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Abstract

Functional brain networks detected in task-free (‘‘resting-state’’) functional magnetic resonance imaging (fMRI) have a small-
world architecture that reflects a robust functional organization of the brain. Here, we examined whether this functional
organization is disrupted in Alzheimer’s disease (AD). Task-free fMRI data from 21 AD subjects and 18 age-matched controls
were obtained. Wavelet analysis was applied to the fMRI data to compute frequency-dependent correlation matrices.
Correlation matrices were thresholded to create 90-node undirected-graphs of functional brain networks. Small-world
metrics (characteristic path length and clustering coefficient) were computed using graph analytical methods. In the low
frequency interval 0.01 to 0.05 Hz, functional brain networks in controls showed small-world organization of brain activity,
characterized by a high clustering coefficient and a low characteristic path length. In contrast, functional brain networks in
AD showed loss of small-world properties, characterized by a significantly lower clustering coefficient (p,0.01), indicative of
disrupted local connectivity. Clustering coefficients for the left and right hippocampus were significantly lower (p,0.01) in
the AD group compared to the control group. Furthermore, the clustering coefficient distinguished AD participants from
the controls with a sensitivity of 72% and specificity of 78%. Our study provides new evidence that there is disrupted
organization of functional brain networks in AD. Small-world metrics can characterize the functional organization of the
brain in AD, and our findings further suggest that these network measures may be useful as an imaging-based biomarker to
distinguish AD from healthy aging.
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Introduction

Alzheimer’s disease (AD) is a neurodegenerative disorder

characterized by progressive impairment of episodic memory

and other cognitive domains resulting in dementia and, ultimately,

death. Imaging studies in AD have begun a shift from studies of

brain structure [1,2] to more recent studies highlighting focal

regions of abnormal brain function [3–6]. Most recently, fMRI

studies have moved beyond focal activation abnormalities to

dysfunctional brain connectivity.

Functional connectivity is defined as temporal correlations

between spatially distinct brain regions [7]. PET studies, restricted

to across-subject connectivity measures, have shown that AD

patients have decreased hippocampus connectivity with prefrontal

cortex [8] and posterior cingulate cortex [9] during memory tasks.

Using fMRI, we demonstrated that AD patients performing a

simple motor task had reduced intra-subject functional connectiv-

ity within a network of brain regions—termed the default-mode

network—that includes posterior cingulate cortex, temporopari-

etal junction, and hippocampus [10]. Bokde et al. reported

abnormalities in fusiform gyrus connectivity during a face-

matching task in subjects with mild cognitive impairment—

frequently a precursor to AD [11]. Three recent studies have

reported reduced default-mode network deactivation in MCI and/

or AD patients during encoding tasks [12,13] and during a

semantic classification task [14]. Celone et al also reported

increased default-mode network deactivation in a subset of ‘‘less

impaired’’ MCI patients.

In addition to analyzing functional connectivity during task

performance, functional connectivity has also been investigated

during task-free (‘‘resting-state’’) conditions. Task-free functional

connectivity MRI detects interregional correlations in spontaneous

blood oxygen level-dependent (BOLD) signal fluctuations [15].

Using this approach, Wang et al. found disrupted functional

connectivity between hippocampus and several neocortical regions

in AD [16]. Similarly, Li et al. reported reduced intrahippocampal

connectivity during task-free conditions [17]. Most recently Sorg et

al. [18] reported reduced resting-state functional connectivity in

the default-mode network of MCI patients. Although evidence is

accumulating that AD disrupts functional connections between

brain regions [19], it is not clear whether AD disrupts global

functional brain organization.
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Graph metrics–the clustering coefficient and the charac-
teristic path length—are useful measures of global organization

of large-scale networks [20]. Graphs are data structures which

have nodes and edges between the nodes. The clustering

coefficient is a measure of local network connectivity. A network

with a high average clustering coefficient is characterized by

densely connected local clusters. The characteristic path length is a

measure of how well connected a network is. A network with a low

characteristic path length is characterized by short distances

between any two nodes. Small-world network is characterized by a

high clustering coefficient and a low characteristic path length [20,21]. In a

graphical representation of a brain network, a node corresponds to

a brain region while an edge corresponds to the functional

interaction between two brain regions. Functional connectivity

networks of the human brain derived from electroencephalograms

(EEGs), magnetoencephalograms and task-free fMRI data exhibit

small-world characteristics [22–24]. In a recent EEG study, Stam

et al. reported that small-world architecture in functional networks

in the brain is disrupted in AD [25].

Here we examined the global functional organization of the

brain in AD by (1) creating whole-brain functional connectivity

networks from task-free fMRI data, (2) characterizing the

organization of these networks using small-world metrics, and (3)

comparing these characteristics between AD patients and age-

matched controls. We hypothesized that global functional brain

organization would be abnormal in AD. Further, given the need

for a reliable, non-invasive clinical test for AD [26], we sought to

determine whether a small-world metric obtained from task-free

fMRI data might provide a sensitive and specific biomarker in AD.

Results

Subjects
Demographic data is shown in Table 1. Subject groups did not

differ significantly in age (p = 0.73), gender distribution (p = 0.62),

or years of education (p = 0.58). The mean MMSE was

significantly lower (p,0.0001) for the AD group (22.14) compared

to the controls (29).

Analyses of small-world metrics at different scales
We first examined graph metrics obtained for the functional

brain networks constructed by thresholding (threshold values

ranged from 0.01 to 0.99 with an increment of 0.01) the wavelet

correlation matrix computed at three scales (frequencies in the

range from 0.01 to 0.25 Hz) for the AD group and the control

group (see Figure 1). For both groups, the mean degree was

highest at Scale 3 for a wide range of correlation thresholds

(0.01,R,0.7). The mean characteristic path length (l) for both

groups, when controlled for the degree of the network, was low

(1,l,1.27) and showed similar trends at all the scales. The

clustering coefficient (c) for both groups, when controlled for the

degree of the network, was highest at Scale 3. Due to higher mean

c values, the small-world measure s (c/l), when controlled for

degree of the network, was highest at Scale 3 for both groups. The

small-world property (s.1) showed a linear increase in small-

worldness as the threshold increased (degree decreased). s values

for higher correlation thresholds are difficult to interpret, as at

higher threshold values, graphs of functional brain networks have

fewer edges (smaller degree) and tend to split into isolated sub-

graphs. Graph metrics such as clustering coefficient, characteristic

path length, and small-world property do not meaningfully

characterize network structures that are not composed of a single,

large group of interconnected nodes [20].

Since functional connectivity and small-world properties were

salient at lower-frequencies (0.01 to 0.05 Hz) for the AD group

and the control group, we only report results for this frequency

interval in subsequent analyses.

Comparison of small-world metrics in the AD and control
groups

In the frequency interval between 0.01 to 0.05 Hz, we

examined l and c values in the two groups. For group

comparison, we controlled for the average correlation value (r). r

is different across groups. Thus, for a given correlation threshold,

the number of edges in the graph are likely to be less in AD,

resulting in high l and low c values. To ensure that graphs in both

groups had the same number of edges, individual correlation

matrices were thresholded such that the resultant graph had

exactly K9 edges. K9 is the average number of edges in the graph

obtained by thresholding individual correlation matrices with

R = ri (ri is the average correlation value for subject i, i = 1 to 39).

The value of K9 selected according to this procedure was 40 for

both the groups. Mean l, mean c, and mean s values for the

networks of the AD group and control group were derived by

thresholding the correlation matrices such that the network has K9

( = 40) edges (shown in Figure 2). Results were: (i) No significant

differences in the mean l values were observed, Mean c values in

the AD group were significantly lower than in the control group

Table 1. Subject Population–Demography and MMSE scores.

AD (n = 21) Controls (n = 18)

Age 63.97 (range: 48 to 83) 62.84 (range: 37 to 77)

Sex 10 males, 11 females 10 males, 8 females

Years of
Education

15.89 (range: 12 to 22) 16.53 (range: 12 to 21)

MMSE 22.14* (range: 12 to 29) 29* (range: 27 to 30)

MMSE scores are significantly different in AD patients compared with control
subjects (*denotes significant differences between groups).
doi:10.1371/journal.pcbi.1000100.t001

Author Summary

Alzheimer’s disease (AD) is a brain disorder characterized
by progressive impairment of episodic memory and other
cognitive domains resulting in dementia and, ultimately,
death. Functional neuroimaging studies have identified
brain regions that show abnormal brain function in AD.
Although there is converging evidence about the identity
of these regions, it is not clear how this abnormality affects
the functional organization of the whole brain. In order to
characterize the functional organization of the brain, our
approach uses small-world measures, which have also
been used to study systems such as social networks and
the internet. We use graph analytical methods to compute
these measures of functional connectivity brain networks,
which are derived from fMRI data obtained from healthy
elderly controls and AD patients. The AD patients had
significantly lower regional connectivity, and showed
disrupted global functional organization, when compared
to healthy controls. Moreover, our results indicate that
cognitive decline in Alzheimer’s disease patients is
associated with disrupted functional connectivity in the
entire brain. Our findings further suggest that small-world
measures may be useful as an imaging-based biomarker to
distinguish AD from healthy aging.

Analysis of Functional Brain Networks in AD

PLoS Computational Biology | www.ploscompbiol.org 2 June 2008 | Volume 4 | Issue 6 | e1000100



(p,0.01), and (iii) Mean s values in the AD group were

significantly lower than in the control group (p,0.01).

Analysis of global efficiency of whole-brain functional
connectivity network

We examined global efficiency (Eglobal) values obtained for the

functional brain networks constructed by thresholding (threshold

values ranged from 0.01 to 0.99 with an increment of 0.01) the

wavelet correlation matrix computed at three scales (frequencies in

the range from 0.01 to 0.25 Hz) for the AD group and the control

group (see Figure 3A). The mean Eglobal for both groups, when

controlled for the degree of the network, was low (0.77,Eglobal,1)

and showed similar trends at all the scales.

In the frequency interval 0.01 to 0.05 Hz (scale 3), mean Eglobal

values for the AD group and the control group for the networks

derived by thresholding the correlation matrices such that the

network has K9 ( = 40) edges are shown in Figure 3B. No

significant differences in the mean Eglobal values were observed.

Specificity and sensitivity of clustering coefficient in
distinguishing AD participants from controls

Here, we examined whether c (normalized clustering coeffi-

cient) might prove sufficiently sensitive and specific to serve as a

biomarker for AD. Using the cut-off value (c= 1.57) that

maximizes sensitivity and specificity, c correctly classified 14 out

of 18 controls and 15 of 21 AD subjects, yielding 72% sensitivity

and 78% specificity respectively. A receiver operating character-

istic curve for various cut-off values is shown in Figure 4. The Area

Under the Curve for the ROC was 0.754 (95% CI Area 0.602 to

0.906).

Figure 1. Graph metrics–degree, l (L/Lran), c (C/Cran), s (c/l), for the AD group (D) and the control group (#) at three frequency
intervals–0.01 to 005 Hz (green), 0.06 to 0.12 Hz (blue), and 0.13 to 0.25 Hz (red). (A) For both groups, the mean degree–a measure of
network connectivity is highest at Scale 3 for a wide range of correlation thresholds (0.01,R,0.7), (B) The mean characteristic path length (l) is low
(1,l,1.27) and shows similar trends at all the scales (C) The clustering coefficient (c) for both groups is highest at Scale 3. (D) Due to higher mean c
values, the small-world measure s (c/l) is highest at Scale 3 for both groups. The small-world property (s.1) showed a linear increase in small-
worldness as the threshold increased (degree decreased). s values for higher correlation thresholds are hard to interpret as at higher threshold values
graphs of functional brain networks have fewer edges (smaller degree) and tend to split into isolated sub-graphs.
doi:10.1371/journal.pcbi.1000100.g001

Analysis of Functional Brain Networks in AD
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Regional profile of clustering coefficient
Figure 5 shows a plot of c for each of the four regions, for the

AD group and the control group as a function of the correlation

threshold. In the left and the right hippocampus, the fitted growth

curve was significantly lower (p,0.01) in the AD group, compared

to the control group, reflecting lower clustering coefficient values

for a range of threshold values from 0.1 to 0.6. A similar analysis in

the left and right precentral gyrus, revealed no significant

differences in the clustering coefficient values. Across the four

regions, no significant differences in the clustering coefficient

values were observed for correlation threshold values .0.6, mainly

due to the large variance observed at higher threshold values. This

analysis was extended to the remaining 86 regions of the whole

brain functional network (see Table S1 to find regions that showed

significant differences in clustering coefficient values between the

two subject groups).

To determine whether the differences observed in c values

reflect true differences and not artifacts of different average

correlation values, we repeated our analysis by computing c values

as a function of the number of edges in the graph. Mean c values

of four anatomical regions of interest for the AD group and the

control group for networks derived by thresholding the individual

correlation matrices such that the network has K9 edges were

computed and compared. Results were consistent with the initial

analysis–significantly lower clustering coefficient values (p,0.01)

in the left and right hippocampus in AD, and no significant

differences in the left and right precentral gyrus.

Regional connectivity
We next examined regional correlation values (connectivity) in

the two groups. Results show that compared to the control group,

the AD group had decreased correlation values (1) within the

Figure 2. Small-world properties for networks derived by thresholding the correlation matrices such that the network has K9 edges.
Error bars represent values two standard deviations from the mean. (A) Mean l (L/Lran) values for the AD group and the control group. No significant
differences in the mean l values are observed. (B) Mean c (C/Cran) values for the AD group and the control group. c values in AD group were
significantly lower (indicated by *) than that in the control group (p,0.01). (C) Mean s (c/l) values for the AD group and the control group. s values
in AD group were significantly lower (indicated by *) than that in the control group (p,0.01).
doi:10.1371/journal.pcbi.1000100.g002
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temporal lobe, (2) between the temporal lobe and thalamus, (3)

between the temporal lobe and corpus striatum, (4) between the

thalamus and occipital lobe, and (5) between the thalamus and

other parts of the frontal lobe, but increased correlations (1) within

the prefrontal areas, (2) within other parts of frontal lobe, (3)

between the prefrontal areas and other parts of the frontal lobe,

and (4) between other parts of frontal lobe and the corpus striatum.

Reproducibility of findings
To determine if our findings were robust–reproducible across

datasets–we repeated our entire analysis on a second resting-state

fMRI dataset (rest2 scans) acquired from the same set of subjects.

Results were consistent with previous analysis (performed on data

from rest1 scan): (i) Functional brain connectivity and small-world

metrics including the global efficiency were salient in the low

frequency interval–0.01 to 0.05 Hz (Scale 3), (ii)No significant

differences in the mean l values were observed, (iii) Mean c values

in the AD group were significantly lower than in the control group

(p,0.01), (iv) Mean s values in the AD group were significantly

lower than that in the control group (p,0.01), (v) No significant

differences in the mean Eglobal values were observed, and (vi)

significantly lower clustering coefficient values were found in the

left and right hippocampus in AD, with no significant differences

in the left and right precentral gyrus.

Discussion

In this study, we investigated whether global functional brain

organization is disrupted in AD. To our knowledge, this is the first

study to examine alterations in global functional organization and

connectivity in AD patients using fMRI data. Graph metrics–

clustering coefficient and characteristic path length—were used to

measure and characterize global functional organization in the

brain. The main finding of our study is that functional brain

networks in AD consistently showed lower clustering but similar

characteristic path lengths compared to controls, which suggests

disrupted global functional organization in AD. Our findings also

suggest that small-world network characteristics might be useful as

an imaging biomarker for AD.

The characteristic path lengths were low (l,1) and showed no

significant differences between the AD group and the control

group, suggesting short distances between distinct brain regions in

both groups. This finding suggests an organization consisting of

Figure 3. Global efficiency of whole-brain functional connectivity network. (A) Global efficiency measure (Eglobal), for the AD group (D) and
the control group (#) at three frequency intervals–0.01 to 005 Hz (green), 0.06 to 0.12 Hz (blue), and 0.13 to 0.25 Hz (red). The mean Eglobal value is
low (0.78,l,1) and shows similar trends at all the scales. (B) For the frequency interval 0.01 to 005 Hz (green)–mean Eglobal values for the AD group
and the control group for networks derived by thresholding the correlation matrices such that the network has K9 edges. No significant differences in
the mean Eglobal values were observed. Error bars represent values two standard deviations from the mean.
doi:10.1371/journal.pcbi.1000100.g003

Figure 4. Receiver operating characteristic curve, plot of the
sensitivity vs. (1-specificity) for distinguishing AD participants
from controls as a function of varying normalized clustering
coefficient (c) threshold. Using a cut-off value of 1.57, c correctly
classified 14 out of 18 controls and 15 of 21 AD subjects yielding 72%
sensitivity and 78% specificity. The Area under the curve was 0.754 (95%
CI Area 0.602 to 0.906).
doi:10.1371/journal.pcbi.1000100.g004
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multiple short alternative paths between nodes in functional brain

networks in both groups.

The most interesting finding of our study was the lower levels of

clustering observed in the AD group. Clustering coefficient is a

measure of local efficiency or the fault-tolerance of a network [21].

The difference in clustering coefficients in the AD group as

compared to the control group was observed at a correlation

threshold at or near a subject’s average correlation (to ensure an

equivalent number of edges across subjects), and the clustering

coefficient was significantly lower in the AD group, suggesting loss

of local efficiency in AD. Similarly, values for s, a measure of

small-worldness, were significantly lower in the AD group

compared to the control group, suggesting loss of small-world

properties in AD.

Analysis of global efficiency in functional brain networks showed

that the networks exhibit small-world properties indicated by

smaller Eglobal values compared to random networks, but this

measure was not significantly different. This finding parallels

results obtained with measures of characteristic path length.

Regional analysis of differences in clustering coefficients as a

function of correlation thresholds showed that the left and the right

hippocampal regions differed significantly between groups. In

contrast, the clustering coefficient of the precentral gyrus did not

differ between groups. This suggests disrupted connectivity from

the hippocampus to other regions of the brain in AD. This finding

is consistent with our previous study [10] showing that AD

reduced functional connectivity of the hippocampus within a

specific network of regions—the default mode network [27,28]

that includes the posterior cingulate and lateral temporoparietal

cortices. It is also consistent with the study by Wang et al. [16]

showing altered hippocampal connectivity to several neocortical

regions in the early stages of AD. Other studies have reported

decreased intrahippocampal synchrony of low frequency BOLD

fluctuations [17] during a task-free scan. Taken together, these

findings point to significantly altered local and global hippocampal

network connectivity in AD.

Analysis of the group differences in the regional connectivity

across several broadly defined anatomical regions demonstrate

that AD patients not only showed decreased intratemporal,

temporo-thalamus, temporo-corpus striatum, thalamo-occipital

and thalamo-frontal connectivity but, surprisingly, also showed

increased intrafrontal, frontal-prefrontal, and fronto-corpus stria-

tum connectivity. These findings are in line with the recent study

by Wang et al. [29] which not only reported decreased

Figure 5. Small-world property c (C/Cran), the normalized clustering coefficient, for four regions of interest–left hippocampus
(Hippocampus - Left), right hippocampus (Hippocampus - Right), left precentral gyrus (Precentral Gyrus - Left), right precentral
gyrus (Precentral Gyrus - Right)–for the AD group (red) and the control group (blue) as a function of the correlation threshold. In the
left and the right hippocampus, for threshold values from 0.1 to 0.6, the clustering coefficient values in the AD group were significantly lower
(p,0.01) than in the control group, while for the left and the right precentral gyrus, no significant differences in the clustering coefficient values were
observed at any correlation threshold.
doi:10.1371/journal.pcbi.1000100.g005
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connectivity between a number of regions, but also increased

prefrontal connectivity in AD. As suggested by fMRI studies

showing increased prefrontal activation in AD during task

performance [30], these findings suggest that patients with AD

may rely on increased prefrontal connectivity to compensate for

reduced temporal connectivity. An intriguing (and testable)

hypothesis is that the ability to make such compensatory changes

in frontal lobe connectivity may account in part for the ‘‘cognitive

reserve’’ phenomenon [31] that allows some patients to perform

better than others despite equivalent pathological burdens.

Small-world characterization is well-suited for analyzing

anatomical and functional brain networks at the system level

because these networks are complex and optimally connected to

minimize information processing costs [32,33]. Anatomical

connectivity networks of the brain obtained from tracer studies

in the primate cortical visual system [34], primate cerebral cortex

[35], and macaque cortex [36] have been shown to exhibit small-

world characteristics. Functional connectivity networks of human

brain constructed from EEG as well as MEG data have also been

shown to have small-world architecture [22,23]. Salvador et al.

[37] built a whole-brain functional connectivity network from task-

free human functional MRI data. This network of intrinsic, task-

free functional interactions between 90 cortical regions was also

shown to have small-world properties–high clustering coefficient

and low characteristic path length. The small-world architecture

was confirmed by Achard et al., who also reported that the small-

world properties were salient in the frequency interval 0.03 to

0.06 Hz [24,32]. These findings suggest that the structural and

functional organization of the brain has a small-world architec-

ture; these characteristics may assist in robust and dynamic

information processing. Recently, Stam et al [25]. reported that

the architecture of whole-brain functional networks derived using

scalp EEG is disrupted in AD. They observed that a 21-node

network constructed using EEG data collected from subjects with

AD showed loss of small-world properties characterized by longer

characteristic path length with relative sparing of the local

clustering.

Table 2 provides a comparison of results obtained from our

study to all of the above-mentioned results on the small-world

characterization of functional brain networks. Our results are

largely comparable to small-world metrics reported by Salvador et

al. also using task-free fMRI in healthy human subjects [24,37].

The small-world metrics reported by Stam et al. analyzing beta-

band EEG in controls and AD subjects are also largely consistent

with our results [25]. It is interesting to note that whereas we

report similar characteristic path lengths but different cluster

coefficients between AD and controls, the EEG study found the

converse (characteristic path lengths differed between AD subjects

and controls but cluster coefficients did not). We believe that this

discrepancy may be related to significant volume conduction in

scalp EEG data [38] which may reduce sensitivity to detect

differences in short-range connectivity while enhancing the

relative sensitivity to detect differences in long-range connectivity.

Other methodological differences may also contribute–the use of

synchronization likelihood as their association measure, which

unlike wavelet correlation is sensitive to non-linear coupling. Also,

the poor spatial resolution of scalp EEG limits the network to

mainly cortical regions, unlike our fMRI study where the network

comprised of cortical as well as sub-cortical regions, which is a

relative strength of our study.

To address the extent to which clustering coefficients serve as a

sensitive biomarker to distinguish AD from healthy aging, we

examined c values in the two subject groups. The clustering

coefficient is a measure of efficiency in network connectivity. It

distinguished AD subjects from controls with a sensitivity of 72%

and specificity of 78%. These values approach the sensitivity and

specificity reported for other imaging biomarkers [10,39–41] and

are close to the range considered clinically relevant by a recent

Working Group on biomarkers in AD [42]. With some

improvements in the technique—decreasing the number of nodes

in the network for example—the clustering coefficient may

therefore prove to be an effective biomarker for AD, though

prospective studies will be required to validate its effectiveness. In

addition to its promise as a diagnostic aid, the clustering coefficient

merits investigation as a functional marker of response to

treatment.

This study has two main limitations. First, in evaluating its

efficacy as a biomarker, it will be critical to assess this metric not

only in AD and normal subjects, but in subjects with non-AD

dementias and related conditions to ensure that these findings are

specific to AD and not to dementia or other neurodegenerative

disorders more generally. The second limitation pertains to the

fact that most of the AD patients (14 of 21), and none of the

controls, were taking an acetylcholinesterase inhibitor. Similarly,

12 of 21 AD patients, and none of the controls, were taking

memantine, an NMDA-receptor antagonist. While we doubt that

these differences in medication exposure could account for the

differences in clustering coefficients in AD subjects we cannot

exclude that possibility in the current study.

In conclusion, we have demonstrated that fMRI-derived

functional brain networks in AD show loss of small-world

properties. Our findings suggest that cognitive decline in AD is

associated with disrupted global functional organization in the

brain.

Materials and Methods

Participants
Twenty one subjects with AD and eighteen age-matched control

subjects participated in this study after giving written, informed

Table 2. Comparison of number of nodes in the graph (N),
normalized characteristic path length (l), normalized
clustering coefficient (c), and small-world measure (s) from
our study with previously published results on small-world
characterization of functional brain network constructed
using EEG, MEG, and fMRI data.

Data N l c s

fMRI of healthy human subjects
(Our study)

90 1.05 1.74 1.66

fMRI of human subjects with AD
(Our study)

90 1.042 1.56 1.497

EEG of healthy human subjects
(Stam 2006)

21 1.07 1.58 1.476

EEG of human subjects with AD
(Stam 2006)

21 1.12 1.6 1.428

EEG of healthy human subjects
(Micheloyannis 2006)

28 1.0 2.0 2.0

MEG of healthy human subjects
(Stam 2004)

126 1.8 4.2 2.3

fMRI of healthy human subjects
(Salvador 2005)

90 1.09 2.08 1.91

fMRI of healthy human subjects
(Achard 2006)

90 1.09 2.37 2.18

doi:10.1371/journal.pcbi.1000100.t002
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consent. For those AD patients who were unable to give informed

consent, written, informed consent was obtained from their legal

guardian. The study protocol was approved by the Stanford

University Institutional Review Board. The AD subjects (10 males,

11 females) ranged in age from 48 to 83 (mean age 63.97) with 12

to 22 years of education (mean years of education 15.89). The

subjects were recruited from memory disorder clinics in Stanford

University and the University of California San Francisco (UCSF).

All AD subjects met the NINDS-ADRDA criteria for probable

AD [43]. One subject had a presenilin-1 mutation; a second

subject’s mother had a presenilin-2 mutation (the subject herself

did not wish to be tested). Diagnosis of three other subjects has

since been confirmed at autopsy. ApoE status was known for 4

additional AD subjects: one was homozygous for the ApoE 4 allele

and 3 were heterozygous for the ApoE 4 allele. The control

subjects (10 males, 8 females) ranged in age from 37 to 77 (mean

age 62.84) with 12 to 21 years of education (mean years of

education 16.53). Study subjects were recruited from several

sources (partners of AD patients, participants in a longitudinal

study of normal aging at UCSF, and Stanford research staff).

Control subjects denied any significant neuropsychiatric disease or

memory trouble, were not taking any psychoactive medicines, and

had to have a Mini Mental State Examination (MMSE) score of 27

or more. 14 of 21 AD patients were taking an acetylcholinesterase

inhibitor. And, 12 of 21 AD patients were taking memantine, an

NMDA-receptor antagonist. The MMSE score of the AD group

ranged from 12 to 29 (mean MMSE score 22.14) and the MMSE

score of the control group ranged from 27 to 30 (mean MMSE

score 29). Each subject underwent an MMSE, a structural MRI

scan, and a task-free fMRI scan.

Data acquisition
For the task-free scan, subjects were instructed to keep their eyes

closed and try not to move. The scan lasted for 6 minutes (rest1

scan). All the subjects (except for one control subject and two AD

subjects) also underwent another task-free scan that lasted for

6 minutes (rest2 scan) and was acquired immediately after the first

task-free scan. Functional images were acquired on a 3-T General

Electric Signa scanner using a standard whole-head coil. Twenty-

eight axial slices (4 mm thick, 1mm skip) were acquired parallel to

the plane connecting the anterior and posterior commissures and

covering the whole brain using a T2* weighted gradient echo

spiral in/out pulse sequence (TR = 2000 msec, TE = 30 msec, flip

angle = 80u and 1 interleave) [44]. To aid in the localization of

functional data, a high resolution T1-weighted spoiled grass

gradient recalled (SPGR) 3D MRI sequence with the following

parameters was used: 124 coronal slices 1.5 mm thickness, no skip,

TR = 11 ms, TE = 2 ms, and flip angle = 15u.

Data preprocessing
Data (rest1 and rest2 scans) were preprocessed using statistical

parametric mapping (SPM2) software (http://fil.ion.ucl.ac.uk/

spm). The first 8 image acquisitions of the task-free functional time

series were discarded to allow for stabilization of the MR signal.

Each of the remaining 172 volumes underwent the following

preprocessing steps: realignment, normalization, and smoothing.

Normalization was to the Montreal Neurological Institute (MNI)

template and smoothing was done with a 4 mm full width half

maximum Gaussian kernel to decrease spatial noise. Excessive

motion, defined in our lab as greater than 3.5 mm of translation or

3.5 degrees of rotation in any plane, was not present in any of the

task-free scans.

Anatomical parcellation
The preprocessed task-free functional MRI datasets were

parcellated into 90 regions using anatomical templates defined

by Tzourio-Mazoyer et al. [45]. A task-free fMRI timeseries was

computed for each of the 90 regions by averaging all voxels within

each region at each time point in the time series, resulting in 172

time points for each of the 90 anatomical regions of interest. These

regional fMRI time series were then used to construct a 90 node

whole-brain task-free functional connectivity network for each

subject.

Construction of whole-brain functional connectivity
network

Wavelet analysis was used to construct correlation matrices

from the regional fMRI time series data. These matrices described

frequency-dependent correlations, a measure of functional con-

nectivity, between spatially-distinct brain regions. Correlation

matrices were then thresholded to generate a whole-brain

functional connectivity network.

Wavelets are mathematical functions that transform the input

signal into different frequency components [46]. Wavelets are

appropriate methods for the analysis of task-based as well as task-

free fMRI signal [24,47]. In our study, we applied a maximum

overlap discrete wavelet transform (MODWT) to each of the 90

regional time series from each subject to obtain the contributing

signal in the following three frequency components: scale 1 (0.13

to 0.25 Hz), scale 2 (0.06 to 0.12 Hz), and scale 3 (0.01 to

0.05 Hz). To account for a relatively small number (172) of data

points per time series for low frequency correlation analysis, the

vector representing the time series beyond its boundaries (,0 and

.172) was assumed to be a symmetric reflection of itself. At each

of the three scales, wavelet correlations between signals in the 90

anatomical regions were determined by computing the correlation

coefficient between the transformed signals at that scale.

For each subject, a 90-node, scale-specific, undirected graph of

the functional connectivity network was constructed by threshold-

ing the wavelet correlation matrix computed at that scale. If the

wavelet correlation value between two anatomical regions

represented by nodes i and j in the network exceeded a threshold

then an edge was drawn between node i and node j. There is

currently no formal consensus regarding threshold selection, so we

computed networks for threshold values from 0.01 to 0.99 with an

increment of 0.01. Once a whole-brain functional connectivity

network was constructed from the correlation matrix, we

characterized this network in terms of its small-world properties.

Small-world analysis of the whole-brain functional
connectivity network

Small-World properties of a network are described by the

clustering coefficient and the characteristic path length of the

network. The clustering coefficient and characteristic path length

of functional brain networks generated from the task-free fMRI

data obtained from 21 AD subjects and 18 age-matched controls

were computed. The clustering coefficient of every node was

computed as the ratio of the number of connections between its

neighbors divided by the maximum possible connections between

its neighbors. The clustering coefficient (C) of the network was

calculated as the mean of the clustering coefficients of all the nodes

in the network. The mean minimum path length of a node was

computed as the average of minimum distances from that node to

all the remaining nodes in the network. The characteristic path

length (L) of the network was the average of the mean minimum

path lengths of all the nodes in the network. The clustering
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coefficient and path length of nodes completely disconnected with

the network were set as 0 and Inf respectively, and these nodes

were excluded while computing C and L. To evaluate the network

for small-world properties, we compared the clustering coefficient

and the characteristic path length of the network with corre-

sponding values (Cran, Lran) obtained and averaged across 1000

random networks with the same number of nodes and degree

distribution [48]. Degree of a network is a measure of its

connectivity. The degree of every node was computed by counting

the number of edges incident on that node. Small world networks

are characterized by high normalized clustering coefficient c (C/

Cran).1 and low normalized characteristic path length l (L/

Lran),1 compared to random networks [24]. A cumulative metric

s–the ratio of normalized clustering coefficient (c) to the

characteristic path length (l), a measure of small-worldness–is

thus greater than 1 for small world networks.

Analysis of global efficiency of whole-brain functional
connectivity network

Small-world networks are characterized by high clustering

coefficient and low characteristic path length. These small-world

metrics, particularly the path length, are not meaningful when the

graph contains disconnected nodes. To address this issue, we

ensured that only small-world metrics computed on connected

graphs were considered in our analysis. Specifically, the algorithm

used to choose the correlation threshold (R) guaranteed that

disconnected graphs were excluded from the analysis. Also, in the

node-wise clustering coefficient comparison analysis, we only

considered thresholds from 0.1 to 0.6. We chose these thresholds

because beyond 0.6 the network gets divided into disconnected

subset of nodes.

To determine if our characteristic path length findings were

robust and reliable, we computed efficiency of functional brain

networks. It has been previously reported that efficiency as a graph

metric (1) is not susceptible to disconnected nodes, (2) is applicable

to unweighted as well as weighted graphs, and (3) is a more

meaningful measure of parallel information processing than path

length [49]. Efficiency of a graph (Eglobal-net) [50] is inverse of the

harmonic mean of the minimum path length between each pair of

nodes, Lij, and was computed as,

Eglobal�net~
1

N N{1ð Þ
X

i=j[Lij

1

Lij

ð1Þ

To evaluate the network for its global efficiency of parallel

information processing, we compared the global efficiency of the

network (Eglobal-net) with corresponding values (Eglobal-ran) obtained

and averaged across 1000 random networks with the same

number of nodes and degree distribution. A network with small-

world properties is characterized by global efficiency value that is

lower than the random network–Eglobal (Eglobal-net/Eglobal-ran),1.

Regional profile of clustering coefficient
In the frequency interval 0.01 to 0.05 Hz, we next examined

small world metric values of four anatomical regions of interest in

the two groups. These four regions included the left hippocampus,

the right hippocampus, the left precentral gyrus, and the right

precentral gyrus. These were chosen because we hypothesized

significant differences in the hippocampus (a region targeted early

in AD), but not in the precentral gyrus (which is typically spared

even in the advanced stages of AD) [51]. This regional profiling

analysis was performed on the clustering coefficient (and not the

path length) because only the former differed significantly between

the AD and control groups.

Growth curve modeling, with an intercept (baseline), linear and

quadratic terms, was used to compare the clustering coefficient

values for threshold values from 0.1 to 0.6 in the two subject

groups. We chose these thresholds because beyond 0.6 the

network divides into disconnected subsets of nodes and small-

world metrics are then no longer meaningful [20]. This analysis

was performed using the Mplus software (http://www.statmodel.

com). Growth curve models describe change (growth) with respect

to a control variable. They are well-suited for analyzing group-

level differences in biomedical data, particularly in cases where

capturing and analyzing individual growth trajectories is impor-

tant. In our study, the growth trajectories of clustering coefficient

of a subject carry important information about the variance within

the group and needs to be incorporated in the model. The

coefficients of growth curve models capture the baseline

performance, instantaneous growth rate, and the acceleration of

the variable of interest–c.

Regional connectivity
We then examined regional correlation values (connectivity) in

the two groups. Wavelet correlation values of 4005 pairs of

anatomical regions were first z-normalized and then compared

between the two subject groups. T-test with a false discovery rate

of 0.01 was used to test if the difference was significant. For the

frequency range 0.01 to 0.05 Hz, the correlation values of 108

pairs of anatomical regions out of a total 4005 pairs were

significantly lower in the AD group as compared to the control

group while only 42 correlation values showed a significant

increase in the AD group (p,0.01, corrected for multiple

comparisons). To get an idea of average differences in the global

functional organization in the two groups, we investigated the

regional connectivity at a coarser level of granularity. Ninety

anatomical regions of our network were grouped into eight higher-

level anatomical regions using the grouping defined by Tzourio-

Mazoyer et al. [45]. The prefrontal lobe region consists of the superior

frontal gyrus (dorsolateral, orbital, medial, medial orbital), the

middle frontal gyrus, the middle frontal gyrus (orbital), the inferior

frontal gyrus (opercular, triangular, orbital), the olfactory gyrus,

the gyrus rectus, and the anterior cingulate. The other parts of frontal

lobe region consists of the precentral gyrus, the supplementary motor

area, the median cingulate, and the rolandic operculum. The

occipital lobe region consists of the calcarine fissure, the cuneus, the

lingual gyrus, the superior occipital gyrus, the middle occipital

gyrus, and the inferior occipital gyrus. The temporal lobe and the

medial temporal region consists of the superior temporal gyrus, the

temporal pole (superior, middle), the middle temporal gyrus, the

inferior temporal gyrus, the heschl gyrus, the fusiform gyrus, the

hippocampus, the parahippocampal gyrus, and the amygdala. The

parietal lobe region consists of the postcentral gyrus, the superior

parietal lobule, the inferior parietal lobule, the supramarginal

gyrus, the angular gyrus, the precuneus, the paracentral lobule,

and the posterior cingulate gyrus. The corpus striatum region consists

of the caudate nucleus, the putamen, and the pallidum. Each

higher level anatomical region consists of regions from both the

hemispheres. Differences in mean correlation coefficients for 4005

pairs were aggregated into 32 pairs and the resulting differences

were then normalized. (see also [52]). In the aggregation step, the

number of decreased (21) or increased connectivities (+1) for each

of the 32 pairs ( = (868)/2) was counted. For example, to identify

differential connectivity between the prefrontal lobe region and the

occipital lobe region the number of decreased or increased

connectivities between all pairs of sub-regions belonging to the
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prefrontal lobe region and occipital lobe region was counted. Since each

brain region has a different number of sub-regions, the aggregated

differential connectivity count was normalized by the number of

possible connections between pairs of sub regions belonging to the

two brain regions under investigation.

Supporting Information

Table S1 Regions of whole brain functional network ranked in

ascending order of the p-value (computed using growth curve

modeling) and then descending order of absolute difference

between the clustering coefficient values of the AD group and

the control group.

Found at: doi:10.1371/journal.pcbi.1000100.s001 (0.18 MB

DOC)
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