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Abstract. Membranous glomerulonephritis (MGN) is one of 

the most frequent causes of nephrotic syndrome in adults. It is 

characterized by the thickening of the glomerular basement 

membrane in the renal tissue. The current diagnosis of MGN 

is based on renal biopsy and the detection of antibodies to the 

few podocyte antigens. Due to the limitations of the current 

diagnostic methods, including invasiveness and the lack of 

sensitivity of the current biomarkers, there is a requirement 

to identify more applicable biomarkers. The present study 

aimed to identify diagnostic metabolites that are involved 

in the development of the disease using topological features 

in the component-reaction-enzyme-gene (CREG) network 

for MGN. Significant differential metabolites in MGN 

compared with healthy controls were identified using proton 
nuclear magnetic resonance and gas chromatography-mass 

spectrometry techniques, and multivariate analysis. The 

CREG network for MGN was constructed, and metabolites 

with a high centrality and a striking fold-change in patients, 

compared with healthy controls, were introduced as puta-

tive diagnostic biomarkers. In addition, a protein-protein 

interaction (PPI) network, which was based on proteins 

associated with MGN, was built and analyzed using PPI 

analysis methods, including molecular complex detection and 

ClueGene Ontology. A total of 26 metabolites were identified 

as hub nodes in the CREG network, 13 of which had salient 

centrality and fold-changes: Dopamine, carnosine, fumarate, 

nicotinamide D-ribonucleotide, adenosine monophosphate, 

pyridoxal, deoxyguanosine triphosphate, L-citrulline, nico-

tinamide, phenylalanine, deoxyuridine, tryptamine and 

succinate. A total of 13 subnetworks were identified using PPI 
analysis. In total, two of the clusters contained seed proteins 

(phenylalanine-4-hydroxlylase and cystathionine γ-lyase) that 

were associated with MGN based on the CREG network. The 

following biological processes associated with MGN were iden-

tified using gene ontology analysis: ‘Pyrimidine‑containing 
compound biosynthetic process’, ‘purine ribonucleoside meta-

bolic process’, ‘nucleoside catabolic process’, ‘ribonucleoside 
metabolic process’ and ‘aromatic amino acid family metabolic 
process’. The results of the present study may be helpful in 

the diagnostic and therapeutic procedures of MGN. However, 

validation is required in the future.

Introduction

Membranous glomerulonephritis (MGN) is the most common 

cause of nephrotic syndrome in adults >60 years old (1,2). 

Rivera et al (3) suggested that MGN was the pathology in 

15.9-32.9% of all nephrotic syndrome cases. Of all cases, 

75% are classified as primary or idiopathic MGN; secondary 
MGN is associated with various conditions, including hepa-

titis infection, malignancy, systematic lupus erythematosus 

and drug intoxication (4,5). MGN is histopathologically 

characterized by the thickening of the glomerular basement 

membrane (GBM) and the subepithelial deposition of immune 

complexes (5). Electron microscopy has demonstrated that 

subepithelial/intramembranous immune deposits (immuno-

globulin G and complement) cause podocyte damage, which is 

usually associated with nephrotic syndrome (4). A deteriora-

tion in renal function and the development of end-stage renal 

disease occur in ~40% of patients with primary MGN (5). 

Proteinuria (6,7), edema (8,9), hyperlipidemia (10,11) and 
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hypoalbuminemia (12,13) are non‑specific clinical symptoms 
of MGN. However, renal biopsy is the only definitive diag-

nostic approach, although it is an invasive procedure. Despite 

research in this field, the exact mechanisms of the develop-

ment and progression of the disease have not been fully 

elucidated (14).

Systems biology gives meaning to large amounts of data 

derived from ‘‑omics‑’ technologies (15). The ‘‑omics‑’ 
technologies refer to high-throughput techniques, which may 

simultaneously detect a large number of molecules (including 

genes, transcriptomes, proteins and metabolites) in complex 

bio-samples (16). This approach may reduce the restrictions 

in the field of diagnosis and contribute to the understanding of 
the mechanisms involved in the pathogenesis of disease.

Metabolites are downstream products of gene expression 

and protein activity; therefore, they may provide an immediate 
indication of the biological phenotype (17). Nuclear magnetic 

resonance (NMR) (18) and mass spectrometry (MS) (19) 

are two techniques generally used to determine features of 

metabolomes. NMR has an outstanding reproducibility and 

quantitative accuracy, and may detect structures of unknown 

metabolites (18). Additionally, metabolite profiles captured by 
NMR are approximately independent of the operator, which 

provides high levels of reliability to the obtained results (17), 

Whereas, MS analyses lipids, which have low resolution in 

NMR. Novel mass spectrometers provide mass accuracy of 

compounds extending into the sub-5 parts per million regime, 

which makes determining the molecular formula possible (20). 

Therefore, the combination of NMR and MS technologies 

provides a more reliable biomarker discovery and makes the 

metabolomics field more challenging (17).
A considerable number of metabolites have previously been 

detected and introduced as potential biomarkers of various 

diseases (20). Sui et al (21) studied the metabolic profile of 
serum in three groups; healthy controls, patients with grade I‑II 
immunoglobulin A nephropathy (IgA.N) and grade IV-V 

IgA.N. Sui et al (21) identified 21 metabolites with significant 
dysregulated expression in patients with IgA.N compared with 

healthy controls. In addition, they constructed an orthogonal 

partial least squares discriminant analysis (OPLS-DA) 

model to classify IgA.N from healthy controls. Their results 

demonstrated considerable R2 (R2X=28.5%; R2Y=0.836) and 

Q2 (0.724) values with high sensitivity (88.6%) and specificity 
(97.1%) for diagnosing patients with IgA.N.

It is noteworthy that the metabolome is more closely associated 

with phenotype, compared with the genome, transcriptome 

and proteome (22). Therefore, the present study aimed to 

investigate the metabolic differences between MGN and healthy 

controls using proton (1H) NMR and gas chromatography-mass 

spectrometry (GC-MS) techniques. Additionally, a 

component-reaction-enzyme-gene (CREG) network was 

constructed to determine more effective metabolites associated 

with the disease. Furthermore, a protein-protein interaction (PPI) 

network was assembled to identify biological processes (BPs) 

involved in the pathogenesis of MGN. However, genetic-based 

approaches (including reverse transcription-polymerase chain 

reactions) are necessary for biomarker validation.

In the present study, patients with MGN had significant 
differential metabolites compared with healthy controls, as 

demonstrated using 1H NMR and GC-MS metabolomics 

approaches and advanced multivariate statistical analysis. 

Subsequently, the association of the metabolites with genes, 

enzymes and reactions that were associated with the disease, 

was investigated using network analyses.

Materials and methods

Sample collection and preparation. Urine samples (450 µl) 

from patients with biopsy-proven MGN (n=31) and normal 

volunteers (n=21) were collected for the 1H NMR experiments. 

Another cohort composed of 32 and 30 urine samples (260 µl) 

from MGN and normal controls, respectively, was used for 

the GC-MS analyses. It was not possible to use the same 

cohorts for the two different techniques in the present study. 

Notably, Nobakht et al (23) additionally used two different 

cohorts in their previous study to identify novel biomarkers 

in the serum of sulfur mustard-exposed individuals (SMEIs) 

compared with healthy controls. Nobakht et al (23) collected a 

total of 29 serum samples, which included 12 healthy controls 

and 17 SMEIs for NMR analysis; six healthy controls and 
eight SMEIs were randomly selected for the GC-MS experi-

ments (23). In the present study, 35 samples were common 

for 1H NMR and GC-MS sections. As >50% of the samples 

were the same, the present results are reliable; however, the 
results would be more significant if the same sample groups 
had been used. The demographic characteristics of the patients 

with MGN and the normal volunteers are presented in Table I. 

All urine samples were collected from patients at Labbafinejad 
Hospital (Tehran, Iran) between March 2015 and July 2016. 
To prepare the samples for analysis using 1H NMR and 

GC-MS, NaN3 (10 mM) was first added to the samples. The 
samples were centrifuged (3,220 x g for 20 min at 4˚C) and the 
supernatant was stored in aliquots at ‑80˚C. Signed informed 
consent was obtained from all patients and normal volunteers. 

All patients with any systematic diseases, diabetes mellitus, 

cancer or secondary MGN were excluded. The present study 

was approved by the Ethics Committee of Shahid Beheshti 

University of Medical Sciences (Tehran, Iran).

1H NMR analysis. To prepare the samples for 1H NMR analysis, 

3-trimethylsilyl-2H4-propionic acid and deuterium oxide 

(99.9% D; Sigma‑Aldrich; Merck KGaA, Darmstadt, Germany) 
in phosphate buffer were added to each sample. The Bruker 

DRX-500 NMR spectrometer (Bruker Corporation, Ettlingen, 

Germany) was used, operating at 500.13 MHz 1H resonance 

frequency at 298 K (25˚C). The Carr‑Purcell‑Meiboom‑Gill 
pulse sequence was applied to decrease the intensity of the 

spectra of the macromolecules (24,25). ProMetab software 

(version Prometab_v3_3) in MATLAB (version 8.4; 
MathWorks, Cambridge, UK) was used to perform 1H 

NMR spectrum partitioning, data normalizing and the shift 

alignment of the urine samples (26-29).

GC‑MS analysis. For the GC-MS analysis, 50 µl 5 mg/ml solu-

tion of urease (Sigma‑Aldrich; Merck KGaA; cat. no. U4002) 
was added to the urine samples to reduce the concentration 

of the urea. Derivatization of the samples followed protein 

precipitation using acetonitrile and drying. The protocol was 

as follows: 740 µl 99.9% acetonitrile (Sigma‑Aldrich; Merck 
KGaA; cat. no. 100030) was added to urine samples (260 µl) 
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and left at room temperature for 15 min, and precipitated 

proteins were removed by centrifugation at 3,000 x g for 

10 min at 4˚C. The supernatants (750 µl) were transferred 
to microtubes and placed inside the Eppendorf Vacufuge 

Concentrator 5301 (Eppendorf, Hamburg, Germany) for 9 h 

to evaporate. Acetonitrile (100 µl) was added to each micro-

tube to dissolve the dried metabolites, and transferred to 

glass autosampler vials prior to derivatization. For this, 20 µl 

methoxyamine hydrochloride (Sigma‑Aldrich; Merck KGaA; 
cat. no. 226904; 40 mg/ml in pyridine) was added to samples 
and left at room temperature for 60 min, followed by incu-

bation at 37˚C for 20 min. Derivatization of metabolites was 
completed by adding 150 µl N, O‑Bis(trimethylsilyl)trifluo-

roacetamide with 1% trimethylchlorosilane (Sigma‑Aldrich; 
Merck KGaA; cat. no. 33155‑U). The spectra were obtained 
using an Agilent 6890 GC coupled to an Agilent 5973 inert 

EI/CI mass selective detector (Agilent Technologies, Inc., 

Santa Clara, CA, USA); the non‑polar HP‑1 capillary column 
(30 mx0.25 mm inner diameter; Agilent J&W capillary column; 
Agilent Technologies, Inc.) was coated with 100% dimethylpo-

lysiloxane with a film thickness of 0.5 µm. The temperature 
gradient varied between 40 and 280˚C in a solvent delay of 
9.5 min and a gas flow of 1 ml/min. R software (version 3.3.3; 
R Core Team; www.r‑project.org) and MATLAB (version 8.4) 
were used for data preprocessing, which included the baseline 

correction and shift alignment steps. Metabolite identifica-

tion was performed using Enhanced ChemStation (version 

D.00.00.38; Agilent Technologies, Inc.) and Automated Mass 
Spectral Deconvolution and Identification System software 
(version 2.0d; National Institute of Standards and Technology, 
Gaithersburg, MD, USA). Only components with a matching 

factor of ≥70% were considered to be statistically significant.

Statistical analyses. Advanced supervised multivariate 

modeling, including OPLS-DA and partial least squares 

discriminant analysis (PLS-DA), were performed using R 

(version 3.3.3) and the XLSTAT (Addinsoft, New York, NY, 

USA) package, respectively. Principal component analysis was 

applied prior to OPLS‑DA modeling for outlier identification 
of the GC-MS dataset, while PLS-DA was used for the NMR 

dataset. The variables with a variable importance in projection 
(VIP) score >1 were considered to be statistically significant. 
A receiver operating characteristic (ROC) curve was generated 

to evaluate the diagnostic ability of the PLS-DA model.

CREG network. A list of 70 differential metabolites that was 

derived from the experimental part of the study was used as 

the input data for the Cytoscape tool (3.4.0; www.cytoscape.
org). The MetScape plugin (version 3.1.3; http://apps.cytoscape.

org/apps/metscape) (30) was used to construct the CREG 

network. MetScape uses data from the Human Metabolome 

Database, the Kyoto Encyclopedia of Genes and Genomes 

(KEGG), and the Edinburgh Human Metabolic Network to 

determine the connections among the metabolites, genes, and 

enzymes (30-33).

The initial network was not fully connected and, therefore, 

the isolated components in the network were expanded using 

the MetScape expand function to access the fully connected 

CREG network with 1,148 nodes. To compute the centrality 

of all the components in the network, CentiScape 2.2 was 

used (34). To identify the most effective metabolites in the 

network, the ‘Centroid unDir’ and ‘Betweenness unDir’ of the 
nodes were calculated. The metabolites that had a centroid and 

betweenness greater than or equal to the mean of the nodes in 

the network were considered as hubs.

PPI network. The PPI network is an effective tool for systematic 

research into complex activities in cells (35). PPI refers to the 

physical or functional binding of two or more proteins (36). In 

the present study, a set of proteins associated with MGN was 

acquired from the Search Tool for the Retrieval of Interacting 

Genes database (string-db.org), which was based on selected 

proteins from the CREG network (37). Cytoscape 3.4.0 was 

used to visualize the PPI network. Subsequently, the clustering 

algorithm ‘molecular complex detection’ (MCODE) was used 
to identify highly dense combined regions in the PPI network. 

MCODE is a plugin widely used in Cytoscape software that 

is used to find subnetworks in biological networks; this is 
performed based on vertex weighting by the neighborhood 

density and external traversal from a locally dense seed 

protein, the aim of which is to identify dense parts (38). In 

addition, MCODE may be run in a direct mode in which a 

seed node is identified as a vertex of the cluster, according 
to the existing biological knowledge of the system (39). The 

MCODE advanced options were as follows: Minimum score 

for clusters, 2; number of nodes involved in each cluster, ≥2; 
and node score cutoff, 0.2.

The BP categories of the most important clusters asso-

ciated with MGN were analyzed using ClueGO (v2.3.3; 
Laboratory of Integrative Cancer Immunology, Paris, 

France). ClueGO is a plugin used in Cytoscape that combines 

gene ontology (GO) terms (including KEGG and BioCarta 

pathways) to make a functionally organized GO and/or 

pathway term network (40). In order to correct the P-values 

for multiple tests, statistical standard correction methods 

were imposed, including Bonferroni, Bonferroni step-down 

and Benjamini‑Hochberg (40). Categories with P≤0.05 were 
considered to indicate a statistically significant difference.

Results

Identification of differential metabolites using 1H NMR. A 

predictive model was built using PLS-DA for the 1H NMR 

dataset. The model was able to distinguish MGN from normal 

controls with 91.49% sensitivity and 71.43% specificity. The 

Table Ι. Demographic characteristics of normal volunteers and 
patients with MGN.

Demographic characteristics NMR GC-MS

Average age in normal volunteers, years 40.86 38.6

Average age in patients with MGN, years 39.16 41.55

Female/male ratio in normal control 11/10 19/11

volunteers

Female/male ratio in patients with MGN 17/14 12/20

MGN, membranous glomerulonephritis; nuclear magnetic resonance; 
GC-MS, gas chromatography-mass spectrometry.
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quality parameters of the model were as follows: R2X=0.353, 

R2Y=0.316, and Q2=0.275 (Fig. 1). The ROC curve of the 

model is demonstrated in Fig. 2. The area under the curve of 

the model was 0.889. A total of 63 differential metabolites 

with a VIP >1 were identified for MGN compared with the 
normal samples from the PLS-DA diagnostic model. All of 

the upregulated and downregulated differential metabolites in 

MGN are listed in Tables II and III, respectively.

Identification of differential metabolites using GC‑MS. 
Following preprocessing, the normalized dataset consisted of 

62 observations (MGN, 32; normal, 30) and 2,550 variables 
(peak numbers). This dataset was used to build the OPLS-DA 

diagnostic model. The parameters of the model were 

R2X=0.852, R2Y=0.696, and Q2=0.614, suggesting that the 

OPLS-DA model was statistically robust and able to strongly 

differentiate normal controls from patients with MGN (Fig. 3). 

Finally, seven metabolites were determined as statistically 

discriminating variables (P≤0.001) for patients with MGN 
compared with healthy individuals. All metabolites had a 

match factor ≥70% (Table IV).

CREG network analysis. The list of 70 differential metabolites 

derived using 1H NMR and GC-MS was used as input data 

in MetScape 3.1.3; a total of 54 components were identi-
fied in the MetScape database. The fully connected CREG 
network, which was based on the pathways, consisted of 

268 components, 251 biochemical reactions, 182 enzymes 

and 437 genes (Fig. 4). The CentiScape plugin was used to 

analyze the centrality of the component nodes. A total of 

26 input metabolites had above average Betweenness unDir 

and Centroid unDir; accordingly, they were assigned as hub 
nodes in the CREG network (Table V). The Betweenness and 

Centroid diagrams of four hub metabolites (dopamine, nicotin-

amide D-ribonucleotide, nicotinamide and phenylalanine) are 

demonstrated in Fig. 5.

PPI analysis. The PPI network, which was based on the 

proteins derived from the CREG network and associated with 

MGN, contained 306 nodes and 6,088 edges (Fig. 6). The 

edges demonstrate either a physical or functional connection 

between two proteins. The network analysis by MCODE 

defined 13 clusters in the complex. Each cluster consisted of 
highly joined proteins that were presumably involved in a 
common BP (36). The characteristics of all clusters are illus-

trated in Table VI. The GO analysis was performed for two 

subnetworks (cluster 4 and 9) that had seed nodes involved 

in the initial list. Figs. 7 and 8 represent clusters 4 and 9, 

respectively. A total of 13 of the differential metabolites were 

considered to be potential biomarkers for MGN, according to 

their centralities and fold-changes (Table VII).

Identification of BPs affected in MGN. A total of five BPs 
were significantly affected in MGN. ‘Pyrimidine‑containing 
compound biosynthetic process’, ‘purine ribonucleoside 
metabolic process’, ‘nucleoside catabolic process’ and ‘ribo-

nucleoside metabolic process’ were associated with the protein 

family of cluster 4 (Fig. 9). ‘Aromatic amino acid family 
metabolic process’ was associated with the proteins involved 

in cluster 9 (Fig. 10).

Figure 1. Partial least squares discriminant analysis differentiation model 

quality factors obtained from the proton nuclear magnetic resonance data of 

the urine samples. The three graphs on the x-axis from the left to the right 

represent Q2, R2Y and R2X, respectively. The y-axis represents the score of 

each quality factor. Cum, cumulative.

Table II. A total of 30 metabolites were upregulated in patients 

with membranous glomerulonephritis compared with normal 

controls, identified by proton nuclear magnetic resonance.

Chemical   Metabolite

shift, ppm Fold-change KEGG ID name

6.62 1.36 C02372 4-aminophenol

6.34 1.78 C00364 5-thymidylic acid

8.30 1.43 C00212 Adenosine

5.34 1.96 C00499 Allantoic acid

6.14 2.04 C00020 AMP

7.10 1.67 C00386 Carnosine

6.58 1.42 C00417 Cis-aconitic acid

5.50 1.65 C02226 Citraconic acid

3.10 1.48 C00097 Cysteine

6.06 1.83 C00475 Cytidine

6.26 1.92 C00881 Deoxycytidine

5.30 2.00 C00984 D-galactose

6.30 1.84 C00286 dGTP

6.74 1.65 C03758 Dopamine

6.50 1.55 C00122 Fumaric acid

5.46 1.70 C00329 Glucosamine

4.14 1.35 C00258 Glyceric acid

6.66 1.38 C00544 Homogentisic acid

6.10 1.88 C00294 Inosine

7.06 1.47 C00135 L-histidine

6.78 1.55 C00328 L-kynurenine

6.90 1.30 C00082 L-tyrosine

6.02 1.63 C01384 Maleic acid

6.46 1.60 C01732 Mesaconic acid

6.22 2.01 C00455 Nicotinamide ribotide

6.18 1.99 C00295 Orotic acid

5.26 2.21 C00250 Pyridoxal

6.98 1.35 C02341 Trans-aconitic acid

6.94 1.34 C00483 Tyramine

6.38 1.69 C00785 Urocanic acid

AMP, adenosine monophosphate; GTP, guanine triphosphate; KEGG, 
Kyoto Encyclopedia of Genes and Genomes.
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Discussion

In the present study, the urinary metabolites from patients with 

MGN and healthy volunteers were analyzed using 1H-NMR 

and GC-MS techniques. A total of 70 differential metabolites 

were demonstrated to be statistically significant in the two 
groups. To the best of our knowledge, the present study is the 

first in which a CREG network associated with MGN was 
constructed and analyzed using the MetScape and CentiScape 

plugins in Cytoscape software. In addition, PPI analysis was 

performed to verify the BPs involved in the pathogenesis 

of MGN, using the MCODE and ClueGO plugins in the 

Cytoscape software.

Hallan et al (41) reported that non-diabetic patients with 

stages 3-4 chronic kidney disease (CKD) had reduced urinary 

Figure 2. ROC analysis was performed to evaluate the classification model 
established with the partial least squares discriminant analysis algorithm. 

The AUC was 0.889. ROC, receiver operating characteristic; AUC, area 
under the curve.

Table III. A total of 33 metabolites were downregulated in membranous glomerulonephritis patients compared with normal 

controls, identified by proton nuclear magnetic resonance.

Chemical shift, ppm Fold change KEGG ID Metabolite name

2.02 0.73 C00986 1,3-diaminopropane

7.66 0.44 C01152 1-methylhistidine

0.86 0.40 C05984 2-hydroxybutyric acid

1.10 0.60 C00109 2-ketobutyric acid

0.62 0.23 C17727 3a,6a,7b-trihydroxy-5b-cholanoic acid

0.74 0.30 C03238 5alpha-cholestanone

1.46 0.67 C00041 Alanine

2.70 0.52 C01262 Anserine

1.90 0.74 C00062 Arginine

1.30 0.60 C01585 Caproic acid

0.66 0.25 C00695 Cholic acid

2.54 0.69 C00158 Citric acid

1.58 0.64 C00327 Citrulline

4.06 0.67 C00791 Creatinine

7.86 0.38 C00526 Deoxyuridine

2.14 0.70 C00064 Glutamine

0.70 0.30 C01921 Glycocholic acid

3.82 0.74 C00581 Guanidoacetic acid

2.62 0.62 C00155 Homocysteine

1.14 0.43 C02632 Isobutyric acid

1.42 0.70 C00186 L-lactic acid

0.94 0.69 C00123 L-leucine

7.38 0.55 C00079 L-phenylalanine

2.38 0.54 C00711 Malic acid

1.26 0.57 C02170 Methylmalonic acid

7.58 0.36 C00153 Niacinamide

1.98 0.71 C00148 Proline

2.46 0.80 C00022 Pyruvic acid

1.82 0.71 C00750 Spermine

2.58 0.61 C00042 Succinic acid

0.58 0.25 C05122 Taurocholic acid

7.30 0.57 C00398 Tryptamine

7.70 0.67 C00385 Xanthine

KEGG, Kyoto Encyclopedia of Genes and Genomes.
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excretion of succinate compared with healthy controls. 

These patients exhibited reduced mRNA expression levels of 

adenosine monophosphate (AMP)-activated protein kinase and 

peroxisome proliferator-activated receptor-γ coactivator-1α, 

Figure 3. OPLS discriminant analysis score plots in the predictive (x-axis) and orthogonal (y-axis) components of the gas chromatography-mass spectrometry 

data of the urine samples. n, normal controls; m, patients with membranous glomerulonephritis; OPLS, orthogonal projections to latent structures.

Table IV. Seven differential urinary metabolites in patients with membranous glomerulonephritis compared with normal controls, 

identified by gas chromatography‑mass spectrometry.

A, Upregulated

Metabolite name HMDB ID KEGG ID Match factor (%) Fold change, MGN/normal

Octadecanoic acid HMDB00827 C01530 93 1.10

Urea HMDB00294 C00086 92 1.09

Palmitic acid HMDB00220 C00249 92 1.23

Oleic acid HMDB00207 C00712 83 1.20

B, Downregulated

Metabolite name HMDB ID KEGG ID Match factor (%) Fold change, MGN/normal

N-acetyl-D-glucosamine HMDB00215 C00140 75 0.91

Methylmalonic acid HMDB00202 C02170 72 0.05

Glycocholic acid HMDB00138 C01921 70 0.88

KEGG, Kyoto Encyclopedia of Genes and Genomes; MGN, membranous glomerulonephritis.
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which are the two key regulators of mitochondrial biogenesis 

in the renal tissue of non-diabetic patients with CKD. This 

previous study additionally reported a significant reduction 
in the expression of genes involved in succinate regulation, 

including mitochondrial succinyl-coenzyme A (succinyl-CoA) 

ligase (adenosine diphosphate-forming) subunit β, mitochon-

drial succinyl-CoA ligase (GDP-forming) subunit α, and 

mitochondrial succinyl-CoA ligase [guanosine diphosphate 

(GDP)-forming) subunit β, in the glomeruli and tubulointersti-

tial compartments of the kidneys in non-diabetic patients with 

CKD. Therefore, the low urinary levels of succinate in patients 

with MGN may additionally be due to the decreased expres-

sion of the proteins that are associated with mitochondrial 

biogenesis. However, validation tests are required. In addition, 

Toyohara et al (42) identified a negative correlation between 
the plasma concentration of succinate and the estimated 

glomerular filtration rate (eGFR) in a wide range of patients 
with CKD, including patients with MGN, focal segmental 

glomerulosclerosis (FSGS), IgA.N and diabetic nephropathy 

(DN), compared with the levels in healthy controls. It was 

suggested that compounds that have a negative correlation 

with eGFR may be considered to be uremic toxins, and thus 

may be useful in detecting CKD.

Lin et al (43) studied 55 pediatric patients with 

mild-to-moderate CKD and demonstrated that 70% of the 

patients had at least one blood pressure load abnormality on 

ambulatory blood pressure monitoring. It was reported that 

a low urinary citrulline (CIT) level and CIT/arginine (ARG) 

ratio were associated with blood pressure load abnormalities 

in children with early CKD. It was suggested that in patients 

with mild-to-moderate CKD, the kidney experiences a 

compensatory increase in CIT uptake and conversion of 

CIT to ARG, to increase the renal ARG bioavailability in 

response to the enhanced blood pressure load. Since ARG is 

a substrate for nitric oxide (NO) synthase, which is used to 

generate NO and CIT, NO deficiency contributes to hyper-
tension, cardiovascular disease and CKD. Therefore, it may 

be speculated that the decreased urinary levels of CIT in 

patients with MGN occur due to the increased uptake of 

CIT by the kidneys in order to convert the CIT to ARG 

and elevate the production of NO, although this requires 

confirmation.
Carnosine (β-alanyl-L-histidine) is a natural reactive 

oxygen species (ROS) scavenger (44). Carnosine has reno-

protective effects and may possibly be used to treat DN (45). 

Kaori et al (46) reported low urinary levels of carnosine 

Figure 4. Fully connected component-reaction-enzyme-gene network. The violet circles represent genes, the green squares are enzymes, the dark green 

diamonds represent reactions and the hexagonal nodes indicate components; the red hexagons are the input metabolites.
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in patients with stages 1-2 CKD compared with healthy 

controls. However, the researchers did not declare the causes 

of CKD. According to the present results, urinary carnosine 

was increased in patients with MGN compared with healthy 

controls. It may be speculated that the elevated level of urinary 

carnosine in patients with MGN is due to increased ROS levels 

in the renal tissue; therefore, the requirement for carnosine 
in the kidney is evident, and a large amount of carnosine is 

produced.

Pyridoxal 5'-phosphate (PLP) and pyridoxal (PL) are 

two types of vitamin B6. Prior to entering a cell, PLP is 

dephosphorylated to PL by the enzyme alkaline phosphatase; 
PL is subsequently converted to PLP by pyridoxine kinase (47). 

Since the reaction between PLP and PL is reversible and widely 

distributed, plasma levels of PLP + PL may be considered 

to be a single pool of vitamin B6 (47,48). Chen et al (48) 

demonstrated higher levels of serum PLP in patients with 

stages 4-5 CKD compared with patients with stages 2-3 CKD. 

The principal etiologies of the CKD were DN, IgA nephrology, 

gouty nephropathy, nephrotic syndrome and tubulointerstitial 

nephritis. The authors reported that vitamin B6 is an important 

factor in the inflammatory responses in patients with CKD and 
patients undergoing hemodialysis. Zhang et al (49) revealed that 

high physiological concentrations of PLP and PL prohibited the 

activation of Toll-like receptor-induced nuclear factor (NF)-γB 

and NACHT, LRR and PYD domains-containing protein 

3-mediated caspase-1 to inhibit the production of interleukin 

1β (IL-1β) in macrophages. In addition, Chen et al (48) 

suggested that an enhanced vitamin B6 status is required for 

patients with CKD and patients undergoing hemodialysis to 

manage their inflammatory responses. Therefore, according to 
the present results, increased levels of urinary PL in patients 

with MGN may be due to the inflammatory responses of the 
renal tissue, although this requires confirmation.

Egashira et al (50) compared the alteration in trypto-

phan-niacin metabolism in rats with puromycin aminonucleoside 

(PAN)-induced nephrosis with that of a control group. It was 

demonstrated that the urinary excretion of nicotinamide and 

its metabolites was significantly lower in PAN-treated rats 

compared with control rats. It has been reported that a number 

of CKD-associated secretory phenotype proteins, including 

transforming growth factor-β (TGF-β), are involved in the early 

and late stages of renal wound healing in CKD (51-53). TGF-β1 

appears to serve an important role in mediating the hypertrophic 

and fibrotic/sclerotic manifestations of DN (53). The protein 
sirtuin 1 (SIRT1; a class III histone deacetylase) is able to 
inhibit TGF-β1-induced apoptosis in glomerular mesangial cells 

through the deacetylation of mothers against decapentaplegic 

homolog 7 (54). The upregulation of SIRT1 additionally reduces 

ROS-induced apoptosis in mesangial cells and may provide a 

novel method for treating glomerular diseases (55). Li et al (56) 

demonstrated that the decreased expression of SIRT1 in the 

kidneys of rats with DN, were restored following treatment with 

2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucoside (TSG). It was 

additionally reported that nicotinamide, which is an inhibitor 

of SIRT1, partially attenuates the inhibitory effect of TSG on 

TGF-β1 expression under high glucose conditions. According 

to the results of other studies, in addition to the present study, 

it may be speculated that the production of nicotinamide is 

not decreased in patients with MGN; rather, the excretion of 

its metabolites may decrease. Therefore, it was hypothesized 

that in renal tissue of patients with MGN, the presence of nico-

tinamide inhibits SIRT1, increases the expression of TGF-β1, 

enhances the levels of ROS and increases renal damage. Notably, 

Kalantari et al (57) demonstrated a decreased urinary excretion 

level of N-methylnicotinamide in patients with FSGS with 

proteinuria >3,000 mg/day, compared with patients with FSGS 

with proteinuria <3,000 mg/day; the authors proposed that a 
decreased level of nicotinamide mononucleotide (NMN) was an 

indication of tubular secretion dysfunction. Therefore, reduced 

urinary excretion of nicotinamide may additionally be due to 

tubular secretion dysfunction, although future experiments are 

required to verify the above.

The protein nicotinamide phosphoribosyltransferase 

(Nampt) is a rate-limiting enzyme in the nicotinamide adenine 

dinucleotide (NAD) salvage pathway, which converts nicotin-

amide to NMN in mammals to enable NAD+ biosynthesis (58). 

Chen et al (59) demonstrated that the endogenous expression 

levels of Nampt and NF-κB p65 were significantly increased 
in HBZY‑1 cells subjected to high glucose for different time 

Table V. A total of 26 hub metabolites were identified in the 
component-reaction-enzyme-gene network associated with 

membranous glomerulonephritis.

Metabolite name KEGG ID

L-leucine C00123

Dopamine C03758

Tyramine C00483

Carnosine C00386

L-histidine C00135

L-citrulline C00327

Fumarate C00122

Xanthine C00385

L-glutamine C00064

Pyruvate C00022

L-alanine C00041

Nicotinamide D-ribonucleotide C00455

Adenosine C00212

AMP C00020

L-arginine C00062

Nicotinamide C00153

L-tyrosine C00082

L-phenylalanine C00079

L-cysteine C00097

L-proline C00148

Pyridoxal C00250

dGTP C00286

Deoxyuridine C00526

Tryptamine C00398

Succinate C00042

Citrate C00158

AMP, adenosine monophosphate; GTP, guanine triphosphate; KEGG, 
Kyoto Encyclopedia of Genes and Genomes.
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periods; whereas, the expression of SIRT1 was significantly 
downregulated. It was additionally demonstrated that the 

expression levels of Nampt and vimentin were significantly 
higher in an insulin gene-mutant diabetic C57/LB6 mouse 

model compared with the control group. The researchers 

suggested that there may be an association between Nampt 

and fibrotic factors, including vimentin and fibronectin. 

Furthermore, it was reported that NMN was able to activate 

SIRT1 by inhibiting the Nampt pathway, and that SIRT1 was 

upregulated in an NMN-treated group in vitro and in vivo 

compared with the untreated group. Therefore, the authors 

suggested that NMN may induce the downregulation of 

vimentin expression by interacting with NF-κB p65. It was 

additionally suggested that NMN may inhibit Nampt upregu-

lation through negative feedback to indirectly inhibit NF-κB 

p65-dependent inflammatory responses in HBZY-1 cells. 

Hasegawa et al (60) demonstrated that SIRT1 was downregu-

lated in the proximal tubules (PT) prior to the occurrence of 

albuminuria in streptozotocin-induced or obese-type (db/db) 

diabetic mice. This downregulation decreased the excretion 

of NMN from the PT into the podocytes in the glomeruli. 

Hasegawa et al (60) demonstrated that decreased uptake of 

NMN in the podocytes results in a decrease in SIRT1 expres-

sion and an increase in the expression of the tight junction 
protein claudin-1 in the podocytes. The enhanced expression 

of claudin-1 ultimately leads to more albuminuria in DN. 

Therefore, it was suggested that NMN has renoprotective 

effects, as its deficiency results in the increased expression 
of fibrotic/inflammatory factors in DN (60). According to the 
present results, there were increased expression levels of NMN 

in the urine of patients with MGN compared with the normal 

controls. Although no studies, to the best of our knowledge, 

have been performed on the role of NMN in the pathogenesis 

of MGN, it may be suggested that similar mechanisms may 

be involved in DN and MGN that prevent the excretion of 

NMN from the PT into the glomeruli, although this requires 

confirmation. Instead, NMN is released into the urine, which 
accounts for the high levels of the molecule observed.

AMP deaminase (Ampd) is the rate-limiting enzyme in the 

catabolism of AMP to uric acid and is a component of the purine 

nucleotide cycle, which is responsible for the deamination of 

AMP to inosine monophosphate (61). Helmering et al (61) 

reported that a mutation in the Ampd2 gene (a liver isoform 

of Ampd) leads to nephrotic syndrome and hypercholester-

olemia in Ampd2 knockout (KO) mice. It was additionally 

observed that the Ampd2 KO mice had minimal alterations 

in the kidneys, minimal to moderate thickening of the GBM, 

an increase in the cellularity of the mesangial matrix and an 

increase in inflammatory cells in the glomeruli. In addition, the 
authors performed a metabolomics analysis on the liver tissue 

of KO mice using GC-MS and liquid chromatography-tandem 

mass spectrometry, and demonstrated a significant increase in 
hepatic AMP expression levels. They suggested that Ampd2 

function was critical for podocyte survival. According to the 

present results, high expression levels of urinary AMP were 

observed in patients with MGN. Whether the activity or the 

expression of Ampd had been affected in the renal tissues of 

the patients with MGN was not confirmed in the present study; 
future validation studies may clarify these issues.

Significant increased urinary levels of deoxyguanine 

triphosphate (dGTP) in patients with MGN compared with 

healthy controls were detected. Kalantari et al (62) addition-

ally reported a significant increased urinary excretion of dGTP 
in patients with severe stages of IgA.N compared with patients 

with mild stages of IgA.N. The dGTP had a positive correlation 

with proteinuria in patients with IgA.N, which was determined 

using 1H NMR spectroscopy. Furman et al (63) demon-

strated increased levels of molecules of deoxyribonucleoside 

Figure 5. Betweenness and centroid diagrams. The betweenness and centroid diagrams of (A) dopamine, (B) nicotinamide D-ribonucleotide, (C) nicotinamide 

and (D) phenylalanine are presented. The x-axis corresponds, from left to right, to the average value, minimum value, maximum value and metabolite 

centrality value, respectively. The y-axis represents the score of centrality in terms of percentage.
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triphosphates, including dGTP and deoxyadenosine triphos-

phate, in Vero cells infected with herpes simplex virus type 1 

treated with acyclovir, compared with untreated infected 

cells. They speculated that the increases were partly due 

to the inhibition of viral DNA polymerase activity, which 

resulted in the reduced utilization of the deoxyribonucleoside 

triphosphates. In addition, Gamboa et al (64) reported that 

diabetic and non-diabetic patients with stage 3-4 CKD had 

reduced mitochondrial DNA copy numbers. Accordingly, it 

may be suggested that the renal mitochondria are affected in 

patients with MGN, which results in reduced DNA synthesis 

in the organelle; therefore, a decrease in the consumption of 
dGTP leads to greater excretion of the molecule in the urine of 

patients, although this requires confirmation.
Low levels of urinary 2'-deoxyuridine (dU) in patients 

with MGN patients were detected. Although deoxycytidine 

(dC) was not considered to be a hub in the CREG network, 

a considerable fold-change in patients with MGN (1.92-fold 

increase compared with controls) was demonstrated. 

Xia et al (65) reported a significant increase in levels of 

cytosine and cytidine in the serum of patients with DN 

compared with patients with diabetes mellitus. In addition, the 

levels of uridine and dU did not alter in that previous study. 

It is well known that dC is deaminated to dU by the enzymes 

cytidine deaminase (CDA; EC 3.5.4.5) and deoxycytidine 
deaminase (DCD; EC 3.5.4.14) (66). Therefore, the increase in 
dC and the decrease in dU in MGN may be due to a decrease in 

the activity or expression of CDA and/or DCD. Notably, CDA 

activity may be affected by lymphomagenesis (67), and the 

development of cancer (68). However, alterations in the activity 

and/or expression of CDA in MGN require investigation in 

future studies to better understand the role that it serves in the 

pathogenesis of MGN.

There are no specific experimental data on the role of 

tryptamine in the pathogenesis of CKD. The present results 

demonstrated that patients with MGN had low urinary 

levels of tryptamine compared with the healthy controls. 

Arakaki et al (69) performed a fully automated computational 

metabolomics method to predict alterations in the metabolite 

levels in Jurkat T leukemia cells compared with normal cells. 
It was predicted that the levels of tryptamine may be lower in 

the cancer cells compared with the normal cells, as tryptamine 

exhibits antiproliferative activity. Tryptamine is an effective 

inhibitor of HeLa cell growth through the competitive inhibi-

tion of tryptophanyl-tRNA synthetase and subsequently, the 

inhibition of protein biosynthesis (69). Therefore, the decreased 

expression levels of tryptamine in patients with MGN may 

affect protein synthesis and the thickening of the GBM in the 

glomeruli. The exact mechanism of action of tryptamine in the 

pathogenesis of the disease is unclear and merits consideration 

in future studies.

Phenylalanine has demonstrated different fold-changes in 

the various causes of CKD. Sui et al (21) performed a pilot study 

using 1H‑NMR spectroscopy to determine the disease‑specific 
metabolite biomarker profiles in three groups: Healthy 

controls; low‑risk patients who had renal biopsy‑confirmed 
grades I‑II IgA.N; and high‑risk patients with grades IV‑V 
nephropathy. High levels of serum phenylalanine were 

observed in the low-risk and high-risk patients compared with 

the healthy controls, which suggested that phenylalanine may Figure 7. Cluster 4 includes CTH as a seed node. CTH, cystathionine γ-lyase.

Figure 6. Protein-protein interaction network of MGN extracted from the 

Search Tool for the Retrieval of Interacting Genes database. The network was 

based on the proteins deduced from the component-reaction-enzyme-gene 

network associated with MGN. The hexagons represent CTH and PAH, 

which are seed nodes in cluster nos. 4 and 9, respectively. CTH, cystathio-

nine γ‑lyase; MGN, membranous glomerulonephritis; PAH, phenylalanine 
hydroxylase.
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be a potential biomarker for IgA.N. Li et al (70) reported high 

levels of serum phenylalanine in patients with renal function 

impairment; it was suggested that serum amino acid levels 
may be used for the early detection of CKD. Contradictory 

to these results, Li et al (71) detected low levels of serum 

phenylalanine in patients with lupus nephritis and idiopathic 

nephrotic syndrome using ultra-high-performance liquid chro-

matography coupled with high-resolution mass spectrometry. 

Since the role of phenylalanine in disease has rarely been 

reported, further investigation is warranted to elucidate the 

exact underlying mechanism.

According to the present results, fumarate was increased 

in the urine of patients with MGN. You et al (72) reported 

that the upregulation of podocyte NADPH oxidase (NOX)4 

is sufficient to cause all of the glomerular features of diabetic 
kidney disease (DKD) in mice, including glomerular hyper-

trophy, mesangial matrix accumulation, podocyte dropout and 

GBM thickening. In addition, the authors demonstrated that 

pharmacological intervention with a NOX1/NOX4 inhibitor is 

able to attenuate the principal signs of DKD. NOX4 inhibition 

regulates fumarate levels, which led to the discovery that 

the fumarate hydratase enzyme, which is involved in the 

tricarboxylic acid cycle, is a downstream target of NOX4. 

You et al (72) identified fumarate to be a disease‑promoting 
metabolite that stimulates endoplasmic reticulum (ER) stress, 

matrix gene expression, and hypoxia-inducible factor-1α and 

TGF-β production in mice with DKD. According to the results 

of the study by You et al (72), it may be hypothesized that 

fumarate is effective in causing glomeruli damage in MGN, 

including GBM thickening, by imposing ER stress, and thus 

has important effects on renal tissue.

In the present study, dopamine was significantly increased 
in the urine of patients with MGN. Pestana et al (73) reported 

that the urinary output of dopamine was lower in patients 

with salt-sensitive (SS) IgA.N compared with salt-resistant 

patients. Patients with SS IgA.N additionally exhibited 

lower creatinine clearance values and higher urinary protein 

excretion compared with salt-resistant patients. The authors 

speculated that the decreased renal dopamine synthesis in 

patients with SS IgA.N results from acquired tubulointer-

stitial injury. In addition, Zhang et al (74) reported that the 

decreased renal dopamine production may have important 

consequences in the underlying pathogenesis of DN. Notably, 

the hemodynamic actions of dopamine are dose‑dependent; 
in low renal doses (0.5 to 2.5 µg/kg/min), dopamine stimu-

lates the dopaminergic receptors in the renal and mesenteric 

vasculature, increases renal plasma flow, eGFR and sodium 
excretion in patients with normal renal function and with 

congestive heart failure (75). In addition, the decreased renal 

blood flow from the vasoconstriction caused by dopamine has 
been suggested as a contributing factor to the development 

of contrast‑induced nephropathy; thus, dopamine failed to 
demonstrate a protective effect on renal function in patients 

undergoing contrast media exposure and was associated 

with a deleterious effect on the severity of renal failure and 

its duration (76). Therefore, it may be suggested that the 

Figure 8. Cluster 9 includes PAH as a seed node. PAH, phenylalanine 

hydroxylase; TH, tyrosine hydroxylase; TYR, tyrosine.

Table VI. Characteristics of 13 clusters in the protein-protein interaction network associated with membranous glomerulone-

phritis. 

Cluster no. Score No. of nodes No. of edges Seed Degree

  1 34.7 41 694 DLAT 9

  2 19.842 39 377 IDH3G 54

  3 10.926 55 295 DHFRL1 30

  4a 6.556 19 59 CTH 49

  5 4.8 16 36 POLD1 33

  6 4.5 5 9 GCLM 23

  7 4.273 23 47 IARS 41

  8 4.0 6 10 - -

  9a 3.0 3 3 PAH 17

10 3.0 3 3 NMNAT1 8

11 3.0 3 3 DBH 9

12 3.0 3 3 UROC1 7

13 3.0 3 3 HIF1A 14

aClusters 4 and 9 contain seed proteins which were involved in the component-reaction-enzyme-gene network.
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renoprotective effects of dopamine occur only in low renal 

doses; conversely, decreased or increased levels of dopamine 
may have harmful effects on the kidney, which may result in 

enhanced nephropathy. In the present study, three derivatives 

of phenylalanine (33) were demonstrated to be increased in 

MGN: Tyrosine, tyramine and dopamine (Table II). Notably, 

the phenylalanine level decreased, which may be due to 

the alteration in the activity or expression of phenylala-

nine-4-hydroxylase (PH4H) that catalyzes the hydroxylation 

of the aromatic side-chain of phenylalanine to generate tyro-

sine (77). However, further research is required to validate 

this suggestion. In addition, one of the enriched BPs in the 

present dataset was ‘aromatic amino acid family metabolic 
process’. Recently, Kalantari et al (62) reported that certain 

metabolic pathways were enriched in patients with severe 

IgA.N in comparison with patients with mild stages of the 

disease, and appeared to be associated with ‘aromatic amino 
acid family metabolic process’, including ‘phenylalanine 

Table VII. A list of thirteen potential biomarkers for membranous glomerulonephritis with high centralities in the component- 

reaction‑enzyme‑gene network and 1.5≤ fold change ≤0.66 compared with normal controls.

A, Upregulated

Name KEGG ID Betweenness UnDir Centroid UnDir Fold change

Dopamine C03758 78,329.19 -938.0 1.65

Carnosine C00386 33,611.40 -922.0 1.66

Fumarate C00122 55,144.33 -822.0 1.55

Nicotinamide D-ribonucleotide C00455 48,677.56 -732.0 2.01

AMP C00020 235,243.60 -688.0 2.04

Pyridoxal C00250 60,516.67 -1081.0 2.21

dGTP C00286 78,288.00 -1066.0 1.84

B, Downregulated

Name KEGG ID Betweenness UnDir Centroid UnDir Fold change

L-citrulline C00327 19,650.12 -898.0 0.64

Nicotinamide C00153 61,173.32 -638.0 0.36

L-phenylalanine C00079 275,696.59 -416.0 0.55

Deoxyuridine C00526 17,743.39 -1054.0 0.38

Tryptamine C00398 14,025.28 -1052.0 0.57

Succinate C00042 55,525.60 -1034.0 0.61

KEGG, Kyoto Encyclopedia of Genes and Genomes; AMP, adenosine monophosphate; GTP, guanine triphosphate.

Figure 9. Gene ontology of the proteins involved in cluster 4 indicates that the protein family of cystathionine γ‑lyase is involved in the ‘pyrimidine‑containing 
compound biosynthetic process’, ‘ribonucleoside metabolic process’, ‘nucleoside catabolic process’, and ‘purine ribonucleoside metabolic process’. **P<0.01.
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metabolism’, ‘tyrosine metabolism’ and ‘phenylalanine, 
tyrosine, and tryptophan biosynthesis’. The gene PAH, which 

was demonstrated to be a seed node for cluster 9, encodes the 

protein PH4H (77).

According to the results of the present study, 

‘pyrimidine‑containing compound biosynthetic process’ 
is affected in MGN. ‘Pyrimidine‑containing compound 
biosynthetic process’ refers to any BP that generates a 

pyrimidine-containing compound, including any nucleo-

base, nucleoside, nucleotide or nucleic acid that contains 

a pyrimidine base, from the derivatives without de novo 

synthesis (78). The thymidine kinase (Tk) gene codes for 

a cytosolic protein involved in the pyrimidine nucleotide 

salvage pathway. Dobrovolsky et al (79) created Tk KO mice 

to determine the biological significance of the Tk gene; it was 
demonstrated that all Tk KO mice developed sclerosis of the 

kidney glomeruli and kidney failure. It was speculated that 

the pyrimidine nucleotide salvage pathway may be affected in 

Tk KO mice in vivo. Therefore, it may be suggested that some 

of the glomeruli damage in MGN may be due to alterations 

in the levels of various pyrimidine-containing compounds, 

including the increased level of dC and the decreased level 

of dU. However, the exact mechanism requires investigation 

in future studies.

According to the present study, ‘purine ribonucleoside 
metabolic process’ was demonstrated to be affected in MGN 

patients. ‘Purine ribonucleoside metabolic process’ refers to 
the chemical reactions and pathways that involve any ribo-

nucleoside, which is a nucleoside that has a purine base linked 

to a ribose (beta-D-ribofuranose) molecule (80). Recently, 

Mazumder et al (81) used a molecular modeling approach to 

demonstrate that purine nucleotides and/or their metabolites, 

including adenine, xanthine, hypoxanthine, 2,8-dihydroxy-

adenine and uric acid, are able to inhibit the activity of 

acetylcholinesterase (AChE) in the brain by interacting with 

the active site of the enzyme, which causes cognitive impair-

ment (CI) in CKD patients. Notably, dementia and CI has 

been reported in 30-70% of patients with CKD undergoing 

dialysis (81,82). Therefore, Mazumder et al (81) suggested 

that a disturbed purine nucleotide metabolism may be a risk 

factor for CI in patients with CKD. High urinary levels of 

dGTP, AMP and adenosine in patients with MGN were 

detected; however, urinary levels of xanthine were low. The 
decreased level of xanthine in the urine of patients with MGN 

may be due to the impaired renal excretion of the molecule; 
therefore, the serum level of xanthine requires consideration 

in future studies. In addition, the binding affinity of other 
purine-associated metabolites, including AMP, adenosine and 

dGTP, to AChE require examination in future studies using 

experimental or computational methods. It may be suggested 

that ‘purine ribonucleoside metabolic process’ is affected in 
patients with MGN, which may result in the development of 

CI in patients with end-stage disease. It is noteworthy that 

the seed node for cluster 4 was the CTH gene. The CTH gene 

encodes the protein cystathionine γ-lyase (CGL) (83). The 

regulation of CGL in patients with MGN has not yet been 

verified. However, according to the results of the statistical 
modeling and network analysis, it may be suggested that the 

expression of CGL is affected in MGN, although further 

experimental gene expression analysis is required in order to 

verify this hypothesis.

The present study had certain limitations. Only Iranian 

patients were included in the present study and therefore, 

these findings may not entirely translate to patients of 

other ethnicities. However, the results may be useful for 

patient‑specific treatments worldwide. Due to the fact that 
metabolomics analysis results in high-dimensional data, 

in which the generated data contain numerous variables 

and an insufficient number of samples, robust multivariate 
statistical analyses, including PLS-DA and OPLS-DA, are 

required to generate accurate results (84,85). However, 

NMR and GC-MS studies consisting of a greater number of 

patients and healthy volunteers may enhance the statistical 

power and possibly reveal more significant metabolites that 
are associated with MGN. In addition, the same group of 

samples was not used in the NMR and GC-MS techniques 

of the study; therefore, the results may not be reliable and 
reproducible.

In conclusion, the present study successfully identi-

fied 13 differential metabolites considered to be potential 
biomarkers for MGN, according to their centralities and 

fold-changes. In addition, PPI analysis revealed two clusters 

with seed nodes (CTH and PAH), which were involved in 

the CREG network and were associated with MGN. The 

GO analysis additionally demonstrated five BP, which were 
significantly affected in MGN. According to the results of 
the present study, 1H NMR and GC-MS techniques are able 

to monitor urinary metabolite profiles in patients with MGN 
and healthy individuals. OPLS-DA and PLS-DA are also two 

robust statistical methods, which are able to significantly 

identify differential metabolites derived from GC-MS and 1H 

NMR data, respectively. Furthermore, Cytoscape and its asso-

ciated plugins (MetScape, CentiScape, MCODE and ClueGO) 

proved to be powerful bioinformatics tools for identifying the 

most important metabolites in the CREG network, and for 

revealing clusters and BPs associated with MGN. The results 

may be used for novel research into diagnostic biomarkers, 

and may be useful for understanding the mechanisms under-

lying MGN.
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