
Network Analysis of Epidermal Growth Factor Signaling
Using Integrated Genomic, Proteomic and
Phosphorylation Data

Katrina M. Waters1*, Tao Liu2, Ryan D. Quesenberry3, Alan R. Willse4, Somnath Bandyopadhyay1,

Loel E. Kathmann3, Thomas J. Weber3, Richard D. Smith2, H. Steven Wiley5*, Brian D. Thrall3*

1Computational Biology and Bioinformatics, Pacific Northwest National Laboratory, Richland, Washington, United States of America, 2 Biological Separations and Mass

Spectrometry, Pacific Northwest National Laboratory, Richland, Washington, United States of America, 3Cell Biology and Biochemistry, Pacific Northwest National

Laboratory, Richland, Washington, United States of America, 4 Statistical Sciences, Pacific Northwest National Laboratory, Richland, Washington, United States of America,

5 Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, United States of America

Abstract

To understand how integration of multiple data types can help decipher cellular responses at the systems level, we analyzed
the mitogenic response of human mammary epithelial cells to epidermal growth factor (EGF) using whole genome
microarrays, mass spectrometry-based proteomics and large-scale western blots with over 1000 antibodies. A time course
analysis revealed significant differences in the expression of 3172 genes and 596 proteins, including protein
phosphorylation changes measured by western blot. Integration of these disparate data types showed that each
contributed qualitatively different components to the observed cell response to EGF and that varying degrees of
concordance in gene expression and protein abundance measurements could be linked to specific biological processes.
Networks inferred from individual data types were relatively limited, whereas networks derived from the integrated data
recapitulated the known major cellular responses to EGF and exhibited more highly connected signaling nodes than
networks derived from any individual dataset. While cell cycle regulatory pathways were altered as anticipated, we found
the most robust response to mitogenic concentrations of EGF was induction of matrix metalloprotease cascades,
highlighting the importance of the EGFR system as a regulator of the extracellular environment. These results demonstrate
the value of integrating multiple levels of biological information to more accurately reconstruct networks of cellular
response.
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Introduction

Systems biology is an approach to develop comprehensive and

ultimately predictive models of how components of a biological

system give rise to its observed behavior [1,2]. Because of the

complexity of biological organisms, however, this approach has

proven most successful when applied to relatively small-scale

systems [3]. Applications to more significant and complex

problems have recently been enabled by technical advances in

molecular biology and genome sequencing, which generate high-

dimensional data with the appropriate throughput and sensitivity.

Genome-wide mRNA expression profiling using cDNA and

oligonucleotide microarrays or serial analysis of gene expression

have proven valuable in identifying mRNA expression changes

associated with disease, metabolic states, development and

exposure to drugs and environmental agents [4,5,6,7]. More

recent advances in mass spectrometry (MS)-based proteomics

using stable isotope labeling have made quantitative protein

profiling, including measures of post-translational protein modi-

fication, feasible at a global scale [8,9,10]. A variety of other

technologies capable of providing high-dimensional biological

response data has also emerged, including multiplexed protein

microarrays, flow cytometry, and two-hybrid systems for mapping

protein interactions [11,12,13,14]. Datasets derived from these

technologies can potentially provide a foundation for building

quantitative models of biological systems but only if they can be

integrated into a coherent relational network of cellular response.

Most current high-throughput technologies only provide data

for a single molecule type, and the underlying regulatory structure

of the cell must be inferred from their qualitative or quantitative

relationships. Data describing only a single level of biological

regulation is unlikely to fully explain the behavior of complex

biological systems. Thus, there is a need for integrating data from

multiple sources representing different hierarchical levels of

regulation to reconstruct more complete cellular networks. For

example, studies comparing mRNA and protein expression
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profiles have indicated that mRNA changes are unreliable

predictors of protein abundance [15,16]. Mathematical modeling

of these processes suggests that understanding the regulation of

simple cellular networks requires data describing the dynamics of

both mRNA and protein expression levels [17]. Estimating steady-

state mRNA and protein changes from a single time point,

however, can be misleading because of the time needed for protein

synthesis and degradation. To our knowledge, temporal-based

analyses of correlations between global protein and gene

expression patterns in human cells have yet to be reported.

The necessity for integrated data analysis across ‘omics

platforms is further driven by the desire to identify fundamental

properties of biological networks, such as redundancy, modularity,

robustness, and feedback control [1,18,19]. Such properties

provide the underlying structure of signaling networks, yet they

are difficult to specify using a single type of analytical

measurement. While the need for data integration is clearly

recognized, in practice there are few reported examples that

quantify the benefits gained by this approach, particularly for

mammalian systems. Notably, little effort has been made to

systematically evaluate the degree of information overlap provided

by different types of ‘omics data and how they can distinctly

inform network and pathway analyses. This is despite the fact that

all high-throughput technologies have varying sampling efficien-

cies and systematic biases and limitations that give rise to different

false positive and false negative rates. Consequently, it is unclear

whether the cell response pathways revealed by integrating

microarray and proteomic data will be more informative than

those inferred by global mRNA microarray data alone.

To explore the practicality of integrating different types of high-

throughput data to understand complex cellular functions, we

have conducted a multidimensional analysis of the temporal

response of human mammary epithelial cells (HMEC) to

epidermal growth factor receptor (EGFR) activation. EGFR

signaling plays an important role in regulating proliferation and

motility in many epithelial cells and can integrate signals from

diverse pathways through receptor crosstalk [20]. Both the

proliferation and motility of HMEC require EGFR activation

[21,22]. Conveniently, HMEC can be arrested in the cell cycle by

removing EGF in the culture medium, and subsequently induced

to synchronously reenter the cell cycle by re-addition of EGF. This

allows examination of the dynamics of the mitogenic response

without using inhibitors or other non-physiological treatments.

In this study, we examined time-dependent changes in gene and

protein expression patterns following EGF treatment of synchro-

nized HMEC to determine how data from each platform

qualitatively contributed to pathway and network analysis. While

the cell processes identified by each data type varied significantly,

integration of the multiple datasets recapitulated most of the

known mitogenic pathways mediated through EGFR. Further-

more, networks derived from the combined datasets exhibited

more highly connected signaling nodes with an appropriate

hierarchical structure than networks derived from any individual

dataset. This study demonstrates that integration of multiple data

types provides complementary, not redundant, information

necessary to reconstruct complex cellular response networks.

Results

Changes in Gene and Protein Expression during the
HMEC Mitogenic Response
To determine the degree to which changes in common cell

regulatory networks are detected by different high-content data

technologies, we analyzed the temporal response of cells to

activation of EGFR using whole genome microarrays, high

throughput Western blots (PowerblotTM), and mass spectrome-

try-based proteomics. The experimental strategy (Fig. 1A) used

takes advantage of the inherent dependence of HMEC on EGFR

autocrine signaling for normal cell proliferation. Previous studies

have shown that removal of EGFR ligands from culture medium

or blocking EGFR activation causes HMEC to reversibly arrest in

G0/G1 of the cell cycle [22]. We used this approach to induce a

synchronized EGFR signaling response and facilitate network

analysis from time-course data. At different times following EGF

addition, we collected sufficient sample for parallel microarray,

Western blot, and MS-based proteomics analysis (Fig. 1A).

Monitoring the G1-S-G2/M transitions by flow cytometry

(Fig. 1B) also yielded a temporal benchmark for the EGF-induced

signaling responses. Removal of serum and growth factors caused

.95% of the cells to arrest in G0/G1 phase. Subsequent addition

of EGF induced a G1-S transition between 13–14 hr, followed by

entry into G2/M between 18–22 hr (Fig. 1B).

A complete listing of the significant RNA and protein changes

identified by each platform is provided in the supplementary

information (Table S1). Among 38,108 probesets on the micro-

array platform, 3172 RNA expression profiles were found to

significantly vary from the control (0 hr) based on analysis of

variance, false discovery rate (FDR) calculation (5%) and a 1.5-fold

change threshold (relative to control) in at least one of the time

points (Fig. 2). Since our overall goal was to evaluate the impact of

data integration in assessing global cell responses, these criteria

were set to maximize the overlap of potential gene changes

between datasets.

Categorically, RNAs that changed represented a wide variety of

cell processes including immediate early genes, cell cycle

regulatory genes, anti-apoptotic genes, matrix remodeling and

proteolytic genes. The most highly-induced genes identified across

all time points examined were extracellular proteases, including

interstitial collagenase (MMP1, 24-fold induction), and stromelysin

2 (MMP10, 8-fold induction). We also observed early gene

induction patterns, including activating transcription factor 3

(ATF3) and prostaglandin-endoperoxide synthase 2 (PTGS2),

which were transiently up-regulated at 1 hr and returned to basal

levels by 4 hr. A dramatic change in gene expression at the 24 hr

time point was observed, reflecting the shift in cell population to

G2/M measured by flow cytometry.

To measure changes in protein level by MS, we used the

accurate mass and time (AMT) tag strategy [23]. In this approach,

peptides (AMT tags) were identified using liquid chromatography-

Fourier transform ion cyclotron resonance mass spectrometry (LC-

FTICR) analysis, based on both accurate mass measurements and

chromatographic elution times in reference to a mass tag database

of proteins expressed in HMEC [9,24,25,26]. The advantages of

this approach have been previously described [23] and include

increased sample throughput and dynamic range compared to

typical LC-MS/MS analyses, as well as providing a measure of

protein abundance. Using conservative criteria previously de-

scribed [9], 2193 proteins were identified in the EGF-treated

HMEC samples by LC-FTICR. A stable isotope labeling

approach that employs quantitative exchange of either 16O or
18O at the site of trypsin digestion was also used to estimate protein

abundances [9]. This approach permitted ratiometric analysis of

the LC-FTICR results similar to that commonly used for RNA

microarray data. Based on the calculated ion intensity ratios of

treated to control (18O/16O), and using a significance threshold of

1.5-fold change, 511 proteins (with $2 peptide identifications

each) were found to change in abundance in response to EGFR

activation (Fig. 2). The 1.5-fold significance level was chosen to
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maximize potential overlap between the different datasets based

on our previous analyses that demonstrate a high reproducibility

for the 18O/16O labeling method [9] and is consistent with

analogous global proteomic studies [27].

The antibody-based proteomic analysis by Western blots from

triplicate analyses indicated that 83 out of 612 detected proteins

showed a $1.5 fold difference in abundance in response to EGF

treatment (at any time point) compared to 0 hr controls (Fig. 2).

These analyses also included antibodies that selectively recognize

phosphorylated proteins, providing an additional dimension of

data. Among the total proteins identified by Western analysis, 20

were phosphorylated, and 9 of these significantly changed

phosphorylation levels after adding EGF. These included rapid

increases in phosphorylation of SRC, MAPK1 (ERK2), and

STAT3 consistent with the ability of EGFR stimulation to induce

phosphorylation of these signaling molecules [10]. The temporal

pattern of ERK2 phosphorylation during the HMEC mitogenic

response was biphasic, similar to results from our previous studies

of ERK2 activation patterns regulated by EGFR transactivation

[20]. Additional proteins that were phosphorylated in response to

EGFR activation included catenin delta 1(CTNND1), mitogen-

activated protein kinase 14 (MAPK14), and c-AMP-dependent

protein kinase type 2 (PRKAR2B).

Data Integration
To estimate the degree of concordance between RNA and

protein expression changes, the subset of proteins observed to

change by LC-FTICR analysis (511) was merged with the

corresponding gene expression values measured on the microarray

platform. By cross-referencing platform-specific identifiers to

common gene symbols [28], 446 RNA/protein pairs could be

reliably cross-indexed and analyzed. We first used k-means cluster

analysis (Fig. 3) to assess the heterogeneity between measured

RNA and protein expression profiles, which may represent

differential mechanisms of regulation. Some clusters of RNA/

protein pairs show a classical pattern of regulation, where RNA

changes preceded or coincided with a corresponding change in

protein abundance (Fig. 3, clusters A,B). Other clusters show

complex patterns that imply feedback processes between protein

half-life and compensatory RNA induction. For example, the

Figure 1. Experimental design and characterization of cell cycle transition with EGF treatment. A) Experiments were scaled to provide
sufficient sample for parallel analyses by gene microarray, global proteomics and Western blot technologies. B) Flow cytometry results showing the
time course for transitions between G1/S and G2/M phases during EGF-induced mitosis.
doi:10.1371/journal.pone.0034515.g001
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relative abundance of proteins in cluster C generally decreased at

early times following EGFR activation (Fig. 3, cluster C). The

decline in protein abundance for this cluster was followed by an

apparent increase in RNA synthesis, which was then followed by

an increase in protein abundance to higher levels by 24 hr. In

other clusters, the concordance between RNA and protein

expression changes was not apparent, suggesting that steady-state

changes in RNA and protein abundance in those species were

regulated independently.

Because multiple time points were measured in this study,

multivariate correlation analysis was also used to assess the global

correlation between RNA expression and protein abundance

changes over time. Canonical correlation analysis was used to

identify a linear combination of time points that maximizes the

correlation between RNA and protein expression profiles [29].

Since RNA and protein expression may proceed at different rates,

this approach facilitated identifying multiple, non-obvious corre-

lations between the two expression profiles. For this analysis, only

RNA/protein pairs with complete data across all time points were

used, resulting in 199 pairs. We evaluated the significance of the

observed canonical correlations by randomizing the protein

identifiers while maintaining the data for individual time profiles

intact and canonical correlations for each of 1000 permutations

were calculated. The first observed canonical correlation exceeds

all corresponding permuted (randomized) values, and the second

canonical correlation exceeds 99% of permuted values, so both are

considered statistically significant (Fig. 4A). A scatter plot of first

canonical variable between RNA and protein expression for the

199 genes shows a correlation coefficient of 0.44 (Fig. 4B). This

result is generally consistent with previous studies that have

examined correlations between gene and protein abundance at

single time points [27,30,31,32]. These data imply that even when

time course data is compared, a significant fraction of the protein

abundance changes were not tightly coupled with a corresponding

temporal change in RNA expression, providing strong evidence

for substantial post-transcriptional regulation of protein expression

following growth factor stimulation.

The overall smoothed shapes of the temporal RNA and protein

expression patterns derived by regression were also compared and

ranked using a test F-statistic in order to identify some of the most

concordant and discordant RNA/protein pairs (Figure S1). An

important question is whether there is any relationship between

the degree of concordance of RNA and protein profiles and the

general function of the protein(s). While this question is difficult to

address globally, it can be approached by determining whether

concordant RNA/protein pairs are found to be more frequently

associated with specific gene ontology (GO) biological process

terms. To address this, we first evaluated the overall coherence for

the RNA and protein expression profiles separately within each

biological process category using a logistic regression model.

Table 1 shows that for only one biological process, ‘‘transcription’’,

the gene expression data for all 23 genes within the process were

significantly fit to a single logistic regression model. However, the

LC-FTICR data show good fit for protein abundance profiles

within the ‘‘primary metabolism’’, ‘‘protein metabolism’’ and

‘‘stress response’’ processes. Next, we determined the degree to

which particular biological processes showed positive concordance

using a Wilcoxon rank sum test between concordance score (F-

statistic) and category membership. For these comparisons, the

frequency with which each functional category was represented in

the overall dataset was used to normalize the results.

RNA/protein pairs in the biological process ‘‘protein metabo-

lism’’ displayed more positive concordance than predicted by

chance. Examples include proteins involved in protein processing

and translational regulation of protein synthesis, such as eukaryotic

translation initiation factor 4E (EIF4E) and ribosomal binding

protein 1 homolog (RRBP1). In contrast, RNA/protein pairs in

the ‘‘primary metabolism’’ category showed more anti-correlated

Figure 2. Hierarchical cluster analyses showing temporal changes in expression ratios for significant RNA and protein changes. The
scale bar indicates the log10 expression ratio compared to 0 hr controls. Values in gray indicate the protein/phosphorylated protein was not detected
at that time point.
doi:10.1371/journal.pone.0034515.g002
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Figure 3. K-means cluster analysis comparison of microarray and LC-FTICR expression ratio data. The left panel shows the overall results
for 446 RNA/protein pairs expressed as the log10 ratio over 0 hr control samples. Panels A–C highlight 3 different clusters that show different overall
temporal patterns between the RNA and protein data.
doi:10.1371/journal.pone.0034515.g003

Figure 4. Canonical correlation analysis of RNA and protein temporal expression profiles. A) Ranked canonical correlations between RNA
expression and protein expression, compared with random permutations. Each gray line shows the computed canonical correlations for a single
random permutation. The first observed canonical correlation exceeds all corresponding permuted values, and the second canonical correlation
exceeds 99% of permuted values; both are considered statistically significant. B) Scatter plot of first canonical variable between RNA and protein
expression for 199 gene/protein pairs with a correlation coefficient of 0.44.
doi:10.1371/journal.pone.0034515.g004
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patterns of expression than predicted by chance. These included

proteins involved in fatty acid and carbohydrate metabolism, such

as acetyl-coenzyme A acetyltransferase 1 (ACAT1) and pyruvate

dehydrogenase alpha 1 (PDHA1). RNA/protein pairs whose

annotation involved ‘‘signal transduction’’, ‘‘stress response’’, or

‘‘intracellular transport’’ processes, however, showed no statisti-

cally significant trend toward either concordant or discordant

abundance changes based on the Wilcoxon rank sum test. These

results provide strong support for previous assertions that the

concordance between RNA and protein expression varies between

specific functional classes of proteins [33,34]. However our results

are in contrast to those obtained in yeast, where genes associated

with protein synthesis tend to show discordance between mRNA

and protein abundance [27].

Pathway and Network Analysis
To determine the extent to which we could reconstruct the

known EGFR regulatory networks from our datasets, we used the

MetaCore software suite (GeneGo, St. Joseph, MI), which uses a

curated, literature-based database of interaction and regulatory

relationships to generate network maps from sets of differentially

expressed genes or proteins. This approach was necessary because

the limited number of conditions represented by the proteomic

and microarray data in this study is insufficient to computationally

infer connectivity between gene expression and protein expression

nodes. We first evaluated whether similar biological processes

regulated by EGFR activation are captured by each high-

dimensional data platform by conducting gene set enrichment

analysis on each dataset separately. The results (summarized

across all time points) demonstrate that each data type emphasizes

a specific pattern of cellular processes (Fig. 5A). The most

significant biological processes in the microarray data include ‘‘cell

cycle’’, ‘‘mitosis’’ and ‘‘protein folding’’, which were poorly

represented by both proteomic datasets. The biological process

most significant from the LC-FTICR data was ‘‘protein

biosynthesis’’, which in turn was poorly represented by the

microarray and antibody-based proteomic results. The most

significant processes from the antibody-based analysis were ‘‘signal

transduction’’ and ‘‘protein phosphorylation’’, and neither process

was highly represented by either microarray or LC-FTICR

analysis. Cellular processes associated with cell adhesion and cell

motility were similarly represented by data across all measurement

platforms.

To determine whether the pathway analyses of our integrated

datasets made biological sense given our current understanding of

EGFR signaling, we also analyzed how the major cell processes

evolved over time. For these analyses, the major cell processes

represented by the combined data were statistically ranked

according to early (0–4 hr), intermediate (8–13 hr) and late (18–

24 hr) time domains after EGFR activation (Fig. 5B). Significantly,

the combined results recapitulate many of the expected cell

processes associated with mitogenic and motility responses

regulated by EGFR activation in these cells [20,21,22]. For

example, ‘‘cytoskeletal organization’’ and ‘‘protein folding’’ (which

includes protein chaperones involved in signal transduction)

processes are highly represented soon after EGFR stimulation.

Interestingly, anti-apoptotic pathways are significantly increased at

times preceding entry into S-phase. Further, the most highly

represented biological process in the 18–24 hr time domain is

‘‘mitosis’’, consistent with the flow cytometry analysis results.

The results in Fig. 5 clearly demonstrate that different types of

high-dimensional data provide qualitatively different views of the

cell processes regulated by EGFR. However, to determine whether

combined datasets can provide a more integrated understanding of

EGFR signaling networks, we needed to first analyze the network

structures obtained from each dataset individually. We evaluated

how the connectivity of the inferred signaling networks differed

among the individual datasets, and then how this changed when

the datasets were merged. This overall connectivity reflects the

ability of the data to accurately and comprehensively reconstruct

the cell response networks. For this analysis, the individual and

combined results from the early time domain (0–4 hr) data were

used to infer regulatory networks based upon direct regulatory

interactions between ‘‘nodes’’ (regulatory molecules) and ‘‘edges’’

(interactions) within the MetaCore database, however similar

results were obtained for the middle and late time domains.

An example of the general network structure and connectivity of

the major networks derived from early time domain data is shown

in Fig. 6. The results in Table 2 summarize the network statistics

obtained from this analysis. The largest network derived from the

microarray data alone was a cluster of 50 nodes, out of 311 nodes

with identified edges. The LC-FTICR data produced a smaller

cluster of 19 nodes out of a total of 185 nodes with edges,

consistent with the smaller number of overall changes identified by

LC-FTICR as compared to microarray. The most highly linked

nodes (hubs) in the microarray data were transcription factors,

including FOS (15 edges) and EGR1 (10 edges). In contrast, the

Table 1. Summary of statistical analysis of concordance patterns among GO biological process categories.

Biological Process # of RNA/protein pairs

Microarray

LR

FTICR

LR

Process

Concordance

Cell adhesion/structure 52

Intracellular transport 21

Primary metabolism 22 XX 2

Protein metabolism 47 XX +

Signal transduction 36

Stress response 17 XX

Transcription 23 X

Unclassified 17

LR: logistic regression; X: p,0.05; XX: p,0.01.
+: more concordance than expected by chance.
2: less concordance than expected by chance.
doi:10.1371/journal.pone.0034515.t001
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largest LC-FTICR network cluster included membrane-bound

proteins, including EGFR (7 edges) and alpha-6, beta-1 integrin (7

edges) as the hub nodes. Thus, in the absence of the proteomics

data, microarray data alone did not call out EGFR as a signaling

node in the mitogenic response to EGF. Combining these two

datasets generated a large cluster of 142 nodes, with the

connectivity of the highly linked EGFR node from the LC-FTICR

data increasing dramatically to 16 edges. When the microarray,

LC-FTICR and PowerBlot data were all combined, the largest

network cluster grew only modestly to 169 nodes. However, the

connectivity of the highly linked nodes increased to 21 edges for

EGFR and 28 edges for FOS (Table 2).

One of the most highly linked nodes in the largest network

cluster was SRC (25 edges), which emerged from the protein

phosphorylation data obtained from the antibody analysis (Fig. 6).

Other well-connected hub nodes represented by phosphorylation

data alone included STAT3 and ERK2. Merging the microarray,

LC-FTICR and PowerBlot data also increased the overall

connectivity of the networks, with 34% of the nodes included in

the largest network cluster compared to only 16% with microarray

alone (Table 2). In addition, the degree of the largest network

clusters increased to an average of 3.4 edges per node.

Each data type also contributed to different types of edges in the

overall inferred network. For example, from the microarray data

alone, 63% of the edges were inferred to be transcriptional

regulatory relationships whereas only 17% were inferred to be

direct protein interaction events. In contrast, 60% of the edges

from the LC-FTICR data were inferred to represent protein

interaction events and only 4% to represent direct transcriptional

regulation. These findings are not unanticipated, but they provide

an indicator of the added value of each data type in the

reconstruction of cell response networks.

Since the primary goal of our study was to quantify the benefits

of data integration across different measurement platforms for

network and pathway analysis, the EGFR system was a valuable

system due to the extensive knowledge of signaling networks it is

coupled to. However, a surprising observation from our combined

results was that the most robust response to mitogenic concentra-

tions of EGF was not cell cycle regulation, but induction of matrix

metalloproteinase cascades. Indeed, RNA levels for interstitial

Figure 5. Major cell processes represented by each high-dimensional dataset. The biological processes represented by each data type
across all time points (Panel A) were determined by gene set enrichment and significance values are p-values calculated within the MetaCore
software. Only the cell processes showing the highest significance values are shown. The results in panel B show the major cell processes for all
combined data, separated based on early (0–4 hr), intermediate (8–13 hr) or late (18–24 hr) time points after EGFR activation.
doi:10.1371/journal.pone.0034515.g005
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collagenase (MMP1), and stromelysin 2 (MMP10) were among the

largest changes observed in the study, increasing 24- and 8-fold,

respectively. To validate these high-throughput measurements,

additional experiments were conducted using orthogonal tech-

niques to measure the secretion of MMP1 and MMP10 protein.

ELISA analysis of conditioned medium collected from HMEC

during mitogenic stimulation confirmed that high levels of both

MMP1 and MMP10 protein are secreted in a manner that is

dependent on EGFR kinase activity (Figure S2).

Discussion

The concept that integration of data derived from multiple

levels of biological regulation will improve our understanding of

signaling networks is generally accepted, yet is rarely practiced in

biological research. To our knowledge, this study is the first

systematic analysis of the practical benefits of merging heteroge-

neous temporal data for purposes of network and pathway

interrogation in human cells. We focused on the EGFR pathway

because it plays an important role in epithelial cell regulation and

cancer biology, and there is mounting evidence that EGFR

transactivation is coupled to wide variety of external stimuli

[20,35]. The extensive literature on this pathway also provided a

means for validating our pathway analysis results. We demonstrate

that data from different types of high-dimensional platforms

independently provided qualitatively different views of EGFR-

induced cell processes and pathways. However, when data

representing RNA regulation, protein abundance and protein

phosphorylation were combined, the results recapitulate the major

processes and signaling networks known to be regulated by EGFR

in this cell type.

An important reason for integrated data analysis is that RNA

abundance changes are not always a good predictor of protein

abundance changes, especially over a time scale of several hours.

The canonical correlation analysis we describe here has advan-

tages over simple correlation analysis, since it can conceptually

capture RNA and protein expression profiles that are ‘‘concor-

dant’’ yet out of sync due to temporal delays. The canonical

correlation of 0.44 found in this study is greater than correlations

previously reported in which the slopes of RNA and protein

temporal profiles were used for comparison [33]. However, even

when temporal shifts between RNA and protein expression

profiles were considered for the EGF-stimulated state through

statistical modeling of time course data, we found that no more

than half of the protein abundance changes measured by LC-

FTICR were accompanied by corresponding RNA changes.

These collective results suggest that a high degree of posttran-

scriptional regulation is involved in the response of mammalian

cells to EGF.

Beyond general correlations, our results also suggest that some

functional classes of proteins show a greater tendency toward tight

coupling to transcriptional control than others. Most studies

reporting global measurements of gene and protein expression

levels have used single time point designs and rely on steady-state

Figure 6. Example network inferred from the integrated
datasets. Shown is the overall structure of one of the largest network
clusters identified from the combined microarray, LC-FTICR and
Powerblot datasets from the 0–4 hr early time domain. A) The source
of the data contributing to each element (node) in this network cluster
is coded by color, and connections between elements (edges) were
inferred from the literature using the MetaCore database. B) The cellular
processes represented by each node in the network are coded by color,
using the process categories from Figure 5.
doi:10.1371/journal.pone.0034515.g006

Table 2. Summary of network statistics derived from individual and integrated datasets.

Microarray alone LC-FTICR alone Microarray+LC-FTICR Microarray+LC-FTICR+PowerBlot

Total number of nodes 311 185 476 494

Size of largest cluster 50 19 142 169

% of nodes in largest
cluster

16 10 30 34

Number of edges 156 53 432 575

Degree of largest cluster 3.12 2.79 3.04 3.40

Two Primary hub nodes
(# of edges)

FOS (15) EGR1 (10) EGFR (7) ITGB1 (7) FOS (18) EGFR (16) FOS (28) SRC (25)

doi:10.1371/journal.pone.0034515.t002
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measurements that do not discriminate between synthesis and

degradation processes that underlie changes in abundance (for

review see Waters et al, 2006). However, rates of protein

degradation and turnover can vary by orders of magnitude, even

with highly abundant proteins [36]. It was previously proposed

that for cell structural proteins there is a greater correlation

between protein and RNA expression changes than was predicted

from overall RNA/protein expression profiles [33,34]. Our

analyses focused on a subset of 199 RNA/protein pairs where

complete time course data was obtained, to avoid compounding

errors associated with extrapolation across missing data. This

subset of data is expected to be generally enriched with higher

abundance proteins. Proteins whose GO annotation included cell

structure and cell adhesion (52 total) were indeed the most highly

represented in this group, and included proteins such as tubulin

and actin subunits, and moesin. Still, when the frequency of

detection (i.e., spectra counts) was used as a means for normalizing

for abundance, we found no statistically significant trend toward

either concordant or discordant patterns of RNA and protein

temporal changes for these functional classes of molecules. In

contrast, RNA/protein pairs that showed more concordant

temporal profiles were statistically enriched with proteins involved

in protein synthesis and processing. Furthermore, RNA/protein

pairs that showed anti-correlated expression patterns were also

observed, and included a greater fraction of proteins involved in

primary metabolic processes associated with fatty acid and energy

metabolism than expected by chance. As a functional class,

primary metabolism proteins were not disproportionably repre-

sented in the subset of RNA/protein pairs evaluated (22 total).

Thus, these results are not readily explained by ‘sampling

frequency’ or by a general increase in mass spectrometry

measurement accuracy for abundant proteins. Admittedly,

inaccuracies and generalizations of GO annotation terms limit

their use for defining functional classifications. Nonetheless, the

results support the hypothesis that specific cell processes may

differentially utilize transcriptional and post-transcriptional mech-

anisms of control.

The major cell processes found to be modulated by EGFR were

qualitatively very different with respect to each measurement

platform (Fig. 5A). The emphases on different cell processes by

each platform are in part attributed to different depths of coverage

across the genome or proteome. As expected, microarray analysis

identified over 3- and 15-fold greater numbers of gene products

that changed compared to MS or Western blot analysis,

respectively. While some cell processes, such as cell adhesion

and cell motility, were similarly represented in all datasets, other

processes were preferentially represented by a specific dataset. For

example, less abundant and transiently induced proteins typical of

cell cycle regulation were not readily identified by either LC-

FTICR or antibody-based analysis, whereas microarray analysis

identified a large number of gene products associated with this

process. A strong bias toward signal transduction processes was

also highly apparent in the Western blot data (Fig. 5A), reflecting a

more general bias of commercially produced antibodies toward

signal transduction proteins. Despite the biases introduced by

individual datasets, the composite pathway analysis results

included most of the expected cell processes induced by EGFR

in this model system. For example, the combined results (Fig. 5B)

illustrate that following EGFR stimulation there is a general shift

in the major cell processes from cytoskeletal organization and cell

cycle regulatory processes during initial times (0–4 hr) toward anti-

apoptotic and cell adhesion pathways (8–13 hr). The temporal

evolution of these processes is consistent with the initial entry of

cells into S-phase, which begins at ,13 hr. Similarly, the

increased representation of mitosis pathways between 18–24 hr

corresponded to an increase in mitotic cells as monitored by flow

cytometry.

An important advantage of data integration observed here is

that the networks derived from heterogeneous datasets show a

more connected topology than networks derived from a single

dataset. Cellular signaling networks are thought to approximate a

scale-free topology, characterized by fewer nodes with a higher

degree of connectivity [37]. In this respect, networks inferred from

microarray data alone have the advantage of greater genomic

coverage compared to data from even the most advanced

proteomic platforms. Although networks derived from LC-FTICR

or antibody data alone had fewer nodes and less connectivity,

these datasets contributed important qualitative features to the

overall network structure, mostly because of their ability to

indicate the activity state of different signaling networks. Network

analysis of the integrated data revealed SRC and STAT3 as

among the most linked signaling nodes, consistent with previous

studies in HMEC [10]. It is noteworthy that these signaling nodes

were determined primarily from a subset of the Western blot

results that used phospho-specific antibodies. Despite the limited

overall amount of protein phosphorylation data, the topology of

the signaling networks derived from the integrated results was

highly dependent on these data. Other recent studies have also

reported novel findings through the incorporation of phosphory-

lation data into their analysis of disease and signaling networks

[38,39]. Given that dynamic modification of cellular proteins with

phosphate is one of the key regulators of cellular response, it is not

surprising that signaling network reconstruction is highly depen-

dent upon the collection of these data.

In contrast to the microarray results, 60% of the node-edge

relationships identified from the LC-FTICR data infer direct

protein interactions as regulatory mechanisms. The bias of LC-

FTICR results towards protein interactions is further implied from

network statistics showing that there were nearly 3-fold more

nodes with multiple edges (multiple effectors) than nodes with

single edges (binary interactions). This also contrasts the micro-

array data, where the fraction of inferred nodes with multiple

edges was only 1.6-fold greater than nodes with single edges. It is

noteworthy that based on microarray data alone, EGFR would

not have been identified as a major node in the pathway analysis.

However, the largest network clusters identified from the LC-

FTICR data alone included EGFR itself and b1-integrin as the

most connected nodes. Previous studies have reported that EGFR

and b1-integrin associate as a complex, providing a mechanism for

bidirectional coupling of EGFR signaling to the extracellular

matrix and other receptor pathways [40,41]. Activation of EGFR

by integrin complexes is thought to require SRC as a signaling

intermediate [40,41], consistent with our integrated network

analysis, which implicates SRC as a central node in the HMEC

EGFR network. We also found that the most robust responses

associated with EGF-induced mitogenesis were not classical cell

cycle regulators, but metalloproteases capable of remodeling the

local extracellular environment. This is in contrast to previous

microarray-based studies examining EGF responses of trans-

formed cells that found that induction of negative feedback

inhibitors of EGFR was a dominant response [42]. However,

unlike HMEC, cells in that previous study do not respond

mitogenically to EGF. The strong coupling of MMP cascades to

the mitogenic response observed in our study may be particularly

important for understanding the relationships between amplified

EGFR signaling and invasiveness of many epithelial cancers.

A limitation of pathway analysis using computational tools

based on literature-curated databases is that relationships
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involving non-annotated molecules cannot be identified. However,

such tools are highly useful for weighting abundance changes for

specific gene products identified experimentally and inferring

signaling linkages that are not always intuitive. By using curated

databases for comparison, our study illustrates some of the

strengths and biases inherent in different measurement platforms.

Despite platform-specific strengths and weaknesses, integration of

heterogeneous datasets not only enhances the connectivity of the

derived networks, but also qualitatively influences the regulatory

relationships inferred from high-dimensional data. Computational

inference of signaling networks would be a preferable strategy to

utilize all of the data, however inference utilizing multiple data

types is challenging due to differences in quantitative range and

sheer volume of data required for robust calculations

[19,43,44,45]. Despite the limitations of our study, the results

underscore the importance of data integration across multiple

molecular levels for reconstructing signaling networks that describe

cellular behavior. Future studies will focus on the use of dynamical

data (multiple time points and conditions) and computational

inference of disease networks from integrated data.

Materials and Methods

Materials and Cell Treatment
The human mammary epithelial cell line HMEC (strain

184A1), obtained from Martha Stampfer (Lawrence Berkeley

National Laboratory), [46] was used in this study. These cells are

non-tumorigenic and are dependent on EGFR signaling for

normal proliferation and motility in culture [20,21,22]. Cells were

routinely cultured in DHFB-I medium supplemented with

12.5 ng/ml EGF as described [20]. All other reagents were of

cell culture grade or higher quality.

For the experiments shown, 7.56104 cells were seeded in 150-

mm dishes and allowed 24 hr in complete medium for attachment

and growth. Growth arrest was induced by replacing the medium

with medium lacking serum, EGF and other growth factors for

48 hr. A mitogenic response was then initiated by treating cells

with 10 ng/ml EGF in minimal medium. Samples were collected

at 0, 0.25, 1, 4, 8, 13, 18 and 24 hr and processed for RNA

expression profiling and proteomic analyses as described below.

The fraction of cells in G0/G1, S and G2/M phases of the cell

cycle was measured in parallel samples by flow cytometry analysis

(Becton Dickinson FACSCalibur) after fixation in cold 70%

ethanol and labeling with propidium iodide.

Microarray Analysis
Total RNA was prepared using a Qiagen RNeasy Mini kit

(Qiagen, Valencia, CA, USA) and the integrity and purity

evaluated by gel electrophoresis and absorption spectroscopy.

RNA expression profiles were analyzed using NimbleGen whole

genome 60-mer oligonucleotide arrays (Design Version

2003_10_27) which contains 38,108 array elements (NimbleGen,

Madison, WI). Briefly, 0.5 mg of total RNA for each sample was

used for cRNA synthesis using oligo-dT primers and T7 RNA

polymerase through the NimbleGen Microarray Service facility.

Each biological sample was hybridized against 3 independent

arrays (3 technical replicates), and quality control assessment

determined that the arrays for the 15 minute time point failed to

hybridize according to manufacturer specifications. Raw intensity

data for the remaining arrays were quantile normalized [47] and

subjected to pairwise analysis of variance with a 5% false discovery

rate calculation [48] to identify significantly changed genes.

Western Blot Analyses
For analysis of protein abundance changes, cell pellets collected

at different time points were separately washed three times with

ice-cold phosphate-buffered saline. The cells were lysed in buffer

(10 mM Tris, 150 mM NaCl, 1% NP-40, 1 mM NaVO3, 10 mM

NaF, and protease inhibitor cocktail, pH 7.4) using intermittent

sonication on ice. The lysates were centrifuged for 20 min at 4uC

at 14000 g to pellet any residual debris. Protein concentrations

were determined using the BCA assay (Pierce Biochemical).

Parallel Western blot analyses were performed by BD Biosciences

(San Diego, CA) through their PowerBlotTM custom service using

the complete array of available antibodies (1011 total). This

approach employs co-hybridization of panels of antibodies that

recognize distinctly migrating proteins on denaturing gradient

gels, followed by detection with secondary antibody and

quantification by gel image analysis. Samples were analyzed in

triplicate, and gel image analysis of expression ratios were

determined using a 363 matrix comparison method to determine

the ratio of treated:control (0 hr) for each of the triplicate analyses.

Only proteins which passed visual inspection of the image quality

and showed a $1.5-fold change compared to control (0 hr) were

considered significant. The raw microarray data files are publicly

available in GEO (GSE15668), and significant gene lists used in

the bioinformatics analyses are included as Table S1 with this

manuscript.

Mass spectrometry-based proteomic analysis
For MS-based proteome analysis, we used the accurate mass

and time (AMT) tag approach [23]. The approach uses the high

mass measurement accuracy of Fourier-transform ion cyclotron

resonance-mass spectrometry (FTICR-MS), coupled with ad-

vanced capillary liquid chromatography (LC) separations to

identify and estimate the abundance of peptides. An existing

AMT tag database encompassing the monoisotopic mass and

normalized chromatographic elution times of peptides identified

from previous LC-MS/MS analyses of HMEC proteins under a

range of experimental conditions [9,24,25,26] was used as a base

reference database for the LC-FTICR measurements in this study.

The existing HMEC database was further enriched by conducting

additional LC-MS/MS analysis using 375 mg of HMEC protein

pooled from each of time point samples in this study. Details of

LC-MS/MS analysis and data filtering involved in peptide

identification have been described elsewhere [26]. Peptide

identifications in this database were obtained using the SEQUEST

algorithm to independently search all MS/MS spectra against the

human International Protein Index (IPI) database and against the

reversed-sequence human IPI protein database to estimate the

false discovery rate. Criteria that would yield an overall confidence

of over 99% were established for filtering raw peptide identifica-

tions at spectra level. The peptide retention times from each LC-

MS/MS analysis were normalized to a range of 0–1 using a

predictive peptide LC-normalized elution time (NET) model and

linear regression as previously reported [49].

For quantitative analysis by LC-FTICR, proteins from each of

the eight lysates were digested with trypsin separately and cysteinyl

and non-cysteinyl peptides was prepared from the tryptic digests

and were differentially labeled separately using post-digestion

trypsin-catalyzed 16O-to-18O exchange as previously described

[9]. The control sample (0 hr) was labeled with 16O and all the

other samples (t = 0.25, 1, 4, 8, 13, 18 and 24 hr) were labeled with
18O. Supernatants were collected by centrifuging the samples for

5 min at 15000 g, and equal amounts of the 16O-labeled control

sample were combined with each of the 18O-labeled time point

samples, and dried.
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Samples were analyzed using an in-house 11.5-T FTICR

mass spectrometer. The same LC system and gradient was

applied for LC-MS/MS and LC-FTICR analysis. The LC-

FTICR data analysis was conducted as previously described

[50]. Briefly, the initial analysis of raw LC-FTICR data

involved a mass transformation or deisotoping step using in-

house software (ICR2LS). The ICR2LS analysis generates a

text file report for each LC-FTICR dataset that includes the

monoisotopic masses and the corresponding intensities for all

detected species for each spectrum. In-house software (VIPER)

was used to detect LC-MS features (i.e., a peak with unique

mass and elution times) and assign them to peptides in the

AMT database. Data processing steps included filtering data

based on isotopic fitting, finding features and pairs of features,

computing abundance ratios for pairs of features (16O:18O),

normalizing LC elution times, and matching the accurate

measured masses (65 ppm) and NET (62%) values of each

feature to the corresponding mass and time tag in the database

to identify peptide sequences. All identified peptides were

assigned an identical probability of 1.0 and entered into

ProteinProphet software [51] to remove redundant proteins.

Protein abundance ratios were calculated as an average of the

isotopic ratios of both the cysteinyl and non-cysteinyl peptides

after removing outliers using Grubb’s test. For final network

and pathway analysis, only proteins identified by at least two

peptides and those that showed a $1.5-fold change compared

to control (0 hr) were used. The proteomic data generated in

this study are publicly available at http://omics.pnl.gov, and

final datasets used in the bioinformatics analyses are submitted

as Table S1 with this manuscript.

Bioinformatic and statistical analysis
Data were integrated across platforms using the Bioinformatics

Resource Manager software [52]. Hierarchical and Kmeans

cluster analyses of microarray and proteomic data were

performed using OmniViz (Maynard, MA) and Multi-Experi-

ment Viewer [53] software and were based on log10 expression

ratio values. Biological process enrichment statistics were

calculated using the pathway mapping tool, MetaCore (GeneGo,

St Joseph, MI) based upon a hypergeometric distribution where

the p-value represents the probability of particular mapping

arising by chance, given the number of significantly regulated

genes/proteins in the dataset, the total number of genes assigned

to a process, and the background genes/proteins experimentally

identified by the platform. Networks were reconstructed using

MetaCore’s direct interaction algorithm, where the only edges

allowed are those between two root nodes (e.g., objects from the

list directly connected to each other) using their proprietary

database of curated interactions from the literature. The resulting

integrated network was redrawn using Cytoscape [54] for

illustration.

Canonical correlation analyses of time profile microarray and

proteomic data were conducted using the freely available R

software (version 1.7.1; R Development Core Team, 2004). Prior

to analysis all time profiles were individually transformed to have

mean 0 and standard deviation 1, so that subsequent comparisons

emphasize the shapes of the profiles. Canonical correlation

analysis (using the cancor function in R) was used to assess the

overall (global) concordance of RNA and protein temporal

expression profiles. The significance of the observed canonical

correlations was evaluated by permuting protein labels (but

keeping time profiles intact), and computing the canonical

correlations for each of 1000 permutations. Genes were ranked

according to the concordance of their individual RNA and protein

expression profiles. Rankings were made by reference to a

smoothing model. Let YRNA
gt and YPr ot

gt denote the scaled log2
expression values at time t for gene g for RNA and protein,

respectively. The respective time profiles were fit to the models

(using the lm function in R)

YRNA
gt ~b’g:x(t)zegt

YPr ot
gt ~l’g:x(t)zcgt,

where b
g
and lg are parameter vectors, estimated from the data,

describing the shapes of the corresponding RNA and protein time

profiles, and the regression vector x(t) is a spline basis function

with 3 degrees of freedom. Two criteria were used to rank genes.

The first is whether b
g
~lg, that is, that the two smoothed profiles

have identical shape. The second is the overall significance of the

regression (across both RNA and protein profiles) given that

b
g
~lg. Rankings were based on an F-test statistic reflecting the

tradeoff, or compromise, between the two criteria. We constructed

a (data-determined) composite measure as a scalar function of F1

and F2 to rank genes according to RNA-protein concordance.

This new measure is of the form h~a:

ffiffiffiffiffiffi

F1
p

zb:

ffiffiffiffiffiffi

F2
p

where a.0

and b,0.

Enrichment of protein functional groups was then assessed for

RNA and protein time profiles as a function of their concordance,

relating the F1 score of concordance to gene ontology category.

For each gene we computed two F1 scores: one for positive

concordance (given in Table 1) and one for negative concordance.

These scores are related separately to GO category and are both

given for the example gene/protein pairs in Figure S1. For positive

concordance within each process, the relationship between

concordance score F1 and category membership (0 or 1) was

assessed separately for each category using the Wilcoxon rank sum

test.

Supporting Information

Figure S1 Example RNA and protein expression profiles

showing correlated (A) and anti-correlated (B) temporal

patterns. The x-axis is time in hours. The left-hand y-axis is the

RNA scale, and the right-hand y-axis is the protein abundance

scale. The RNA profile is shown in red and protein profile is in

blue. The dashed line indicates the regression-based fit for

temporal concordance. Values are expressed as log2 expression

ratios.

(TIF)

Figure S2 EGFR-Regulated Secretion of Matrix Metal-

loproteases. HMEC were treated with EGF (10 ng/ml), alone

or in the presence of the selective EGFR kinase inhibitor

PD153035 (200 nm). MMP-1 and MMP-10 protein levels were

measured in conditioned medium at 24 hr using ELISA (R&D

Systems, Minneapolis, MN). Values are the mean 6 s.d. of

biological triplicates.

(TIF)

Table S1 Significant gene and protein lists measured by

microarrays, FTICR proteomics and western blot

analysis in the time course study. The file includes gene/

protein identifiers from each platform and values listed are log10
expression ratios relative to time 0 hr controls.

(XLS)
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