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Abstract
Systems biology is the study of the interactions that occur between the components of

individual cells – including genes, proteins, transcription factors, small molecules, and

metabolites, and their relationships to complex physiological and pathological processes.

The application of systems biology to medicine promises rapid advances in both our

understanding of disease and the development of novel treatment options. Network

biology has emerged as the primary tool for studying systems biology as it utilises the

mathematical analysis of the relationships between connected objects in a biological system

and allows the integration of varied ‘omic’ datasets (including genomics, metabolomics,

proteomics, etc.). Analysis of network biology generates interactome models to infer and

assess function; to understand mechanisms, and to prioritise candidates for further

investigation. This review provides an overview of network methods used to support this

research and an insight into current applications of network analysis applied to

endocrinology. A wide spectrum of endocrine disorders are included ranging from

congenital hyperinsulinism in infancy, through childhood developmental and growth

disorders, to the development of metabolic diseases in early and late adulthood, such as

obesity and obesity-related pathologies. In addition to providing a deeper understanding of

diseases processes, network biology is also central to the development of personalised

treatment strategies which will integrate pharmacogenomics with systems biology of

the individual.
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Introduction
Network biology has developed as a method to study the

many interactions that occur in individual cells, helping

to understand the complex biological processes in

molecular biology and how they link to integrated
biological systems (Pujol et al. 2010). The recent genome

sequencing projects have provided a nearly complete list

of human gene products and this has been followed

by the first drafts of connectivity maps between proteins
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and gene expression profiles for many different tissues

(Parkinson et al. 2007). Network biology detects the

relationships between different biological components,

including genes, proteins, transcription factors, small

molecules and metabolites (Arrell & Terzic 2013, Tomar

& De 2013), and enables the physical or functional

relationships between these components to be identified

and interrogated, see Fig. 1 and Box 1. Network analysis

can therefore be used to dissect the complexities of

biological systems and provide information which is

directly relevant to understanding the pathobiology of

disorders, including the pathways of disease processes and

the prioritisation of candidate disease-causing genes. The

aim of this review is to explain how the analysis of

biological networks can be carried out and to illustrate

how systems biology is impacting on our understanding of

diseases, with a particular focus on endocrine conditions

which by their very nature are complex and impact upon

many organs systems.
Network analysis

How do we visualise biological network models?

The commonest representations of biological networks are

‘ball and stick’ diagrams. The ‘balls’ represent proteins or

genes and the ‘sticks’ represent the known interactions.

These can be directed, with an arrow representing ‘action’

or ‘flow’ of information, or they can be undirected, where

connections represent direct associations. Biological net-

works are ‘graphs of connected nodes’, where nodes

represent biological components, which are connected

through edges to show their inter-relationships, from the

physical or functional associations to metabolic pathways

and regulatory interactions (Arrell & Terzic 2013, Tomar &

De 2013; Fig. 1). Several models have been used for

network analysis, from ‘Power Graphs’ and the ‘Infor-

mation Flow Model’, to ‘Boolean’ and ‘Bayesian’ networks

(Missiuro et al. 2009, Pujol et al. 2010, Youngs et al. 2013).

In Bayesian networks, the nodes represent biological

variables and directed edges represent causality through
Figure 1

Analysis of biological networks. Biological networks can be inferred using

(A) ‘omic’ datasets as ‘seeds’ by mapping the data to models of all known

protein–protein or –genetic interactions and generating an interactome

model, (B). The interactome model represents the whole set of known

direct and indirect interactions involved with biological topic being

studied. By identifying network clusters (C) and measuring network

http://jme.endocrinology-journals.org � 2014 Society for Endocrinology
DOI: 10.1530/JME-13-0112 Printed in Great Britain
conditional probabilities between them. Specifically, they

have been used in several fields of systems biology, such as

cellular networks inference, pathway modelling, quality

assessment of protein–protein interactions and functional

annotation of proteins and gene expression analysis (Pujol

et al. 2010).

Commercially available software for the analysis of

gene networks are available (Thomas & Bonchev 2010)

and specialise in the ‘pattern recognition’ of genes

clustering within the networks derived from either a

previously defined pathway ‘cannon’ (e.g. Kyoto encyclo-

pedia of genes and genomes (KEGG) database, http://

www.genome.jp/kegg/) or from a process of network

inference algorithmically determined using known bio-

logical function (Calvano et al. 2005). Most scientists

in the life sciences define network analysis based on

commercial software of this type, i.e. one in which con-

nections are primarily based on text-mining algorithms.

These types of software are designed to be easy to use,

provide further quality control of data and have had

a major impact on the way in which systems biology

analysis is integrated with omic analysis. However,

there are advantages to more advanced statistical/

computational approaches for generating and analysing

networks, primarily around using network properties to

prioritise genes for further analysis – these will be covered

in more detail in the section ‘Computational analysis of

molecular interaction networks’.
Analysis of omic datasets: towards integrated analysis

To analyse omic data, two or more contrasting groups are

normally compared, such as a ‘treated vs control’ or

‘received dose vs therapeutic response’. A major issue in

the analysis of omic datasets with hundreds or thousands

of variables is that the number of comparisons is so large

that it is likely that the total number of false positives

becomes unfavourably high. This phenomenon is moder-

ated by the application of a false discovery rate correction

to the statistical test, for example Benjamini–Hochberg

correction (Benjamini & Hochberg 1995). However,
topology (D), function in the cell system can be inferred and further

investigated (E). The same approached can also be used for the

prioritisation of omic data for further investigation (E). (D) ‘Hubs’ are

designated ‘H’ and represent highly connected proteins/genes, and

‘bottlenecks’ are designated ‘B’ and represent positions within network

with limited connection between clusters.
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Box 1 Definitions of technical terminology in network biology.

Bottleneck: corresponds to a network position which limits the performance or the capacity of the system. A network centrality
measure representing positions with many ‘shortest paths’ travelling through.

Cluster modularity: distinct grouping of protein:protein or protein:gene interactions within a network.

Hub: a highly connected node within a network.

Interactome: biological network representing a whole set of direct or indirect interactions related to specific biological function.

Network analysis: relationship of the structural properties of a biological network to function.

Network biology: biology as related to interactions between multiple genes and/or proteins.

Network robustness: a mathematical description of how the integrity of a network responds to the random removal of single
nodes.

Node: a protein or gene positioned within a network.

Node centrality: refers to the ‘central’ positioning of nodes in a network. Central nodes have more ties to the network and
determine flow between other nodes.

Seed: known genes used to generate an interactome model from all known protein–protein and –genetic interactions.

Systems biology: integration of complex data about the interactions in biological systems from diverse experimental sources
using interdisciplinary tools.
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common false discovery rate correction methods assume

that comparisons are independent, which is often not the

case. Increasingly, extra confidence in the analysis of omic

data sets can be provided by observing whether identified

changes coalesce into clusters within biological networks

(D’Eustachio 2011, Haw et al. 2011). These two approaches

are not mutually exclusive and are increasingly modelled

together to allow interpretation of different types of

omic datasets.

Biological networks can be inferred using omic

datasets by mapping the data to models of all known

protein–protein or –genetic interactions and generating

a much larger model of the interactome (Stark et al. 2011,

Ngounou Wetie et al. 2013; Fig. 1). An interactome

represents the whole set of direct and indirect molecular

interactions involved with the phenomenon being

studied (Fig. 1). The interactome model therefore

combines data from different omics datasets/databases to

generate network cluster maps correlating with the

organisation and priority of processes that provide a

particular function(s). These models also allow multi-

variate analysis of the data with consequent gains in

statistical certainty (Choi & Pavelka 2011).

The availability of whole genome transcript data has

also aided the development of novel approaches to analyse

this type of data. For example, it is now possible to

incorporate the influence of upstream regulators such

as transcription factors and miRNA into modelling of

available data. These strategies, in turn, may assist and
http://jme.endocrinology-journals.org � 2014 Society for Endocrinology
DOI: 10.1530/JME-13-0112 Printed in Great Britain
strengthen putative mechanisms of disease (Medan et al.

2012). It is also possible to fully integrate genetic and

transcriptomic analyses by the generation of expression

quantitative trait loci (eQTL). An eQTL is a genomic locus

that regulates transcription and is defined by mapping

methods that examine the linkage between variation in

expression and genetic polymorphisms (Kulp & Jagalur

2006, Villa-Vialaneix et al. 2013).
Computational analysis of molecular interaction

networks

The study of biological networks has increased exponen-

tially over the past 10 years and has been paralleled with

the increase in collection and statistical analysis of

network-indexed data. Statistical methods to examine

the relationship between the properties of biological

networks and function have also been developed and

research in this area is ongoing (Choi & Pavelka 2011).

There are now several analytic methods that are com-

monly used for relating the structure/topology of biologi-

cal networks to the functional properties of cells and

systems (Toubiana et al. 2013). It is well recognised that

most biological functions are closed systems at low

entropy states and can be resolved to a set of ordered

processes. Cluster modularity aims to define this order

with the recognition that sub-networks of interconnected

nodes might represent molecules which are functionally

linked and work in a coordinated manner to achieve a
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definite function (Fig. 1C; Gavin et al. 2006, Adjari et al.

2012, Szalay-Beko et al. 2012). Important concepts in

analysis include node centrality and network robustness

(Barzel & Biham 2009; Box 1 and Fig. 1D). Various

mathematical operators are useful in pattern analysis.

For example, network motif analysis identifies small

networks that are over-represented when compared with

a randomised version of the same network (Milo et al.

2002), while network alignment and comparison are used

to describe similarities between independent networks;

this is a type of analysis that has been particularly valuable

in understanding the evolutionarily conserved pathways

that are common to several organisms (Choi et al. 2013).

Current software approaches to the assessment of network

structure and its relationship to biological function are

summarised in Table 1.

Whilst the variety of available approaches to the

software analysis of network properties can seem daunting

and at the current time have limited consensus of use, ‘the

ability of these approaches to unravel information not

made available via traditional analysis of complex data

sets’ (as stated by Toubiana et al. (2013)) is increasingly

being recognised.
Table 1 Some of the main applications in use for the identificat

associated biological function and the functional prioritisation of ne

Cytoscape (Smoot et al. 2011)

Application name Analytical features

ModuLand Uses: analysis of community centrality. An al
determining extensively overlapping netw
Moreover, it identifies several hierarchical
where meta-nodes of the higher hierarchi
modules of the lower layer

Cytohubba Calculation of network topological properti
characteristic analysis algorithms, Maximu
Component (MNC) and Density of Maximu
Component (DMNC) are developed for ex
identifying hubs/essential nodes from inte

ClusterONE ClusterONE (Clustering with Overlapping Ne
Expansion) is a graph clustering algorithm
handle weighted graphs and readily gene
clusters

MCODE MCODE is an algorithm that finds clusters (h
interconnected regions) in a network

NetworkPrioritizer NetworkPrioritizer provides multiple feature
nodes based on centrality measures accord
relevance to the rest of the network

Reactome FIs Reactome FIs was designed to find network
condition. Uses community clustering

DAPPLE DAPPLE stands for Disease Association Prote
Evaluator. DAPPLE looks for significant ph
among proteins encoded for by genes in l
disease according to protein–protein inter
the literature

http://jme.endocrinology-journals.org � 2014 Society for Endocrinology
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Software-based methods in network analysis

Different software-based methods can be used to generate

biological networks using omic data as ‘seeds’, but all use

algorithms to infer relationships between omic changes

and known interactions in the literature or from open-

access databases such as BioDRID (Stark et al. 2011,

Chatr-Aryamontri et al. 2013) and Reactome (Haw et al.

2011). Interactome models generated by these methods

can be visualised using software such as Cytoscape, which

is an open source software platform for the analysis of

complex networks (Cline et al. 2007, Smoot et al. 2011).

Network analysis has also been developed as a process

to increase confidence in the observations of differential

expression in omic datasets by correlation with biological

function (Calvano et al. 2005, Werner 2008). This

procedure allows the identification of putative key

functional elements within the identified networks of

differentially expressed genes. Ingenuity Pathway Analysis

(IPA) Software is one of the best known examples of this

type of approach. Specifically it uses an algorithm which

generates inferred networks of omic data by functional

similarity (Calvano et al. 2005). Both the power and the
ion of network properties, highly connected network regions,

twork elements. The majority (all except DAPPLE) are plugins for

References

gorithm for
ork modules.
layers of modules,
cal layer represent

Szalay-Beko et al. (2012)

es. Two
m Neighborhood
m Neighborhood

ploring and
ractome networks

Lin et al. (2008)

ighborhood
that is able to

rates overlapping

Nepusz et al. (2012)

ighly (Bader & Hogue 2003)

s to rank individual
ing to their

Kacprowski et al. (2013)

patterns related to Newman (2006) and Haw et al. (2011)

in–Protein Link
ysical connectivity
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weakness of this approach are that it is based on

‘mining’ an extensively annotated literature database;

this allows highly specific associations to be made but

these are only as good as the current database used

(Khatri et al. 2012). Literature databases have extensive

coverage of biological function but can still suffer from

distortions in that some interactions may be over- or

under-represented (Khatri et al. 2012). Interactome mod-

elling generated from the databases of known protein:

protein and protein:genetic interactions such as BioGRID

(Chatr-Aryamontri et al. 2013) suffers from this issue to a

lesser extent but requires the more mathematical

approaches described in this section to provide functional

interpretation.

Analysis of network structure can also be determined

by the Cytoscape Software platform, which can be used to

provide topological analysis. Topology, a branch of

mathematics studying shapes and spaces, is utilised in

network analysis to describe network properties such as

connectivity, which is an inherent network property

involving hubs and bottlenecks (Fig. 1D and Box 1; Lin

et al. 2008). Using this approach, the top 10–20% of

protein–protein interaction network nodes can be ranked

for both connectivity and bottleneck scores and then used

to generate a minimal essential network (Sun & Zhao

2010, Stevens et al. 2013d). A minimal essential network

represents the most functionally relevant element of an

interactome model and therefore is used to assess

biological function (Stevens et al. 2013a,b,d).
Disease networks

During the last decade, much effort has been spent in

generating a list of disease–gene associations, and explain-

ing how genetic disorders and the corresponding disease–

genes might be related (Goh et al. 2007, Goh & Choi 2012).

However, this process has significant challenges. For

instance, diseases can arise from mutations in more than

a single gene (locus heterogeneity) and different

mutations in the same gene may cause different pheno-

types and genetic disorders (allelic heterogeneity) (Goh

et al. 2007). In order to advance this area, the ‘human

diseasome’ has been generated using network biology,

which brings together combined datasets of all known

disease–gene associations. This has been created on the

basis that there is a cohesive relationship between disease-

causing genes and their products, and developed on a

conceptual framework which systematically links all

recorded genetic disorders (the human disease phenome)

with the complete list of known disease-causing genes (the
http://jme.endocrinology-journals.org � 2014 Society for Endocrinology
DOI: 10.1530/JME-13-0112 Printed in Great Britain
human disease genome) (Janjic & Przulj 2012). Through

the network-based model for the human diseasome, it has

been shown that genes that contribute to a common

disorder exhibit an increased propensity for their products

to co-interact through protein–protein interactions; have

a tendency to be co-expressed in specific tissues and share

common cellular and functional characteristics, as anno-

tated in gene ontology (Pujol et al. 2010, Gene Ontology

Consortium 2013).

Disease networks have been created also for orphan

diseases that have special consideration as they have a low

rate of prevalence. Network relationships based on shared

genes or shared functional features have been derived and

used to construct the orphan disease-causing mutant gene

interactome (Zhang et al. 2011). Interestingly, Zhang

et al. (2011) found that in contrast to the common

disease-causing mutant genes that are predominantly

non-essential, orphan disease-causing mutant genes are

largely essential and are ubiquitously expressed. However,

the authors also found that the connectivity of gene-based

and other feature-based orphan disease networks is largely

different, suggesting that the relationships between

diseases cannot be fully captured by the gene-based

network alone. As network analysis is evolving through

the addition of information to databases, these

approaches are nevertheless likely to provide important

added value for improved diagnosis, prevention, and

discovery of novel therapeutic strategies for orphan

diseases.

Disease-focused networks are needed to ensure the

validation of multiple biological markers and the under-

standing of pathophysiology of many diseases (Vlahou

2013). Several examples of disease-focused networks are

now emerging, especially in the area of cancer research

where numerous cancer cluster gene networks have been

described in different types of tumours, including color-

ectal, ovarian and breast cancers (Bravata et al. 2013,

Kumar et al. 2013b, Yamaga et al. 2013, Zhang et al. 2013).

Network analysis is also leading to promising advances in

other fields, including neurological diseases (Parkinson’s

and Alzheimer’s diseases (Balthazar et al. 2013, Lones et al.

2013, Strafella 2013)) and neuropsychiatric disorders

(Kasparek et al. 2013); diseases of the immune system

(Ivanov & Anderson 2013) including autoimmune or

haematologic diseases (Mani et al. 2008, Kumar et al.

2013a); the pathogenesis of coronary heart diseases (Huan

et al. 2013), fatty liver diseases (Sookoian & Pirola 2013)

and endocrine/metabolic conditions, which will be

covered in more detail in the following sections.
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Network pharmacology

An improved knowledge of the complex nature of diseases

is also beginning to impact upon drug development and to

the therapeutic management of diseases (Murthy et al.

2013). Whilst most prescribed drugs interact with specific

cellular targets, in vivo they modify cellular systems

through interactions with multiple proteins rather than

single entities. Computational modelling of these

interactions is now possible and has facilitated a shift

towards network-centric strategies in new drug design

(Nacher & Schwartz 2008). As a consequence, a novel

concept has now emerged in drug discovery for improving

treatment responsiveness termed ‘polypharmacology’

(Barabasi et al. 2011) and has been implicated in the

design of novel anticancer drugs (Tang & Aittokallio 2013)

and antimicrobial agents (Rohde et al. 2012).

Analysis of network biology is also helping to under-

stand how the multifaceted interactions between drugs

and their cellular targets contribute to efficacy and adverse

reactions/side effects. Network pharmacology therefore

provides a framework for analysing the actions of drugs on

systems, for identifying targets which will modulate

disease phenotypes, and for developing therapies that

are less vulnerable to drug resistance and side effects

(Takarabe et al. 2011). Another major area of research in

drug discovery is predictive toxicology. Network biology

can identify putative secondary targets for a given

compound or explore potential downstream effects for

blocking or enhancing the actions of key nodes.
Networks analysis of endocrine diseases

In this section, we summarise disease areas in endocrine

sciences, which are engaging network analysis to better

understand the pathogenesis of disease and the respon-

siveness of patients to therapy (Fig. 2). In many cases, the
• Childhood development
• Short stature and 
 growth disorders

• Congenital
 hyperinsulinism

Childhood

Network analysis in end

Infancy

Figure 2

Network analysis of endocrine diseases. The use of network analysis

approaches in a wide spectrum of endocrine conditions in a different set

http://jme.endocrinology-journals.org � 2014 Society for Endocrinology
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introduction of network analysis to endocrine disorders

has come about, because candidate gene approaches

to pathogenesis are limited, the phenotype of a particular

disease in individuals may be variable and because natural

history of a condition is often not inferred from traditional

investigations.
Congenital hyperinsulinism in infancy

Congenital hyperinsulinism (CHI) is a rare disease due to

dysregulated, excess insulin secretion from pancreatic

b-cells, which manifests as profound hypoglycaemia (De

Leon & Stanley 2007, Banerjee et al. 2013). CHI is the

commonest cause of persistent hypoglycaemia in infancy.

In contrast to other causes of hypoglycaemia such as

infection and hypopituitarism, hypoglycaemia in CHI is

unpredictable and severe with a significant adverse impact

on future neurodevelopment (Senniappan et al. 2012). The

condition usually manifests not only in the neonatal

period but also later in childhood with milder forms in

children who may be able to maintain normoglycaemia

on oral feeds. The phenotype of CHI is heterogeneous,

with wide variability not only with respect to time of

presentation but also the probability of spontaneous

resolution vs long-term persistence of disease. Transient

CHI resolves spontaneously within weeks to months of

diagnosis and accounts for w50% of all patients (Arnoux

et al. 2011). Little is known about the cause(s) of

hypersecretion of insulin in these patients or the

mechanisms responsible for the resolution of symptoms.

In contrast to transient disease, the pathophysiology of

persistent CHI is far more widely described. So far,

mutations in nine genes – GLUD1, SLC16A1, HADH,

UCP2, KCNJ11, ABCC8, HNF1A, GCK and HNF4A, are

known to associate with persistent CHI, but these only

help to understand the process of disease mechanisms in
Time

Adulthood

• Obesity
• Atherosclerosis
• Type 2 diabetes
• Drug-induced insulin resistance
• Diabetic kidney disease

ocrinology

of age-related groups: from infancy, through childhood to early and

late adulthood.
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w50% of patients (Banerjee et al. 2011, 2013, Senniappan

et al. 2012). In our studies, computational biology of

disease-causing genes has recently been used to seed an

interaction network model. Genes integral or tightly

connected to the network have been found and represent

new candidates for understanding the exact aetiology of

this disorder across the spectrum of severities (Stevens

et al. 2013b).

From the CHI interactome model, cluster analysis of

the components of the associated pathways can be carried

out (Newman 2006). This analytical approach allows the

identification and prioritisation of genes/proteins that are

related to mechanisms of disease and may therefore act as

biomarkers of CHI for the purposes of diagnosis and

disease management (Stevens et al. 2013b; Fig. 3).

The largest cluster identified in the CHI interactome

model was associated with cellular signalling with

‘tropomyosin receptor kinase signalling’ as the most

significantly related pathway (PZ5.0!10K5). Tropomyo-

sin is an integral component of actin filaments within the

cytoskeleton. The insulin receptor has been shown to have

actions on the structural architecture of the cell (Kadowaki

et al. 1985) and polymorphism within regulatory regions

of the tropomyosin gene has been associated with

cytoskeleton-mediated insulin signalling (Savill et al.

2010). The second largest cluster found in the CHI

interactome model was associated with nuclear signalling

and the most significantly related pathway was ‘regulation

of SMAD2/3 signalling’. SMAD2 has been shown to be

associated with the development of pancreatic islets (Goto

et al. 2007). These observations derived from the network

analysis of the CHI interactome model provide prioritisa-

tion of network elements for further research.
Human growth and short stature in childhood

Network analysis has been used to demonstrate that the

pattern of human growth can be linked to changes in the

expression of sets of genes within evolutionarily con-

served growth pathways (including WNT, TGFB, VEGF

and the NOTCH signalling pathways) and that this occurs

in a tissue-independent manner (Stevens et al. 2013d). This

phenomenon has also been shown to occur in rodent

models (Finkielstein et al. 2009); however, the pattern of

human growth and development is distinct from that of

other mammals (Bogin 1999, Thompson & Nelson 2011),

and is characterised by rapid but decelerating growth in

infancy, an extended childhood phase of slow growth and

a pubertal growth spurt before final height is reached,

termed the infancy–childhood–puberty growth model
http://jme.endocrinology-journals.org � 2014 Society for Endocrinology
DOI: 10.1530/JME-13-0112 Printed in Great Britain
(Karlberg et al. 2003). Despite extensive experience over

the past 25 years in the clinical management of growth

failure in growth disorders, including growth hormone

deficiency (GHD) and Turner syndrome (TS), predicting

treatment efficacy in individual children remains a

significant challenge as both age and stage of childhood

development are now known to be important predictors of

the outcome of treatments (Ranke et al. 1999, Ranke et al.

2000, Ranke & Lindberg 2011, Patel & Clayton 2012,

Ranke 2013).

The possibility of stratifying patients based on genetic

variation of response to GH therapy led to the develop-

ment of the PREDICT study, the aim of which was to assess

the genomic profiles of GHD and TS children in response to

GH therapy by the analysis of both genetic and transcrip-

tomic data (Clayton et al. 2013, Stevens et al. 2013a).

Integrating gene expression and genetic data has provided

mechanistic insight into growth response and helped to

support the identification of genes with predictive value of

growth response. Insulin-like growth factor 1 (IGF1)

production over the first month of treatment (Stevens

et al. 2013a) and first-year growth responses to recombi-

nant human GH (r-hGH) therapy (Clayton et al. 2013) have

both been studied using this approach and several growth-

related pathways involved in response to GH therapy have

been identified beyond the traditional GH and IGF1

signalling pathways. These included the MAPK pathway,

a pathway well known to be involved in growth (Yamauchi

et al. 1997, Hanson et al. 2012) but considered to have a less

prominent role than the GH pathway. In the MAPK

pathway, multiple single nucleotide polymorphisms

(SNPs) in genes associated with response to GH therapy

were located in both GHD and TS and these genes were

shown to be located in network clusters that also contained

gene expression changes associated with response to GH

therapy. A network analysis using prioritisation by the

connectivity of gene expression associated with the

carriage of CDK4 alleles linked to IGF1 change over

the first month of GH treatment also highlighted the

role of the MAPK pathway’s response in GHD children

(Stevens et al. 2013a). From these models, proof of

principal has been established, that it is possible to identify

genetic biomarkers of growth response which could have

important predictive potential.
Obesity and adipose tissue

Adipose tissue is a host to a number of complex regulatory

networks, involving growth, metabolism and intracellular

signalling pathways. Several systems-led investigations
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Downloaded from Bioscientifica.com at 08/23/2022 07:53:03AM
via free access

http://jme.endocrinology-journals.org/
http://dx.doi.org/10.1530/JME-13-0112


Network module Biological pathway FDR

Tropomyosin receptor kinase signalling
RAF/MAPK cascade
Neurotrophin signalling
mTOR signalling
Syndecan-1-mediated signalling
TRIAL signalling

ErbB2/ErbB3 signalling
Presenilin signalling
GMCSF-mediated signalling

Regulation of metabolism

BARD1 signalling events
p53 signalling pathway
HDAC class III signalling
TGFβ signalling

Regulation of SMAD2/3 signalling
Oestrogen receptor-α signalling
Oestrogen receptor-β signalling
Retinoic acid receptor signalling

5.0 × 10–5

5.3 × 10–5

5.9 × 10–5

6.3 × 10–5

4.0 × 10–4

3.0 × 10–4

6.6 × 10–3

9.0 × 10–3

6.6 × 10–3

1.0 × 10–3

1.3 × 10–4

2.0 × 10–4

1.0 × 10–3

2.6 × 10–4

1.0 × 10–4

1.1 × 10–4

1.5 × 10–4

1.4 × 10–4

A

B

Cellular signalling

Nuclear signalling

Growth factor 
signalling

Development

Function

Figure 3

Human interactome network analysis of CHI-associated genes. (A) Genes

with a known association with CHI were used to infer a network from the

BioGRID model of the human interactome (http://thebiogrid.org/).

(B) Biological pathway ontology associated with each network module

(colour coded); hypergeometric test false discovery rate (FDR) %0.001. The

inferred network was generated using the BioGRID plugin for Cytoscape

3.1.93 to identify the primary interactors of CHI genes from all known

physical and genetic evidence. Reproduced from Stevens A, Cosgrove KE,

Padidela R, Skae MS, Clayton PE, Banerjee I & Dunne MJ 2013b Can network

biology unravel the aetiology of congenital hyperinsulinism? Orphanet

Journal of Rare Diseases 8 21–28.
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have been performed to assess regulatory networks within

adipose cells. Specific lipid metabolism networks have also

been discovered, which have environmental and genetic

influences and form a highly regulated and integrated

homeostatic network primarily designed to maintain

energy homeostasis and tissue growth/expansion (Sethi

& Vidal-Puig, 2007). These pathways are relevant to

obesity and obesity-associated metabolic dysregulation as

adipose tissue plasticity and expandability play an

important role in energy homeostasis in health and

disease. Metabolomics has been applied to the study of

lipid molecules including free fatty acids and phospholi-

pids (Han & Gross 2003). This lipidomic approach has

been used to investigate the metabolic regulation of

adipocytes in obesity in order to further understand the

cascade of events progressing from adipocyte expansion to

immune cell recruitment and initiation of inflammation

(Kamei et al. 2006). Lipidomics utilising network analysis

has identified metabolic biomarkers for the response of

adipose tissue to treatment. A study on the use of

rosiglitazone on lipid metabolism in diabetic mice recently

suggested that increased de novo synthesis of the fatty acid

palmitoleate may have relevance as a biomarker (Watkins

et al. 2002). Palmitoleate has been shown to be synthesised

during lipogenesis and its production correlates with

improved insulin sensitivity (Cao et al. 2008). In humans,

the proportion of palmitoleate was increased in obese but

otherwise healthy individuals, suggesting that the pro-

duction of this fatty acid could reflect an adaptive measure

to restore insulin sensitivity. Surprisingly, palmitoleic acid

production was not increased in morbidly obese subjects

(Pietilainen et al. 2011). As obesity has a direct association

with systemic inflammation and the secondary develop-

ment of diseases including atherosclerosis, obesity-related

insulin resistance and type 2 diabetes, network analysis has

also been used to explore functional connectivity between

adipocytes and other metabolic tissues; see sections below.
Obesity and atherosclerosis

Obesity status is often associated with hypercholesterolae-

mia that leads in turn to an increased risk of atherosclerosis

and cardiovascular diseases (Goldstein & Brown 2001). One

of the first key events in the development of atherosclerotic

plaque is the uptake of oxidised LDLs by macrophages,

which leads to local inflammatory reactions and to the

formation of lipid-loaded macrophages, termed ‘foam

cells’. LXRa, is a ligand-dependent nuclear receptor that

regulates cholesterol homeostasis and reverses cholesterol

transport; therefore, it represents an important drug target.
http://jme.endocrinology-journals.org � 2014 Society for Endocrinology
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A recent study has used integrative genomic analysis to

understand LXRa-dependent functional characteristics

and transcriptional regulation pathways (Feldmann et al.

2013). Several SNPs within LXRa-dependent binding sites

were found to have differentially expressed target genes

involved in the biological processes linked to inflam-

mation, cell growth and apoptosis. To analyse the role of

LXRa modulation in atherosclerosis and related diseases, a

human macrophage and foam cell network model was used

to investigate the actions of a synthetic LXR agonist –

T0901317, which has a potential atheroprotective role. By

using transcriptional network analysis, highly integrated

LXRa ligand-dependent transcriptional clusters were

detected which contribute to the reversal of cholesterol

efflux and the dampening of inflammation processes in the

foam cells (Feldmann et al. 2013). An important impli-

cation of these data is that network analysis in this field is

helping the understanding of molecular mechanisms

governing atherogenesis, which has relevance to thera-

peutic strategies to prevent atherosclerosis.
Obesity and type 2 diabetes mellitus

Current studies based on integrating genotypic data have

shown that complex traits such as obesity are modulated

by compound networks based on multiple genetic loci and

environmental factors. Obesity is also well known to be

a chronic tissue inflammation contributing to insulin

resistance and secondly to the development of pancreatic

b-cell failure and type 2 diabetes mellitus (T2DM). In the

USA, the current obesity epidemic is running in parallel

with a T2DM epidemic and the underlying pathophysiol-

ogies are closely linked (Osborn & Olefsky 2012). Several

mechanisms proposed to induce b-cell failure have been

detected, involved in endoplasmic reticulum stress,

oxidative stress, lipotoxicity and glucotoxicity which are

mostly mediated by tissue inflammation (Hotamisligil &

Erbay 2008, Santiago & Potashkin 2013). A genetics and

systems-based approach to the identification of suscep-

tibility loci in obesity-induced diabetes in mice has

recently been added to our understanding of the complex

genetic interactions contributing to this condition

(Davis et al. 2012). In this study, loci contributing to

diabetes-related traits were identified, and candidate genes

for variations in gene expression were prioritised.

Co-expression networks for mice at different ages and

clinical traits were then generated and several modules

found to be tightly associated with obesity-induced

diabetes (Davis et al. 2012). In a separate study, gene and

protein interactome models were generated from gene
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expression and metabolic profiling data in obese mice.

Network analysis of these models was used to identify

differentially activated sub-networks that demonstrated

immune system gene networks and inflammatory

biomarkers were upregulated in the adipose tissue and

that this preceded insulin resistance therefore revealing

key links between nutrition and genetic factors (Mori

et al. 2010).

The recent introduction of genome wide association

studies has also led to the identification of several SNPs

associated with diseases, including T2DM. Network

analysis has now been used to integrate SNPs known to

be associated with T2DM with eQTL and this has led to the

discovery of several novel candidate genes for T2DM,

involved in the regulation and metabolism of insulin,

glucose and lipids (Kang et al. 2012). Biological network

analysis in humans has also revealed an association

between T2DM and Parkinson’s disease through a network

model which places insulin resistance and inflammation

central to defects in insulin secretion and defective

glucose sensing and impaired insulin signalling, leading

to cognitive decline and neurodegeneration (Santiago &

Potashkin 2013).
Development of drug-induced insulin resistance: network

analysis example of glucocorticoid and GH therapies

The development of insulin resistance and T2DM is not

only related to obesity, but can also be iatrogenic. Fleuren

et al. (2013) have recently reported on the use of gene

networks to identify which genes may play a role in the

development of insulin resistance induced by glucocorti-

coids and identified several candidates, including

phosphoenolpyruvate carboxykinase and glucose-6-phos-

phatase. Treatment with r-hGH can present short-term

complications including insulin sensitivity which we have

studied in pre-pubertal children with GHD. By network

analysis clusters of genes have been identified that

underlie metabolic and growth responses to GH and are

associated with adipocyte differentiation and cell cycle

regulation pathways (Stevens et al. 2013c). These

approaches can also be applied to a variety of drug-

induced disease networks and may help to identify

candidate genetic markers for predicting response to

treatment and the development of side effects.
Diabetic kidney disease

Diabetic kidney disease (DKD) is a microvascular compli-

cation of diabetes mellitus and is usually accompanied by
http://jme.endocrinology-journals.org � 2014 Society for Endocrinology
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a progressive loss of kidney function. It has been shown

that genetic variations and environmental factors are

strongly linked to DKD susceptibility and to the pro-

gression of kidney dysfunction (Komorowsky et al. 2012,

Bhalla et al. 2013). The improvement of standardised high-

throughput technologies of tissue sampling combined

with network analysis of tissues from patients with DKD

has now led to a far better understanding of the

pathophysiology of DKD. Using human renal biopsies,

transcriptomics in tubulo-interstitial compartments has

recently been combined with hypothesis-driven network

pathway analysis to document the involvement of several

genes related to inflammation in progressive DKD

(Komorowsky et al. 2012). Transcriptional network

analysis combined with promoter modelling approaches

has also been used to identify a specific NF-kB module in

the pathogenesis of DKD, effectively segregating pro-

gressive forms of DKD from mild diabetic nephropathy

and control subjects (Schmid et al. 2006). Other

mechanisms have also been shown to be involved in

human DKD, including specific gene expression patterns

pointing at pathways involving hypoxic gene regulation,

vascular plasticity and JAK/STAT signalling (Lindenmeyer

et al. 2007, Berthier et al. 2009).
Conclusions

We have an unprecedented capacity to generate datasets

that can document the detailed and complex interactions

that take place within a cell. These are being mapped in

incredible detail through a combination of technological

advancements in experimental techniques, including the

ready availability of second- and third-generation sequen-

cing platforms; associated methods (such as RNA-seq and

ChIP-seq); other high-throughput ‘omics methods, includ-

ing quantitative proteomics, interactomics and miRNAo-

mics/MIRomics (Szabo et al. 2013) and the application of

computational biology to analyse, visualise and model the

systems data. Epigenomics, the whole genome study of

DNA methylation and histone markers as indicators of

transcriptional activity, is also amenable to network

analysis, but this has not yet been implemented in an

endocrine context. By contrast epigenomic/network

biology integration has made important advances to the

area of cancer biology (Huang et al. 2013).

These technologies promise rapid advances both in

the scale at which biological research is performed and in

the scope of the questions that can be tackled. However,

they also offer new challenges, owing to the volume of

data generated. In the last few years, a new situation has
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arisen in biology, whereby, in many cases, the rate-

limiting step has shifted from data generation to data

analysis. Compounding this problem is the fact that many

researchers with traditional experimental training lack

the computational skills that ‘big data’ projects require.

For this reason, the full potential of these new tech-

nologies remains to be fully realised. In this review, we

have provided examples of network analysis in endo-

crinology. Current technology and new approaches to the

analysis of omic data can now be combined and network

biology can be used to reveal cohesiveness and order from

a broad array of datasets representing all aspects of cell

function enabling systematic prioritisation and interpre-

tation of the underlying biology of a network. The systems

biology approach will undoubtedly enhance understand-

ing of the normal physiology and pathophysiology of

different diseases. Interactome modelling of pharmacoge-

nomic responses to therapy will also identify putative new

drug targets and possible drug-induced side effects, leading

to the introduction of new or repositioned therapeutic

agents in clinical practice.
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