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Network Anatomy Controlling 
Abrupt-like Percolation Transition
Hirokazu Kawamoto1, Hideki Takayasu2,3 & Misako Takayasu1,2

We virtually dissect complex networks in order to understand their internal structure, just as doctors 

do with the bodies of animals. Our novel method classifies network links into four categories: bone, 
fat, cartilage, and muscle, based on network connectivity. We derive an efficient percolation strategy 
from this new viewpoint of network anatomy, which enables abrupt-like percolation transition 

through removal of a small amount of cartilage links, which play a crucial role in network connectivity. 

Furthermore, we find nontrivial scaling laws in the relationships between four types of links in each 
cluster and evaluate power exponents, which characterize network structures as seen in the real large-

scale network of trading business firms and in the Erdős-Rényi network. Finally, we observe changes in 
the transition point for random bond percolation process, demonstrating that the addition of muscle 

links enhances network robustness, while fat links are irrelevant. These findings aid in controlling the 
percolation transition for an arbitrary network.

Di�erent networks, such as human and business relationship networks, and power networks, are everywhere in 
our world1–4. Most complex networks in social systems can be categorized as having scale-free and small-world 
properties5, 6. Many methods quantifying such inhomogeneous networks have been proposed from various �elds 
including biology, information science and physics4, 6–9. It is important to understand how a network can be made 
robust under attack, including methods for intentional removal of nodes and links because such networks form 
the basis of the society and economy10–14. �us, it is necessary to determine what elements contribute to reinforc-
ing network connectivity, and to �nd practical ways to enhance robustness of the system.

Percolation theory has been studied in the �elds of mathematics and physics to clarify macroscopic connec-
tivity from a microscopic viewpoint4, 15–20. Speci�cally, the percolation transition properties of complex networks 
have been attracting the attention of many scientists since the proposal of the scale-free network model5. It has 
been reported that a scale-free network is fragile against targeted attacks, but robust against random failures10. 
Furthermore, recent percolation models have been extended to explain a discontinuous percolation transition 
(DPT)2, 18, 19, 21, 22. It has been suggested that a real power network carries the risk of massive blackouts due to 
cascading failures in a multi-layered network2, and discontinuity in the explosive percolation model has attracted 
great interest in recent years due to its simple yet diverse characteristics23–25.

Classi�cation of nodes and links, such as community extraction, is also an important �eld of study, and com-
prehensive graphical expressions have become available for this application26–30. In the theory of percolation 
transition for square lattices, there are studies classifying “backbone links” based on signi�cant contribution to 
overall connectivity31–33, however, such classi�cations have not been yet introduced to percolation study in com-
plex networks.

In this study, we further generalize the anatomical concept of a “backbone” by introducing a novel “network 
anatomy”, which virtually dissects any given complex network and classi�es its links based on their contribution 
to network connectivity. In the Method section, all network links are classi�ed into four categories: bone, fat, 
cartilage, and muscle links, as an analogy for the anatomy of animal bodies. In the Result 1 section, we show that 
a percolation strategy assembled from these link categories enables the abrupt-like transition in a large-scale real 
network, as well as arti�cial networks. Nontrivial scaling laws are observed among the four classi�ed link types 
and scaling exponents that characterize a network are shown in the Result 2 section. In the Result 3 section, we 
observe shi�s of the percolation transition point caused by doping fat and muscle links to clarify the functional 
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roles of each link type. Finally, we discuss the abruptness and controllability of a percolation transition by utilizing 
our link classi�cations, and summarize our �ndings.

Method: Classification of links based on network robustness. Here we explain our method for cat-
egorizing links. �e entire process is divided into three steps. First, extraction of a backbone. Second, decompo-
sition into clusters. �ird, returning all removed links to the network as shown in Fig. 1(a), which is applicable to 
arbitrary networks, including directed and unconnected networks. Initially, we construct a spanning tree, which 
is a tree-like subnetwork connecting all nodes without loops, and classify it as a backbone. We introduce three 
popular methods for constructing the spanning tree: Breadth First Search Tree (BFST), Random Cost minimum 
Spanning Tree (RCST) and Depth First Search Tree (DFST). In BFST, we start with the node that has the largest 
degree and create links between nodes by following a breadth �rst search34. In RCST, we assign each link a uni-
form random number as a cost and compute a spanning tree that minimizes the total cost of the network using 
Prim’s algorithm35. In DFST, we select the node that has the largest degree and create links between nodes by 
following a depth �rst search36.

Next, we remove links from the spanning tree one by one, and decompose the network into separated clusters. 
Links are removed in a near-random fashion: however, we attempt not to remove links that will create an isolated 
node with no links as much as possible. We repeat this procedure until the normalized largest cluster size becomes 
smaller than the threshold size, which is 0.01 times the original size. And also the size of the second largest cluster 
becomes the largest by choosing a link in the current largest cluster as a candidate for link removal. �e links 
remaining a�er this procedure are called “bone links”, as they are elements of the backbone, and form the skeleton 
of each cluster. Links removed in this process are called “cartilage links”, as they are elements of the spanning tree, 
and connect clusters of bone links.

Figure 1. (a) Schematic �gure of link classi�cation process. For a given network, a spanning tree is computed; 
then the network is decomposed into many clusters by removing links. Finally, all links are returned to their 
original location. (b) Schematic �gure of clusters. �e bone links (black lines) form the skeleton of each cluster. 
�e fat links (red lines) connect two nodes within a cluster. �e cartilage links (black dotted lines) connect 
clusters to an element of a backbone. �e muscle links (blue lines) are links that connect two di�erent bone 
clusters a�er the �nal procedure of returning links to their original positions. (c) Schematic �gure showing the 
relationship between the order parameter R(node), and the control parameter for the anatomical percolation. 
Firstly, muscle links are removed randomly (blue line). Secondly, cartilage links are removed randomly (black 
dotted line). �irdly, fat links are removed randomly (red line). Finally bone links are removed randomly (black 
line). �e order parameter mainly changes during the second process of removing cartilage links.



www.nature.com/scientificreports/

3Scientific RepoRts | 7: 163  | DOI:10.1038/s41598-017-00242-4

Finally, we return all the removed links to the clusters of bone links. �e links connecting two nodes within a 
cluster of bone links are called “fat links”, and increase redundancy within each cluster, which does not contribute 
to global connectivity. Returned links that connect two di�erent clusters of bone links are called “muscle links”, 
and increase redundancy in the whole network. Following this procedure, all links are classi�ed as bone, fat, 
cartilage, or muscle links. For each cluster, bone links form the skeleton of the cluster and fat links play the role of 
bypasses within the cluster (Fig. 1(b)). �e links connecting di�erent clusters of bone links are either cartilage or 
muscle links, and this di�erence is derived from the de�nition of the backbone.

It should be noted that this classi�cation is not unique based on the choice of the spanning tree and the 
removed links. In supplementary information S1, we show that there are links which are automatically classi�ed 
as bones, and also there are links which are highly likely to be classi�ed as muscles. By performing 100 trials, it 
can be shown that this classi�cation is correlated with the shell-decomposition, which quantitatively characterizes 
nodes based on number of links and mutual connectivity4, 37, 38. Links in the lower shell tend to be classi�ed as 
bones or cartilages, while those in the higher shell are more likely to belong to be classi�ed as muscles. In addi-
tion, we calculate the distribution of the entropy for all links, and con�rm that links are consistently categorized 
to some extent.

Result 1: Abrupt-like Change of Largest Cluster Size in Novel Percolation Strategies. We pro-
pose new percolation strategies that can enable abrupt-like changes in order parameters based on the link classi-
�cations introduced in the previous section. We remove links to de�ne a percolation process following the order 
of muscle, cartilage, fat and bone links. In the �rst stage, links are chosen from the set of muscle links at random 
and removed one-by-one. A�er all the muscle links are removed, cartilage links are removed in the same way, 
followed by fat links, and �nally bone links. We call this an anatomical percolation. As a basic order parameter, 
we adopt the parameter R(node) which is de�ned as the number of nodes in the largest cluster divided by the total 
number of nodes N. We use the ratio of the number of removed links divided by the total number of links M as a 
control parameter.

In the �rst stage of removing muscle links, cartilage links maintain overall network connectivity and the larg-
est cluster size is the same as the initial network size even when all muscle links have been removed (Fig. 1(c)). 
In the second stage of removing cartilage links, it is expected that the network will be rapidly broken into many 
separate clusters, and the largest cluster size will change abruptly. Finally, the network becomes a set of isolated 
nodes through the removal of fat and bone links. It should be noted that cluster size, de�ned by number of con-
tained nodes, does not change during the fat link removal step, because these links only connect nodes within 
each cluster.

Now we apply this anatomical percolation strategy to a real large-scale network. Here, we use a Japanese busi-
ness relations network from 2009, which consists of 446,360 nodes (�rms) and 2,388,582 links (transactions). �e 
average degree of connectivity 〈k〉 = k* is calculated as 10.7. This data has been provided by TEIKOKU 
DATABANK, Ltd., a Japanese credit research company. �is network is considered a typical complex network 
with both scale-free and small-world properties3. �is network is made up of 15.6% bone links, 0.370% fat links, 
3.10% cartilage links and 80.9% muscle links when we adopt RCST as a backbone. We achieved similar results 
when using other types of spanning trees (BFST, DFST). Using the proposed percolation process, we �nd an 
abrupt-like change in the order parameter R(node) and the value of R(node) suddenly approaches near zero around 
f  0.81, where the process of removing muscle links �nishes as shown in Fig. 2(a). �ese changes can be more 
sharply observed in the ordering of BFST, RCST and DFST. �is is because the ratio of cartilage links to total links 
is smaller using this ordering. As shown in Supplementary Information S2, this transition is similar to the con-
ventional percolation transition for this network as well as a con�guration model network, in the sense that 
cluster size distributions follow power law distributions at the transition point. �ese results suggest that our 
transition is the continuous percolation transition exhibiting critical behaviors.

We perform the simulation on other networks to con�rm universality of the abrupt-like percolation transition 
observed in the business relations network. We apply anatomical percolation to Erdős-Rényi network39 where 
each link is connected with a given probability. We prepare three kinds of networks where the number of links for 
each is 110,000, and network density is k*/2, k*, and 2k*, respectively. Here, k* is 10.7, the average degree of con-
nectivity for the previously used business relations network, and we adopt RCST as a backbone. As shown in 
Fig. 2(b), we con�rm the occurrence of sharp changes for these three networks, we con�rm that the ratio of mus-
cle links to total links increases, and we con�rm that the abrupt-like transition point elevates as network density 
increases. It is found that the network breaks down rapidly around f  0.81, which is nearly the same as in the real 
network. �is result suggests that the abrupt-like transition point, representing the sum of muscle and cartilage 
links divided by total links, does not depend on detailed network structure.

Next, we perform the simulation on an extended one-dimensional ring network (N = 50,000, M = 100,000) 
where each node connects to its four nearest neighbors. In this case, we �nd that there is a large di�erence in 
abrupt-like transition points depending on the type of the backbone used (Fig. 2(c)). While the abrupt-like tran-
sition occurs at a small f (less than 0.05) in both RCST and DFST, it occurs around f  0.50 in BFST. �is is because 
allocation of surplus links, which are not elements of the backbone, di�ers based the spanning tree method used. 
In RCST and DFST surplus links are classi�ed as fat links, while in BFST they are classi�ed as muscle links.

We show that the ratio of each type of link to total links does not depend on the method used for computing 
the spanning tree of a real network, but that it does depend on the method used for computing the spanning tree 
in an extended ring network. �is result suggests that the method for computing a backbone does have the ability 
to control the abrupt-like transition point.

Finally, we consider the �nite size dependency of the anatomical percolation transition to estimate scaling 
relations for the sharpness of the order parameter R(node) around the transition point. Because it is easy to change 
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the system size for Erdős-Rényi networks, we use this type of networks for the �nite-size analysis. We prepare 
six networks that each have the same average degree of connectivity with di�erent system sizes. Here, we intro-
duce threshold conditions that cause the largest cluster size to become less than 4 × N−0.5 during the process 
of cartilage link classi�cation by removing links in the spanning tree network. We calculate the ratio rc of the 
number of the cartilage links to total links and the normalized largest cluster size Rc

(node)a�er all cartilage links 
have been removed. �ese quantities correspond to the horizontal width of the black dotted line, and the height 
of the red line respectively in Fig. 1(c). In this simulation, we observe scaling laws for both quantities, rc  ∝ M−α 
and Rc

(node) ∝ M−β as shown in Fig. 3(a,b). �e exponents α and β are estimated to be 0.14 and 0.45 respectively. 
�is result shows that both quantities vanish at the limit of an in�nite system size. Speci�cally, at the in�nite 
limit the order parameter changes sharply from 1 to 0. We here call this sharp change the abrupt-like percolation 
transition.

Figure 2. (a) Change in the largest cluster size R(node) in a business relations network from Japan. BFST (red 
circle), RCST (blue triangles) and DFST (green squares). Each plot represents the average of 100 trials. (b) 
Change in the largest cluster size R(node) in an Erdős-Rényi network. �e average degree of connectivity 〈k〉 is 
represented by k*/2 (red triangles), k* (blue triangles), and 2k* (green triangles), where k* is the average degree 
for the business relations network. Each plot represents the average of 10 trials. (c) Change in the largest cluster 
size R(node) in an extended ring network. BFST (red circle), RCST (blue triangles) and DFST (green squares). 
Each plot represents the average of 10 trials.

Figure 3. (a) �e system size M vs, the ratio rc of the number of cartilage links to the total number of links in a 
log-log plot. �e solid line shows the power exponents of 0.14. (b) �e system size M vs, the normalized largest 
cluster size Rc

(node) immediately a�er removing all of the cartilage links in a log-log plot. �e solid line shows the 
power exponents of 0.45.
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Result 2: Scaling Laws among the four Types of Links. In this section, we show novel scaling laws 
observed among the four link types. First, we denote the numbers of bone, fat, cartilage and muscle links as mb, 
mf, mc and mm respectively for each cluster. Note that cartilage and muscle links are counted twice by di�erent 
clusters whose nodes are connected by these link types. Here, we discuss the following scaling laws with expo-
nents af, ac and am.

∝m m (1)
a

f b
f

∝m m (2)
a

c b
c

∝m m (3)
a

m b
m

We observed the above three relations in the Japanese business relations network using a backbone computed 
by RCST. Scaling laws can be con�rmed for all three relations for nearly three decades. �e power exponent af in 
the relationship shown by Eq. (1), between the number of bone links mb and fat links mf is estimated as 1.4 
(Fig. 4(a)). Here, we apply the minimum least squares method for logarithmically transformed values. �is result 
indicates that the number of fat links that form loops in each cluster nonlinearly increases with the size of the 
cluster. �e power exponent ac in the relationship between the number of bone links mb and cartilage links mc is 
estimated as 0.94 (Fig. 4(b)), which is less than 1.0. Because we obtain ∝

−m m m/ a
c b b

1c  from Eq. (2) the relative 
ratio of cartilage links becomes negligible as the system size increases within the condition ac < 1. �e power 
exponent am, in the relation between the number of bone links mb and muscle links mm, is estimated as 1.0 
(Fig. 4(c)), and we �nd that the number of muscle links linearly increases with the cluster size. �erefore, muscle 
links exist at a constant rate independent of the cluster size.

Next, we calculate the above relationships for three variants of Erdős-Rényi networks, which we already ana-
lyzed in the previous section. Similar scaling exponents are observed for all three relationships, and we �nd that 
the change in average degree of connectivity simply shi�s the transition point. �is suggests that scaling expo-
nents do not depend on probability of link connection p = M/N(N−1) between two nodes. �e scaling exponent 
af in Eq. (1) is estimated as 2.0 (Fig. 5(a)), which is the same as that for a complete graph. �e scaling exponent 
ac in Eq. (2) is estimated as 0.85 (Fig. 5(b)), which is lower than 1.0, just like the result for the real network. �e 

Figure 4. Scaling relationships for the real business network. (a) �e number of bone links mb vs, the number 
of fat links mf by cluster in log-log scale. Plots are averaged using log scaled bins over 100 trials. �e guideline 
shows the power law with a scaling exponent of 1.4. Error bars are omitted because the interquartile range (IQR) 
is as large as the size of the symbols in most plots. (b) �e number of bone links mb vs, the number of cartilage 
links mc by cluster in log-log scale. Plots are averaged using log scaled bins over 100 trials. �e guideline shows a 
power law with the scaling exponent of 0.94. Error bars are omitted for the same reason as in the previous plot. 
�e dotted line shows a slope of 1.0 for reference. (c) �e number of bone links mb vs, the number of muscle 
links mm by cluster in log-log scale. Plots are averaged using log scaled bins over 100 trials. �e guideline shows 
the power law with a scaling exponent of 1.0. Once more, error bars have been intentionally omitted.
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scaling exponent am in Eq. (3) is estimated as 0.92 (Fig. 5(c)), which is also the same as the real network. �ese 
scaling exponents are considered to have the same values for the di�erent parameters of Erdős-Rényi networks.

In the Supplementary Information S3 we show scaling relationships for two more arti�cial networks, an 
extended one-dimensional ring network and a con�guration network with a power law degree distribution. We 
summarize the ratios of bone, fat, cartilage and muscle links, and as well as the scaling exponents for all cases.

Result 3: Enhancing Robustness by Doping Links. Based on the extended ring network (N = 50,000, 
M = 100,000), we consider doping links in order to reveal the roles of categorized links for network robustness. 
We calculate changes in the �nite-size transition point for the random bond percolation process when we dope fat 
or muscle links for a network whose links have already been classi�ed as bone, fat, cartilage, and muscle links. 
Here, we consider bone and cartilage links to be known, and we add muscle and fat links to the network. In the 
initial state (∆M = 0), where the links are not doped, the transition point is small ( .f 0 06rand

c
( ) ) and the system 

is considered fragile. However, by doping muscle links, the transition point increases and robustness is enhanced 
(Fig. 6). �is is because doped muscle links generate global loops that connect di�erent bones and reinforce net-
work connectivity. It should be noted that the transition point increases to fc

(rand) ≃ 0.5 by doping only 1.0% links 
of the initial links (∆M = 1,000). �is example shows that doping a small amount of muscle links e�ciently 
enhances network robustness. �e transition point does not change, however, when we dope fat links in the sys-
tem. �is should make sense intuitively because fat links connect nodes within the same cluster of bone links and 
those links do not enhance global network connectivity. As a result, we �nd that muscle links play a crucial role 
in strengthening network robustness. Fat links, however, only reinforce connectivity within each cluster, but they 
do not contribute to global network robustness.

Discussion
We observed the sharpness of an order parameter for abrupt-like percolation transition in the Result 1 section. 
Here, we discuss the properties of this transition by using the scaling exponents shown in the Result 2 section. For 
the scaling relation ∝

−m m m/ a
c b b

1c , derived in Eq. (2) the number of cartilage links is somewhat negligible for 
networks such as ac < 1 when considering large network size. �is means that the width of the sharp change, 
which is equal to the ratio of cartilage links to total links becomes negligible under this condition. �erefore, the 
transition observed in the Result 1 section becomes a sharpness limit percolation transition at the in�nite scale 
limit because the exponent ac is estimated to be less than 1.0 in both the business relations network and 
Erdős-Rényi networks. Conversely, the percolation transition may not be sharp in a system with ac ≥ 1. Whether 
or not this transition will be sharp is characterized by the exponent ac.

Figure 5. Scaling relationships for Erdős-Rényi networks. (a) �e number of bone links mb vs, the number of 
fat links mf by cluster in log-log scale. Plots are averaged using log scaled bins over 1,000 trials. �e guideline 
shows the power law with a scaling exponent of 2.0. (b) �e number of bone links mb vs, the number of cartilage 
links mc by cluster in log-log scale. Plots are averaged using log scaled bins over 1,000 trials. �e guideline shows 
the power law with a scaling exponent of 0.85. �e dotted line shows a slope of 1.0 for reference. (c) �e number 
of bone links mb vs, the number of muscle links mm by cluster in log-log scale. Plots are averaged using log 
scaled bins over 1,000 trials. �e guideline shows the power law with a scaling exponent of 0.92.
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�e transition point in this anatomical percolation is expected to be lower than that of an ordinary random 
percolation4. �is is because our link classi�cation enables the avoidance of links that do not contribute to global 
connectivity, so we can de�ne a more e�cient percolation transition. �is process can be considered a weighted 
percolation process, such as a targeted attack removing nodes in descending order by degree of connectivity. 
Continued research may reveal an even more e�cient percolation procedure that could further lower the tran-
sition point. 

Finally, we discuss the controllability of this abrupt percolation transition. We found that the distribution 
ratio for links depends on network density. Speci�cally, we con�rmed that the ratio of muscle links increases and 
the transition point elevates as the average degree of connectivity increases in Erdős-Rényi network as shown in 
the Result 1 section. We also demonstrated that the distribution ratio for links depends on the method chosen 
for computing a backbone in the example of an extended one-dimensional ring network, shown in the Result 1 
section. �e transition point is shown to be tunable when using the new percolation strategy even with a �xed 
distribution ratio for links. �e strategy of removing all cartilage links a�er all muscle links have been removed 
exhibited the lowest transition point fc with the sharpest change. Furthermore, the transition point can be con-
trolled arti�cially by changing the removal order for links. For example, we are able to control the transition point 
freely within the range of fc ≤ f ≤ fc

(rand). Here, fc
(rand) denotes the transition point on random bond percolation 

process. Additionally, we can tune a transition property by altering density through removal of cartilage links: for 
example, we can change the sharp transition shown in the Result 1 section into the slower transition of an ordi-
nary random percolation4. Following the methodology discussed above, we are able to manage the percolation 
process of any given complex network once all links have classi�ed as the four types de�ned in this new system 
of “network anatomy.” �e analysis given in this paper provides a new framework for bridging sharp and slow 
transitions from the wider viewpoint of abrupt-like percolation.

Conclusion
In this study, we introduced a general classi�cation for links in complex networks into four types based on the 
viewpoint of network robustness, and de�ned by the percolation process. �ese four types of links have a func-
tional role for network connectivity. �e bone links form the skeleton of each cluster. �e cartilage links maintain 
network connectivity in small numbers, and play a central role for the abrupt-like percolation transition. �e fat 
links generate local redundancy and have little in�uence on overall network robustness. �e muscle links gener-
ate global redundancy and enhance overall network robustness. �us, our proposed model provides an intuitive 
understanding of network robustness through a familiar in topological structure.

�e network anatomy introduced in this paper reveals interesting physically properties. In the Result 2 sec-
tion, we discovered novel scaling laws, and estimated scaling exponents. We discussed the conditions that cause 
the transition to become sharp at the large scale limits by using the scaling exponents. It was also con�rmed that 
doping new muscle links e�ciently enhances network robustness.
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