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ABSTRACT

Context-aware computing is characterized by the ability of
a software system to continuously adapt its behavior to a
changing environment over which it has little or no control.
Previous work along these lines presumed a rather narrow
definition of context, one that was centered on resources
immediately available to the component in question, e.g.,
communication bandwidth, physical location, etc. This pa-
per explores context-aware compufing in the setting of ad
hoc networks consisting of numerous mobile hosts that in-
teract with each other opportunistically via transient wire-
less interconnections. We extend the context to encompass
awareness of an entire neighborhood within the ad hoc net-
work. A formal abstract characterization of this new per-
spective is proposed. The result is a specification method
and associated context maintenance protocol. The former
enables an application to define an individualized context,
one that extends across multiple mobile hosts in the ad hoc
network. The latter makes it possible to delegate the con-
tinuous reevaluation of the context and the performance of
operations on it to some middleware operating below the
application level. This relieves application development of
the obligation of explicitly managing mobility and its impli-
cations on the component’s behavior.

Keywords
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1. INTRODUCTION

The ubiquity of mobile computing devices opens the user’s
computing environment to a rapidly changing world where
the network topology, or the physical connections between
hests in the network, must be constantly recomputed. Soft-
ware must adapt its behavior continuously in response to
the changing context.
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Context-aware computing first came to the forefront in
the early 1990's with the introduction of small, mobile com-
puting devices. Initial investigations at Olivetti Research
Lab and Xerox PARC laid the foundation for the develop-
ment of more recent context-aware software. Olivetti’s Ac-
tive Badge [21] uses infrared communication between badges
worn by users and sensors placed in a building to monitor
movement of the users in order to forward telephone calls to
the user's location. PARC's PARCTab system [20], released
in 1993, also uses infrared communication between users’
palm top devices and desktop computers. It uses location
information to allow applications te adapt to the user’s en-
vironment. Applications developed for PARCTab perform
activities ranging from simply presenting information to the
user about his current location to attaching a file directory
to a room for use as a blackboard by users in the room.

More recent context-aware applications serve as tour guides
by presenting information about the user’s current environ-
ment. Cyberguide from Georgia Tech [1], and GUIDE from
the University of Lancaster [7] are examples of two such sys-
tems. Fieldwork tools [14] automatically attach contextual
information, e.g., location and time, to notes taken by a re-
searcher in the field. Memory aids [17] record notes about
the current context that might be useful to the user at a
later time.

In the later 90's, frameworks built to support the develop-
ment of context-aware applications began to be developed.
Among the best known systems is Georgia Tech’s Context
Toolkit [19], which uses an object oriented approach to sep-
arate the sensing, gathering, and interpretation of the con-
textual information for each user.

Much of the work to date is restrictive in its use of con-
textual information [4]. These systems use only informa-~
tion that can be monitored directly by the host running the
software. One can easily imagine a situation where a mo-
bile user has an interest not only in contextual information
collected by his mobile unit, but also by other units, even
units that are not directly connected. Mobile units in the
network become part of other hosts’ contexts. Additionally,
the type of contextual information available to users and ap-
plications has been of limited types. For example, the guide
tools define context strictly as the user’s location, and most
context-aware systews are built upon similarly rigid struc-
tures. Context-aware applications should have the ability to
define individualized contexts; such definitions may extend
beyond our current vision of context and may need to in-
clude a rich amalgamation of facets of the environment. An



application in such an environment should be permitted to
supply a definition of its desired context; subsequent opera-
tions issued by the application would be performed only in
the subset of the network satisfying the application's defini-
tion. This requires mechanisms for computing an applica-
tion defined context that may include distant hosts reach-
able only indirectly through an ad hoc routing protocol.

Our work starts from the premise that development of
mobile applications can be simplified by allowing developers
to specify a context specific to their application’s needs and
by adopting a notion of context that extends to an entire
reachable set of neighboring hosts. The research issues we
pose in this paper address both specification and implemen-
tation concerns relating to context definition and mainte-
nance. First is the question of how to facilitate a formal
specification of context, one that is general, flexible, and
amenable for use in ad hoc settings. The solution maps
all nodes in the ad hoc network to points in an abstract
multi-dimensional space and defines contexi as the set of all
such points whose distance from the point of reference (i.e.,
that denoting the host carrying the application of interest)
does not exceed some bound that can change throughout
the lifetime of the application. We will show that a number
of useful contexts can be defined in this mamner. Second
is the issue of being able to maintain the specified context
and to carry out operations on it. The protocol presented in
this paper builds upon ideas from on demand ad hoc rout-
ing but constructs and dynamically maintains a tree over a
subnet of neighboring hosts and links whose attributes con-
tribute fo the definition of a given context, as required by
an application on a particular mobile host. Context sensi-
tive operations are carried out through a cooperative effort
involving only hosts that are part of a given context.

The paper is organized as follows. Section 2 provides a
more detailed problem definition. Section 3 discusses the
abstractions required to create a context specification. Sec-
tion 4 presents a protocol that computes and maintains a
specified context. Section § provides some discussion of the
protocol followed by conclusions in Section 6.

2. PROBLEM DEFINITION

Ad hoc mobile networks may contain many hosts and links
with varying properties. These hosts and links and their
properties define the context for an individual host in the
network. The behavior of an adaptive application running
on & host in an ad hoc network depends on this contin-
uously changing context. A major difference between our
approach and previous work in context-aware computing is
the breadth of cur definition of context. Our goals include
broadening the context available to a host to include not
only those properties that can be measured directly by a
host, but also properties of other reachable hosts and prop-
erties of links among them. However this has the potential
to greatly increase the amount of contextual information
available, and therefore an application running on a host
should specify the precise context that interests it based on
the properties of hosts and links in the network. The appli-
cation should also specify a bound that defines the size of
the context it chooses to operate in. For example, an ad hoc
network on a highway might extend for hundreds or even
thousands of miles. A driver in a particular car, however,
may be interested only in gas stations within five miles. Be-
cause we aim to provide both a manner for an application to

specify its context and a protocoel that computes and main-
tains the context according to this specification, we need to
allow the context specification to remain as general and flex-
ible as possible while ensuring the feasibility and efficiency
of the protocol to dynamically compute the context.

In summary, we want o provide an application running on
a particular host, henceforth called the reference, the ability
to formally specify a context that spans a subset of the ad
hoc network in existence at any given point in time. Ab-
stractly, the context can be viewed as a subnet around the
reference host and the properties of that subnet’s compo-
nents (hosts and links). In most cases these properties will
not be only those of the raw hardware but also properties
associated with hosts or links by virtue of the applications
they support.

Throughout the discussion of the context specification and
the protocol that achieves it, we will refer to the following
scenario, A family on a cross country vacation would like
information about their current environment. That is, while
they are driving, they would like to be constantly aware of
the points of interest in their near vicinity. When the chil-
dren are hungry or the car needs gas, they would like to be
able to quickly discover restaurants or gas stations nearby.
The context they will operate on is defined as the five miles
around them. As we build the context specification and the
protocol, we will indicate how each piece would be achieved
for this scenario.

3. CONTEXT SPECIFICATION

Extending the availability of contextual information be-
yond a host’s immediate scope requires an abstraction of the
network topology and its properties. After specifying some
constraints including the application’s specific definition of
distance and a maximum allowable distance, an application
on the reference host would like a qualifying list of acquain-
tances to be generated. That is:

Given a host, o, in an ad hoc network, and a
positive value, D, find the set of all hosts, Qa,
such that all kosts in {J, are reachable from o,
and for all hosts, 3, in @4, the cost of the shortest
path from o to B is less than D.

To build this list we first must define a shortest path and
how to determine the cost of such a path. Costs derive
from quantifiable aspects of the reference host’s context. In
any network, both hosts and the links between them have
quantifiable attributes that affect in many different ways the
communication in the network. We abstract these proper-
ties by combining the quantified properties of nodes with the
quantified properties of the links between them to achieve
a single weight for each link in the network. An applica-
tion has the freedom to specify which properties define the
weights of links. A simple example of a weight is for each
link to have a weight of one. This will allow us to count the
number of network hops between two nodes in the network.

Once a weight bas been defined and calculated for each
link in the network, a cost function specified by the appli-
cation can be evaluated over these weights to determine the
cost of a particular path in the network. Continuing the
network hop count example, the cost function specified by
the application would be the sum of the weights of the links
along a path. Because the weight of each link is one, the



number of hops from the source of the path to that nede de-
termines the cost at that node. In a real network, however,
multiple paths may exist between two given nodes. There-
fore we will build a tree rooted at the reference host that
will include only the lowest cost path to each node in the
network. We will see later in this section and in the next sec-
tion that this tree and the paths composing it have several
nice properties fhat we will take advantage of in building
and maintaining the tree.

Because we aim to restrict the scope of an application’s
context, calculating the lowest cost to every node in the
network is not reasonable. To limit the context specification,
we reguire the application to specify a bound for its cost
function. Nodes to which the cost is less than the bound
are included in the context. For the hop count example, an
entire context specification might be written as: all nodes
which can be reached in fewer than five hops.

We will start with this bound on the context specifica-
tion and work backwards, dissecting the tree buili to see
from where each step derives. We will provide formal de-
scriptions of the weights, cost function, and hound for the
cost function. Throughout these descriptions, we will re-
visit the hop count example as a tool for understanding the
definitions. We will also introduce more complex and real-
istic examples to demonstrate the power and generality of
the approach. At each point, we will also explain how the
specification applies to the family vacation scenario.

3.1 Ensuring Boundedness

We will see later how an ad hoc network can be repre-
sented as a graph, G = (V| E) with weighted edges. We will
create a tree rooted at a reference node that includes only
the shortest paths from the reference node to each other
reachable node in the network. Given this tree representa-
tion and the shortest paths, we can define a bound. Any
nodes for which the cost of the shortest path is greater
than the bound are not included in the set of acquaintances.
Again, in the network hop count example, hosts that are five
or more hops away are not included.

The vacationing family also specifies a bound on their con-
text. If they are currently driving through Minnesota, mu-
seums in Washington D.C do not interest them. Therefore,
they restrict their contexi to be only other communicating
nodes in the vicinity, specifically, within five miles.

Figure 1: The bounded shortest path tree

Figure 1 shows a tree rooted at the shaded reference node,
c. The weights on the links can be used to compute the cost

of a given path, shown inside each node. Mechanisms for as-
signing these weights and calculating the cost of the paths
will be discussed in later sections. This particular example
shows & shortest path tree whose cost function simply sums
the weights on a path. Figure 1 also shows the bound, D,
indicated by the dashed line. Nodes inside the dashed circle
are part of host a’s acquaintance list, @, while nodes out-
side the dashed circle are not part of this list and will not
be included in queries over Ga.

Notice that this bound is useful only if the value of the
cost of the shortest path is strictly increasing as the path
extends away from the reference node. That is, if we number
the nodes on a path (1,2,...,4,...,n) and designate the
value of the cost of node 7 as 4, then 1y > v;—i. This
guarantees that a parent in the tree is always topologically
closer to the root than its children, ie., that the cost of
the path to the parent is always less than the cost to the
child. If the cost of a path in the tree strictly increases as
the distance from the reference node grows, the application
can enforce a topelogical constraint over the search space by
specifying the bound, D, over the value, v, returned by the
cost function. The lower level can stop propagating context
building messages once it reaches a node on the path that
has a distance (cost) greater than D. In the particular case
shown in Figure 1, context building messages are no longer
propagated once a node with a cost greater than 6 is reached.

Unfortunately, an ad hoc network does not look like a
shortest path tree with the cost of each path labeled on the
node. In the following section, we will show how to build the
shortest path tree, given the cost of individual paths. Then
we will discuss how to calculate the cost of a given path
between two nodes in a graph using an application specified
cost function. Finally, we will introduce the network ab-
straction that allows us to represent contextual information
from the ad hoc network as weights on edges in this graph.

3.2 The Minimum Cost Path

In the next section, we will see that, given an application
specified cost function, we can determine the cost of a path
between two given nodes. The calculation of the cost of a
path, P, originating at the reference node, @, will be repre-
sented as fo(P). In an arbitrary graph, however, multiple
paths may exist from a node, ¢, to another node, 3, each
with an associated cost. For each of these nodes, f, reach-
able from o, one of these paths is the shortest path. We call
the length of this path g.(#). That is, for all paths, P from

xto 3,
9(B) = fa(P)

There is a shortest path tree, T, spanning the graph repre-
senting the ad hoc network, rooted at the reference node, .
For all nodes, §, in this tree, the path from o to § in T has
cost go (5.

Figure 2 shows the same shortest path tree as shown in
Figure 1. This time, however, the bound is omitted, and
the graph from which the tree was generated is shown in its
entirety. The set of nodes is identical to that in Figure 1,
but now more links and their weights are included. The links
from Figure 1 are shown darkened; these are the links from
the praph that make up the shortest path tree. Though the
graph contains multiple paths from the reference node to
each other node, the tree includes only the shortest path to
each node.

min
over all P fromax to 8



Figure 2: The logical network and shortest path tree

3.3 The Path Cost Function

The previous sections show that if we can define the cost
of every path in a graph, we can compute the shortest path
tree, T. We can then add a bound on the path cost to
generate a set of acquaintances for a reference node. Given a
logical view of an ad hoc network, G = (V, E), in which each
edge has a weight, we would like to assign a cost from the
reference node, @ € V, to any other reachable node, 8 € V.
An application running on the reference node specifies a
cast function that provides instructions to the lower layer on
calculating the cost of a given path in the logical network, G.
A path, P = {7, %1, -- ,Ury indicates the path originating
at the reference host, Tg, traversing nodes 77 through 7—1
and terminating at Tr. As a shorthand, we introduce the
notation, P, to indicate the piece of the path, P, from T to
Tn, where ¥y, is one of the nodes along the path. Using this
notation, P, = P, _

Given a path in G, the topological cost of the path from
the reference node, wp, to a host, g, can be defined recur-
sively using the path cost function, Cost, specified by the
reference host’s application. The cost of the path from the
reference host, o, to node ¥, along a particular path, Py, is
represented by fo,(Pr). The recursive evaluation to deter-
mine this value is:

Fuo (Pr) = Cost{fuy(Pr—1), wWr-1.8) {1)
fvn((%)) = (2)

Figure 3: The recursive cost function

Figure 3 shows the recursive cost function. The figure
shows that the cost of, or distance o, host 7, represented
by v, results from the evaluation of the application specified
cost function over the weight of edge €77 and the cost of,
or distance to, host Ti_7.

The family on vacaftion would like the path cost function
to reflect the physical distance from their car to other com-
municating nodes. We will see at the end of this section how

we mathematically define a cost function to accomplish this,
It is more complicated than it first appears because of the
requirement that the cost of a path be strictly increasing as
the nummber of hops from the reference grows. We do provide
two other cost functions here.

We first revisi the network hop count example. Assume
that the weight of a link is one. Then this example intends
that the cost of a path be the number of hops along that
path. Therefore, the associated cost function should be ad-
ditive. In this case,

Foo{Pe) = fug (Pr1) + wa— 1,

‘While useful, the hop count example is a bit too simplis-
tic. Here we introduce a second example that we will carry
through the explanations. Using bandwidth as a measure
of cost should indicate that a path that traverses a link of
lower bandwidth costs more (i.e., takes longer to send the
same data) than a path with higher bandwidth links. For
this example to conform to the requirement that the cost
of a path strictly increases as the distance from the refer-
ence host grows, we make the simplifying assumption that
the bandwidth decreases as the number of hops increases.
At the end of this section we will show a mechanism for
accommodating a cost function of this type without these
assumptions. Assume that the weight on a link is the in-
verse of the bandwidth; lower bandwidth links have hipher
weights. The reasoning behind this weight assignment will
be explained later. Because the cost of the path should re-
flect the lowest bandwidth encountered on that path, the
cost function for a particular nede indicates the minimum
bandwidth, or highest weight, on the path. In this case,

fvu (Pk) = ma'x(.f‘vo (Pk—l): wk—l,k)

The cost of the path from the reference node to each reach-
able node can be defined using this path cost function. In
a later section, we will see what the weights on the edges
mean and how they are derived from the properties of the
ad hoc network. Before we can define weights, however, we
need to map the physical ad hoc network to an abstract
space, a graph. The weights will then allow us to quantify
the reference node’s context, giving us the logical network,

G, over which the cost function has been defined.

3.4 The Physical Network

To begin the mapping of the ad boc network to an abstract
space, we represent the entire network as a graph, G =
(V, E), where mobile hosts are mapped to V, the graph’s
vertices, and the connections between hosts are mapped to
B, the graph’s edges. In the ad hoc nefwork, every host
and link has attributes that we intend to fold into a single
weight on each edge in our abstract graph. To do this, we
first map the host and link attributes to the abstract space
represented by graph, G, by placing values on every vertex
and edge. First, we quantify the properties of a mobile host
as a value, p; on the vertex w; € V representing the mobile
host in the graph. Formally, p: V — P. The value of p; can
be a combination of & host’s battery power, location, load,
service availability, etc.

Second, we quantify the properties of a network link as a
value, wi; on the edge e;; € F representing the edge in the
graph. Formally, w : B — £2. The value of wi; can be a
combination of the link’s length, throughput, ete.
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Figure 4: (a} Physical distance only (b) Physical distance with hop count (c) The correct cost function

3.5 Logical View of the Network

Different properties of the physical network may interest
different applications. Because each application individu-
ally specifies which properties of hosts and links to use in
its context specification, each application has its own inter-
pretation of the physical network. Each interpretation of
the properties of the underlying physical network represents
a logical view for the corresponding application. We des-
ignate an application’s logical network G = (V,E). This
is the logical network on which the cost function was built
previously. 'We use the information about the node and link
properties to create a topological ‘distance’ between each
pair of connected nodes in the logical network, G. To do
this, we combine the quantifications of node properties and
link properties into only weights on edges in G. Given an
edge, e;; € F from the original mapping, &, and the two
nodes it connects, v;,v; € V, the weights of the two nodes,
pi and p; are combined with the weight of the edge, wy,
resulting in a single weight, w;; on the edge &5 € ¥ in the
logical network. No host, 77 € V in the logical network has
a weight. Formally, this projection from the physical world
to the virtual one can be represented as:

F:PxPx0

or more specifically,

wi; = T'(pi, pj, wij).
The value of wy; is defined only if nodes v; and v; are con-
nected.

As an example of a weight assignment, we will firsé revisit
the network hop count exampie. As discussed, the weight in
this example can be measured simply by placing a weight of
one on every edge. More formally, let wy; be one for every
ei; € E in the original graph. The value of p; will not be
used. Then the weight, wy, of an edge, &7 € F in the logical
network is: wy; =wi; = 1.

While this example can serve as a useful measure in a real
network application, it does not demonstrate the power of
the abstraction being provided. For the bandwidth example
introduced in the previous section, the weight on an edge
in the graph representing the logical network reflects the
inverse of the bandwidth available between two nodes. Let
pi in the original graph, &, be the maximum bandwidth at
which host 7 is capable of transmitting. Then the weight of
an edge, &; in the logical network graph can be calculated
as:

1

min(p, p;)
It is reasonable to use the inverse of the bandwidth because
a connection with a higher bandwidth can be considered
‘shorter’, while one of lower bandwidth ‘longer’.

For our vacation scenario, we will assign weights on edges
to reflect the distance vectors between connected hosts. The
next section describes the assignment of these weights and
defines the cost function used by the vacationing family. It
also serves as an example for overcoming the strictly increas-
ing requirement on path costs while still using distance as a
metric.

wij = ife;; € E

3.6 A Complete Example

As mentioned when the bandwidth example was intro-
duced, the path cost function does not satisfy the require-
ment that the costs along a path be strictly increasing unless
we assume that the bandwidth of the hops decreases as the
number of hops from the reference grows. Because this is
not a reasonable assumption, we now introduce a complete
example that circumvents these assumptions by combining
a metric similar to the bandwidth with hop count.

This new metric will satisfy the requirements of the vaca-
tioning family that wishes to perform queries over its chang-
ing environment as their car travels across the country. The



family would like to know the Jocations of and information
about points of interest within five miles. This requires thas
the calculated context be based on this physical distance
between the family’s car and other reachable hosts. For this
example, the weight placed on edges in the logical network
reflects the distance vector between connected nodes. That
is, given two connected nodes, the weight on &5 connecting
them accounts for both the displacement and the direction
of the displacement between the two nodes. Formally,
wy; =1J

Figure 4a shows an example network where specifying
distance alone causes the cost function to not satisfy the
requirement that the function be strictly increasing. The
figure shows the shaded reference host, o, and the results of
its specified cost function. The cost function shown in this
figure simply assigns as the cost of a node the physical dis-
tance to the reference. The bound the application specified
in this example is D = 10. Notice that nodes ¢ and D are
outside of the context, while E should be placed inside the
context. When the cost of the path is strictly increasing,
host € knows that no hosts farther on the path will gualify
for context membership. In this example, this condition is
not satisfied, however, and no limit can be placed on how
long context building messages must be propagated.

To overcome this problem, the cost function will be based
on both the distance vector and a hep count. The cost
function’s value, v at a given node consists of four values:

v = (mazD, mezC,V, c)

The first value, mazD, stores the maximum distance of any
node seen on this path. This may or may not be the mag-
nitude of the distance vector from the reference host to this
host. The second value, mazC, keeps the maximum number
of consecutive hops for which the value of the cost function
remained the same at any point previously on the path. The
next value, V, is the distance vector from the reference host
to this host. We will show below how this vector is calcu-
lated. The final value, ¢, indicates the number of hops for
which mazD has not changed. This may be less than or
equal to mazC.

Specifying a bound for this cost function requires specify-
ing a bound on both mezD and mazC. It is also important
that we define the comparison function for this metric. A
given bound has two values, and if a host’s cost function
values meet or exceed either of these values, the host is out-
side the bound. That is, a host is in the specified context
only if both its mazD and its mazC are less than the val-
ues specified in the bound. It is important to notice that
necither the value of mazD nor the value of maz€ can ever
decrease. Also, if one value remains constant for any period
of time, the other is guaranteed to eventually increase. This
observation allows us to treat this cost function as strictly
increasing.

Figure 4¢ shows the cost function for this distance exam-
ple. In the first case shown in the example, the new mag-
nitude of the vector from the reference host to this host is
larger than the current value of mazD. In this case, mazD
is reset to the magnitude of the vector from the reference to
this host, mazC remains the same, the distance vector to
this host is stored, and ¢ is reset t6 0. In the second case,
mazl) is the same for this node as the previous node. Here,
maz) remains the same, mazC is set to be the maximum
of its old value and the current ¢ incremented by one, the

distance vector to this host is stored, and ¢ is incremented
by one.

Figure 4b shows the same nodes as in Figure 4a. In this
figure, however, the cost function from Figure 4c¢ assigns the
path costs shown. The application specified bound shown
in Figure 4b is D = (10,2) where 10 is the bound on the
maximum distance (mazD) and 2 is the bound on the maxi-
mum of the number of hops for which the maximum distance
did not chenge (mazC). As the figure shows, because the
cost function includes a hop count and is based on maximum
distance instead of actual distance, node C' can correctly de-
termine that no host farther on the path will satisfy the con-
text’s membership requirements. The values shown on the
naodes in the figure reflect the pair of values, mazD, masC.

4. CONTEXT COMPUTATION

The protocol developed takes advantage of the fact that
an application running on reference host, &, does not nec-
essarily need to know which other hosts are part of the ac-
quaintance list. Instead, the application needs to be guar-
anteed both that, if it sends a message to its acquaintance
list, the message is received only by hosts belonging to the
list and that all hosts belonging to the list receive the mes-
sage. The protocol described builds a tree over the network
corresponding to a given application’s acquaintance list. By
its nature, this tree defines a single route from the reference
node to each other node in the acquaintance list. To send
a message to the members of the acquaintance list, an ap-
plication on the reference node needs only to broadcast the
message over the tree.

4.1 Related Work

Creating paths between nodes in an ad hoc network is
neither a new problem nor an easy ome. Roufing proto-
cols for traditional wired networks do not function well in
the ad hoc environment because of the many special con-
ditions encountered in this new type of network. Hosts in
ad hoc networks are constantly moving, and hosts that are
encountered once are likely never to be encountered again.
Ad hoc routing protocols can generally be divided into two
categories. Table-driven protocols, such as Destination Se-
quenced Distance Vector (DSDV) routing [15] and Cluster-
head Gateway Switch Routing 8] mimic traditional routing
protocols because they maintain consistent up-to-date in-
formation for routes to all other nodes in the network [18].
This class of algorithms is based on modifications to the
classical Bellman-Ford Routing algorithm {6]. Maintaining
routes for every other node in the network can become guite
costly. Performance comparisons [3] have shown that, while
the overhead of DSDV is predictable, the protocol can be
unrelizble. Additionally, the overhead can be lessened by
utilizing routing protecols from the second class, source ini-
tiated on-demand routing protocols. This type of routing
creates routes only when requested by a particular source
and maintains them only until they are no longer wanted.
Ad-Hoc On-Demand Distance Vector (AODV) routing [16]
builds on the DSDV algorithm but minimizes the routing
overhead by creating routes on demand. Dynamic Source
Routing (DSR) [11] requires that nodes maintain routes for
source nodes of which they are aware in the system. Finally,
the Temporally Ordered Routing Algorithm (TORA) [13]
uses the concept of link reverszl to present a loop-free and
adaptive protocol. If is source initiated, provides multiple



routes, and has the ability to localize control messages to
a small set of nodes near the occurrence of a topological
change. Another type of routing that relates well to our
current work is Distributed Quality of Service Routing [5]-
In this scheme, routes are chosen from the source to the des-
tination based on the network resources available along that
path.

‘While this is not an exhaustive survey of the current ad
hoc routing protocols, it shows the diversity present among
them. The main difference between the solutions offered by
these protocols and the requirements of the acquaintance
list problem previously described lies in the fact that each
of the ad hoc routing protocols described requires a known
source and a known destination. Instead, we would like a
host to be able to specify abstractly the group of hosts with
which to communicate.

Communication with a subset of the nodes in 2 network
is accomplished using multicast routing protocols. One pos-
sible solution to our problem would build 2 multicast tree
or mesh for the acguaintance list and then send messages
over this structure. Multicasting in ad hoc networks has
received much attention as of late. Early approaches used
the shared tree paradigm commonly seen in wired networks.
Shared tree protocols have been adapted for the wireless en-
vizonment o account for mobility in these systems [9, 10].
More recent work in ad hoc multicasting has realized that
maintaining a multicast tree in the face of a highly mobile
environment can drastically increase the network overhead.
These research directions have led to the development of
shared mesh approaches in which the protocol builds a mul-
ticast mesh instead of a tree [2, 12). Both the multicast
tree and mesh protocols use a shared data structure ap-
proack. That is, they assume that for a given multicast
group, there may be multiple senders. These senders share
the tree built for the group to route their messages. While
a shared approach might optimize a solution, an acquain-
tance list is built for a particular application running on 2
particular host. There is no need to create a shared data
structure. Also, a sender is guaranteed that its messages
will be received by all members of the multicast group, but
these members initially registered with the group. While
these protocols address the mobility that causes nodes to
join and leave the group, the acquaintance list problem does
not use a registration. Instead, a particular query should
reach only the nodes that satisfy the context specification
at the time of the query’s life i the system.

In summary, our proetocol will be influenced by the unicast
and multicast protocols described above. We will need to
address many of the same concerns as these protocols. Like
them, our solution must account for the frequent mobility
of the nodes, the transient nature of the connections, and
the changing properties of both the nodes and the links in
the network. Our approach, however, differs in some key as-
pects. First, a node does not necessarily know to which other
nodes a particular query will be sent. Instead, the node can
specify some properties of the path to the nodes with which
it wants to communicate. Second, any data structure built
over the system must guarantee that the path used to com-
municate with a node in an acquaintance list satisfies the
constraint specified by the application. Finally, the proto-
cal does not need to search the whole network for possible
paths. As described in the previous section, the nature of
the context specification guarantees that once a node that

does not satisfy the specification is found, any nodes farther
on that path will not satisfy the specification either. This
last peint is the key that guarantees that our protocol can
reach a fixed point.

4,2 Protocol

As intimated in the introduction to this section, our pro-
tocol takes advantage of the fact that an application running
on a reference host specifies the context over which it would
like to operate, but the application does not need to know
the identities of the other hosts in this context. Therefore,
the context computation can operate in a purely distributed
fashion, where responses to data queries are simply sent back
along the path from whence they came. The protocol is also
on-demand in that a shortest path tree is built only when
a data query is sent frum the reference node. Piggy-backed
on this data message are the context specification and the
information necessary for its computation.

Query, 4

g.num  the application sequence number of ¢
q.5 the sender of this copy of ¢
NOT necessarily the reference node

q.5d the distance from the reference o q.5
. the distance from the reference to the

host at which the query is arriving
q.D the bound on the cost function
4.Cost  the cost function

Figure 5: The Components of a Query

Figure 5 shows the componenis of a query. Besides the
components shown, each query also carries some data in-
formation for its corresponding application. The query’s
sequence number allows the protocol to determine whether
or not this query is a duplicate. This prevents a particular
host from responding to the same query multiple times.

It should be noted here that we will talk about a query’s
sender. This is not a term used interchangeably with the
query’s reference. The reference for a query is the host
running the application for whick the context is being con-
structed. The sender of a query is the most recent host on
the path to this host.

The explanation of the protocol is divided into two sec-
tions: tree building and tree maintenance. After the pre-
sentation of the building of the shortest path tree, it will be
easy to add the maintenance to the algorithm. Before we
describe the algorithm itself, however, we present the infor-
mation that a given host needs to remember about a given
context specification.

State Information

Figure 6 shows the state variables that a host participat-
ing in a context computation must hold. This is the infor-
mation for a host, 8, that is part of a’s acquaintance list.
This shows ouly the information needed for participation in
a's acquaintance list. In general, an individual host would
be participating in multiple acquaintance lists and would
therefore have a set of these variables for each such list.

Most of the state variables are self-explanatory. Twe
worth discussing are the sets ¢ and I. € holds the list
of all connected neighbors. Each of these neighbors has a
link to it from this host; the weight of that link is stored in
C and is referred to as w. for some ¢ € €. This set is also
used to store other paths to this host. If a host receives a



State

id this host’s unigue identifier

um application sequence number
initialized to -1

d the distance from the reference node
initialized to oo

r this host's parent in the tree

pd parent’s distance {or cost) from reference node

D bound on the cost function

Cost cost function

c set of connected neighbors, the weight of the

link to each, and the cost of the path to the
neighbor. As a shorthand, we refer to the weight
of a link to neighbor ¢ as w, and the cost
of the path io ¢ as d..

T a subset of C containing the connected
neighbors that are in the reference’s context
initially empty

Figure 6: State Variables

query from host ¢ that would give it a cost d; < D that it
does not use as its shortest path, it remembers ¢’s cost, and
associates it with ¢ in ¢. When we discuss maintenance of
the tree later, this information will prove useful in quickly
finding a new shortest path to replace a defunct path. The
set I contains all of the neighbors that this host knows are
in the reference host’s context. This host will use this in-
formation when we discuss later how to recover the memary
used to store a context specification’s state on a host.

Tree Building

The application is assumed to maintain the weights on the
links in the network by updating them in response to changes
in the contextual information important to that application.
‘We also assume that the weights for the links have been cal-
culated and that each host has been notified of the weighis
of the links connecting to it. For each of these links, a host
should know both the weight of the link and the host on the
other side of the link.

Any information that a particular host requires for com-
putation of another host’s context arrives in a query; there
is no reguirement for a host to keep any information about a
global state. We assume that the topological changes in the
network and the application’s issuance of queries are atomic
with respect to each other. We also assume that the queries
are atomic with respect to each other, i.e., one query finishes
completely before the application issues the next one.

Because the protocol services queries on-demand, it does
not build the tree until a request is made. To do this most
efficiently, the information for building and maintaining the
tree is packaged with the application’s data queries. An
application with a data query ready to send bundles the
context specification with the query and sends it to all its
neighbors. When such a query arrives at a host in the ad
hoc network, it brings with it the cost function and the
bound which together define the context specification. It
also brings the cost to this host.

The first query that arrives at a host is guaranteed to have
a cost lower than the one already stored because the cost is
initialized to c0. Subsequent copies of the same query are
disregarded unless they offer a lower cost path. As shown
in the second if block of the QUERYARRIVES action in Fig-
ure 8, when a shorter cost path is found, the cost of the
new path, the new parent, and the new parent’s cost are all

stored. Also, the query is propagated to non-parent neigh-
bors whose distance will keep them inside the context spec-
ification’s bound. This is done through the PropagateQuery
function, described with the protocol’s support functions in
Figure 7. For each non-parent neighbor, ¢, this host applies
the cost function to its own distance and the weight of the
link to c¢. If this results in a cost less than the context spec-
ification’s bound, D, the host propagates the query to c. A
host must propagate a query with a lower cost even if its ap-
plication has already processed it from a previous parent be-
cause this shorter path might allow additional downstream
hosts to be included in the context.

When a host receives a query that it has not seen before
(i.e., the sequence number of the arriving query is one more
than the stored sequence number), the application automat-
ically processes it regardless of whether or not it arrived on
the currently stored shortest path. A host does not wait for
new queries to come only from its parent because it is pos-
sible that the path through the parent no longer exists or
that its cost has increased. If the path does still exist and is
still the shortest path, the query will eventually arrive along
that path, causing the cost to be updated and the effects to
be propagated to the children. Upon receiving a new query,
the host stores the cost of the guery, the new parent, the
new parent’s cost, and the sequence number, then propa-
gates the query in the manner described above. Finally, the
host sends the data portion of the query to the application
for processing using the AppProcessQuery support function
described in Figure 7.

Actions

QUERYARRIVES(q)
Effect:

save information from ¢ (Cosl := q.Cosl, D := q.D)

update C (dq.0 = q.5d}

if q.num = num + 1 then
record information (d := q.d,p:= gq.5, pd := ¢.5d)
Propagate Query(q)
AppProcessQuerylq)
save the sequence number (num = q.num)

else if g.d < d then
record information (d:= q.d,p = ¢.5, pd := ¢.5d)
Propagate Query(q)

end

Figure 8: Context Computation

An application can perform two different types of opera-
tions: transient and persistent. A transient operation is a
one-time query or instruction. For example, in the tradi-
tional children’s card game, Go Fish, a player A’s request
“Do you have a six?” would represent a transient query.
All other players, if they are part of the context, can easily
respond “yes” or “no” and move on. In a modified version
of the game, player A might request to be notified when an-
other player finds a six. This is an example of a persistent
query because the other players have to remember that an-
other player asked for a six. As long as player A still wants
a six, all players that enter the context have to be notified
of the persistent query.

The family on vacation issues both transient and persis-
tent opertions over its context of five miles. When the car
needs gas, the family asks for the nearby gas stations. This
is a transient operation. Because the family is vacationing,
however, they would also like a list of nearby points of inter-



Support Tunciions

PropagaleQuery(q)

AppFProcess Query{(q}

SendCleanUps
SENDCLEANUP to ¢

PropagatleClennUps

for each non-parent neighbor, ¢, send the query 1o ¢ if Cost{d, w.) < D by calling
SENDQUERY to c after setting ¢.d = Cosi{d,w:) and ¢.5s = id in the query. Also updates T
to include exactly those ¢ to which the query was propagated

the applicalion’s processing of the data message part of the query

for each non-parent neighbor, ¢, send a clean up message to c if Cost(d,w:) > D by calling

for every member of I, send a clean up message by calling SENDCLEANUP

Figure 7: Support Functions

est (e.g. museums, state parks, etc.) displayed in a list. To
accomplish this, the system registers a persistent operation
on the context of five miles. As the car moves across the
highway, the list is updated to reflect the changing points of
interest.

The protocol presented in Figure § is sufficient if the spec-
ifying application issues only transient operations over its
context. In this case, the context needs to be recomputed
only if a new cuery is issued. Because the protocol prop-
agates each query to all neighbors of an included host, the
shortest path will be computed each time, even if the weights
of the links have changed between the queries.

For transient operations alone, the protocol essentially re-
builds the shortest path tree each time a query is issued, on-
demand. For these purposes, the only state a host needs to
remember for 2 given context specification is its own current
shortest distance, its parent, and the sequence number. It
uses its distance to compare against other potentially shorter
paths and the identity of its parent to return messages to the
reference along the current shortest path. The need for the
remaining state variables ir Figure 6 becomes clear when
we introduce tree maintenance to the protocol. Because the
protocol in Figure 8 does no maintenance on the tree, there
is also no way for a host to recover the memory used by
this context specification. We will see in the next section
how adding tree maintenance allows us to clean up context
specification storage and accommodate persistent queries.

Tree Maintenance

The tree requires maintenance whenever the topology of
the ad hoc network changes. Any topology change that af-
fects the current context specification directly reflects as a
change in at least one link’s weight. We assume that the
underlying system brings such a change t¢ the attention of
both hosts connected by the link. That is, if weight, wi;
changes, then hosts v; and v; are both nosified.

When an application needs to leave persistent operations
on other hosts in its context, that context needs to be main-
tained, even when no new queries are issued over it. Hosts
whaose cost grows as a result of a network topology change
should be removed from the acquaintance list, while hosts
that enter the context after the persisient query has been is-
sued should be notified of the query. To do this, the system
needs to react to changes in weights on links and recalcu-
late the shortest paths if necessary, Again, we assume that
topology changes are atomic with respect to the applica-
tion’s operations. In the case of persistent operations, this
means that the topology changes are atomic with respect to
the registration and deregistration of the persistent opera-
tions and the transmission of the results of these operations.

Because both hosts connected by the link are notified of
any change, both can take measures to recalculate the short-

Actions

QUERYARRIVES(q)
... as before

WIEGHTCHANGEARRIVES{ umew;; }
Effect:
if id = p then
calculate the cost (d i= Cost{pd, wnewyy))
if wnew;y > wp then
caiculate shortest path not through p
{minpath = mine Cost{de,w:))
if minpath < d then
reset the cost (d := minpath)
reset the parent
end
end
set the query felds (g := (nwm, id, d, D, Cost))
PropagateCuery(q}
else if wmew;y < wyy then
tf Cost{d;y, w;y) < d then
recalculate cost (d == Cost{dy, wia))
reset the parent (p := id)
set the query fields (¢ := (num, id, d, D, Cost))
Propagale Query(q)
end
end
store the new weight {w,q := wnew,y)

Figure 9: Context Computation and Maintenance

est path tree if necessary. Figure 9 shows the same protocol
presented in Figure 8. A new action, WEIGHTCHANGEAR-
RIVES has been added to deal with the dynamic topology.
This action is activated when the notification of a weight
change arrives at a host. The weight changes are divided
into two categories: the weight of the link to the parent has
changed, and any other weight has changed.

In the first case, the path through the parent has either
lengthened or shortened. If the length of the path through
the parent has increased, then it is possible that the short-
est path to this node from the reference node is through a
different neighbor. The node sets its cost to be the mini-
mum of the cost through the old parent and the shortest
path through any other neighbor. To find the shortest path
through a non-parent neighbor, the host accesses the infor-
mation stored in the state variable, C. On the other hand, if
the length of the path through the parent has shortened, the
node should still be included in the context and the short-
est path to it from the reference should still be through
the same parent. In cither case, the node recalculates its
distance and propagates the information io its neighbors,
using the support function, PropegateQuery. The neighbors
will then process the weight change information using the
already discussed QUERYARRIVES action.

If the weight change has occurred on a link to a non-parent



Actiong

QuERYARRIVES(q)
Effect:

save information from g {Cost := 4.Cost, D := q.D)

update C {dg., == g.5d)

if g.num = num + 1 then
record information (d := ¢.d,p 1= q.5, pd = q.5d}
Propagate Query(q)
AppProcess Query(g)
save Lhe sequence number (num = q.num)
SendCleanUps

else if Cosi{q.d,w,..) < d then
record information (d 1= q.d,p = ¢.3,pd = q.8d)
PropogaleQuery(q)

end

CLEANUPARRIVES(id)
Effect:
if id = p then
calculate shortest path not through p
(minpath := min; Cost(de,w.))
if minpath < I then
reset the cost (d := minpath)
reset the parent
set the query fields (¢ := {num,id,d, D, Cost)}
FPropagaleQuery(q)
SendClean ips
else
FPropagaleCleanlUps
clean up local memory
end
else
update d;y in C
end

WIEGHTCHANGEARRIVES (wnew;q}

Effect:
if id = p then
calculate the cest (d := Cosl{pd, wnewq))
if wnewy > wp then
caleulate shortest path not through p
(minpalh = ming Cosi(dc, we))
if minpath < d then
resel the cost (d = minpath)
reset the parent
end
end
if d < DD then
set the query fields {g := (num, id, d, D, Cost})
PropagateQiuery(y)
SendCleanUps
else
PropagateCleanUps
clean up local memory
end
else if wnew;y < wyy then
if Cost{d;y,w;y) < d then
recaicuiate cost {d := Cost{d;q, w;1))
reset the parent (p := id)
set the query fields (¢ := (nwm,id,d, D, Cost))
PropagaleQuery{y}
end
end
store the new weight (w;q := wnew 4)

Figure 10: Context Computation and Maintenance with Clean Up Mechanism

neighbor, then the change interests this host only if it causes
the path through the neighbor to be shorter than the path
through the pareat. For this to be the case, the iink’s weight
must have decreased. Because this host is storing distance
information for all of its neighbors, however, it can simply
calculate what the new distance would be, compare it to
the stored cost, and reset its values if they have changed.
If these calculations change the cost to the node, it should
package the current context values in a query and propagate
that query using the PropegateQuery support function.
The protocol presented in Figure 9 still does not free the
memory used to store information about the reference host’s
context specification. As a car moves across the country, it
leaves information about its specified context on every host
it encounters. The car may never come back, 50 each host
that was part of the context would like to recover its mem-
ory when it is no longer part of the context specified. We
can build a clean up mechanism into the protocol as shown
in Figure 1). Whenever it is possible that a change has
pushed a host that was in the context out of the context,
the parent should notify the child tha$ its context informa-
tion is no longer useful and should be deleted. There are two
places in the algorithm where a change might push another
node out of the context. The first is when a weight changes
and the path through the parent becomes longer. Not only
might this node be pushed out of the context, any of its de-
scendants in the tree might also be pushed out. First, after
calculating its new cost, the node should verify that it is
still within the bound, D. If not, it should clean up its own
storage. If this node is still within the bound, it propagates
a copy of the current query to its neighbors that will remain

within the bound and sends a message to the neighbors that
are not within the bound instructing them to clean up this
context specification’s information if they know about it.

The other change required to the protocol occurs in the
QUERYARRIVES action. When a query arrives with a new
sequence number, it is possible that the shortest path has
increased in cost, thereby pushing neighbors out of the con-
text. To account for this, after propagating the query to all
neighbors within the bound, D, the host should also send a
clean up message to all neighbors not within D.

A new action, CLEANUPARRIVES has been added to the
protocol shown in Figure 10 to deal with the arrival of the
clean up messages. If the clean up message comes from
the parent, it is an indication that there no longer exists a
path to the reference that satisfies the context specification’s
constraints. In this case, a new shortest path is selected
using the information in ¢’ and the information propagated.
If no qualifying shortest path exists, the local memory is
recovered. In both cases some clean up messages are sent.
If the clean up message comes from 2 node other than the
parent, the state variable € needs t¢ be updated to reflect
that the cost to the source is co.

5. DISCUSSION

The abstraction allowed by the context specification is
quite powerful. Through use of diverse examples, we have
provided a glimpse of its expressive power. This power
comes from the abstraction’s ability to accomodate any prop-
erty of a network that can be quantified either on an indi-
vidual host or on the link between two connected hosts. In



this way, the abstraction itself does not limit the definition
of context but leaves it open to the application’s needs. The
context can be computed not just over neighboring nodes,
but over all reachable nodes in the ad hoc network. Because
ad hoc networks can grow very large, the application devel-
oper or user must specify reasonable contexts that can be
computed and operated over efficiently. Specifying a wider
context might be desirable for applications that operate in
a more static environment or can sacrifice performance. A
narrower context might be desirable for applications operat-
ing in a highly dynamic or densly poplulated environment.

The protocol presented in the previous section offers one
example of a distributed implementation of the context com-
putation. This protocol makes some assumptions about
atomicity guarantees of both the computation of the con-
text and the operation over the context. One requirement
is that the queries issued by the reference application are
atomi¢ with respect to each other. That is, it must be guar-
anteed that a query finishes before 2 subsequent query is is-
sued. This guarantee is not built into the protocol but could
be easily added in a number of ways. The application could
compute a timeout over network properties after which it
should be guaranteed that the query has propagated along
the entire shortest path tree. On the other hand, the pro-
tocol might require that every member of the context reply
to the reference host with a list of its “children®. When all
descendants have responded the application is free to issue
a new query.

6. CONCLUSION

The ideas behind this work are rooted in the notion that
mobile application development could be simplified if the
maintenence of contextual information were to be delegated
to the software support infrastructure without loss of fexi-
bility and generality. This paper demonstrates the feasibility
of such an approach and cutlines a novel technical solution
for context specification. The notion of context is broadened
to include, in principle, the entire ad hoc network, yet it can
be conveniently limited in scope to a meighborhood whose
size and scope is determined by the specific needs of each
application as they change over time.

To ensure the atomicity of an application’s operations, we
make assumptions about the atomicity of network topology
changes and their propagation through the network for re-
building the context. Future work will explore ways to relax
these assumptions by weakening the required guarantees on
both context maintenance and the operations performed on
that context.
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