
will likely serve as an alternative to (what are generally
high cost) current edge router platforms. Since the fea-
tures and capabilities (in terms of policy and QoS) re-
quired on an edge router platform are often more com-
plex, the cost of ASIC implementations tend to rise
steeply. This is precisely where the additional process-
ing power of the recent processors combined with the
NetVM architecture can be an extremely attractive alter-
native. The use of the low cost L2 switch provides the
necessary multiplexing/demultiplexing required to com-
plement NetVM’s ability to absorb complex functions,
potentially with dynamic composition of those functions.

Open vSwitch and SDN integration: SDN allows
greater flexibility for control plane management. How-
ever, the constraints of the hardware implementations of
switches and routers often prevent SDN rules from being
based on anything but simple packet header information.
Open vSwitch has enabled greater network automation
and reconfigurability, but its performance is limited be-
cause of the need to copy data. Our goal in NetVM is
to build a base platform that can offer greater flexibil-
ity while providing high speed data movement under-
neath. We aim to integrate Open vSwitch capabilities
into our NetVM Manager. In this way, the inputs that
come from a SDN Controller using OpenFlow could be
used to guide NetVM’s management and switching be-
havior. NetVM’s flexibility in demultiplexing can ac-
commodate more complex rule sets, potentially allowing
SDN control primitives to evolve.

Other Hypervisors: Our implementation uses KVM,
but we believe the NetVM architecture could be applied
to other virtualization platforms. For example, a sim-
ilar setup could be applied to Xen; the NetVM Core
would run in Domain-0, and Xen’s grant table function-
ality would be used to directly share the memory regions
used to store packet data. However, Xen’s limited sup-
port for huge pages would have to be enhanced.
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7 Related Work
The introduction of multi-core and multi-processor sys-
tems has led to significant advances in the capabilities of
software based routers. The RouteBricks project sought
to increase the speed of software routers by exploiting
parallelism at both the CPU and server level [39]. Sim-
ilarly, Kim et. al. [11] demonstrate how batching I/O
and CPU operations can improve routing performance
on multi-core systems. Rather than using regular CPU
cores, PacketShader [28] utilizes the power of general
purpose graphic processing units (GPGPU) to accelerate
packet processing. Hyper-switch [40] on the other hand
uses a low-overhead mechanism that takes into account
CPU cache locality, especially in NUMA systems. All
of these approaches demonstrate that the memory access
time bottlenecks that prevented software routers such as
Click [10] from performing line-rate processing are be-
ginning to shift. However, none of these existing ap-
proaches support deployment of network services in vir-
tual environments, a requirement that we believe is cru-
cial for lower cost COTS platforms to replace purpose-
built hardware and provide automated, flexible network
function management.

The desire to implement network functions in soft-
ware, to enable both flexibility and reduced cost because
of running on COTS hardware, has recently taken con-
crete shape with a multitude of network operators and
vendors beginning to work together in various industry
forums. In particular, the work spearheaded by Euro-
pean Telecommunications Standards Institute (ETSI) on
network function virtualization (NFV) has outlined the
concept recently [41, 42]. While the benefits of NFV
in reducing equipment cost and power consumption, im-
proving flexibility, reduced time to deploy functional-
ity and enabling multiple applications on a single plat-
form (rather than having multiple purpose-specific net-
work appliances in the network) are clear, there is still
the outstanding problem of achieving high-performance.
To achieve a fully capable NFV, high-speed packet de-
livery and low latency is required. NetVM provides the
fundamental underlying platform to achieve this.

Improving I/O speeds in virtualized environments has
long been a challenge. Santos et al. narrow the perfor-
mance gap by optimzing Xen’s driver domain model to
reduce execution costs for gigabit Ethernet NICs [43].
vBalance dynamically and adaptively migrates the in-
terrupts from a preempted vCPU to a running one, and
hence avoids interrupt processing delays to improve the
I/O performance for SMP-VMs [44]. vTurbo accelerates
I/O processing for VMs by offloading that task to a des-
ignated core called a turbo core that runs with a much
smaller time slice than the cores shared by production
VMs [45]. VPE improves the performance of I/O de-
vice virtualization by using dedicated CPU cores [46].

However, none of these achieve full line-rate packet for-
warding (and processing) for network links operating at
10Gbps or higher speeds. While we base our platform on
DPDK, other approaches such as netmap [47] also pro-
vide highspeed NIC to userspace I/O.

Researchers have looked into middlebox virtualization
on commodity servers. Split/Merge [48] describes a new
abstraction (Split/Merge), and a system (FreeFlow), that
enables transparent, balanced elasticity for stateful vir-
tual middleboxes to have the ability to migrate flows dy-
namically. xOMB [6] provides flexible, programmable,
and incrementally scalable middleboxes based on com-
modity servers and operating systems to achieve high
scalability and dynamic flow management. CoMb [8]
addresses key resource management and implementation
challenges that arise in exploiting the benefits of consol-
idation in middlebox deployments. These systems pro-
vide flexible management of networks and are comple-
mentary to the the high-speed packet forwarding and pro-
cessing capability of NetVM.

8 Conclusion
We have described a high-speed network packet pro-
cessing platform, NetVM, built from commodity servers
that use virtualization. By utilizing Intel’s DPDK li-
brary, NetVM provides a flexible traffic steering capabil-
ity under the hypervisor’s control, overcoming the per-
formance limitations of the existing, popular SR-IOV
hardware switching techniques. NetVM provides the ca-
pability to chain network functions on the platform to
provide a flexible, high-performance network element
incorporating multiple functions. At the same time,
NetVM allows VMs to be grouped into multiple trust do-
mains, allowing one server to be safely multiplexed for
network functionality from competing users.

We have demonstrated how we solve NetVM’s design
and implementation challenges. Our evaluation shows
NetVM outperforms the current SR-IOV based system
for forwarding functions and for functions spanning mul-
tiple VMs, both in terms of high throughput and reduced
packet processing latency. NetVM provides greater flexi-
bility in packet switching/demultiplexing, including sup-
port for state-dependent load-balancing. NetVM demon-
strates that recent advances in multi-core processors and
NIC hardware have shifted the bottleneck away from
software-based network processing, even for virtual plat-
forms that typically have much greater IO overheads.
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