
Network Analysis Tools: from biological networks to
clusters and pathways
Sylvain Brohée, Karoline Faust, Gipsi Lima-Mendez, Gilles Vanderstocken & Jacques van Helden

Laboratoire de Bioinformatique des Génomes et des Réseaux (BiGRe), Université Libre de Bruxelles, Campus Plaine, CP 263, Boulevard du Triomphe, B-1050 Bruxelles,
Belgium. Correspondence should be addressed to J.v.H. (Jacques.van.Helden@ulb.ac.be).

Published online 18 September 2008; doi:10.1038/nprot.2008.100

Network Analysis Tools (NeAT) is a suite of computer tools that integrate various algorithms for the analysis of biological networks:

comparison between graphs, between clusters, or between graphs and clusters; network randomization; analysis of degree

distribution; network-based clustering and path finding. The tools are interconnected to enable a stepwise analysis of the network

through a complete analytical workflow. In this protocol, we present a typical case of utilization, where the tasks above are combined

to decipher a protein–protein interaction network retrieved from the STRING database. The results returned by NeAT are typically

subnetworks, networks enriched with additional information (i.e., clusters or paths) or tables displaying statistics. Typical networks

comprising several thousands of nodes and arcs can be analyzed within a few minutes. The complete protocol can be read and

executed in B1 h.

INTRODUCTION
This is the last article in a series of four protocols for the analysis of
regulatory sequences with the Regulatory Sequence Analysis Tools1

(http://rsat.ulb.ac.be/rsat/) and biological networks with the
Network Analysis Tools (NeAT)2 (http://rsat.ulb.ac.be/neat/). The
first article3 presents a protocol to predict the location of binding
sites for transcription factors whose specificity is already known
(pattern matching). In the second article4, we describe a protocol
for the ab initio discovery of biological signals in biological
sequences (pattern discovery). The third article5 shows how to
write scripts to automate the analysis on multiple clusters of genes
using Web services. In this article, we describe a workflow for
deciphering biological networks by combining network compar-
ison, module identification and path finding. This protocol can be
executed independently of the three other ones.

Network biology is emerging as a new field in biology, due to the
increasing availability of genome-scale data sets of molecular
interactions, such as those resulting from high-throughput
technologies (e.g., protein interactions, regulatory networks and
metabolome). Extracting relevant information from this huge
amount of data requires dedicated tools. These data sets are
commonly represented as graphs (or networks), where nodes
represent molecules, and arcs their interactions. This representation
eases data integration and makes it possible to apply well-known
network algorithms to analyze the data.

In this protocol, we show how large biological networks can be
explored by combining a set of modular tools accessible via a Web
interface named NeAT. We describe hereafter the typical questions
that can be addressed.
Network topology. It has been observed that some topological

properties distinguish biological networks from random
networks6,7. Noticeably, the distribution of degree (the number of
arcs connected per nodes) is often claimed to follow a power-law
distribution6,8. The tool graph-topology can be used to analyze the
degree distribution of any kind of network.
Network comparison. Given two networks (i.e., protein–protein
interaction networks from two different experiments), one would
like to analyze their degree of overlap. This question is answered by

the tool compare-graphs, which computes the intersection, union
and difference between two networks and estimates the statistical
significance of the overlap.
Node neighborhood. Given a protein, gene or another node in a

biological network, it is of interest to identify its direct or
indirect neighbors in this network. This is the task of the tool
graph-neighbours, which returns the neighbors of a query node in
a network up to a certain distance. This tool can be applied for
instance on protein–protein interaction networks to retrieve the
interaction partners of a given protein.
Cluster analysis. Various algorithms have been implemented to

extract clusters (i.e., groups of densely connected nodes) from
biological networks9–13. Among those, MCL14 algorithm has been
shown to obtain good performances for extracting protein
complexes from protein interaction networks15–17. In addition,
this algorithm can deal with large graphs and is very efficient in
time. For these reasons, we included MCL in the NeAT suite. The
clusters resulting from MCL or other methods can be compared to
some reference groups (e.g., functional classes) with the program
compare-classes and mapped onto networks with graph-get-
clusters. Upon partitioning with MCL, each node belongs to only
one cluster. However, sometimes the assignment of a node to a
single cluster is an over-simplification of the biological data, for
example, a protein may be part of different protein complexes. In
those cases, it would be better to describe how much each node is
related to the different clusters. The program graph-cluster-
membership postprocesses a clustering result and calculates the
membership as the proportion of edges (or weight) linking each
node to each cluster. The node–cluster relationships are described
as a membership matrix, where each row represents a node and
each column a cluster.
Path finding. Given a biological network and two nodes of interest,

a common task is to find a biological meaningful path connecting
those nodes in the network. For instance, path-finding algorithms
are applied to uncover signal transduction or metabolic pathways
in protein–protein interaction or metabolic networks, respec-
tively18–21. Recently, we evaluated the performance of a k-shortest

p

u
or

G
g

n i
h si l

b
u

P er
u ta

N 800 2
©

n
at

u
re

p
ro

to
co

ls
/

m
oc.er

ut a
n.

w
w

w//:
ptt

h

1616 | VOL.3 NO.10 | 2008 | NATURE PROTOCOLS

PROTOCOL

path-finding algorithm for metabolic pathway inference and found
high accuracies if appropriate weights are set on the network22.
Network randomization. Negative controls are essential to esti-

mate the relevance of the results. The tool random-graph proposes
different procedures to randomize a network, which can then be
submitted to the same workflows as the original network.
Network alteration. To test the robustness of analytic methods to

the presence of noise, or to the incompleteness of information, the
tool alter-graph allows to modify an existing network by random
addition or deletion of nodes and/or edges.
Network display. NeAT includes a tool called display-graph,

which generates static images of the input networks. Such drawings
are convenient for a quick inspection of the results from the Web
browser. For more sophisticated layouts and for a dynamical
manipulation of the drawing, we recommend graph editors such
as yEd (http://www.yworks.com/en/products_yed_about.html) or
Cytoscape23. The tool convert-graph permits to export any network
analyzed with NeAT into Graph Modeling Language (GML)
(http://www.infosun.fim.uni-passau.de/Graphlet/GML/gml-tr.html),
a file format supported by both editors.
Figure 1 depicts the way in which the NeAT can be connected.

We suggest the reader to follow this flow chart progressively during
the execution of the protocol.

Comparison to other graph analysis tool suites
A large variety of graph analysis tools exist. We may classify them in
three categories: (i) libraries that can only be used programmati-
cally, for example, Boost (http://www.boost.org/), igraph (http://
cneurocvs.rmki.kfki.hu/igraph/index.html) or JUNG (http://
jung.sourceforge.net/); (ii) stand-alone tools with graphical user
interface (GUI) (Pajek24, Network Workbench (http://nwb.slis.
indiana.edu), BiologicalNetworks25, VisANT26, yEd, Cytoscape,
etc.) and (iii) tools with GUI available via the Web such as tYNA
(http://tyna.gersteinlab.org/tyna/) or CABiNeT (http://mips.gsf.de/
genre/proj/CABiNet/).

Usually, the libraries offer generic graph algorithms, whereas
stand-alone or Web-based tool suites are often specialized. For
instance, VisANT, Cytoscape (with its plugins) and BiologicalNet-
works focus on the analysis and display of biological networks,
whereas yEd offers a flexible interface for the display, layout and
edition of general-purpose graphs, but is equipped with limited
analysis functions. Pajek and Network Workbench are stand-alone
tools for generic graph analysis. Cytoscape (with plugins) and
BiologicalNetworks allow in addition retrieval and integration of
biological networks.

We describe hereafter some of the advantages and current
limitations of NeAT.
Main advantages. The main advantages of NeAT are

(1) NeAT supports a variety of modular tools, which can either be
used separately, or combined in a workflow. These tools
include a number of unique features (fuzzy clustering, Web
access to MCL and RNSC, k-shortest paths with multiple start
and end nodes, statistical comparison of classes and clusters,
etc.) that are currently not available in other packages.

(2) The programs are designed to enable treating very large graphs
(several thousands of nodes) without excessive cost in memory
or time.

(3) Although most of the analyses can also be performed in
specialized software packages such as R, the NeAT Web site

offers a user-friendly access for biologists who are not familiar
with programming languages.

(4) NeAT can be run on command line, either by installing it locally
or by calling Web services. This is not the case of the other stand-
alone and Web-based tools (a notable exception is Pajek). The
programmatic access (either as stand-alone application or as
Web services) allows one to automate the executions of work-
flows for multiple data sets, which would require hundreds or
thousands of manual operations with conventional GUIs or on a
Web site. To our knowledge, there is only one other network
tools suite enabling workflows, namely tYNA. NeAT and tYNA
are complementary: NeAT supports path-finding, graph-based
clustering (MCL, RNSC and fuzzy clustering), network rando-
mization and cluster comparisons, whereas tYNA includes tools
to find motifs in networks. Because both tools support Web
services, they can be easily combined in workflows, either by
programming client scripts or using GUIs such as Taverna27.

(5) NeAT may be used for any kind of network, but it was
developed with biological networks in mind. The tools have
been extensively tested on a variety of biological networks
(protein–protein interaction networks17, evolutionary net-
works28 and metabolic networks21,22). Extensive evaluation is
rarely reported for other biological network tools suites.

Main limitations. NeAT essentially provides facilities for the
analysis of networks, clusters and pathways, but is not focused on

p
u

or
G

g
n i

h si l
b

u
P er

u ta
N 800 2

©
n

at
u

re
p

ro
to

co
ls

/
m

oc.er
ut a

n.
w

w
w//:

ptt
h

Flow chart of NeAT demo workflow

MIPS
complexes

Steps 4–10
Steps 27–36

Steps 11–15

Steps 20 and 21
Steps 22–26

Steps 37–39 Steps 40–46

PathfinderRandom-
graph

Compare-
graphs

Network inter
section

Randomized
network

Convert-
graph

Compare-
classes

MCL

Node cluster
memberships

Graph-get-
clusters

Display-
graph

Graph-
cluster-

member-
ship

Clustered graph

Steps 16 and 17

Netwok
image

Fuzzy cluster
membership

matrix

Sortable
comparison

table

Interactive
netwok

display in yEd
or Cytoscape

Network
of paths

Sortable
paths
table

Input/outputToolUser date

Legend

Yeast STRING
network

Yeast synthetic
lethality BioGRID

network

Figure 1 | Flow chart of the data, tools and results described in this protocol.

Yellow represents the data set, orange the tool and light brown the results.

NATURE PROTOCOLS | VOL.3 NO.10 | 2008 | 1617

PROTOCOL

the problem of network visualization. This limitation, however, is
easily circumvented by installing some specialized visualization
software: all graphs generated by NeAT can be exported to several
formats, including GML, which can be loaded with Cytoscape, yEd
and VisANT, and DOT, which can be loaded with Graphviz.

To summarize, NeAT addresses the needs of researchers
interested in the analysis of biological networks. Some tools may
require background knowledge (e.g., MCL, fuzzy clustering),
whereas others are intuitive and easy to use (e.g., graph conversion
and comparison).

For the user with experience in programming, NeAT can be run
on command line or within workflow management environments
such as Taverna. Otherwise, the user may access NeAT via its Web
interface, guided by tutorials and demos. To our knowledge,

no other biological network tools suite exists that combines all
the features of NeAT.

Other applications of this protocol
For the sake of consistency, the cases treated in this protocol are
restricted to protein interaction networks. The tools available in
NeAT can also be used to analyze other types of biological networks
representing other types of interactions, for example, regulation,
signal transduction, metabolic reactions, and ecology. The fuzzy
clustering approach was initially conceived to address the problem
of classifying phage genomes while taking into account the frequent
exchanges of genetic material between them28. The k-shortest path-
finding algorithm has previously been applied to infer relevant
pathways in metabolic networks29,30.

MATERIALS
EQUIPMENT
.This protocol describes an online tool. The only requirement is a computer

with Internet connection. Optionally, you can install yEd (http://www.
yworks.com/) or Cytoscape23 for visualization

.Sample interaction networks, which can be obtained from various biological
databases. As examples, we cite the following:
.STRING31 (http://string.embl.de/), a database integrating seven different

types of evidences for physical and/or functional interactions between
proteins: experimental evidences, phylogenetic profiles (‘co-occurrence’),
gene fusion/fission, synteny (‘neighborhood’), coexpression, text mining
and a data set called ‘database’, regrouping several criterion selected by the
STRING annotation team

.BioGRID32 (http://www.thebiogrid.org/), a database of protein and genetic
interactions including 4116,000 curated interactions from yeast,
Caenorhabditis elegans, drosophila and human

.BioCyc33 (http://www.biocyc.org/) or KEGG34 (www.genome.jp/kegg/), the
two main metabolic pathway databases

.The data required for the study cases treated in this protocol is available in
the data repository site: http://rsat.ulb.ac.be/nedt/. All the networks used to
illustrate this protocol were taken from the yeast Saccharomyces cerevisiae.
We selected various networks representing diverse types of interactions
between biological molecules (protein interactions, metabolism, protein
complexes, genetic interactions, etc.)
.Protein–protein interactions (physical and functional). From the STRING

database31, we extracted a subset labeled as ‘database’ by the STRING team.
Under this label, they regrouped different types of protein–protein interactions

and metabolic relationships (Jensen L., personal communication). This
network contains 1,237 nodes representing proteins, and 11,027 edges
representing a mixture of physical and functional protein–protein interactions.
The interactions between two proteins are considered symmetrical; it is an
undirected graph. The network is stored in data repository, a tab-delimited
text file named yeast_string_database_graph_names_undirected.tab

.The synthetic lethality network was extracted from the BioGRID
database32. It represents genes (2,353 nodes) whose individual deletion is
viable, but whose paired deletions (12,419 edges) are lethal

.Protein complexes. The file mips_complexes_names.tab describes the
collection of protein complexes annotated in the MIPS database35.
Complexes detected only by high-throughput experiments were discarded
from the data set. The first column of the file gives the gene name, the
second column the complex name and the third column the gene identifier.
In total, the file contains 1,121 distinct proteins forming 243 distinct
complexes. Note that a protein can belong to several complexes

.Signal transduction pathway. As study case for the path finding, we take a
yeast signal transduction pathway mentioned by Scott and colleagues18.
This pathway, known to regulate filamentous growth in yeast, starts with
RAS2 and ends with TEC1. The authors attempt to recover this pathway
with a path-finding algorithm based on color coding18. We will try to
recover it using Pathfinder

. Incompatibility between file formats is a constant problem in bioinformatics.
To facilitate the use of the Web site, most tools support several among the
most popular formats used to describe networks. A description of the
supported format is given in Box 1

p

u
or

G
g

n i
h si l

b
u

P er
u ta

N 800 2
©

n
at

u
re

p
ro

to
co

ls
/

m
oc.er

ut a
n.

w
w

w//:
ptt

h

BOX 1 | MAIN GRAPH FORMATS

The tab-delimited format is a convenient and intuitive way to encode a graph. Each row represents an edge and each column an attribute of
this edge. The two column fields are the source and target nodes. If the graph is directed, the source node is the node from which the arc leaves
and the target node is the node to which the arc arrives. Logically, in undirected graph, the columns containing the source and the target nodes
may be swapped. Orphan nodes can be included by specifying a source node without target. Some additional edge attributes (weight, label,
color) can be placed in additional columns. The tool Pathfinder extends this format by supporting any number of attributes on nodes or edges.
Check the Pathfinder help page for more details.
The GML format allows for the specification of additional layout and display attribute, such as node position, as well as the color, the label and
the width of nodes and edges. A Graph Modeling Language (GML) file is made up of nested key-value pairs. The most popular graph editors
(such as Cytoscape and yEd) support GML as input format.
The DOT format is a plain text graph description language. DOT files can be loaded in the programs of the suite Graphviz (http://
www.graphviz.org/). It is a simple way of describing graphs in a human- and computer-readable format. Similar to GML, DOT supports
various attributes on nodes (i.e., color, width, label).
Several tools also accept adjacency matrices as input. An adjacency matrix is an N � N table (with N the number of nodes), where a cell A[i,j]
indicates the weight of the edge between nodes i and j (or 1 if the graph is unweighted).
The Network Analysis Tools program convert-graph facilitates the handling of these formats by supporting interconversions between various
input (tab, gml, adjacency) and output formats (tab, dot, gml, adjacency).

1618 | VOL.3 NO.10 | 2008 | NATURE PROTOCOLS

PROTOCOL

PROCEDURE
Downloading a sample network
1| We will show on an example workflow how the different tools of NeAT can be combined to analyze a network taken from
the STRING database. Open a connection to the data repository for this protocol (see EQUIPMENT).

2| Download the network file yeast_string_database_graph_names_undirected.tab on your computer. It is described in a
tab-delimited file that contains five columns. Each row represents one interaction between two genes or between their products.
As described in Box 1, the two first columns indicate the name of the Source and Target genes/proteins of the source and target
nodes. The third column contains a score ranging from 0 to 900, which reflects the reliability of the indications available for
this interaction. Higher scores represent more reliable interactions. In this case, the score is higher if an interaction is found
several times in different data set. The columns 4 and 5 contain the gene identifiers corresponding to the gene names in
columns 1 and 2.

3| Open a connection to the NeAT Web server: http://rsat.ulb.ac.be/neat/.

Cluster analysis
4| Extracting clusters from the network with MCL (Steps 4–10). We will first apply graph-based clustering to detect groups of
highly interconnected nodes in the sample network. For this, we will use the MCL algorithm, a fast unsupervised clustering
algorithm based on simulation of flows in graphs14. In the menu from the left panel, click on the link MCL clustering to open
the MCL query form.

5| Click on the Browse . . . button, and choose the file containing the network (e.g., yeast_string_database_graph_names_
undirected.tab for the study case discussed here).

6| Specify the columns containing the source, target and (optionally) weight attributes of the tab-delimited file. In our
example file, the source and target columns are by default 1 and 2 so we only have to add the weight column:
Weight column ¼ 3. Note that if you want to work with the gene identifiers instead of the gene names, you could have used
value 4 and 5 in the source and target column fields. However, this is not recommended in this protocol as in the following we
will only work with gene names.
m CRITICAL STEP The weighting of edges strongly affects the MCL result, because the principle of the algorithm is to iteratively
enforce the weight of the most ‘important’ edges in the network. The ‘importance’ of an edge is determined by both its initial weight
and its place in the network.

7| Choose an inflation value (between 1.2 and 5). For the study case, select 1.8.
m CRITICAL STEP This parameter acts on the granularity of the clustering procedure, that is, the number of clusters (and
consequently the number of elements per cluster). The number of clusters increases with the inflation value. This parameter must
thus be fine-tuned according to the structure of the network. In a recent evaluation, we found that an inflation value of 1.8 was
optimal for protein–protein interaction networks17.

8| Click on the GO button. The processing should take a bit less than one 1 min.
? TROUBLESHOOTING

9| The result page displays a figure showing the cluster size distribution, that is, the number of clusters (ordinate) of each
size (abscissa). The page also contains a link to the clustering result. This file can be saved by right-clicking on the URL link
and selecting Save link as . . ., and save it on your computer under the name yeast_string_MCL_clusters.tab.

10| To inspect the result file, you can either use a text editor to open the file yeast_string_MCL_clusters.tab stored on
your computer, or click on the URL on the result page. The MCL result is a simple two-column table, where the first column
indicates the node names (gene names in our case), and the second column the cluster names. A quick inspection of this table
from top to bottom shows that the first clusters contain more nodes than the last ones. MCL sorts the clusters by decreasing
order of size.

11| Extracting the subnetwork defined by the clusters (Steps 11–17). We will now map the clusters resulting from MCL onto their
original network. For this, there are two alternative ways to proceed: directly load the files stored on the server (option A) or
transfer the network and cluster files from your computer (option B).
(A) Directly load the files stored on the server

(i) The MCL result page displays a ‘Next step’ box, allowing you to send the MCL output to several alternative tools. Click the
button Map those cluster on the network. This will call a form graph-get-clusters, with prefilled values for the parameters
Graph and Clusters.

p

u
or

G
g

n i
h si l

b
u

P er
u ta

N 800 2
©

n
at

u
re

p
ro

to
co

ls
/

m
oc.er

ut a
n.

w
w

w//:
ptt

h

NATURE PROTOCOLS | VOL.3 NO.10 | 2008 | 1619

PROTOCOL

(B) Transfer the network and cluster files from your computer
(i) An alternative way to enter data in the tool graph-get-clusters is to click on the link ‘Map clusters onto network’ in the

left menu. This will open an empty form, in which you will have to enter the data (for our study case, the graph is in
the file yeast_string_database_graph_names_undirected.tab and the clusters in the file yeast_string_MCL_clusters.tab).
However, this would require to transfer those two files to the server, albeit it already contains a copy of both in the
temporary directory. Whenever possible, you should thus use the ‘Next step’ buttons rather than transferring the files back
and forth between your computer and the server.

12| The main choice for the tool graph-get-clusters is the output type. The program supports two types of operations between
the network and the clusters. (i) The option annotated graph labels each edge according to its intracluster or intercluster
nature. (ii) intracluster edges selects a subnetwork restricted to the intracluster edges (intercluster edges are simply deleted
from the network). You can experiment the three options. In this section of the protocol, we will extract the subnetwork
defined by the MCL clusters. For this, select the option intracluster edges.

13| Several output formats are proposed, but for the visualization purpose, select the intracluster edges output in the
GML format.

14| Click on the button GO.

15| The result page should appear after o1 min, displaying a set of buttons for postprocessing the graph-get-cluster result,
and a link toward the result file. You can store the resulting GML graph on your computer for later use by right-clicking on the
URL in the graph-get-clusters result page. Save the result in a
file named yeast_string_MCL_intra_cluster.gml.

16| A quick way to visualize the result is to fetch it to the
NeAT visualization tool. However, beware that this tool offers
limited functionalities: it returns a static image, with a sim-
plistic layout. The main function of this tool is to provide a
quick view of the result, before visualizing it with specialized
tools. To visualize the result network with NeAT, click on the
button Display the graph. A new form will then be displayed.
Select the desired output format. If the network is weighted
(e.g., our study case), you can activate the option Edge width
proportional to the weight. To obtain the figure, click on the
button GO. This process may be slow (41 min) depending on
the size of the graph.

17| For a better visualization of the network, open the GML
formatted file obtained in Step 15 with Cytoscape, yEd or any
other visualization program of your choice. After having
opened the GML file, you need to apply some layout to display
nodes and edges harmoniously. For yEd and Cytoscape we
recommend the option Organic layout. After this, you should
see a set of well-separated components, each corresponding to
a MCL cluster. Each cluster is displayed with a specific color for
the edges (Fig. 2a).
? TROUBLESHOOTING

18| Mapping the clusters onto the network (Steps 18 and 19).
In the previous section, we used graph-get-clusters to sepa-
rate the MCL clusters by deleting intercluster edges from the
original network. Alternatively, the same tool can be used to
label all the edges according to the cluster composition.
Come back to Step 12, but this time, select ‘annotated graph
(all edges)’ as output type.

19| Repeat Steps 13–17, and compare visually the result with
that obtained in the previous section (Fig. 2b).

p

u
or

G
g

n i
h si l

b
u

P er
u ta

N 800 2
©

n
at

u
re

p
ro

to
co

ls
/

m
oc.er

ut a
n.

w
w

w//:
ptt

h

a

b

Figure 2 | Mapping of the clusters obtained with the MCL algorithm on the

STRING database data set. (a) Only the intracluster edges were conserved and

each cluster is highlighted with a different color. (b) Intercluster (black) and

intracluster (colored) edges are both displayed. The layout and display were

obtained with yEd.

1620 | VOL.3 NO.10 | 2008 | NATURE PROTOCOLS

PROTOCOL

Fuzzy clustering
20| We will now use the tool graph-cluster-membership to compute the degree of membership of each node to each of the
cluster obtained from MCL. This can be done in either of two ways. (i) Come back to the page with the MCL output and click on
‘Cluster membership’ to open graph-cluster-membership. (ii) Alternatively, you can click on the link Cluster membership in
the left panel, and specify the graph parameters as in Steps 5 and 6. To upload the MCL output, click on the button besides
‘Upload clusters from file’: and specify the location of the file yeast_string_MCL_clusters.tab on your disk.

21| Search for the membership matrix and select weight as stat.
m CRITICAL STEP For weighted graphs, weight or relative weight may be chosen. Otherwise, the strength of the links is not
considered for calculating the membership of a node to a cluster. When relative weight or relative edge is selected, the weights or
number of edges of a node to a cluster are divided by the number of nodes of that cluster.

22| Click on the GO button. After a minute, a page appears with links to three files: a tab-delimited text file, and two image
files providing, respectively, low- and high-resolution heatmaps. In all cases, the output displays the membership matrix,
where entries correspond to the membership degree of the node given by the row to the cluster given by the column. The
text-formatted table contains the numeric values of the memberships coefficient associating each node (row) to each cluster
(column). This is a tab-delimited file that can be loaded in various programs (e.g., Excel, R) for further processing. The heatmap
is a graphical representation of the same data, where the gray level is proportional to the degree of membership (Fig. 3).
? TROUBLESHOOTING

23| Comparing the clusters with reference classes (Steps 23–27). To evaluate the biological relevance of the clusters discovered
with MCL, we can compare them with some reference classification, for example the Gene Ontology36 or the collection of protein
complexes from the MIPS database. To illustrate this, we will compare the MCL clusters obtained above with the complexes
stored in the MIPS database. Each MCL cluster will be compared to each complex of the database. Cluster/complex comparisons
will then be scored with different statistics described in the manual page of the tool and in Box 2. Come back to the page with
the MCL result (Step 9). On in the Next step box, click on the button ‘Compare these clusters with other clusters’. Alternatively,
in case you saved the MCL result in a file, you can directly click on the link Compare clusters/classes in the left panel and
upload the MCL result file with the Browse button under query class.

24| As reference classes, we will use the collection of MIPS complexes. For this, first download the file mips_complexes_
names.tab from the data repository (see EQUIPMENT).

25| We will now specify the reference classes in the compare-classes form. To indicate that MIPS complexes will serve as
reference classes, click on the Browse . . . button below Reference classes, and select the file mips_complexes_names.tab that
you downloaded on your computer at Step 24. In NeAT, classes are described with the same tab-delimited format as clusters:
each row describes the membership of
one element (first column) to a class
(second column). Optionally, an addi-
tional column can be specified with the
option ‘Score column’, to indicate a
score that will be used to compute some
similarity metrics (e.g., dot product).
For this study case, the MIPS complexes
are described in a three-column file
indicating the protein name (first col-
umn), the complex (second column) and
the gene ID (third column). There is no
score associated to the protein-complex
membership, and we will thus leave
empty the option score column.

26| The options Thresholds on return
fields (see Box 2) allow one to combine
various constraints to select the most
significant intersections between query
and reference clusters/classes. The
default threshold on significance
(sig Z 0) usually gives satisfactory
results. For our study case, the other
thresholds do not need to be changed.

p

u
or

G
g

n i
h si l

b
u

P er
u ta

N 800 2
©

n
at

u
re

p
ro

to
co

ls
/

m
oc.er

ut a
n.

w
w

w//:
ptt

h

EFB1 1.00

cl
_1

cl
_2

cl
_3

cl
_4

cl
_5

cl
_6

cl
_7

cl
_8

cl
_9

cl
_1

0

cl
_1

1

cl
_1

2

cl
_1

3

cl
_1

4

cl
_1

5

cl
_1

6

cl
_1

7

cl
_1

8

1.00

0.00 0.83 0.05

0.05

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.10

0.00

0.00

0.00 0.43

0.00

0.00 0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.43

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00 0.00

0.00

0.00

0.00

0.00

0.00 0.00 0.00

0.00 0.05

0.00 0.00

0.00 0.05

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00 0.04

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00 0.33

0.00 0.00

0.00 0.04 0.04

0.00

0.00

0.00

0.00

0.00 0.02 0.02

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00 0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.02 0.01

0.02

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00 0.00

0.00 0.08

0.08

0.08

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.10

0.74

1.00

0.77

0.92

1.00

0.57

0.95

1.00

0.57

0.96

1.00

1.00

1.00

1.00

1.00

0.67

1.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

RPL19B
...

PDA1

LPD1

LEU1

PYC1

RPB9

RNR4

ENO1

FOL2

RPC10

EN02

RPB3

RNR3

CYR1

RNR2

RPB4

RPB34

HYS2

POL32

...

Figure 3 | Fuzzy-clusters obtained by combining MCL and the graph-cluster-membership tools. The

section of the heatmap shows that several proteins have cluster membership percentages larger than zero

for several clusters; for example, ENO1 belongs to both clusters cl_2 (57%) and cl_5 (43%).

NATURE PROTOCOLS | VOL.3 NO.10 | 2008 | 1621

PROTOCOL

p

u
or

G
g

n i
h si l

b
u

P er
u ta

N 800 2
©

n
at

u
re

p
ro

to
co

ls
/

m
oc.er

ut a
n.

w
w

w//:
ptt

h

BOX 2 | METRICS FOR COMPARISONS BETWEEN CLASSES OR BETWEEN GRAPHS

In several sections of this protocol, we try to detect significant intersections between two classifications (e.g., MCL clusters, MIPS complexes,
etc.) or between two graphs (e.g., interactome). The Network Analysis Tools suite includes specialized programs to compare classes/clusters
(compare-classes), or graphs (compare-graphs), using various comparison statistics.

In both cases (classes or graphs), we can consider that we have a finite set of N elements. For compare-classes, N is the total number of
elements that can be a member of any reference or query class (e.g., all the yeast genes). For compare-graphs, the N elements are all the edges
that could possibly be traced between any pair of nodes of the input graph (e.g., all possible intersections between any pair of proteins).

Let us then define
N the total number of elements in the universe (cluster/class members for compare-classes, graph edges for compare-graphs);
R a reference set (one class/cluster, or one graph), containing Nr elements;
Q a query set (one class/cluster, or one graph), containing Nq elements;
C the intersection between a query and the reference set;
Nc the number of elements in this intersection.

Maximal number of edges in a graph
The maximal number of arcs between a set of X nodes depends on whether this graph is directed or not and on whether it does or does not admit
self-loops. We can easily compute the value in the four possible cases.
Directed Self-loops Number of edges
Yes Yes N ¼ X2

Yes No N ¼ X2 � X ¼ X(X � 1)
No No N ¼ XðX � 1Þ

2

No Yes N ¼ X + XðX � 1Þ
2 ¼ XðX + 1Þ

2

The column ‘‘Number of edges’’ corresponds to the N used for the statistics on graph comparisons.

Jaccard coefficient
The Jaccard coefficient is defined as the ratio between the intersection and the union between two sets.

J ¼ R\ Q
R[Q ¼ Nc

Nr + Nq� Nc :

The advantage of the Jaccard coefficient is that it gives us an intuitive perception about the mutual coverage of the query and the reference.
However, it presents the weakness to be independent of the absolute sizes of the union and intersection. For example, an intersection
of 1 element between a set of 3 and a set of 2 elements will give the same Jaccard coefficient as an intersection of 100 between a set of 300
and a set of 100 elements, whereas the random expectation for these two events is very different. A more reliable statistics is the
hypergeometric coefficient, as discussed below.

The hypergeometric probability
The hypergeometric distribution is often used to estimate the significance of the intersection between two random selections in a set. The
classical example of application of the hypergeometric distribution is the random selection without replacement in an urn containing a set of
white and black balls.

The reference set (classes or graph) can be assimilated to the black balls of the urn example. The query set corresponds to the selection without
replacement (indeed, a member cannot appear several times in the same class and an edge cannot appear several times in the same graph).
The hypergeometric P value indicates the probability to observe by chance at least x elements at the intersection between the query set and the
reference set.

Pval ¼ PðX � NcÞ ¼
PNq

i¼ Nc

Ci
Nr C

Nq� i
N� Nr

CNq
N

:

The P value can be interpreted as the probability for one comparison to return a false positive.
In the case of compare-classes, an important correction has to be done for multitesting. Indeed, each class of the query set (e.g., MCL clusters)

will be compared to each class of the reference set (e.g., MIPS complexes). The number of comparisons is thus the product between the number of
classes in the query set, and in the reference set, respectively. Thus, the nominal P value can be misleading because even a low P value is expected
to emerge by chance when the number of comparisons is very high. A classical correction for this multitesting is to compute the E value.
Eval ¼ T � Pval’

where T is the number of tests. The E value represents the number of false positives to be expected in a battery of t-tests.
To give a realistic order of magnitude, in our study case, we compared 243 clusters obtained from MCL with 107 complexes annotated in the

MIPS. The number of comparisons is thus T ¼ 243� 107¼26,001. Consequently, with an upper threshold of 1% on the P value, we would expect
at least 260 false positives!

It is also usual to perform a minus log conversion of the E value, which gives the ‘significance score’.

sig¼�log10(Eval).

The sig score gives an intuitive perception of the exceptionality of the intersection between sets: a negative significance indicates that an
intersection of at least that size is likely to occur by chance, a positive value means that it is significant.

1622 | VOL.3 NO.10 | 2008 | NATURE PROTOCOLS

PROTOCOL

27| Click on the GO button. After a few seconds, a result page appears with links pointing toward two alternative output
formats: tab-delimited text file or hypertext markup language (HTML) page (Fig. 4). The tab-delimited text file can be
downloaded to your computer and then imported to various applications for further analysis. The HTML format is useful for
inspecting and handling the result on the Web browser. The NeAT HTML tables support dynamic reordering of the rows according
to the values of any column, by clicking on the header of this column. The first line of the result file indicates the parameters
used for the analysis and documents the content of the columns. This is followed by a result table, where each line reports the
comparison between one MCL cluster and one complex.

Network comparison
28| In this section, we will use the tool compare-graphs to compare the interactions annotated for the yeast Saccharomyces
cerevisiae in the STRING database with the synthetic lethality relationships obtained from the BioGRID database. Download
on your computer the file Saccharomyces_cerevisiae_biogrid_synthetic_lethality_names.tab from the data repository
(see EQUIPMENT).

29| In the NeAT menu of the left panel, click on the link Network comparison. For our study case, select as Query graph the
previously downloaded file yeast_string_database_graph_names_undirected.tab, and as Reference graph the file Saccharomyces_
cerevisiae_biogrid_synthetic_lethality_names.tab, by clicking on the corresponding Browse . . . buttons. For each file, you need to
specify the columns containing source and target nodes, respectively. In both files, the first column contains the source and
second column the target. We thus just have to fill the weight column for the query graph (weight ¼ 3) as done previously. The
reference network (synthetic lethality) does not contain edge weights.

30| Since in our example, only the edges of the STRING network are weighted, select weight/label of the query for the option
Weight/label on the edges of the output graph.

p

u
or

G
g

n i
h si l

b
u

P er
u ta

N 800 2
©

n
at

u
re

p
ro

to
co

ls
/

m
oc.er

ut a
n.

w
w

w//:
ptt

h

; compare-classes -v 1 -r /home/rsat/rsa-tools/public_html/tmp/compare-ref-classes.4BlvXAMVHb -q /home/rsat/rsa-tools/public_h
occ,proba -lth Q 1 -lth R 1 -lth QR 1 -lth sig 0 -sort sig

tml/tmp/compare-query-classes.rw4INKwoRT -return rank,

; Input files
; query_classes /home/rsat/rsa-tools/public_html/tmp/compare-query-classes.rw4INKwoRT
; ref_classes /home/rsat/rsa-tools/public_html/tmp/compare-ref-classes.4BlvXAMVHb
; Query classes (nq) 106
; Reference classes (nr) 243
; Elements in ref classes (nr) 1121
; Elements in query classes (nq) 1240
; Elements in query+ref classes 1861
; Population size 1861
; Comparisons (rn*nq) 25758
; Multi-testing correction (nc) 25758
; Sort key sig
; Thresholds lower upper
; 1 NA
; 1 NA
; 1 NA
; sig 0 NA
; Column contents
; 1 rank Rank of the comparison
; 2 ref Name of the first class (called class Q hereafter)
; 3 query Name of the second class (called class R hereafter)
; 4 R Number of elements in class R
; 5 Q Number of elements in class Q
; 6 QR Number of elements found in the intersecion between classes R and Q
; 7 QvR Number of elements found in the union of classes R and Q. This is R or Q.
; 8 R!Q Number of elements found in class R but not class Q
; 9 Q!R Number of elements found in the class Q but not in class R
; 10 !Q!R Number of elements of the population (P) found neither in class Q nor in the class R
; 11 P_val P-value of the intersection, calculated witht he hypergeometric function. Pval = P(X >= QR).
; 12 E_val E-value of the intersection. E_val = P_val * nb_tests
; 13 sig Significance of the intersection. sig = –log10(E_val)

#rank ref query R Q QR QvR R!Q Q!R !Q!R P_val E_val sig
1 Cytoplasmic-ribosomes cl_1 138 151 123 166 15 28 1695 4.00E-146 1.00E-141 140.99
2 cytoplasmic-ribosomal-large-scl_1 81 151 74 158 7 77 1703 7.30E-81 1.90E-76 75.73
3 26S-proteasome cl_8 36 36 32 40 4 4 1821 2.80E-60 7.10E-56 55.15
4 cytoplasmic-ribosomal-small-scl_1 57 151 49 159 8 102 1702 1.10E-48 2.80E-44 43.56
5 19-22S-regulator cl_8 18 36 18 36 0 18 1825 8.80E-34 2.30E-29 28.64
6 Pre-replication-complex cl_17 14 16 14 16 0 2 1845 1.80E-33 4.70E-29 28.32
7 Replication-complexes cl_17 49 16 16 49 33 0 1812 3.60E-27 9.30E-23 22.03
8 Replication-complex cl_17 19 16 13 22 6 3 1839 3.00E-26 7.80E-22 21.11
9 H+-transporting-ATPase-vacuolcl_9 15 34 14 35 1 20 1826 3.20E-25 8.20E-21 20.09
10 20S-proteasome cl_8 15 36 14 37 1 22 1824 8.60E-25 2.20E-20 19.65
11 F0-F1-ATP-synthase cl_9 15 34 13 36 2 21 1825 1.90E-22 5.00E-18 17.3
12 Cytochrome-bc1-complex cl_38 9 7 7 9 2 0 1852 2.40E-18 6.10E-14 13.21
13 Oligosaccharyltransferase cl_21 9 13 8 14 1 5 1847 3.30E-18 8.50E-14 13.07
14 Replication-initiation-complecl_17 8 16 8 16 0 8 1845 3.70E-18 9.40E-14 13.03
15 Replication-fork-complexes cl_10 30 27 13 44 17 14 1817 4.30E-18 1.10E-13 12.95
16 Anaphase-promoting-complex cl_4 11 58 11 58 0 47 1803 1.00E-17 2.60E-13 12.58
17 Cytochrome-c-oxidase cl_27 8 10 7 11 1 3 1850 6.30E-17 1.60E-12 11.79
18 RNA-polymerase-I cl_2 14 149 14 149 0 135 1712 2.50E-16 6.40E-12 11.19
19 Cdc28p-complexes cl_4 10 58 10 58 0 48 1803 3.90E-16 1.00E-11 11

Q
QR
R

Figure 4 | Most significant associations between MCL clusters versus MIPS complexes. This figure shows only the top of the table returned by the program

compare-classes. Each row represents the comparison between one complex (reference) and one MCL cluster (query).

NATURE PROTOCOLS | VOL.3 NO.10 | 2008 | 1623

PROTOCOL

31| Several alternatives are possible for the option Output type, corresponding to various combinations of the query and refer-
ence graphs (union and difference). The arcs of the resulting graph will be labeled and colored differently depending on whether
they belong to the query graph only, the reference graph only or to their intersection. For the study case, to only return the
arcs that are in common to both graphs, select Intersection as Output type.

32| If you want to visualize the resulting network with yEd or Cytoscape, select GML format as Output format.

33| In case your graph is directed, check the option Graphs must be considered as directed, so that an edge from node A to
node B is considered as distinct from an edge from B to A. In our study case, protein interactions are undirected, so this option
must remain unchecked.

34| Finally, you can indicate whether or not your graph may admit self-loops (edges having the same node as source and
target). In our study case (synthetic lethality versus STRING interactions), the graph is undirected and has no self-loop.
m CRITICAL STEP The intersection statistics will be strongly affected by the nature of the graph (directed or not, with or without
self-loops), as described in Box 2.

35| When this form is filled, click on the GO button. The computation of the comparison may take some time (between 10 s
and a few minutes) depending on the size of the input networks.

36| The result page (Fig. 5a) shows statistics about the sizes of the input graphs, their union, intersection and differences
(see Box 2) and a link pointing to a separate file corresponding to the comparison network. To save this network on your com-
puter, right click on its URL and select Save link asy. The resulting network can be visualized as described above (Fig. 5b).

37| The ‘Next step’ box permits to use the network resulting from compare-graphs as input for some other NeAT programs
(clustering, display, randomization, etc.).

Negative controls
38| To check that the results described previously were not obtained by chance only, we can run random negative controls by
applying the processes described previously to random graphs. The program random-graph can be used to generate random
graphs according to various random models. Click on the link Network randomization in the left menu. Upload a graph (e.g.,
yeast_string_database_graph_names_undirected.tab) and select the output format of your choice.
m CRITICAL STEP The most important parameter is the choice of the type of randomization. In general, we would recommend to
select the option node degree conservation that consists in shuffling the edges, each node keeping the same number of neighbors
as in the original graph. This procedure is specially designed to avoid duplicating edges, unless you check the option ‘Allow
duplicated edges’ (this should usually not be done). Another randomization type is the node degree distribution conservation
where the global distribution of the node degree is conserved but each node presents a different degree than in the original
graph. Finally, the program also supports Erdös-Renyi randomization, where edges are distributed between pairs of nodes with
equal probability.

39| To obtain the randomized network, click on the GO button.

40| You can now apply to this randomized network all the steps described in the previous paragraphs (clustering, subnetwork
extraction, comparison with reference graph, etc.). In principle, the results obtained with the randomized graph should be
clearly less convincing than those obtained with the real STRING interaction network.

Path finding
41| Given an interaction network (e.g., the STRING database network) and two query proteins, we can ask which intermediate
proteins connect them. This question can be answered using Pathfinder, a tool that retrieves the k-shortest paths in a network
for given source and target nodes (see Box 3 for more information on k-shortest paths finding). The STRING network with
converted weights is available in the data repository (see EQUIPMENT), in the file string_database_graph_converted_weights.tab.
Download this file to your computer.

42| In the NeAT main menu, click on the menu Path finding, then on k shortest path finding to open the Pathfinder query
form. Upload your network by clicking on the Browse . . . button in the section Network. Alternatively, you can copy–paste
the network into the text field. For the case you would like to store this network on the server for later use, click the

p

u
or

G
g

n i
h si l

b
u

P er
u ta

N 800 2
©

n
at

u
re

p
ro

to
co

ls
/

m
oc.er

ut a
n.

w
w

w//:
ptt

h

1624 | VOL.3 NO.10 | 2008 | NATURE PROTOCOLS

PROTOCOL

p

u
or

G
g

n i
h si l

b
u

P er
u ta

N 800 2
©

n
at

u
re

p
ro

to
co

ls
/

m
oc.er

ut a
n.

w
w

w//:
ptt

h

a

b

Figure 5 | Result of the fusion between the BioGRID synthetic lethality data set (reference graph) and the yeast–protein interaction data set annotated in the

STRING database (query graph). (a) Comparison statistics (see Box 2). (b) Drawing of the union graph (with yEd). Color code: red edges, false positives (edges

found in the query graph but not in the reference graph); blue edges, false negatives (edges found in the reference graph but not in the query); green edges,

true positives (edges present in both networks, in this case, only 138 among the B20,000).

NATURE PROTOCOLS | VOL.3 NO.10 | 2008 | 1625

PROTOCOL

Store network on server check box. This will allow you to perform further analyses on the same network, without having to
transfer it repeatedly from your computer to the server.

43| Enter the IDs of the source and target nodes. For this study case, type RAS2 in the Source nodes field, and TEC1 into the
Target nodes field.

44| For the option Weighting scheme, select ‘as given in input graph’. This will specify that weights should be taken from the
third column of the input file and not calculated according to a predefined weighting scheme.

45| The result can be exported in various formats, depending on what you want to do with the resulting paths. (i) If you want
to display the path in a tabular format, select Table as Output format. (ii) The result can also be exported to GML format, to
visualize the resulting paths as a subset of the original network (this can be done with visualization Cytoscape or yEd). For this,
select Graph as Output format, set the Graph format to GML format and set the Graph output type to paths unified into one
graph.

46| Click GO to start the computation.
? TROUBLESHOOTING

47| The result will be displayed according to the option chosen at Step 45. (i) Output format ‘Table’. After a few seconds (or
minutes, depending on the size of your graph), the results should appear in the form of two links. The first link points to the
table of paths in simple text format, the second to the same table in HTML format (Fig. 6). If the checkbox Store network on
server has been clicked, Pathfinder returns the identifier of the submitted network in addition. Submitting this identifier instead
of the network itself speeds up the next path-finding job performed on it, because the previously transferred network is used,
thereby avoiding to upload it again. (ii) The result form will contain a link to the resulting network in a GML file, which can be
downloaded on your computer and displayed with Cytoscape or yEd. This link is followed by a ‘Next steps’ box, which will permit
you to fetch the result network into another NeAT tool.

� TIMING
The timings listed below depend on the server load (the number of jobs currently running on the server). However, for the study
case we expect the tools to finish within 5 min.
Compare graph: o30 s; MCL: o20 s; graph-get-clusters: o40 s; display-graph: o1 min; compare-classes: o20 s; Pathfinder:
o1 min; Fuzzy clustering: o2 min

? TROUBLESHOOTING
Troubleshooting advice can be found in Table 1.

p

u
or

G
g

n i
h si l

b
u

P er
u ta

N 800 2
©

n
at

u
re

p
ro

to
co

ls
/

m
oc.er

ut a
n.

w
w

w//:
ptt

h

BOX 3 | k-SHORTEST PATHS FINDING IN WEIGHTED NETWORKS

Path finding attempts to find the shortest path between a given start node and a given end node in a network (graph). If several such paths
exist, they should be all returned as equally valid solutions. Sometimes, we are not only interested in the shortest path, but also in the second
shortest, third shortest or, in general, the k-shortest paths. The task of a k-shortest paths algorithm is to enumerate all paths up to the requested
rank (k) in the order of their length. This is accomplished for example by the recursive enumeration algorithm37 or by Eppstein’s algorithm38.
Often, the edges in biological networks are not equally relevant. For example, experimentally validated protein–protein interactions are more
trustable than those observed in only one high-throughput experiment. To express such differential reliabilities, a higher cost (weight) can be
placed on edges representing less trustable protein–protein interactions. When costs, or weights, have been set on the nodes or edges of a
network, we no longer search for the shortest but for the lightest (that is less costly) path. Consequently, the k-shortest paths algorithm returns
paths ranked according to their weight with the lightest path on top.

The weights have to be selected in a relevant way for the biological network of interest. The choice of a relevant weighting criterion clearly
depends on your experience about this network and about the quality of the data available.

In a previous study21,22, we evaluated the accuracy of k-shortest path finding for inferring metabolic pathways from compound/reaction
networks, and showed that a graph where each node is weighted according to its degree (number of incoming + outgoing edges) achieves an
accuracy of 83%.

In our study case with the yeast interaction network, we will use the scores provided by STRING as weights. In this case, the score assigned to
an edge is a measurement for the reliability of the protein–protein interaction represented by this edge. In contrast, for Pathfinder, an edge
weight is the cost of this edge. Therefore, we converted the scores into costs using the following formula:

We ¼ 1;000
Se

;

where Se is the score of an edge as defined in STRING (from 0 to 1,000), and We is the weight assigned to that edge for path finding.

1626 | VOL.3 NO.10 | 2008 | NATURE PROTOCOLS

PROTOCOL

p

u
or

G
g

n i
h si l

b
u

P er
u ta

N 800 2
©

n
at

u
re

p
ro

to
co

ls
/

m
oc.er

ut a
n.

w
w

w//:
ptt

h

; Experiment exp_0

; Pathfinding results

; Date=Thu Jun 26 16:03:53 CEST 2008

; ===============================

; INPUT

; Source=RAS2

; Target=TEC1

; Graph=Pathfinder_tmpGraph_d597cd86-3095-475f-99e7-d70a542d072a.tab

; Undirected=true

; Metabolic standard format=false

; REA format=false

; Temporary directory=Temp

; CONFIGURATION

; Algorithm=rea

; Weight Policy=

; Weights given on arcs=true

; Maximal weight=1000000

; Maximal length=1000000

; Minimal length=0

; Exclusion attribute=ReferencedObject.PublicId

; Rank=5

; REA timeout=10

; EXPLANATION OF COLUMNS

; Start node=given start node identifier

; End node=given end node identifier

; K=path index

; Rank=rank of path (paths having same distance have the same rank, though their step number might differ)

; Distance=weight of path (sum of edge weights)

; Steps=number of nodes in path

; Path=sequence of nodes from start to end node that forms the path

; ===============================

#start node end node path index rank distance steps path

RAS2 TEC1 1 1 6.25 6 RAS2->CDC42->STE20->FUS3->STE12->TEC1

RAS2 TEC1 2 2 7.5 7 RAS2->CDC42->STE20->STE11->FUS3->STE12->TEC1

RAS2 TEC1 3 2 7.5 7 RAS2->CDC42->SHO1->STE20->FUS3->STE12->TEC1

RAS2 TEC1 4 2 7.5 7 RAS2->CDC42->STE20->FUS3->DIG1->STE12->TEC1

RAS2 TEC1 5 2 7.5 7 RAS2->CDC42->BEM1->STE20->FUS3->STE12->TEC1

RAS2 TEC1 6 2 7.5 7 RAS2->CDC42->STE20->STE5->FUS3->STE12->TEC1

RAS2 TEC1 7 2 7.5 7 RAS2->CDC42->STE20->FUS3->DIG2->STE12->TEC1

RAS2 TEC1 8 2 7.5 7 RAS2->CDC42->STE20->STE7->FUS3->STE12->TEC1

RAS2 TEC1 9 9 8.75 8 RAS2->CDC42->STE20->STE5->STE7->FUS3->STE12->TEC1

RAS2 TEC1 10 9 8.75 8 RAS2->CDC42->BEM1->STE20->STE11->FUS3->STE12->TEC1

RAS2 TEC1 11 9 8.75 8 RAS2->CDC42->STE20->STE7->STE11->FUS3->STE12->TEC1

RAS2 TEC1 12 9 8.75 8 RAS2->CDC42->STE20->STE5->STE11->FUS3->STE12->TEC1

RAS2 TEC1 13 9 8.75 8 RAS2->CDC42->SHO1->STE20->FUS3->DIG1->STE12->TEC1

RAS2 TEC1 14 9 8.75 8 RAS2->CDC42->BEM1->STE20->STE7->FUS3->STE12->TEC1

RAS2 TEC1 15 9 8.75 8 RAS2->CDC42->STE20->STE5->FUS3->DIG1->STE12->TEC1

RAS2 TEC1 16 9 8.75 8 RAS2->CDC42->STE20->STE7->FUS3->DIG1->STE12->TEC1

RAS2 TEC1 17 9 8.75 8 RAS2->CDC42->STE20->STE11->STE7->FUS3->STE12->TEC1

RAS2 TEC1 18 9 8.75 8 RAS2->CDC42->STE20->STE11->STE5->FUS3->STE12->TEC1

RAS2 TEC1 19 9 8.75 8 RAS2->CDC42->STE20->STE7->KSS1->DIG1->STE12->TEC1

RAS2 TEC1 20 9 8.75 8 RAS2->CDC42->SHO1->STE20->STE5->FUS3->STE12->TEC1

RAS2 TEC1 21 9 8.75 8 RAS2->CDC42->BEM1->STE20->FUS3->DIG1->STE12->TEC1

RAS2 TEC1 22 9 8.75 8 RAS2->CDC42->STE20->STE11->FUS3->DIG2->STE12->TEC1

RAS2 TEC1 23 9 8.75 8 RAS2->CDC42->STE20->STE7->FUS3->DIG2->STE12->TEC1

RAS2 TEC1 24 9 8.75 8 RAS2->CDC42->BEM1->STE20->FUS3->DIG2->STE12->TEC1

RAS2 TEC1 25 9 8.75 8 RAS2->CDC42->STE20->FUS3->DIG1->DIG2->STE12->TEC1

RAS2 TEC1 26 9 8.75 8 RAS2->CDC42->STE20->FUS3->DIG2->DIG1->STE12->TEC1

RAS2 TEC1 27 9 8.75 8 RAS2->CDC42->SHO1->STE20->STE11->FUS3->STE12->TEC1

RAS2 TEC1 28 9 8.75 8 RAS2->CDC42->STE20->STE7->KSS1->DIG2->STE12->TEC1

RAS2 TEC1 29 9 8.75 8 RAS2->CDC42->STE20->STE7->STE5->FUS3->STE12->TEC1

RAS2 TEC1 30 9 8.75 8 RAS2->CDC42->STE20->STE5->FUS3->DIG2->STE12->TEC1

RAS2 TEC1 31 9 8.75 8 RAS2->CDC42->SHO1->STE20->STE7->FUS3->STE12->TEC1

RAS2 TEC1 32 9 8.75 8 RAS2->CDC42->STE20->STE11->FUS3->DIG1->STE12->TEC1

RAS2 TEC1 33 9 8.75 8 RAS2->CDC42->BEM1->STE20->STE5->FUS3->STE12->TEC1

RAS2 TEC1 34 9 8.75 8 RAS2->CDC42->SHO1->STE20->FUS3->DIG2->STE12->TEC1

Figure 6 | Result obtained with Pathfinder upon execution of protocol with the study case. The table lists the paths found between RAS2 (source node) and

TEC1 (target node), ranked by increasing value of weight (distance). RAS2 and TEC1 are the start and end node of the filamentous growth pathway in yeast.

(continued)

TABLE 1 | Troubleshooting table.

Step Problem Possible reason Solution

8 After a few minutes, I still do not
have any answer and the browser displays
‘‘Server is not responding’’

If you submitted a heavy task, the
processing may exceed 5 min. After
that delay, Internet browser programs
stop waiting for the server and display
the error message

For heavy tasks, it is preferable either to install the
stand-alone version of the command-line tools on
your machine or to write a client script for the RSAT
Web services

Another possibility (if the task you
submitted is not heavy) is that there is a
problem with your Internet connection

17 No graph layout after having loaded a
GML file into yEd or Cytoscape

When a graph is loaded in yEd or
CytoScape, it is initially displayed with
a trivial layout (all nodes on a diagonal)

In yEd: select Layout from the menu, then select
the submenu Organic and choose the option
Classic, then click OK

In Cytoscape: select Layout from the menu, then
select the submenu yFiles and choose Organic

Both editors offer other layouts that you may try

NATURE PROTOCOLS | VOL.3 NO.10 | 2008 | 1627

PROTOCOL

ANTICIPATED RESULTS
Clustering
Figure 2 shows the results that should be obtained by applying the MCL graph clustering algorithm on the STRING database
interaction network. Each cluster is highlighted with a specific color. Figure 2a only displays intracluster edges, so that each
cluster appears as a separate component. This representation highlights the intracluster structure and edge density, and could
give indication about possible improvement of the clusters by further subdivision. For example, the top-left cluster seems to
be composed of several various connected regions, which could be explored in more detail, taking into account some biological
knowledge. On Figure 2b, both intra- and interclusters are displayed. Intracluster edges are highlighted by cluster-specific
colors, whereas intercluster edges are displayed in black, thereby revealing the interactions that were discarded during
the clustering procedure. These two representations thus provide complementary indication for the interpretation of the
clustering result.

The heatmap in Figure 3 represents a section of the node–cluster membership matrix, with cells colored according to the
membership degree (the darker the cell, the higher the membership value). Within each cell, the membership degree values are
displayed, indicating how strongly each node (row) is connected to each cluster (column). This strength (node–cluster
membership) is defined as the sum of weights of the edges connecting the considered node to the considered cluster, divided by
the sum of weights of all edges starting from this node. The figure shows only a fragment of the table, but it already appears
that some genes have similar membership profiles, thereby suggesting their involvement in common functions. This is the case
of the genes LPD1, PDA1 and PYC1, which are involved in pyruvate metabolism.

Figure 4 shows the results of the comparison between the dense clusters of the STRING graph and the complexes annotated
in the MIPS database. The header gives a short explanation for the content of each column of the result table. In this case,
results are sorted by decreasing values of the hypergeometric significance (last column) calculated as described in Box 2. Each
row describes the comparison between one MCL cluster and one MIPS complex. For example, the first row compares the MCL clus-
ter ‘cl_2 ’, which contains 151 proteins, with a set of 138 proteins involved in cytoplasmic ribosomes. The intersection contains
123 proteins, which represents a very high fraction of both the MCL cluster, and the annotated complex. The probability to
observe such an intersection by chance is 4E–146. The E value, obtained with the correction for multitesting, indicates that the
number of false positives expected with such a P value would be 1E–141. In other terms, the correspondence between this MCL
cluster and the cytoplasmic ribosome is too high to be explained by chance.

Network comparison
Figure 5a shows the statistics of comparison between the STRING ‘database’ network and the BioGRID synthetic lethality data set.
The ‘synthetic lethality’ network used as reference contains 2,352 proteins linked by 9,413 edges, and the query graph contained
1,240 nodes and 11,027 edges. The intersection between those graphs is apparently weak: 138 edges only. The Jaccard coefficient
indicates that this intersection represents no 40.68% of the union. However, the number of edges expected by chance at the
intersection is even smaller: E(Q^R) ¼ 23.24. The hypergeometric P value (Box 2) indicates the probability to observe at least
138 edges at the intersection when 23.24 are expected by chance. In this study case, we observe that even with no 40.68% of
edges at the intersection, the P value is very low (1.4E�59). In other terms, the number of edges at the intersection is too much
high to be explained by chance, and is more likely to result from the biological relevance of both datasets.

Pathfinder
The known signal transduction path connecting RAS2 and TEC1 consists of the following steps18:
RAS2 - CDC42 - STE20 - STE11 - STE7 - KSS1 - DIG1/2 - TEC1

p

u
or

G
g

n i
h si l

b
u

P er
u ta

N 800 2
©

n
at

u
re

p
ro

to
co

ls
/

m
oc.er

ut a
n.

w
w

w//:
ptt

h

TABLE 1 | Troubleshooting table (continued).

Step Problem Possible reason Solution

22 You obtain the message: ‘‘Error
Incongruence between graph and
cluster files’’

Cluster and graph files do not correspond
to the same network, or the specified
format of the graph is not correct

Check that the clusters correspond to the graph. If
so, check the format of your graph file is the one
you entered in the relevant field

The low-resolution heatmap does not
display properly

The image is scaled so it fits on the
window

Click on the image to zoom. You may inspect the
whole map by using the scrolling bar

46 You obtain the message: ‘‘PATHFINDER
ERROR: One of your seed nodes is not
part of the input graph’’

You provided seed node identifiers that
do not match any of the node identifiers
of the input graph

Check the spelling of your seed node identifiers

In general, all tools require an exact match between
input node identifiers and those of nodes in the
network

1628 | VOL.3 NO.10 | 2008 | NATURE PROTOCOLS

PROTOCOL

Pathfinder reports the following path of first rank (the matching parts are underlined, and the nonseed matching part are high-
lighted in bold):

RAS2 - CDC42 - STE20 - FUS3 - STE12 - TEC1
This path connects STE20 to TEC1 via FUS3 and STE12, bypassing STE11, STE7, KSS1 and DIG1/2.
Among the paths of length 8 (third rank paths), we find paths closer to the annotated pathway, such as
RAS2 - CDC42 - STE20 - STE11 - FUS3 - DIG1 - STE12 - TEC1
Scott and colleagues applied their path-finding algorithm to another yeast protein–protein interaction network of similar size

(4,500 nodes and 14,500 edges) taken from MIPS. For RAS2 and TEC1, they obtain the following as best path of length 8:
RAS2 - CDC25 - HSP82 - STE11 - STE5 - STE7 - KSS1 - TEC1

Although Pathfinder has not been designed in particular for protein interaction networks, it can be used to predict signal
transduction pathways if appropriate weights have been set on the network under investigation. The accuracy of the prediction
depends also on the data quality. For example, the STRING interaction network does not contain any edge between DIG2/DIG1
and TEC1, making it impossible to reach a prediction accuracy of 100%. When predicting pathways from real-world interaction
networks, one must always keep in mind that these data might be incomplete or contain false positive interactions.

ACKNOWLEDGMENTS S.B. is the recipient of a PhD grant from the Fonds pour la
Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA). K.F. is
supported by the Actions de Recherches Concertées de la Communauté Française
de Belgique (ARC grant number 04/09-307). G.L.-M. was funded by a PhD grant
from the Fonds Xenophilia [Université Libre de Bruxelles (ULB)] and by a
postdoctoral fellowship from the Région Wallonne de Belgique (TransMaze project
415925). The BiGRe laboratory is supported by the BioSapiens Network of
Excellence funded under the sixth Framework program of the European
Communities (LSHG-CT-2003-503265) and by the Belgian Program on
Interuniversity Attraction Poles, initiated by the Belgian Federal Science Policy
Office, project P6/25 (BioMaGNet). We acknowledge the students of the Master in
Bioinformatics and Modeling (ULB, Belgium) for their useful corrections and
suggestions. S.B. and K.E. equally contributed to this article.

Published online at http://www.natureprotocols.com/
Reprints and permissions information is available online at http://npg.nature.com/
reprintsandpermissions/

1. Thomas-Chollier, M. et al. RSAT: regulatory sequence analysis tools. Nucleic Acids
Res. 36, W119–W127 (2008).

2. Brohée, S. et al. NeAT: a toolbox for the analysis of biological networks, clusters,
classes and pathways. Nucleic Acids Res. 36, W444–W451 (2008).

3. Turatsinze, J.-V., Thomas-Chollier, M., Defrance, M. & van Helden, J. Using RSAT to
scan genome sequences for transcription factor binding sites and cis-regulatory
modules. Nat. Protoc. doi:10.1038/nprot.2008.97 (2008).

4. Defrance, M., Janky, R., Sand, O. & van Helden, J. Using RSAT oligo-analysis
and dyad-analysis tools to discover regulatory signals in nucleic sequences.
Nat. Protoc. doi:10.1038/nprot.2008.98 (2008).

5. Sand, O., Thomas-Chollier, M., Vervisch, E. & van Helden, J. Analyzing multiple
data sets by interconnecting RSAT programs via SOAP Web services–an example
with ChIP-chip data. Nat. Protoc. doi:10.1038/nprot.2008.99 (2008).

6. Jeong, H., Tombor, B., Albert, R., Oltvai, Z.N. & Barabási, A.L The large-scale
organization of metabolic networks. Nature 407, 651–654 (2000).

7. Jeong, H., Mason, S.P., Barabási, A.L. & Oltvai, Z.N. Lethality and centrality in
protein networks. Nature 411, 41–42 (2001).

8. Fell, D.A. & Wagner, A. The small world of metabolism. Nat. Biotechnol. 18,
1121–1122 (2000).

9. Blatt, M., Wiseman, S. & Domany, E. Superparamagnetic clustering of data.
Phys. Rev. Lett. 76, 3251–3254 (1996).

10. Bader, G.D. & Hogue, C.W.V. An automated method for finding molecular
complexes in large protein interaction networks. BMC Bioinformatics 4, 2
(2003).

11. Gagneur, J., Jackson, D.B. & Casari, G. Hierarchical analysis of dependency in
metabolic networks. Bioinformatics 19, 1027–1034 (2003).

12. Spirin, V. & Mirny, L.A. Protein complexes and functional modules in molecular
networks. Proc. Natl. Acad. Sci. USA 100, 12123–12128 (2003).

13. King, A.D., Przulj, N. & Jurisica, I. Protein complex prediction via cost-based
clustering. Bioinformatics 20, 3013–3020 (2004).

14. Van Dongen, S. Graph Clustering by Flow Simulation. PhD Thesis (Centers for
Mathematics and Computer Science (CWI), University of Utrecht, 2000).

15. Pereira-Leal, J.B., Enright, A.J. & Ouzounis, C.A. Detection of functional modules
from protein interaction networks. Proteins 54, 49–57 (2004).

16. Enright, A.J., Van Dongen, S. & Ouzounis, C.A. An efficient algorithm for large-
scale detection of protein families. Nucleic Acids Res. 30, 1575–1584 (2002).

17. Brohée, S. & van Helden, J. Evaluation of clustering algorithms for protein-
protein interaction networks. BMC Bioinformatics 7, 488 (2006).

18. Scott, J., Ideker, T., Karp, R.M. & Sharan, R. Efficient algorithms for detecting
signaling pathways in protein interaction networks. J. Comput. Biol. 13, 133–144
(2005).

19. Bebek, G. & Yang, J. PathFinder: mining signal transduction pathway
segments from protein-protein interaction networks. BMC Bioinformatics 8, 335
(2007).

20. Rahman, S.A., Advani, P., Schunk, R., Schrader, R. & Schomburg, D Metabolic
pathway analysis web service (Pathway Hunter Tool at CUBIC). Bioinformatics 21,
1189–1193 (2004).

21. Croes, D., Couche, F., Wodak, S. & van Helden, J. Metabolic PathFinding: inferring
relevant pathways in biochemical networks. Nucleic Acids Res. 33, W326–W330
(2005).

22. Croes, D., Couche, F., Wodak, S. & van Helden, J. Inferring meaningful pathways in
weighted metabolic networks. J. Mol. Biol. 356, 222–236 (2006).

23. Shannon, P. et al. Cytoscape: a software environment for integrated models of
biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

24. de Nooy, W., Mrvar, A. & Batagelj, V. Exploratory Social Network Analysis with Pajek
Series: Structural Analysis in the Social Sciences (No. 27) (Cambridge University
Press, Cambridge, 2005).

25. Baitaluk, M., Sedova, M., Ray, A. & Gupta, A. BiologicalNetworks: visualization
and analysis tool for systems biology. Nucleic Acids Res. 34, W466–W471
(2006).

26. Hu, Z. et al. VisANT 3.0: new modules for pathway visualization, editing,
prediction and construction. Nucleic Acids Res. 35, W625–W632 (2007).

27. Hull, D. et al. Taverna: a tool for building and running workflows of services.
Nucleic Acids Res. 34, W729–W732 (2006).

28. Lima-Mendez, G., van Helden, J., Toussaint, A. & Leplae, R. Reticulate
representation of evolutionary and functional relationships between phage
genomes. Mol. Biol. Evol. 25, 762–777 (2008).

29. Croes, D., Couche, F., Wodak, S.J. & van Helden, J. Inferring meaningful pathways
in weighted metabolic networks. J. Mol. Biol. 356, 222–236 (2006).

30. Croes, D., Couche, F., Wodak, S.J. & van Helden, J. Metabolic PathFinding:
inferring relevant pathways in biochemical networks. Nucleic Acids Res. 33,
W326–W330 (2005).

31. von Mering, C. et al. STRING 7-recent developments in the integration and
prediction of protein interactions. Nucleic Acids Res. 35, D358–D362 (2007).

32. Breitkreutz, B.J. et al. The BioGRID Interaction Database: 2008 update.
Nucleic Acids Res. 36, D637–D640 (2008).

33. Keseler, I.M. et al. EcoCyc: a comprehensive database resource for Escherichia coli.
Nucleic Acids Res. 33, D334–D337 (2005).

34. Kanehisa, M., Goto, S., Kawashima, S. & Nakaya, A. The KEGG databases at
GenomeNet. Nucleic Acids Res. 30, 42–46 (2002).

35. Mewes, H.W. et al. MIPS: analysis and annotation of proteins from whole
genomes. Nucleic Acids Res. 32, D41–D44 (2004).

36. Ashburner, M. et al. Gene ontology: tool for the unification of biology. The Gene
Ontology Consortium. Nat. Genet. 25, 25–29 (2000).

37. Jimenez, V.M. & Marzal, A. Computing the K shortest paths: a new algorithm and
an experimental comparison. In Proceeding of the 3rd International Workshop on
Algorithm Engineering (WAE 1999) Vol. 1668, 15–29 (Springer-Verlag, London,
1999).

38. Eppstein, D. Finding the k shortest paths. SIAM J. Comput. 28, 652–673 (1998).

p

u
or

G
g

n i
h si l

b
u

P er
u ta

N 800 2
©

n
at

u
re

p
ro

to
co

ls
/

m
oc.er

ut a
n.

w
w

w//:
ptt

h

NATURE PROTOCOLS | VOL.3 NO.10 | 2008 | 1629

PROTOCOL

