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Abstract

Background: Understanding cellular systems requires the knowledge of a protein’s subcellular localization (SCL).

Although experimental and predicted data for protein SCL are archived in various databases, SCL prediction

remains a non-trivial problem in genome annotation. Current SCL prediction tools use amino-acid sequence

features and text mining approaches. A comprehensive analysis of protein SCL in human PPI and metabolic

networks for various subcellular compartments is necessary for developing a robust SCL prediction methodology.

Results: Based on protein-protein interaction (PPI) and metabolite-linked protein interaction (MLPI) networks of

proteins, we have compared, contrasted and analysed the statistical properties across different subcellular

compartments. We integrated PPI and metabolic datasets with SCL information of human proteins from LOCATE

and GOA (Gene Ontology Annotation) and estimated three statistical properties: Chi-square (c2) test, Paired

Localisation Correlation Profile (PLCP) and network topological measures. For the PPI network, Pearson’s chi-square

test shows that for the same SCL category, twice as many interacting protein pairs are observed than estimated

when compared to non-interacting protein pairs (c2 = 1270.19, P-value < 2.2 × 10-16), whereas for MLPI,

metabolite-linked protein pairs having the same SCL are observed 20% more than expected, compared to non-

metabolite linked proteins (c2 = 110.02, P-value < 2.2 x10-16). To address the issue of proteins with multiple SCLs,

we have specifically used the PLCP (Pair Localization Correlation Profile) measure. PLCP analysis revealed that

protein interactions are majorly restricted to the same SCL, though significant cross-compartment interactions are

seen for nuclear proteins. Metabolite-linked protein pairs are restricted to specific compartments such as the

mitochondrion (P-value < 6.0e-07), the lysosome (P-value < 4.7e-05) and the Golgi apparatus (P-value < 1.0e-15).

These findings indicate that the metabolic network adds value to the information in the PPI network for the

localisation process of proteins in human subcellular compartments.

Conclusions: The MLPI network differs significantly from the PPI network in its SCL distribution. The PPI network

shows passive protein interaction, possibly due to its high false positive rate, across different subcellular

compartments, which seem to be absent in the MLPI network, as the MLPI network has evolved to maintain high

substrate specificity for proteins.

Background
The eukaryotic cell consists of many different subcellu-

lar compartments or organelles. Most of the cellular

functions critical to the cell’s survival are performed by

proteins inside the cell. A typical cell thus contains a

large number of protein molecules that are resident in

specific compartments or organelles, referred to as “sub-

cellular locations” (SCL). The major compartments,

according to the Gene Ontology Consortium, are: cell

surface, chromosome, cytoplasm, cytoskeleton, cytosol,

endosome, endoplasmic reticulum, extracellular region,

Golgi apparatus, membrane, mitochondria, nucleus, spli-

ceosome, ribosome, vacuoles and organelle lumen [1].

These subcellular compartments are further refined into

more specific compartments.
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The functions of proteins are determined by specific

physico-chemical environment present inside various

compartments or organelles. Therefore, it is important

to identify the SCL of each protein, for understanding

its functional and cellular role. While protein SCL can

be determined by biochemical experimentation, with the

growing number of new protein sequences in the post-

genomic era, experimental characterization of SCL is

available for only 11.1% of the total protein sequences

present in the UniProt Knowledge Base (version 57.9)

[2]. For human proteins, the number is slightly better,

with 34.1% having SCL annotations (Table 1). There is

thus a huge gap between protein sequences with and

without SCL annotation, necessitating computational

approaches to predict the SCL from sequence

information.

Early computational methods were restricted to speci-

fic subcellular compartments and depended on sequence

information alone [3]. Protein sequence information

comprises amino-acid composition, their physico-chemi-

cal properties (such as molecular weight, hydrophobi-

city, side-chain mass and amino-acid propensity),

protein motifs, signal peptides and functional domain

composition. However, given the variety of accepted

subcellular locations that are functionally essential to

completely characterize a protein, novel approaches

such as machine learning and text mining have

improved SCL predictability [3,4]. A machine-learning

method relies on the recognition of patterns that are

best characterized on the set of proteins whose localisa-

tion are known. A few studies use a systems biology

approach for the prediction of a protein’s SCL [5],

adopting an integrated methodology of high-throughput

proteomic data such as protein-protein interaction (PPI)

networks and protein motifs to understand and predict

the SCL of a eukaryotic protein [5,6].

The use of PPI network to predict function relies on

the principal assumption that the interacting protein

pairs are likely to collaborate for a common purpose

and have to be in close proximity in order to interact.

Schwikowski et al. [7] were the first to show that the

Saccharomyces cerevisiae PPI network could be used to

classify protein SCL based on the idea of “guilt by asso-

ciation or neighbouring count method”. Their approach

correctly identifies 76% of the interacting protein pairs

as occurring within the same SCL. A similar approach

was used in a comparative study to show that 52% of

the interacting protein pairs in humans tend to have

same SCL [8]. Lee et al. [9] extended the network-based

approach by complementing the classification with a

‘Divide and Conquer k-Nearest Neighbour’ (DC-kNN)

approach, with increased SCL predictive ability in yeast.

Previous researchers have shown the importance of

highly connected metabolites in the evolution of bio-

chemical pathways which govern the flow of mass and

energy in an organism [10,11]. To the best of our

knowledge, the metabolite-linked network has only been

used by Wagner and Fell [11] to report a positive corre-

lation between the evolutionary age of metabolites and

their degree of connectivity. Oron et. al [12] used con-

straint-based modelling on the metabolic network for

predicting enzyme SCL, specifically considering the

cross-membrane metabolite transporters (i.e. proteins).

Thus, metabolic network information has not been

implemented for predicting protein SCL, compared to

data from PPI networks. As a first step towards develop-

ing such a prediction methodology, we have carried out

large-scale statistical analysis of the SCL information

contained in PPI and metabolite-linked networks.

The availability of a large number of protein interac-

tion and metabolic datasets from multiple databases has

motivated us to conduct a statistical study to benchmark

the predictive ability of localisation of human proteins,

with respect to the various subcellular compartments. In

this study, we collated PPI interaction and metabolite-

linked protein interaction (metabolic information) from

seven major databases and integrated these with the

high quality SCL information present in the LOCATE

database [13] (Figure 1; see Materials and Methods for

details), to critically analyze the PPI and metabolic data-

sets for the SCL assignment of human proteins. Using

experimentally validated physical interaction and

Table 1 Summary of SCL annotation in UniProtKB.

Items Description No. of Protein Sequences Dataset Size %

A Proteins with SCL annotation in UniProt database 274730 494762 55.52

B Proteins in A with experimentally known SCL 55079 494762 11.13

C Proteins in A with uncertain terms such as potential/probable/similarity 219651 494762 44.39

D Proteins with GO annotation 461365 494762 93.24

E Protein with SCL annotation in GO database 337762 494762 68.26

F UniProt human entries with experimentally known SCL 6923 20274 34.14

G UniProt human entries with uncertain terms such as potential/probable/similarity 7486 20274 36.92

Distribution of 494762 protein entries from UniProtKB/Swiss-Prot* database (version 57.9) according to their SCL annotation and GO database reference.

* The original number of UniProt protein entries was 510076. Of these, 15314 were annotated as “fragment” or contained less than 50 amino acids residues,

hence, were removed from further consideration, i.e. 494762. Similarly, we considered only 20274 human protein entries out of 20334 sequences.
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metabolic datasets archived in various databases, we

compared SCL annotations assigned by LOCATE with

that of the Gene Ontology (GO) assignment for major

subcellular compartments: cytoplasm (GO:0005737),

cytoplasmic vesicle (GO:0016023), extracellular

(GO:0005576), endoplasmic reticulum (GO:0005783),

endosomes (GO:0005767), Golgi apparatus

(GO:0005794), lysosomes (GO:0005764), mitochondria

(GO:0005739), nucleus (GO:0005634), plasma mem-

brane (GO:0005886) and tight junction (GO:0005923).

Our results provide an estimate of the reliability of SCL

predictive ability of human proteins in the absence of

sequence and structural features using the high-

throughput protein interaction and metabolic dataset.

Results
As there is no specific database which combines protein

interaction, metabolic and SCL information, we inte-

grated data from independent individual databases con-

taining pertinent information. The SCL data from

LOCATE [13], PPI data from five interaction databases

and metabolic data from two databases (Figure 1; details

in materials and methods section) were integrated.

LOCATE contains literature-curated SCL information

for about 6900 human proteins (Figure 2) in various

subcellular compartments. The distribution of proteins

is not homogeneous across the various subcellular com-

partments, with proteins from some compartments such

as the nucleus and the plasma membrane being over-

represented. Therefore, we have carefully normalized

the dataset, while measuring the statistical properties of

our networks, to remove any bias toward specific SCL

compartments.

Overall, 1,718 and 1036 proteins, respectively from the

LOCATE dataset contain PPI and metabolic interac-

tions. These reduced datasets were used for further ana-

lysis by considering the consistency of proteins across

different databases and removal of the duplicate and

redundant entries. For comparing the SCL assignment,

we carefully merged low-level SCL annotation with that

of the high-level SCL annotation mentioned in the GO

hierarchy (see Additional file 1 for the merged GO-IDs).

We used the same hierarchical level of SCL annotation

for comparing LOCATE and GO annotations. Also, we

will refer to the metabolite-linked protein interaction

network as the metabolic network or MLPI, and the

gene ontology annotation as GOA.

Categorical analysis of protein pairs

In order to test, how protein pairs are localized within

the same subcellular compartments, Pearson’s c2 (chi-

square) test was performed. This statistical test shows

that c2 = 1270.19, P-value < 2.2 × 10-16 for physically

interacting protein pairs and c2 = 110.02, P-value < 2.2

x10-16 for metabolite-linked protein pairs (Tables 2

and 3). Thus, the incorporation of PPI and metabolic

data dramatically improve the significance of SCL pre-

diction, while the confidence level in SCL predictions

with PPI information is much higher than that with

metabolic information. The contingency table for

metabolic interaction revealed that the observed fre-

quency of metabolite-linked protein pairs with the

Figure 1 Schematic representation of data integration. Schematic representation of data integration. SCL information of LOCATE database

integrated with that of interaction and metabolic data. The resulting integrated data is represented in XML format.
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same SCL is 20.94% more compared to the expected

value, whereas the same observation seem to be twice

as much (93.35%) for physically interacting protein

pairs. The number of interacting protein pairs having

the same or different SCL is observed to be nearly the

same as in the PPI network. However, the metabolic

network has fewer metabolite-linked protein pairs with

the same SCL compared to that with different SCL.

From Tables 2 and 3, we have extracted 4136 physi-

cally interacting protein pairs from 1156 proteins and

4551 metabolically linked pairs from 509 proteins for

network analysis.

Interaction between various subcellular compartments

We measured the statistical significance of SCL correla-

tion profile based on the Paired-Localisation Conditional

Probability (PLCP; see Methods section for details), for

both the LOCATE (manually curated from the litera-

ture) data as well as the GOA assigned SCL (excluding

electronic annotation, which is automatically-assigned

evidence code). Figure 3 shows significant correlation

along the diagonals suggesting that the interacting pro-

tein pairs tend to co-localize in the same compartment.

Comparing the LOCATE-assigned SCL (Figure 3A), we

observe a strong correlation for physically interacting

Figure 2 Distribution of 6900 LOCATE proteins for various subcellular compartments. The subcellular compartments are CP (cytoplasm),

CV (cytoplasmic vesicle), EC (extracellular), ER (endoplasmic reticulum), ES (endosome), GA (Golgi apparatus), LS (lysosome), MC (mitochondria), N

(nucleus), PM (plasma membrane), and TJ (tight junction).

Table 2 Chi-square test for physically interacting protein pairs.

Pairs with same SCL Pairs with different SCL Row total

Physical interaction present 2081
(1076.26)

2055
(3059.74)

4136

Physical interaction absent 381716
(382720.74)

1089051
(1088046.26)

1470767

Column total 383797 1091106 1474903

Chi-square (c2) Value: 1270.192 P-Value: < 2.2 × 10-16

A 2 × 2 contingency table, showing the distribution of direct physical interaction of protein-pairs, as the observed number of pairs and the expected values

(assuming independence) shown in parenthesis.
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protein pairs to occupy the same compartment in the

cytoplasm (CP), cytoplasmic vesicles (CV), extracellular

(EC), endosomes (ES), Golgi apparatus (GA), lysosome

(LS), mitochondrion (MC), nucleus (N) and plasma

membrane (PM). The same comparison on the GOA

SCL (Figure 3C) shows conservation for EC, ES, GA,

MC, N, PM and TJ. We also observed significantly

strong correlation of nuclear proteins (Figures 3A and

3C) to interact with proteins found in cytoplasm, ER

and Golgi for the LOCATE dataset and the cytoplasm,

ER and mitochondrion for the GOA dataset. Similarly,

plasma membrane proteins show significant interaction

with the proteins in the several other subcellular com-

partments (Figures 3A and 3C).

The MLPI profile shows strong correlation of interact-

ing protein pairs to have same SCL for GA, LS and MC.

Table 3 Chi-square test for the metabolite-linked protein pairs.

Pairs with same SCL Pairs with different SCL Row total

Metabolite-linked Pairs 1465
(1158.12)

3086
(3392.88)

4551

Non-metabolite-linked Pairs 132345
(132651.88)

388929
(388622.12)

521274

Column total 133810 392015 525825

Chi-square (c2)- Value: 110.02 P-Value: < 2.2 × 10-16

A 2 × 2 contingency table, showing the distribution of metabolite-linked protein pairs, as the observed number of pairs and the expected values (assuming

independence) in parenthesis.

Figure 3 Protein paired localisation correlation profile. Paired Localisation Correlation Profile (PLCP) for LOCATE and GOA SCLs for major

subcellular compartments for the physically interacting or metabolite-linked protein pairs. The subcellular compartments are CP (cytoplasm), CV

(cytoplasmic vesicle), EC (extracellular), ER (endoplasmic reticulum), ES (endosome), GA (Golgi apparatus), LS (lysosome), MC (mitochondrion), N

(nucleus), PM (plasma membrane), and TJ (tight junction). A and B are LOCATE SCL correlation profiles, whereas C and D are GOA correlation

profiles.
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LOCATE data suggests significant correlation of meta-

bolite-linked interaction of PM proteins with those in

other compartments. Overall, the GOA dataset shows

significant interaction across compartments in compari-

son to that of the LOCATE dataset (Figures 3B and 3D).

We further tested the hypothesis of whether the net-

work of interacting protein pairs is different from a

random network, by calculating the Z-score between

the given compartments (described in the Methods

section). The random network was simulated by rewir-

ing the network such that the degree associated with

each node in the real network remains the same [14].

The P-value can then be obtained by comparing the Z-

score to a standard normal distribution. Comparing

with a “properly” randomized network ensemble (1000

in our case) allows us to concentrate on those statisti-

cally significant localisation patterns of these complex

interaction networks that are likely to reflect the con-

served interaction pairs across different subcellular

compartments. The statistical significance of correla-

tion profiles were calculated for PPI and metabolic

networks for each paired compartments. The Z-score

profile scales differently for the physically interacting

and metabolite-linked protein pairs (Figure 4). The PPI

network Z-score (Figures 4A, C) suggest that com-

pared to random networks, the number of interacting

protein pairs co-locating in the same compartment is

significant for EC (P-value < 9.8 e-10), MC (P-value <

3.7 e-05), LS (P-value < 4.5 e-12), ES (P-value < 1.8 e-

09) and CV (P-value < 1.9 e-35) for the LOCATE

dataset (Figure 4A and Additional file 2). We also

observed a significant correlation for CV proteins to

interact with EC proteins (P-value < 5.4 e-06) but not

otherwise i.e. EC proteins do not interact with CV

proteins at a significant P-value < 0.01. Similarly, TJ

proteins are more likely to interact with that of the

PM proteins (P-value < 4.3e-05), whereas the likeli-

hood of PM proteins to interact with TJ proteins is

Figure 4 Z-score correlation profile. The Z-score correlation for LOCATE and GOA SCLs in the major subcellular compartments (see Additional

file 1 for details) for the physically interacting and metabolite-linked protein pairs. A and B are LOCATE SCL correlation profiles, whereas C and D

are GOA correlation profiles. Refer to Additional file 2 for Z-score values.
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less significant (P-value ~ 0.01). GOA SCL assignment

(Figures 4C) suggests that statistically significant pro-

tein pair interactions occur within TJ (P-value ~ 0)

and EC (P-value < 1.36e-07). Proteins pairs within the

ES compartment seems to have a weak interaction (P-

value ~ 0.0007). Similar weak interactions have been

noticed between the proteins in the ER compartment

with those of the GA (P-value ~ 0.007) (Additional

File 2).

The metabolic Z-score correlation profile suggests a

strong correlation of metabolite-linked protein pairs to

have the same SCL within MC (P-value < 6.0e-07) and

LS (P-value < 4.7e-05) in the LOCATE dataset (Figure

4B), while the GOA SCL (Figure 4D) assignment sug-

gests the same for GA (P-value < 1.0e-15) and MC (P-

value < 1.3e-10). A statistically significant proportion of

EC proteins interacts with MC proteins (P-value < 1.0e-

05) for the LOCATE SCL (Figure 4B). In the GOA data-

set, LS proteins interact with EC proteins (P-value <

1.1e-26; Figures 4D). The detailed description of paired-

compartment Z-scores and calculated P-values are avail-

able from Additional File 2.

Analysis of PPI and Metabolic Networks

To track the variation in structural topology between

PPI and metabolic networks, we analyzed their topologi-

cal properties of both the networks for human proteins

in integrated dataset (Figure 1). The interaction network

used in this study consists of 4136 direct physical inter-

actions between 1156 human proteins (Table 2),

whereas the metabolic network consists of 4551

interactions between 509 proteins (Table 3). This sug-

gests that the metabolic network is denser with more

edges between the protein nodes. Both the protein inter-

action network and the MLPI network belong to the

class of scale-free networks, suggesting that both net-

works evolved by adding new nodes to existing highly

connected nodes. In these networks, the number of

nodes with a given number of neighbours (connectivity,

K), scales as P(K) a 1/Kg. The plot of the connectivity

can be fitted by a power law, where g = 1.52 and g =

1.34, respectively for the physically interacting and

metabolite-linked protein pairs (Figure 5A and 5B).

The connectivity probability of nodes and its nearest

neighbours are the same compared to the connectivity

of any of the nodes chosen randomly, in a random net-

work. On the other hand, a real network comprises an

ordered lattice which is extended as the network grows,

i.e. some order is achieved depending on how the co-

ordinates of each new node are added, with respect to

that node’s neighbours (clusters) and independent of the

total number of nodes present in the network [15].

Therefore, we have calculated the average clustering

coefficient ( < Ck >) associated with the given degree in

PPI and metabolic networks, to study the global network

topology. The PPI network shows random but gradual

decrease of larger values of < Ck >associated with the

high degree protein nodes. This simply means that the

highly connected protein nodes are not connected, i.e.

protein hubs are not connected, which is a specific sig-

nature for the non-modular nature of any real network

(Figure 6A) [16]. The metabolic network, on the other

Figure 5 Network connectivity or degree distribution. The cumulative frequency distribution of the connectivity as a function of the

connectivity or degree (k) is presented for A. PPI network and B. Metabolic network.
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hand, shows linear variation of highly connected nodes

for the lower range of < Ck >associated with the higher

degree nodes, implying the existence of hierarchical or

modular structures (Figure 6B) [16,17].

Assortativity measures the collaboration of similar

entities to achieve a single goal, whereas a disassortative

nature suggests the association of different entities to

achieve the same goal. Therefore, to observe the

assortative or disassortative nature of human PPI and

metabolic networks, we calculated the average degree of

the neighbouring proteins as a function of the each

nodes degree [18]. For the PPI network, Figure 7A

shows an increase in the neighbouring node degrees

associated with higher degree nodes. This topological

behaviour is the characteristic signature of the assorta-

tive network, thus suggesting that PPI is an assortative

Figure 6 Average clustering against the node degree. The average clustering coefficient ( < Ck >) for each degree/connectivity, showing the

probability that the adjacent neighbouring nodes of a node are connected is plotted as a function of the node degree in A. PPI network and B.

Metabolic network.

Figure 7 Average connectivity of a neighbouring nodes. Correlation in the connectivity of neighbours, with respect to a specific node of a

given degree in A. PPI network and B. Metabolic network.
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network. This observation is absent in the metabolic

network (Figure 7B), where there is a decrease in the

association with the high degree neighbours for the high

degree nodes, i.e. nodes with the high degree k tend to

be disconnected on an average, to others of lower

degree. The power-law exponents (g) for the degree

assortativity are 1.2 and 1.1 in PPI and metabolic net-

works, respectively.

We have also calculated the betweenness centrality, to

measure the load in our PPI and metabolic networks

[19]. This measurement is commonly used in sociology

to quantify the influence of a person in a society. In our

case, it helps to quantify the information carrying capa-

city of a specific protein in the network. The PPI net-

work shows a linear behaviour of the centrality measure

associated with the connectivity of a node (k), whereas

the metabolic network has a non-linear, random beha-

viour (Figure 8).

Figures 6 and 7 together indicate that the metabolic

networks can be characterized with high degree nodes

interconnecting highly connected subgraphs, but with

no or few connections among nodes in different sub-

graphs. This implies that the metabolic pathways are

inter-connected via substrates between different com-

partments. Table 4 provides data on other topological

features of the networks.

Network-based neighbours for example proteins

From the normalized datasets that we have studied, of

the many biologically relevant proteins, we have pre-

sented two specific examples. The first example is of a

protein which specifically interacts with proteins co-

located in the same SCL, while the second protein has

interaction partners in different SCLs.

We examined the neighbouring proteins of human

cyclin-dependent kinase inhibitor 3, CDKN3, in our

PPI and MLPI networks (Figure 9). We note that this

protein has been assigned the perinuclear region of the

cytoplasm as SCL in UniProt, for a normal cell [20]

(data available from Additional file 3). We found that

CDKN3 is linked to double-stranded RNA-specific edi-

tase 1, RED1 and telomerase-binding protein, EST1A

in our metabolic network, both interaction partners

being located in the nucleus (Figure 9B). In the PPI

network (Figure 9A), the same protein, CDKN3 is

observed to interact with six proteins located in the

nucleus: CDK2 (cell division protein kinase 2), MS4A3

(protein modulator of G1-phase to S-phase cell cycle

transition), CDK3 (cell division protein kinase 3),

MPIP1 (phosphatase protein inducer of mitotic

Figure 8 Correlation between connectivity of nodes and betweenness centrality. Plots showing the correlation of the betweenness

centrality associated with the connectivity (k) of nodes for A. PPI network and B. Metabolic network.

Table 4 Topological characteristics of PPI and metabolic

networks.

Protein interaction

network

Metabolic

network

Number of nodes 1156 509

Number of edges 4136 4551

Clustering coefficient 0.29 0.05

Average clustering
coefficient

0.40 0.16

Average path length 4.77 4.09

Diameter 13 14
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progression), CEBPA (DNA-binding protein) and

CDK1 (cell division protein kinase 1, required for the

progression of S-phase and mitosis). As early as 1993,

Gyuris et al. [21] have reported that CDKN3 is

expressed at the G1-phase to S-phase transition during

the cell division process and is known to form a stable

complex with CDK2. Our network analysis clearly sup-

ports CDKN3 being located in the periplasmic space

and interacting with neighbouring proteins in the

nucleus due to the porous nature of the nuclear mem-

brane (Figure 9A and 9B) and is consistent with our

PLCP analysis results on the interaction, which show

that the nuclear proteins seem to interact with pro-

teins of the cytoplasm (Figure 3).

Subsequently, we examined the neighbouring proteins

of human poly [ADP-ribose] polymerase 2 (PARP2)

(Figure 9C and 9D). In the MLPI (Figure 9D), one of

the interacting partners of PARP2 is TGF-beta receptor

type-1 (TGFR1), which is a signalling molecule located

in the plasma membrane. The other interacting neigh-

bour is PARP1 (poly [ADP-ribose] polymerase 1) located

inside the nucleus, which interaction alone is preserved

in the PPI network (Figure 9C). Considering the inte-

grated network approach of combining different net-

works, we can thus infer not only the SCL of the

interacting proteins but also the biochemical signal via

the plasma membrane, to identify the exact biological

function of this polymerase, which is in accord with the

earlier findings of Sharan and Ideker [22].

We have analyzed the SCL annotation of the 15 pro-

teins in the above interacting pairs to determine the cor-

relation of SCL assignment between LOCATE and

UniProt databases (available in Additional file 3). We

note that UniProt has no annotation for four proteins

(27%), while two (13%) of the proteins have SCL assign-

ments different from those in LOCATE. The remaining

nine proteins have the same SCL assignments in both

databases. These results support the use of experimen-

tally determined SCL annotations from LOCATE for

this analysis, over UniProt SCL assignments.

Discussion
Based on the topological comparison of networks, we

were able to gain more insights into the structural differ-

ences in the PPI and metabolic networks of human pro-

teins. Having shown that PPI and metabolic networks are

scale-free, we further showed that the metabolic network

is not assortative and modular (Figure 10).

The PPI network can be viewed as a network model

where proteins collaborate on the number of cellular

Figure 9 Examples showing the neighbouring proteins of CDKN3 (located in the perinuclear region of cytoplasm) and PARP2 (nuclear

protein) in the PPI and MLPI networks. Proteins located in the nucleus, perinuclear region of the cytoplasm and plasma membrane are

coloured in magenta, light yellow and light green respectively. Additional file 3 shows the differences in LOCATE and UniProt assigned SCL.
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processes a single protein can handle at any time. This

network model is evident from network behaviour with

a power-law distribution P(k) ~ k-g where g = 1.5 [23].

A similar observation is noted in the PPI network for

passive interaction across subcellular compartments

with g = 1.52, due to the high false-positive rate. PPI

data is known to have a high false-positive rate, i.e. the

reliability of the possible observed interaction is ques-

tionable as with the high coverage rate. If a given pro-

tein interacts with a large number of other proteins, it

is most likely a sticky protein and the observed interac-

tions associated with this protein do not have a real

functional association. Therefore, the passive interaction

defines the unreliability of the observed interaction,

which could happen by chance. The linear behaviour of

betweenness centrality against the connectivity of node

(k) in PPI network further suggests the presence of

non-localized behaviour of interactions across compart-

ments, compared to localized metabolite linkages

among proteins inside the same subcellular compart-

ments. This observation is also evident from the c2 sta-

tistics where the number of interacting protein pairs

having the same localization is nearly the same as in

different subcellular compartments (Table 2). We com-

pared LOCATE assigned SCL with that of the GOA for

the protein pairs across the different subcellular

compartments, considering the multiple localisation for

proteins. This comparison suggests significant differ-

ences among the annotation process (Figure 3A and

3C). The correlation profile (PLCP) suggests a strong

correlation of interacting protein pairs within the same

subcellular compartments. There is statistically signifi-

cant cross-interaction among proteins in the nucleus

with those of other cellular compartments. This is

attributed to the fact that the nucleus has a porous cell

membrane, which facilitates free diffusion and interac-

tion between proteins across compartments. Subcellular

compartments such as the Golgi apparatus, the endo-

plasmic reticulum and the lysosome indicate weak but

significant correlation, which is in accord with the fact

that the Golgi apparatus and the endoplasmic reticulum

are inter-linked subcellular compartments for the trans-

location of proteins to various other compartments after

the translation of mRNA to protein on the ribosome.

The Z-score correlation profile for the PPI network

shows that while interactions are conserved within com-

partments (along the diagonal, Figure 4A and 4C) with

respect to the random network, there is also significant

interaction of protein pairs across other subcellular

compartments.

The metabolic network has an evolutionary constraint

where only a few proteins are linked through common

Figure 10 Visualization of PPI and metabolic networks. In the graphical representation of networks, the nodes and edges are represented by

circles and lines, respectively. Circles representing the interacting proteins are coloured by the SCL compartment: cytoplasm (green), cytoplasmic

vesicle (blue), endoplasmic reticulum (orange), endosome (red), extracellular (purple), Golgi apparatus (magenta), mitochondrion (violet),

lysosome (cyan), nucleus (gold), plasma membrane (brown) and Tight junction (pink). White nodes represent proteins with unknown SCL and

grey nodes represent proteins with multiple SCL.
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metabolites to maintain high substrate specificity in the

higher eukaryotes [24]. Hence proteins are distributed in

various subcellular compartments unlike prokaryotic

proteins which contain co-evolving protein domains to

carry out multiple tasks. Moreover, eukaryotic metabolic

pathways are optimized via cross connections across

subcellular compartments. This is revealed in the c2 sta-

tistics where few protein pairs have the same subcellular

compartments compared with pairs from different com-

partments. PLCP suggest that protein pairs are not con-

served for the compartments such as cytoplasm,

cytoplasmic vesicles, endoplasmic reticulum and endo-

some (Figure 3B and 3D). This is due to the fact that

the numbers of metabolite-linked protein-pairs are less

and secondly, there are lots of dynamics happens among

these compartments, as number of cellular pathway are

distributed across compartments, hence it makes diffi-

cult to capture from our static picture of PLCP calcula-

tion. Even though the dynamics of some compartments

are difficult to capture through the statistical measures,

it is very useful to see how cellular processes are tightly

controlled inside the subcellular systems such as mito-

chondrion and lysosome. The Z-score correlation profile

of LOCATE and GOA SCL suggests that the metabo-

lite-linked protein pairs seems to be more conserved

across diagonals compare to that of randomized net-

work and hence metabolite-linked interactions are

tightly regulated within the same compartments (Figure

4B and 4D).

Conclusions
The network analysis showed that there is significant

difference between the topological properties measured

in the human PPI and metabolic networks. Network

comparison indicates the usefulness of metabolite-linked

protein interaction (metabolic network) that can be used

for the prediction of protein’s SCL in the compartments

such as mitochondria and lysosome. Our results lead to

the observation that proteins in PPI network interact

passively, whereas metabolic network evolve under evo-

lutionary constrain to maintain substrate specificity. The

series of analysis presented in this study suggests the

applicability of metabolic (metabolite-linked protein

interaction) network to explain the empirical data. The

integrated network approach of using PPI and MLPI

data developed here will provide a robust basis for pre-

dicting SCL for higher eukaryotes, along with the com-

parative network studies across species.

Methods
Data integration and construction of database

In the absence of a specialized database combining pro-

tein interaction, metabolic and SCL information, we

have integrated data from independent individual

databases. The LOCATE database contains SCL infor-

mation from human and mouse proteins collected from

both literature and direct experiment [13]. SCL data on

human proteins from LOCATE database were integrated

with the interaction data deposited in the PPI databases:

HPRD [25], DIP [26], MINT [27], BioGRID [28] and

IntAct [29]. Similarly, metabolic data (MD) were col-

lected from the databases, KEGG [30] and HumanCyc

[31] and integrated with the SCL data of the human

proteins with the LOCATE database. This integrated

dataset is recorded in XML format (Figure 1 and Addi-

tional file 4). LOCATE data contains 64,637 human pro-

teins with known or predicted SCL information. Our

integrated database contains 6,900 proteins with known

SCL information curated from the literature (Figure 2).

We used UniProt-ids and RefSeq-ids for consistent

mapping across the three different datasets (i.e. SCL,

PPI and MD).

Identification and removal of inconsistency and

redundancy

The LOCATE protein database [13] contains references

to sequence databases such as UniProtKB [2] and

RefSeq [32]. Protein entries with secondary accession

were mapped to their primary identifiers mentioned in

the protein sequence databases. RefSeq identifiers where

used to extract UniProt identifiers where LOCATE

entries contain RefSeq identifier but not the UniProt

accession number. This allows consistent one-to-one

mapping of protein entries across various databases.

Duplicate entries of known protein interactions men-

tioned in PPI databases were carefully removed while

analyzing interaction information in each LOCATE

entry.

The metabolic linkage between proteins was estab-

lished by considering only those compounds which

occur in less than 50 reactions per compound in a given

metabolic database. This ensures the removal of ubiqui-

tous compounds such as ATP, NADH, H2O, H+ etc.

(see Additional files 5 and 6 for the lists of ubiquitous

compounds). Ambiguous metabolites where removed,

for example, HumanCyc reaction: GLUTATHION + RX

< = > |S-Substituted-Glutathione| + HX, where RX and

HX are ambiguous metabolites. Only those metabolites

which contain unique compound-ids, were further con-

sidered for linking proteins, while those with generalized

descriptions were omitted. E.g. General-Protein-Sub-

strates and General-Phos-Protein-Substrates were not

considered as linking metabolites shown in a reaction: |

General-Protein-Substrates| + ATP < = > |General-

Phos-Protein-Substrates|.

For the current study 1,718 and 1036 LOCATE pro-

teins out of 6900 (literature curated), were linked via

direct physical and metabolite-linked protein
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interactions, respectively. In the topological studies of

PPI and metabolic networks, we considered 1156 and

509 proteins with 4136 and 4551 interactions

respectively.

Construction of networks

All LOCATE protein entries were linked via interactions

(either physical or through a common metabolite) and

the data were recorded in xml format (available from

Additional file 4). This dataset was used to build the

undirected networks using the R igraph package [33].

We used degree and transitivity functions for calculating

the degree distribution and clustering coefficient in our

networks. Random networks were generated by using

the rewire function of the R igraph package.

SCL analysis of the protein pairs

Correlation profiles were created using Paired-Localisa-

tion Conditional Probability (PLCP) for both PPI and

metabolic networks [9]. This measure shows how the

interacting protein pairs are distributed across various

subcellular compartments. For a given protein in the

compartment Ci having an interacting partner in com-

partment Cj, PLCP is defined as

P C C
Cij

C jk
k

i j| ,( ) =
∑ (1)

where Cij is the normalized number of interactions

between protein pairs spanning compartments Ci and

Cj. Cij is defined as:

C

x y

N x N yx Ci y C j x y

N Ci N C j
ij =

( )
+∈ ∈ ≠

∑

+

 ,

( ) ( ), ( )

( ) ( )

(2)

where, l(x, y) is 1 if there is an interaction between

proteins x and y, otherwise, 0. N(Ci) is the number of

proteins in compartment Ci and N(x) is the number of

localisations known for protein x.

The Z-score correlation profiles were analyzed

between interacting protein pairs from the real and ran-

dom networks as given by:

Z C C
N Ci Cj

real
N Ci Cj

random

Ci Cj
random

i j,
, ,

,
( ) =

( ) − ( )

( )
(3)

where, N(Ci, Cj)real and 〈N(Ci, Cj)random〉 represent

numbers of physically interacting or metabolite-linked

protein pairs in real and random networks respectively.

s(Ci, Cj)random, represents the standard deviation in the

ensemble of a 1000 random networks.

Statistical validation of networks

We analyzed the topological property of PPI and meta-

bolic network calculating the most significant network

features, namely clustering coefficient, betweenness cen-

trality, average path length, degree distribution and cor-

relation profile calculation. For a graph G with u and v as

two vertices, the path from u to v will pass sequentially

through vertices v1, v2...vk, with u = v1 and v = vk, such

that for i = 1,2.....k-1: (i) (vi, vi+1) Î E(G) i.e. the edges

set and (ii) vi ≠ vj for i ≠ j. The path length is then said

to be (k-1). The simple geodesic distance, d(u, v) from u

to v is the length of the shortest path from u to v in the

graph G. The average path length, 〈l〉, of such a graph is

defined as the average of values taken over all the possi-

ble pairs of nodes connected by at least one path:

〈 〉 =
−

=

∑l
N N

luv

u v

N
2

1
1

( )
,

(4)

where, N is the number of nodes and luv is the distance

between two nodes, u and v. The diameter of the network

is defined as the maximum distance between two nodes

of a graph G, i.e. D = max{duv |u, v Î N}, where N is the

total number of nodes in the graph or network.

The clustering coefficient is another characteristic of a

network which is unrelated to the degree distribution. It

is a quantitative measure to the proximity of the neigh-

bourhood of each node to form a complete subgraph

(clique) and thus defines a measure of the local beha-

viour of the small world network [34]. The clustering

coefficient is defined as,

C
K

ki ki
i =

−

2

1( )
(5)

where, K denotes the sum of the neighbouring pairs

among the ki nodes connected to the node i. Similarly,

one can define an average clustering coefficient as,

〈 〉 =

=

∑C
K

Ci

i

K
1

1

(6)

Centrality is one of the key structural aspects of the

nodes in a network and is a measure of the relative

influence of each node on the network. We calculated

betweenness centrality, which is the fraction of shortest

paths between all the pairs of nodes that passes through

a given node [19].

Additional file 1: Merged list of subcellular compartments for the

LOCATE and GOA SCL. This contains the list of compartment at the

lower-level of GO hierarchy which were merged with that of the higher

level of GO cellular compartments for the analysis of major subcellular

compartments.
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Additional file 2: List of Z-score values for the paired SCL. This

contains the Z-score values and their calculated P-values for the paired

compartments in the PPI and metabolic dataset, as described in Figure 3.

Additional file 3: SCL assignment of example proteins in Figure 9.

The LOCATE SCL information compared to SCL annotations from the

UniProt database. For each protein, the description, HGNC gene name

and UniProt identifier are also provided.

Additional file 4: Integrated data. This contains the LOCATE proteins

with SCL information integrated with that of the PPI and metabolic

dataset, as described in Figure 1.

Additional file 5: List of KEGG compounds per reaction. A list of

compounds from the KEGG database [30] with the number of known

reaction.

Additional file 6: List of HumanCyc compounds per reaction. A list

of compounds from the HumanCyc database [31] with the number of

known reactions.
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