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Abstract

Non-manifesting carriers (NMC) of the G2019S mutation in the LRRK2 gene represent an “at risk”

group for future development of Parkinson's disease (PD) and have demonstrated task related

fMRI changes. However, resting-state networks have received less research focus, thus this study

aimed to assess the integrity of the motor, default mode (DMN), salience (SAL), and dorsal atten-

tion (DAN) networks among this unique population by using two different connectivity measures:

interregional functional connectivity analysis and Dependency network analysis (DEPNA). Machine

learning classification methods were used to distinguish connectivity between the two groups of

participants. Forty-four NMC and 41 non-manifesting non-carriers (NMNC) participated in this

study; while no behavioral differences on standard questionnaires could be detected, NMC dem-

onstrated lower connectivity measures in the DMN, SAL, and DAN compared to NMNC but not

in the motor network. Significant correlations between NMC connectivity measures in the SAL

and attention were identified. Machine learning classification separated NMC from NMNC with

an accuracy rate above 0.8. Reduced integrity of non-motor networks was detected among NMC

of the G2019S mutation in the LRRK2 gene prior to identifiable changes in connectivity of the

motor network, indicating significant non-motor cerebral changes among populations “at risk” for

future development of PD.

KEYWORDS

graph theory network analysis, LRRK2, machine learning classification, Parkinson's disease,

resting state fMRI

1 | INTRODUCTION

Resting state functional magnetic resonance imaging (rsfMRI) has

strong research and clinical appeal as it is easy to implement, requires

minimum cooperation, and enables the detection of multiple brain

networks. Neuroimaging studies have demonstrated the importance

of several dynamically inter-related intrinsic networks which play a

role in cognitive processing and behavior. These include the default

mode network (DMN), dorsal attention network (DAN), and the salience

network (SAL). The DAN plays a role in executive functions including

attention (Corbetta & Shulman, 2002), while the DMN is associated

with self-oriented mental activity (Raichle et al., 2001) but also plays a

role in memory encoding and retrieval (Madhyastha et al., 2015). During

externally directed cognitive tasks the DAN is recruited and the DMN is

subdued, a pattern which is reversed during rest when internally driven

processes occur (Fox et al., 2005). It has been suggested that the SAL; a

limbic-paralimbic system that facilitates goal-directed behavior, inte-

grates sensory data in order to afford the organism with the choice of
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action, thus enabling switching between these two networks which

together facilitate memory (Menon & Uddin, 2010).

While Parkinson's disease (PD) is diagnosed based on cardinal

motor symptoms, a long premotor stage precedes these symptoms

(Siderowf & Stern, 2008). Studies of cortical and subcortical brain net-

works using resting state functional connectivity assessments indicate

disruptions of network integrity in PD. The motor network was found

to be impaired among PD patients in the “OFF” state with decreased

functional connectivity between the putamen, supplementary motor

area (SMA) and the dorsal lateral prefrontal cortex (DLPFC) with a

compensatory increase in connectivity between the putamen and the

cerebellum (Wu et al., 2009). The earliest stages of cognitive decline

in PD were associated with disruption of large-scale networks and

decreased efficiency of processing (Pereira et al., 2015). Both reduced

connectivity within the DMN and reduced connectivity from the

substantia nigra to nodes of the DMN were detected among patients

with PD and were partially restored after dopaminergic replacement

treatment (Helmich et al., 2010; Tessitore et al., 2012).

Mutations in the LRRK2 are responsible for a significant burden

of PD among Ashkenazi Jews (Thaler, Ash, Gan-Or, Orr-Urtreger, &

Giladi, 2009). Decreased functional connectivity between the putamen

and bilateral superior frontal gyri, precuneus, and calcarine gyrus among

LRRK2-PD compared with idiopathic PD patients has been reported

(Hou et al., 2018).

Non-manifesting carriers (NMC) of PD related mutations represent a

population at an increased risk for future development of PD. Previous

studies have shown the presence of subtle motor (Mirelman et al., 2011)

and cognitive changes (Thaler et al., 2012) among LRRK2-NMC com-

pared to non-manifesting non-carriers (NMNC). Several task related fMRI

studies have been published to date reporting findings of this cohort

with both increased and decreased activations among NMC. On a Stroop

task, LRRK2-NMC recruited right sided structures while performing the

task as well as NMNC (Thaler et al., 2013) while on a gambling task lower

activations among LRRK2-NMC were noted in the nucleus accumbens

while anticipating punishment and higher activations in the same group

while anticipating reward were detected in the right insula (Thaler et al.,

2018). Reduced activation in the caudate with increased activation in the

dorsal premotor cortex was noted among LRRK2-NMC while performing

a motor imagery task (van Nuenen et al., 2012) with increased functional

connectivity between the dorsal premotor and the extrastirate body. Pre-

viously, assessing functional connectivity from bilateral putamen among

LRRK2-NMC using rsfMRI, we detected reduced connectivity among

NMC between the right inferior parietal cortex and the dorsoposterior

putamen together with increased connectivity to the ventroanterior

putamen, as compared to NMNC (Helmich et al., 2015) and interpreted

these finding as compensatory for presymptomatic dopamine depletion.

However, no network-wide assessment of either the motor network

or cognitive related rsfMRI networks among LRRK2-NMC has been

performed to date.

The mathematical field of graph theory recently emerged as a tool

for characterizing fMRI brain network features that can distinguish

healthy and pathological states (Bullmore & Sporns, 2009). An essen-

tial aspect of network organization is related to its hierarchy as

indicated by metrics of influence and dependency (Hutchison et al.,

2013). It has been suggested that an examination of hierarchy of

nodes in a network could help characterize its functional specificity

(Sporns, 2011) and accurately identify the nodes (i.e., brain regions) or

edges (i.e., connections between the nodes) that are most critical

among specific pathologies. Dependency network analysis (DEPNA), a

newly developed graph based analysis method, was used to distin-

guish different patterns of network hierarchy and information flow

within brain networks (Jacob et al., 2016; Jacob, Gilam, Lin, Raz, &

Hendler, 2018; Jacob, Shany, Goldin, Gross, & Hendler, 2018). DEPNA

evaluates a brain regions' importance within a given network accord-

ing to its influence over the correlations between all other pairs of

brain regions (i.e., “Influencing Degree”), or how much was it influenced

by the rest of the network (i.e., “Influenced Degree”).

In this study we aimed to explore the integrity of motor and cog-

nitive resting state networks among a population at risk for future

development of PD and to evaluate whether network changes could

account for between-group behavioral variations. Based on previous

imaging studies, we expected to detect increased functional connec-

tivity among these networks as a mean of compensation for latent dis-

ease related pathology in this “at risk” group of participants.

2 | MATERIALS AND METHODS

2.1 | Participants

Non-manifesting first degree relatives of LRRK2-PD patients were

evaluated at the Movement Disorder Unit at Tel-Aviv Medical Center

(TLVMC). All participants provided an informed written consent,

approved by the TLVMC IRB prior to DNA collection. Participants

were screened for the G2019S mutation in the LRRK2 gene and

underwent a comprehensive assessment comprising of clinical history,

motor rating based on the Unified Parkinson's Disease Rating Scale

(UPDRS-III), Beck Depression Inventory (BDI) (cutoff of 13), University

of Pennsylvania Smell Identification Test (UPSIT) and the non-motor

symptoms questionnaire (NMS). Additionally, evaluation of cognitive

functions was conducted using the Montreal Cognitive Assessment

test (MoCA) (cutoff of 26) and a computerized cognitive test battery

(Mindstreams, NeuroTrax Corp., NY) designed to evaluate multiple

cognitive domains including attention, memory, executive function

and motor skills. Indices were normalized for age and years of educa-

tion and are presented similarly to an IQ-like scale (mean ± SD:

100 ± 15) (Thaler et al., 2012). Participants and assessors were

unaware of genetic status at the time of the assessment. Exclusion

criteria included: clinical diagnosis of PD, other neurological diseases

(such as severe head trauma, stroke or history of psychiatric disease

treated with neuroleptics), general exclusion criteria for MRI scanning

(such as claustrophobia, pace-maker, and implanted metal parts) and

mutations in the GBA gene.

Means and SDs were calculated for all dependent variables.

Histograms and frequency distributions were constructed to evaluate

the normality and homogeneity of the dependent variables. p-values

reported are based on two-tailed comparisons, with significance levels

set at 0.05. Statistical analysis was performed with SPSS version

20 (SPSS Inc., Chicago, IL).
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2.2 | Image acquisition

During scanning, all subjects were asked to keep their eyes closed and to

avoid repetitive thoughts. All scans were visually inspected by a neurolo-

gist (AT) to exclude structural findings that could interfere with the analy-

sis. Imaging was performed on a GE 3 T Signa HDxt scanner (GE Signa

EXCITE, Milwaukee, WI) with a resonant gradient echoplanar imaging

system, using a standard 8-channel head coil. Each subject received an

anatomical scan (spoiled gradient echo sequence: field of view

250 × 250 mm; matrix size 256 × 256 mm; voxel size 0.98 × 0.98 mm;

repetition time = 59 ms; echo time = 3.6 ms) and 266 functional scans

(single-shot gradient echoplanar imaging sequence: echo time/repetition

time = 35/1, 680 milliseconds; 30 axial slices; voxel size = 3.1 × 3.1

× 3.5 mm; no gap; scanning time approximately 7.5 min; 266 images).

2.3 | Preprocessing of imaging data

Data was preprocessed and analyzed with SPM12 (Statistical Para-

metric Mapping, www.fil.ion.ucl.ac.uk/spm). Images were spatially rea-

ligned, slice-time corrected, normalized to Montreal Neurological

Institute (MNI) space using unified segmentation, and smoothed with

an isotropic 8-mm full width at half maximum gaussian kernel. Scans

with head motion >3 mm/3� in any direction were removed from the

analysis. The six translation and rotation motion parameters, white

matter, and cerebral spinal fluid nuisance regressors were removed

(Chao-Gan & Yu-Feng, 2010; Fox et al., 2005). We then low-pass

filtered the images using a fifth-order Butterworth filter to retain

frequencies below 0.08 Hz, because correlations between intrinsic

fluctuations are specifically found in this frequency range (Chao-Gan &

Yu-Feng, 2010).

2.4 | Networks of interest

The coordinates of the networks of interest were extracted from pre-

vious studies assessing networks among non-demented patients with

PD (Wu, Wang, et al., 2009) (Campbell et al., 2015) (Supporting

Information Table S1). The motor network included bilateral primary

motor cortex (M1), cerebellum, premotor, putamen, thalamus, globus

pallidum, parietal, and dorsolateral prefrontal regions. The DMN

included bilateral inferior temporal and lateral parietal regions, poste-

rior cingulate cortex and medial prefrontal regions. The SAL was made

up of bilateral insula, prefrontal cortex, and lateral parietal regions,

while the DAN included bilateral middle temporal, frontal eye fields,

and both anterior and posterior intraparietal sulci.

Each region of interest (ROI) Talairach space coordinates (Campbell

et al., 2015; Wu et al., 2009) was transferred to MNI coordinates using

the Brett transform (Brett, Johnsrude, & Owen, 2002). For each ROI

we created an 8 mm radius spherical mask centered on the peak x, y, z

MNI coordinates. Then the averaged BOLD signal (time series) across

all voxels within the sphere was extracted for each ROI and each

subject.

2.5 | Interregional functional connectivity analysis

To analyze the functional connectivity within the networks of interest,

a set of pairwise Pearson correlation values were calculated for each

subject and network. After a Fisher Z transformation, two-tailed

t statistics were computed to compare the two groups of partici-

pants. Pairwise ROIs were assessed with connections determined as

significant at the p < 0.05 level and corrected for multiple compari-

sons using false discovery rate (FDR) (Shapira-Lichter, Oren, Jacob,

Gruberger, & Hendler, 2013).

2.6 | Dependency network analysis

We implemented the DEPNA approach to differentiate changes in

hierarchy of effective connectivity within the networks of interest

between the two groups. DEPNA and its implementation are described

in detail (Jacob et al., 2016). This method evaluates a brain region's

centrality within a given network according to its correlation influ-

ence, namely the impact of a given region on the correlations between

all other pairs of nodes. The DEPNA features characteristics and inter-

pretations are described in the Supporting Information Table S2.

Briefly, the DEPNA “Influencing Degree” measure indicates the

hierarchy of out-degree influence of the region on the entire network.

The higher this measure is, the greater its impact on all other connec-

tions in the network and the more likely it is to be generating the

information flow in the network.

The pairwise ROIs Pearson correlations were calculated and nor-

malized by using a Fisher Z transformation. Next, we used the result-

ing normalized ROI correlations to compute partial correlations. The

partial correlation coefficient is a statistical measure indicating how a

third variable influences the correlation between two other variables.

Therefore, the relative effect of region j on the correlation is given by:

d i, kj jð Þ � C i, kð Þ−PC i, kj jð Þ, ð1Þ

PC i, kj jð Þ =
C i, kð Þ−C i, jð ÞC k, jð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−C2 i, jð Þ
h i

1−C2 k, jð Þ
h i

r

WhereC(i, j),C(i, k) and C(k, j) are the ROI-ROI correlations and PC(i, k| j)

is the partial correlation between regions i and k with respect to a

third region j. To avoid cases where we sum over positive and nega-

tive influences, we reset all negative values to zero. We then define

the total influence of region j on region i to be:

D i, jð Þ =
1

N−1

X

N−1

k 6¼j

d i, kj jð Þ ð2Þ

N is the number of nodes in the network. The regions dependen-

cies define a dependency matrix D whose (i, j) element is the influence

of region j on region i.

Next, we sorted the regions according to the system level influ-

ence of each region on the correlations between all other region pairs.

The system level “Influencing Degree” of region j is simply defined as

the sum of the influence of region j on all other regions i, that is:

Influencing Degree jð Þ =
X

N−1

i 6¼j

D i, jð Þ ð3Þ

In the same manner, regions exhibiting a high “Influenced Degree”

are more likely to be simultaneously influenced by many other regions.

An increased “Influenced Degree” pattern of the entire network indicates
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the extent of the integration (i.e., all regions are more influenced by all

other regions).

The influence of the network on region j is defined as the sum of

the influences (or dependencies) of all other regions i in the network

on region j, that is:

InfluencedDegree jð Þ =
X

N−1

i 6¼j

D j, ið Þ ð4Þ

Next, we conducted a between-group two-tailed independent t-test

for each region's influence degree, adjusting for age. All results in each

network were corrected for multiple comparisons using FDR correction.

To create network graph visualization, we used the pair-wise

dependency connectivity matrix. A two-tailed t statistic was com-

puted to compare the two groups. We then connect only pair-wise

ROIs with dependencies that were significantly different between the

two groups (p < 0.05 level) creating a simple graph visualization of the

differences between the groups. The brain visualization of the graph

was conducted with the BrainNet Viewer (2013, http://www.nitrc.

org/projects/bnv/).

We then conducted Pearson-product correlations to assess the

association between the regions that were found to be significantly

different between the groups and network-specific behavioral mea-

sures. A partial correlation was used to control for age as a covariate.

We then corrected for multiple comparisons using FDR corrected at a

p = 0.05 per network.

2.7 | Classification using machine learning

Support vector machine (SVM) classifiers, a widely used machine learning

classification algorithm (LaConte, Strother, Cherkassky, Anderson, & Hu,

2005), were used for between group classification using Matlab Classifi-

cation Learner application (The MathWorks Inc., Natick, MA). All net-

works' statistically significant results (i.e., interregional correlation,

“Influencing Degree” and “Influenced Degree” values) were all used as pre-

dictors for the machine learning classification, constructing a total of

38 features. No dimension reduction was conducted. We then assessed

the generalization ability through fivefold cross-validation. For statisti-

cal significance we run the analysis multiple times; in this study 1,000

repetitions were performed. The overall accuracy, sensitivity, specific-

ity, and positive predictive value (PPV) were computed for each classi-

fier; the overall accuracy is the number of true classifications to total

cohort; sensitivity is the number of true positives (i.e., NMC correctly

classified) to the total number of carriers; specificity is the number of

true negatives (i.e., NMC correctly classified) to the total number of

NMC; the positive predictive value (PPV) is the ratio of the true posi-

tives to all positive classifications (i.e., true and false positives), addi-

tional information is supplied in the Supporting Information.

3 | RESULTS

A total of 85 non-manifesting first degree relatives of G2019S LRRK2-

PD patients participated in this study, 44 of which were NMC. Groups

were well matched for all parameters assessed herein (Table 1). While

the average MoCA scores were above 26 in both groups, SD varied

between 2 and 3 point suggesting that several participants might have

mild cognitive impairment (MCI), however none of the participants

demonstrated reduced cognitive performance on the computerized

cognitive assessment, hence, we are confident that all participants

had intact cognitive capabilities.

3.1 | Interregional functional connectivity analysis

Assessing the motor network between the two groups of subjects did

not yield significant differences in interregional functional connectiv-

ity. DMN network analysis indicated lower correlations between the

right inferior temporal (IT) and posterior cingulate cortex (PCC) in the

NMC compared with NMNC (Figure 1a and Supporting Information

Table S3) (t[83] = 3.74, p < 0.05 FDR corrected). SAL analysis

revealed comprehensive overall lower correlations among the NMC

compared with NMNC (Figure 1b and Supporting Information Table S3).

Finally, the DAN network analysis exhibited lower correlation of the left

anterior intraparietal sulcus (AIS) with the left frontal eye field (FEF)

(t[83] = 3. 75, p < 0.05 FDR corrected), and both left and right pos-

terior intraparietal sulcus (PIS) (t[83] = 3.11 and t[83] = 3.01 respec-

tively, p < 0.05 FDR corrected) among NNC compared with NMNC

(Figure 1c and Supporting Information Table S3).

3.2 | Dependency network analysis

Applying the DEPNA to the motor network did not detect significant

between group differences. The same analysis which was performed

on the DMN network revealed that the difference in each node's

“Influencing Degree” (Figure 2 and Supporting Information Table S4)

indicated the PCC (t[83] = 2.52, p < 0.05 FDR corrected) and right IT

TABLE 1 Group characteristics

LRRK2_NMC NMNC p

N 44 41

Male/female 22/22 18/23 0.66

Handedness (right/left) 39/5 38/3 0.71

Age (years) 49.57 (11.11) 48.05 (12.71) 0.55

Years of education 16.14 (2.69) 16.39 (2.06) 0.63

UPDRS III 2.09 (1.97) 1.83 (1.59) 0.51

MoCA 26.36 (2.93) 26.54 (2.23) 0.76

UPSIT 31.61 (4.29) 33.13 (3.02) 0.89

GCS 102.41 (7.05) 103.03 (6.65) 0.68

Memory 99.81 (9.61) 102.58 (6.89) 0.14

EF 102.46 (10.61) 102.18 (10.06) 0.91

Attention 102.28 (13.66) 106.48 (12.42) 0.14

VS 101.49 (13.36) 99.55 (10.84) 0.42

Motor 106.35 (6.87) 105.56 (6.92) 0.61

BDI 1.85 (2.08) 1.71 (3.33) 0.81

NMS 2.69 (2.22) 3.63 (3.01) 0.26

Note. Results are presented as mean (SD). p values reported are based on

two-tailed comparisons, with significance levels set at 0.05. Statistical

analysis was performed with SPSS version 20 (SPSS Inc., Chicago, IL).
NMC: non-manifesting carriers, NMNC: non-manifesting non-carriers,

UPDRS III: unified Parkinson disease rating scale, MoCA: montreal cogni-

tive assessment, UPSIT: University of Pennsylvania Smell Identification

Test, GCS: general cognitive score, EF: executive function, VS: visuospa-
tial, BDI: beck depression inventory, NMS: non-motor symptoms.
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(t[83] = 3.15, p < 0.05 FDR corrected) had lower influence on the net-

work among NMC compared to NMNC. However, the “Influenced

Degree” measures were not significantly different between the groups

(Supporting Information Table S4).

Analysis of the SAL revealed that NMC exhibited reduced influ-

ence (i.e., “Influencing Degree”) of left and right anterior prefrontal

cortex (APFC) (t[83] = 2.99 t[83] = 3.27), left and right lateral parietal

(LP) (t[83] = 4.47 and t[83] = 5.80) and dorsal anterior cingulate

cortex (DACC) (t[83] = 3.07), all FDR corrected p < 0.05) (Figure 3a

and Supporting Information Table S4). A comparison of the “Influenced

Degree” measure revealed that, compared to NMNC, NMC showed

lesser “Influenced Degree” values for the entire SAL: bilateral APFC,

bilateral LP, bilateral insula, and DACC, all FDR corrected (p < 0.05)

(Figure 3b and Supporting Information Table S4).

A comparison of the DAN network “Influencing Degree” measures

between the two groups showed that NMC exhibited lesser influencing

relative to NMNC in the left AIS (t[83] = 3.39, p < 0.05 FDR corrected)

(Figure 4a and Supporting Information Table S4). Comparison of the

“Influenced Degree” measures revealed that, compared to NMNC, NMC

showed lesser “Influenced Degree” values for the entire DAN network:

bilateral medial temporal (MT), bilateral AIS, bilateral PIS, and bilateral

FEF, all FDR corrected (p < 0.05) (Figure 4b and Supporting Information

Table S4).

3.3 | Behavioral correlations

Behavior correlations between the attention sub-score of the neurotrax

program and connectivity measures of the SAL were found to be signif-

icant among NMC (controlled for age and FDR corrected at a p = 0.05

per network), with higher connectivity measures correlating with better

attention. For the DEPNA analysis “Influencing Degree” of the following

regions left APFC (r = 0.399, p = 0.01), left LP (r = 0.422, p = 0.01),

right APFC (r = 0.461, p = 0.01) and the “Influenced Degree” of the left

APFC (r = 0.479, p = 0.001), left insula (r = 0.468, p = 0.002), left LP

(r = 0.512, p = 0.001), right APFC (r = 0.492, p = 0.001), right insula

(r = 0.551, p = 0.001), right LP (r = 0.525, p = 0.001) and DACC

(r = 0.512, p = 0.001). The attention sub-score was also correlated with

the following connectivity measures of the SAL: connectivity between

the right and left insula (r = 0.473, p = 0.005), connectivity between the

FIGURE 1 Interregional functional connectivity. Significant differences between the degree of correlations of each pair of network nodes within

the default mode network (DMN) (a), salience network (SAL) (b) and dorsal attention network (DAN) (c) (p < 0.05, FDR corrected). The width of

the edge represents the t statistic value. Non-manifesting non-carriers exhibited stronger connectivity between central nodes within all three

networks and most prominently in the SAL network [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 2 Default mode network (DMN) DEPNA results. (a) The

DMN illustration and graph visualization. Each region is color coded

according to the t statistic value based on the t-test between the two

groups' “influencing degree”. All pair-wise regions of interest with

connections, significant at p < 0.05 level (FDR corrected), are plotted

as edges with the width of the edge representing the t statistic value.

(b) The regions' “influencing degree” averaged over all 44 non-

manifesting carriers (NMC) and 41 non-manifesting non-carriers

(NMNC). The DEPNA DMN analysis detected significant lower right

inferior temporal and posterior cingulate cortex influence

among NMC [Color figure can be viewed at wileyonlinelibrary.com]
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right APFC and the left LP (r = 0.443, p = 0.01) and connectivity

between the right LP and right APFC (r = 0.546, p = 0.001). No

correlations between the attention sub-score and connectivity

measures of the other two networks (DAN, DMN) were detected

and no correlations between these measures among NMNC partici-

pants were detected.

3.4 | Machine learning classification using

interregional functional connectivity and DEPNA

The machine learning linear SVM algorithm using the DEPNA influence

values and all the significant interregional functional connectivity

values per network (DMN, SAL and DAN) (a total of 38 features)

revealed significant classification power (Figure 5). The overall accu-

racy was 84% (0.84 ± 0.023, p < 0.001), with sensitivity of 87%

(0.87 ± 0.034, p < 0.001) and specificity of 80% (0.80 ± 0.029,

p < 0.001). The positive predictive values for the NMNC were 86%

(0.86 ± 0.034, p < 0.001) and for the NMC 83% (0.83 ± 0.022,

p < 0.001).

The top 10 most informative features for disambiguating the

groups according to their weights were: (a) DAN networks' correlation

between right posterior parietal sulcus (PPS) and left anterior parietal

sulcus (APS), (b) DAN networks' left AIS “Influencing Degree,” (c) SAL

networks' correlation between the right LP and right APFC, (d) SAL

networks' correlation between DACC and left APFC, (e) SAL net-

works' left LP “Influenced Degree,” (f) SAL networks' correlation

between DACC and right LP, (g) DAN networks' correlation between

left FEF and left APS, (h) SAL networks' DACC “Influencing Degree,”

(i) SAL networks' DACC “Influenced Degree,” and (j) DAN networks' left

FEF “Influenced Degree.”

4 | DISCUSSION

This resting state fMRI study detected significant differences between

NMC of the G2019S mutation in the LRRK2 gene and NMNC in three

neural networks (dorsal attention, salience, and default) using two

separate analytic methods. The detected differences were character-

ized with higher network organization and nodal influence among

NMNC compared with NMC. In contrast, no significant differences

were found between the two groups in the organization of the motor

network.

The DMN has been extensively studied in PD and aberrant intrin-

sic connectivity has been associated with cognitive impairments, with

the most frequently described connectivity changes involving the pos-

terior nodes of the network (Hou et al., 2017; van Eimeren, Monchi,

Ballanger, & Strafella, 2009), similar to the reduced influence and con-

nectivity of the right inferior temporal node and the PCC among

LRRK2-NMC that was detected in this study. Connectivity changes in

the DMN were found to precede both cognitive decline and structural

atrophy in PD (Tessitore et al., 2012), but in the current study connec-

tivity measures of the DMN did not correlate with measures of atten-

tion among NMC or NMNC. To this end, we recently published a

cortical thickness analysis on the same cohort of participants that did

not detect significant differences between NMNC and NMC (Thaler

et al., 2018), indicating that as in PD, the connectivity differences

encountered in this study were not associated with structural changes

in our cohort.

The SAL was found to have the most widespread between-group

differences using both connectivity analyses, with all nodes of this

network involved. These results were correlated with attention alloca-

tion among NMC, indicating that higher organization and nodal

FIGURE 3 Salience network (SAL) DEPNA results. The SAL illustration and graph visualization. Each region is color coded according to the t

statistic value based on the t-test between the two groups' “influencing degree” (a) and “influenced degree” (b). All pair-wise regions of interest

with connections, significant at p < 0.05 level (FDR corrected), are plotted as edges with the width of the edge representing the t statistic value.

The regions' “influencing degree” (c) and “influenced degree” (d) averaged over all 44 non-manifesting carriers (NMC) and 41 non-manifesting

non-carriers (NMNC). Most of the SAL network was less influenced among NMC [Color figure can be viewed at wileyonlinelibrary.com]
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influence among this “at risk” group of participants was associated

with better behavioral outcomes. Decreased connectivity within the

SAL network was detected in patients with PD and was correlated

with motor dysfunction (Tuovinen et al., 2018) possibly through

impairment of regulatory efficiency between activation and deactiva-

tion of other large scale networks.

Analysis of the differences in “Influenced Degree” showed that the

NMC had overall lower values for the entire SAL and DAN networks

(Figures 3 and 4). This pattern of decreased “Influenced Degree” within

all network regions indicates segregation of the network (i.e., these

regions were found to be less influenced by one another and overall),

suggesting that these regions act in a more independent manner,

which might imply poor regulation.

No significant between-group differences in the motor network

were detected in this study. Using resting state fMRI scans on a sub-

group of the participants from this study, we previously reported

opposing functional connectivity patterns from both the anterior and

posterior putamen to the inferior parietal lobe among NMC (Helmich

et al., 2015), similar to the pattern that was detected among patients

with PD (Helmich et al., 2010) indicating that dopaminergic depletion

in the striatum influences cortico-striatal remapping in the motor net-

work in a compensatory manner. In addition, previous task-related fMRI

findings on subgroups of participants from this study, also detected

increased activations and functional connectivity as a mean of compen-

sation among NMC (Thaler et al., 2013; van Nuenen et al., 2012).

Reduced connectivity from the motor striatum to the precuneus and

superior parietal lobe and from the executive striatum to the superior

frontal gyrus together with increased connectivity from the substantia

nigra to the occipital pole were detected among NMC of different

LRRK2 mutation compared with NMNC in an atlas based analysis (Vilas,

Segura et al., 2016). Among Parkin and PARK1-NMC, performing a

simple internally cued motor task, stronger functional connectivity was

detected between task positive regions in the right rostral cingulate

and left dorsal premotor area with contralateral cortical motor regions

compared with NMNC (Buhmann et al., 2005).

However, in this study, NMC demonstrated reduced connectivity

and nodal influence in all three assessed networks compared with

NMNC, with no increased connectivity findings. Notwithstanding, the

robust finding of decreased connectivity among NMC in the three net-

works assessed in this study compared with NMNC deserve attention

especially when compared to the task related increase in connectivity

among NMC that was previously detected (Thaler et al., 2013; Thaler,

Gonen, et al., 2018; van Nuenen et al., 2012). These differences are not

necessarily conflicting as they are a result of different analytic proce-

dures; a seed-based approach for assessing the motor network com-

pared with an inter-regional approach that was conducted in this study

and the use of a resting state scan in this study compared with a task-

based assessment in the previous studies.

We propose that the connectivity changes detected herein could

cause deficits in the ability to redirect attention. These attention defi-

cits were not sufficiently severe as to impair behavior, with total atten-

tion scores not differing between the two groups. However positive

correlations between the attention sub-score and connectivity indexes

in the SAL among NMC indicate a functional role of these findings.

Our results indicate that cognitive networks (SAL, DAN, and

DMN) might be affected before the motor network among “at risk”

populations for future development of PD. Indeed, a lengthy premotor

period is recognized to precede the appearance of motor symptoms

FIGURE 4 Dorsal attention network (DAN) DEPNA results. The DAN illustration and graph visualization. Each region is color coded according to

the t statistic value based on the t-test between the two groups' “influencing degree” (a) and “influenced degree” (b). All pair-wise regions of

interest with connections, significant at p < 0.05 level (FDR corrected), are plotted as edges with the width of the edge representing the t statistic

value. The regions' “influencing degree” (c) and “influenced degree” (d) averaged over all 44 non-manifesting carriers (NMC) and 41 non-

manifesting non-carriers (NMNC). NMC had lower left anterior intraparietal sulcus influence within the DAN. In addition, the entire DAN network

was less influenced among NMC [Color figure can be viewed at wileyonlinelibrary.com]
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of PD (Siderowf & Stern, 2008). The prevalence of cognitive impair-

ment in early PD has been reported to be up to 30% (Weintraub et al.,

2015) and subjects “at risk” for future development of PD based on

the presence of hyposmia and abnormal DAT scans, demonstrated

reduced global cognitive function and executive abilities (Chahine

et al., 2016). The mechanism behind this finding is not yet clear, but

abnormalities in both noradrenergic and cholinergic pathways have

been found to be related to cognitive decline in PD (Hilker et al.,

2005; Trillo et al., 2013). Our findings may indicate that cognition

should be studied as a premotor symptom of PD and that the use of

fMRI technology could assist in this endeavor. To this aim, we suggest

that future studies focused on PD biomarkers should include both

resting-state fMRI and extensive cognitive evaluations to better char-

acterize the prodromal cognitive profile.

Most rsfMRI studies to date have been based on the pair-wise corre-

lation matrix resulting in undirected graphs of brain networks (Bullmore &

Sporns, 2009). Other studies have applied Granger causality on resting

state fMRI data in order to construct directed graphs (Liao et al., 2011)

with the constraint of the temporal resolution required by the Granger

methodology. DEPNA offers a new way of constructing a directed graph

FIGURE 5 Classification between non-manifesting carriers and non-manifesting non-carriers using a support vector machine algorithm. In order

to discriminate between non-manifesting carriers (NMC) and non-manifesting non-carriers (NMNC) a support vector machine (SVM) learning

classification algorithm was performed on the inter-regional functional connectivity and DEPNA results (fivefold cross-validation and 1,000

repetitions). For statistical inference a bootstrapping procedure of permutation tests was conducted 1,000 times on random permutations of the

dataset for the classification overall accuracy (a), sensitivity (b), specificity (c) and positive predictive value (PPV) of NMNC (d) and NMC (e). The

dashed red vertical lines represent the classification accuracy of the original dataset. The bar graph demonstrates the averaged classification

accuracy features for the SVM classifier calculated on 1,000 repetitions (f). The horizontal dashed line denotes the chance level accuracy of 50%

and the error bars represent the standard deviation. This analysis revealed significant classification power with an overall accuracy of 84%,

(p < 0.0001), sensitivity of 87% (p < 0.0001) and specificity of 80% (p < 0.0001). The PPV was found to be significant for both groups NMC (83%

p < 0.0001) and NMNC (86% p < 0.0001) [Color figure can be viewed at wileyonlinelibrary.com]
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that is based on correlations. This is of great importance in the field of

neuroimaging such as fMRI in which the only information regarding

communication between regions is based on correlations.

Finally, to demonstrate the applicability of rsfMRi for early dis-

tinction of PD risk, we conducted a machine learning classification

algorithm (i.e., SVM) applying the DEPNA and interregional functional

connectivity features as the predictors. This analysis with all signifi-

cant between-group network indices, revealed a high classification

power, with overall accuracy of 84% (Figure 5). Other network features

(e.g., global efficiency, clustering coefficients) or imaging features (e.g.,

activation) could complement the predictive model for even more

robust clinical translation.

Several limitations need to be addressed. This was a cross-sectional

study which compared NMC with NMNC, a population at risk for

future development of PD, however the penetrance of the G2019S is

estimated at 25% at age 80 (Lee et al., 2017) introducing interpreta-

tional issues to our findings. The lack of longitudinal follow-up prevents

us from fully assessing the findings in the context of disease develop-

ment and should be amended by following up this unique cohort of

subjects. In addition, we did not include a LRRK2-PD group and NMNC

might not be an ideal control group (Mestre et al., 2018). We did not

assess structural differences in this study as we have previously

reported no between group differences in cortical thickness, voxel

based morphometry and diffusion tract imaging (Thaler et al., 2014;

Thaler, Kliper, et al., 2018). In addition, we did not assess language abili-

ties as part of the cognitive battery and thus might have overlooked

between group differences.

Our study indicates that fMRI and resting state analysis can be

used to identify alterations in cerebral functions in individuals at an

increased risk for future development of PD while their cognitive pro-

cesses are unaffected on a behavioral level. In addition, we detected

impaired cognitive networks among NMC while the motor network

functioned comparably to NMNC. Future longitudinal studies should

incorporate resting state fMRI to further assess the utility and validity

of these results.
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