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Abstract

Predictive, stable and interpretable gene signatures are generally seen as an important step towards a better personalized
medicine. During the last decade various methods have been proposed for that purpose. However, one important obstacle
for making gene signatures a standard tool in clinics is the typical low reproducibility of signatures combined with the
difficulty to achieve a clear biological interpretation. For that purpose in the last years there has been a growing interest in
approaches that try to integrate information from molecular interaction networks. We here propose a technique that
integrates network information as well as different kinds of experimental data (here exemplified by mRNA and miRNA
expression) into one classifier. This is done by smoothing t-statistics of individual genes or miRNAs over the structure of a
combined protein-protein interaction (PPI) and miRNA-target gene network. A permutation test is conducted to select
features in a highly consistent manner, and subsequently a Support Vector Machine (SVM) classifier is trained. Compared to
several other competing methods our algorithm reveals an overall better prediction performance for early versus late
disease relapse and a higher signature stability. Moreover, obtained gene lists can be clearly associated to biological
knowledge, such as known disease genes and KEGG pathways. We demonstrate that our data integration strategy can
improve classification performance compared to using a single data source only. Our method, called stSVM, is available in R-
package netClass on CRAN (http://cran.r-project.org).
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Introduction

One of the major goals of personalized medicine is to identify

reliable molecular biomarkers that predict relevant clinical

characteristics for an individual patient, like disease sub-type,

his/her response to a certain therapy or survival time. Prognostic

and diagnostic biomarker signatures can nowadays be constructed

on the basis of multiple molecular data, such as gene expression

data, miRNA, methylation or copy number alterations [1].

A common approach to obtain a signature for diagnostic or

prognostic purposes is to put patients into distinct groups and then

construct a classifier that can discriminative patients in the training

set and is able to predict well unseen patients. Frequently applied

algorithms are Prediction Analysis for Microarrays (PAM) [2],

Support Vector Machine Recursive Feature Elimination (SVM-

RFE) [3], Random Forests [4] or statistical tests, like Significant

Analysis for Microarrays (SAM) [5], combined with machine

learning techniques (SVM, k-NN, linear discriminant analysis,

logistic regression,…) [6,7]. However, a commonly encountered

problem is that molecular signatures are often not reproducible in

the sense that inclusion or exclusion of a few patients can lead to

quite different sets of selected features. Moreover, these sets are

often difficult to interpret in a biological way [8]. Both issues

currently prevent molecular signatures to become a standard tool

in clinical practice [9]. For that reason, various network based

approaches have been proposed to integrate prior knowledge on

canonical pathways, Gene Ontology (GO) annotation or protein-

protein interactions into feature selection algorithms [10–17]. A

recent review on such approaches can be found in [18]. The

general hope of these approaches is that biological knowledge can

lead to better interpretable and more stable signatures. Whether

network based classification methods automatically also lead to

higher prediction accuracies is still a matter of debate [19,20].

Another line of research focuses on the integration of different

entities of experimental data for the same patient, e.g. mRNA and

miRNA expression [21–24]. The increasing amount of different

kinds of molecular data from the same patient, for instance within

the TCGA database (www.cancergenome.nih.gov), now opens the

door to a broader disease understanding [25–27]. Moreover, the

integration of data capturing different molecular mechanisms

could also lead to improved molecular signatures.

In this paper we propose a filter based feature selection

approach, which integrates network information by smoothing

gene-wise t-statistics over the graph structure using a random walk

kernel. Our approach allows for a straight forward integration of

different data entities, like mRNA and miRNA expression.

Comparisons of our smoothed t-statistic SVM (stSVM) with

several competing approaches on a breast cancer, two prostate

cancer and an ovarian cancer dataset demonstrate a favorable

prediction performance of early versus late relapse and a high

signature stability. Moreover, obtained gene lists are highly

enriched with known disease genes and KEGG pathways.
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Materials and Methods

Datasets
We retrieved one breast cancer [28], two prostate cancer

[29,30] and one ovarian cancer [26] dataset from different data

repositories. The breast cancer [28] and one of the prostate cancer

datasets [29] were measured on Affymetrix HGU133 microarrays.

The second prostate cancer dataset (MSKCC, [30]) and the

ovarian cancer dataset (TCGA, [26]) were measured on Affyme-

trix HuEx 1.0 ST microarrays. The breast and first prostate cancer

dataset were normalized via FARMS [31]. The ovarian cancer

and MSKCC datasets were downloaded as ready normalized and

gene-wise aggregated data from the TCGA and MSKCC

homepage, respectively. As clinical end points we considered

metastasis free (breast and prostate cancer) and relapse free

(ovarian cancer) survival time after initial clinical treatment. For

ovarian cancer only tumors with stages IIA - IV and grades G2

and G3 were considered, which after resection revealed at most

10 mm residual cancer tissue and responded completely to initial

chemotherapy.

Survival time information was dichotomized into two classes

according whether or not patients suffered from a reported

relapse/metastasis event within 5 years (breast, prostate dataset 1),

3 years (MSKCC prostate cancer dataset) and 1 year (ovarian),

respectively. Patients with a survival time shorter than 5/3/1

year(s) without any reported event were not considered and

removed from our datasets. This was done, because these patients

can neither reliably be put into the early nor into the late relapse

class. A summary of our datasets can be found in Table 1.

Network Information
Protein-Protein Interactions (PPI). A comprehensive pro-

tein interaction network was compiled from the Pathway

Commons database [32], which was downloaded in tab-delimited

format (September 2012). All SIF interactions INTERACTS_-

WITH and STATE_CHANGE were taken into account (http://

www.pathwaycommons.org/pc/sif_interaction_rules.do) and self

loops removed, resulting in a large network with 11,361 nodes and

610,185 edges. Nodes in this network were identified with Entrez

gene IDs. Expression values for probesets on the microarray that

mapped to the same gene in the network were averaged. In order

to consider genes with available probesets on the array but no

corresponding network information we added for all these genes

unconnected nodes to our initial network, resulting in 12,611

nodes for breast and the Sun et al. prostate cancer dataset; 11,356

nodes for ovarian cancer and 11,322 nodes for the MSKCC

prostate cancer dataset. The reason for these differences is that not

all dataset contain the same number of mappable transcripts.

KEGG pathways. As an alternative network information we

computed a merger of all non-metabolic KEGG pathways [33].

For retrieval and merger of KEGG pathways, we employed the R-

package KEGGgraph [34]. Only gene-gene interactions were

considered, which resulted in an initial network with 3,087 nodes

and 17,518 edges. As before this initial network was extended to

contain all genes available on the array, resulting in an overall

network with the same number of nodes as described above for the

PPI network but a different number of edges.

miRNA-Target gene network. In addition to PPI or KEGG

pathway information we optionally included predicted miRNA-

target gene interactions. Target predictions were obtained from

the MicroCosm database (version 5) [35] (FDR cutoff 1%). This

increased the number of edges in the PPI network to 11,892 nodes

for MSKCC’s prostate cancer and 11,839 nodes for ovarian

cancer.

Prediction Performance, Signature Stability and
Biological Interpretability
In order to assess the prediction performance of all tested

methods we performed a 10 times repeated 10-fold cross-

validation on each dataset. That means the whole data was

randomly split into 10 fold, and each fold sequentially left out once

for testing, while the rest of the data was used for training and

optimizing the classifier (including selection of relevant genes,

hyper-parameter tuning, standardization of expression values for

each gene to mean 0 and standard deviation 1, etc.). The whole

process was repeated 10 times. It should be noted extra that also

standardization of gene expression data was only done on each

training set separately and the corresponding scaling parameters

then applied to the test data.

The area under receiver operator characteristic curve (AUC)

was used to measure the prediction accuracy via the R-package

ROCR [36]. To assess the stability of gene selection, we computed

the selection frequency of each gene within the 10 times repeated

10-fold cross-validation procedure. That means a particular gene

could be selected at most 100 times In order to summarize the

selection frequencies for all genes we defined a so-called stability

index (SI) as

SI~
1

DPD

X

s[P

h(s) ð1Þ

where P is the set of selected genes that had been selected at least

once and h(s) is the actual number of times that s was selected. SI
represents a weighted histogram count of selection frequencies.

Obviously, the larger SI the more stable the algorithm is. In the

optimal case SI~100. The SI has to be seen together with the

size of gene signature, because trivially a classifier selecting all

genes would always achieve SI~100.

In order to check in how far signatures obtained by training the

classifier on the whole dataset could be related to existing

biological knowledge, we looked for enrichment of disease related

genes via the tool FunDO [37] (hypergeometric test; multiple

testing correction: Bonferroni’s method). Moreover, we calculated

Table 1. Overview about employed datasets.

ID/source patients cancer type classification positive class

GSE4922 228 breast metastasis free survival .5 y 69

TCGA 135 ovarian relapse free survival .1 y 35

GSE21032(MSKCC) 79 prostate relapse free survival .3 y 29

GSE25136 79 prostate recurrent vs. non-recurrent 40

doi:10.1371/journal.pone.0073074.t001

Network Smoothed T-Statistics
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Figure 1. Toy example to demonstrate the network smoothed t-statistic.
doi:10.1371/journal.pone.0073074.g001

Figure 2. Prediction performance of stSVM in comparison to other methods in terms of area under ROC curve (AUC).
Breast =GSE11121, Ovarian (TCGA) =GSE25136, Prostate =GSE25136, Prostate (MSKCC) =GSE21032.
doi:10.1371/journal.pone.0073074.g002

Network Smoothed T-Statistics
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the enrichment with KEGG pathways [33] via a hyper-geometric

test.

Network Smoothed T-Statistic SVMs (stSVMs)
Network Smoothed T-Statistics. Given a simple, undirect-

ed graph G~(V ,E) with adjacency matrix A the graph Laplacian

L is defined as L : ~D{A, where D~diag(deg(v1),:::,deg(vn)) is
a diagonal matrix of node degrees for nodes v1,:::,vn [38]. The

graph Laplacian can be viewed as a discrete approximation of the

negative Laplace operator for functions.

One way of characterizing the degree of relatedness of two

nodes (e.g. proteins) v and w in a graph (e.g. a PPI network) can be

obtained via the notion of random walks. The p-step random walk

kernel is one particular similarity measure, which can be derived

from this notion [39] and is defined as:

K~(aI{Lnorm)p~((a{1)IzD{1=2AD{1=2)p ð2Þ

Here Lnorm : ~D{1=2LD{1=2~I{D{1=2AD{1=2 is the nor-

malized graph Laplacian matrix, a is constant, and p is the

number of random walk steps (here: a~1,p~2). The p-step

random walk kernel gives rise to a symmetric, positive semi-

definite similarity matrix between network nodes, capturing their

degree of topological relatedness. The advantage compared to

shortest path distance based measures is that alternative routes

between pairs of nodes are considered. That means, if v and w are

connected via many alternative paths of the same length this marks

a higher similarity than if there exists only one such path.

Suppose for each network gene we assess its differential

expression on the training dataset via a t-test. This results in an

absolute t-statistic Dti D for network node i. We summarize the

Dti D,i~1,:::,DV D into a vector t and consider the score vector

~tt~tTK ð3Þ

Please note that ~tti~
P

j Dtj DKij . Hence, ~tti is a network smoothed

version of Dti D (Figure 1), but does not follow a t-distribution any

more. We thus conduct a permutation test (here: 1000 times) to

obtain a p-value for each gene. For reasons of computation time

we restrict this to the 10% genes, which are highest ranked

according to the network smoothed t-score (Eq. 3). Multiple testing

correction is then performed using the FDR approach by [40].

It is worth mentioning that the smoothing of absolute t-statistics

particularly affects nodes with a high number of interaction

partners. On one hand our procedure aggregates the scores of

neighboring nodes to increase the score for these central proteins.

On the other hand there is also a reverse effect, which increases

the relevance of proteins in close proximity to hubs.

SVM training. We only select genes with FDR ,5%.

Subsequently a Support Vector Machine (SVM) is trained using

the optimal parameter C from f0:0001,0:001,:::,10000g. To

evaluate each candidate parameter C we here used the span rule,

which provides a theoretical upper bound for the leave-one-out

cross-validation error, but can be computed much more efficiently

for datasets with few samples [41]. It has been demonstrated

theoreticaly as well as empircally that the span-rule provides an

excellent mechanism for parameter selection in SVMs [41]. An

implementation of this procedure can be found in R-packages

pathClass [42] and netClass, which is a supplement to this paper.

Integration of different experimental data. Besides net-

work information our approach allows for a straight forward

integrating on of different experimental data, e.g. mRNA and

miRNA expression, into one classifier. This can be achieved by

extending adjacency matrix A to miRNA-mRNA interactions and

vector t to absolute t-statistics for miRNAs. Accordingly, network

smoothing is now performed over protein-protein as well as

miRNA-target gene interactions.

Results

stSVM Shows Overall Best Prediction Performance
We initial considered our proposed stSVM method using only

gene expression data and PPI network information. We compared

the prediction performance to a number of competing methods,

namely PAM [2], a SVM trained with significant differentially

expressed genes (FDR cutoff 5%) selected by SAM [5] (sgSVM),

average gene expression of KEGG pathways (aepSVM [10]),

pathway activity classification (PAC [13]), reweighted recursive

feature elimination (RRFE [17]) and the netRank algorithm

[43]. NetRank, similar to RRFE, uses a modification of Google’s

PageRank method to rank genes according to both, expression

and network centrality [44]. The optimal number of selected genes

in both cases was determined via the span-rule inside the cross-

validation procedure [41].

For stSVM, netRank and RRFE, the same large PPI network

was used as biological background information. The aepSVM and

PAC methods use KEGG pathways. PAC relies on a so-called

activity score, which is calculated per individual pathway and then

taken as as a feature for classification purposes. For aepSVM we

first conducted a global test [45] to select pathways being

significantly associated with the class label (FDR cutoff 1%) on

the training data and then calculated the mean expression of each

selected pathway as a feature for SVM based classification. The

prediction of all methods was assessed via a 10 times repeated 10-

fold cross-validation procedure, as described in the Materials and

Methods part of this paper.

Generally we observed a large variability of prediction

performances of most tested algorithms across different datasets,

which is in agreement with our previous observations [19].

However, our proposed stSVM approach showed on all of our

four gene expression datasets a consistently high prediction

performance with respect to the area under ROC curve (AUC,

Figure 2) and significantly outperformed several competing

methods (Tables S5, S6, S7, S8). Notably on two datasets (breast,

prostate dataset 1) the AUC was extremely stable and showed only

a very small variance across the cross-validation procedure.

Table 2. Ranking of different algorithms with respect to the
median AUC in a 10 times repeated 10-fold cross-validation
procedure.

breast ovarian prostate
prostate
MSKCC consensus

stSVM 1 2 3 3 1

netRank 6 3 1 6 4

RRFE 2 5 5 1 3

aepSVM 3 4 2 4 5

sgSVM 4 1 4 2 2

PAM 5 6 6 5 6

doi:10.1371/journal.pone.0073074.t002

Network Smoothed T-Statistics
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In order to get a more objective and comprehensive view we

conducted a ranking of all methods in each dataset according to

the median cross-validated AUC value. We then calculated a

consensus ranking using Kendall’s t distance method [46]

(Table 2). This confirmed our impression that stSVM was the

overall best performing method. Interestingly enough, sgSVM was

ranked second highest here, which is in agreement with our earlier

finding that network based approaches do not consistently

outperform classical ones [19].

stSVM Yields Highly Stable Classification
We investigated the stability of signatures obtained during the

10 times repeated 10-fold cross-validation procedure using the

concept of the stability index (Eq. 1), showing for stSVM an

extremely robust behavior (Figure S1). Most of the signature

probesets were selected consistently during the cross-validation

procedure. Interestingly enough, at the same time the number of

selected probesets was comparably high for stSVM, which may be

attributed to the fact that the network smoothing enforces the

selection of correlated genes. Tables S1, S2, S3, S4 show 10

consistently selected genes in each dataset. As expected these genes

typically reveal a high node degree in the PPI network. Many of

these hub genes are well known to play a role in the disease

pathology, e.g. BRCA1 for all tumors [47–49] and AR for prostate

cancer [50]. Other disease related and consistently selected genes

include p53 (all datasets), EGFR (breast and prostate cancer

[51,52]), RB1 (breast and ovarian tumors [53–55]) and EP300

(prostate cancer [56]).

stSVM Shows Clear Association to Biological Knowledge
In order to test the association with existing biological

knowledge more systematically we trained each of our tested

methods on complete datasets and subsequently tested the

resulting signatures (Tables S9, S10, S11, S12 for stSVM, Tables

S13 and S14 for stSVM(mi-mRNA) ) for enrichment of disease

related genes and KEGG pathways (Figures 3, S2). For testing the

association with disease related genes we used the FunDO tool

[37], which is based on a hyper-geometric test.

Our analysis revealed a high enrichment of signatures obtained

via stSVM to known disease genes on all datasets. The enrichment

was always higher than for non-network based methods (sgSVM,

PAM) as well as for signatures obtained via the netRank algorithm.

The latter might be attributed to the fact that netRank typically

selects only very few genes, which thus could cause a loss of

statistical power for enrichment analysis.

Besides disease related genes we also found a high enrichment of

stSVM derived signatures for several KEGG pathways in all

datasets (Figure S2). Examples were Pathways in cancer (prostate,

breast cancer), Prostate Cancer (both prostate cancer datasets), Wnt

signaling, MAPK signaling and ERBB signaling. The latter three were

significant in breast and prostate cancer and are known to play a

role in the respective disease pathologies [57–63]. In ovarian

cancer we particularly detected a high enrichment of several

Figure 3. Enrichment of signatures with disease related genes. The y-axis shows -log10 p-values computed via a hypergeometric test
(Bonferroni correction for multiple testing). Black horizontal line = 5% significance cutoff.
doi:10.1371/journal.pone.0073074.g003

Network Smoothed T-Statistics
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metabolic pathways, such as Fatty acid metabolism. This fits to the

fact that adipocytes were recently found to promote rapid tumor

growth in ovarian tumors [64]. The significance of enrichment for

KEGG pathways was generally higher for stSVM than for all

other methods.

Taken together stSVM derived signatures showed a clear

association to existing biological knowledge, which eases their

biological understanding.

Influence of Network Structure
We asked the question, in how far the observed good prediction

performance of stSVM was dependent on the incorporated

network structure. We hence re-ran our cross-validation procedure

with a different network structure, which was compiled from a

merger of all non-metabolic KEGG pathways (see Materials and

Methods). It is worthwhile to mention that both networks

contained the same number of nodes, but different number of

edges. The KEGG derived network was much sparser then the

previously used PPI network.

We observed that our original PPI network in all but one case

(ovarian cancer dataset) yielded significantly higher AUCs, which

highlights the principle influence of the network structure (Figure

S3). We can only speculate why on the ovarian cancer dataset the

KEGG based network appeared to work at least as good as the

PPI network. Principally KEGG pathways capture different

biological aspects (canonical pathways) than large scale protein-

protein interaction networks. It may be due to the nature of the

disease that KEGG pathways reflect better the relevant biology for

ovarian cancer than for breast and prostate tumors.

stSVM Allows for mRNA and miRNA Data Integration
Our stSVM method allows for a straight forward integration of

different types of experimental data on network level (see Materials

and Methods). We here exemplify this property by using gene

expression together with miRNA expression data for the TCGA

ovarian cancer and for the MSKCC prostate cancer datasets.

Correspondingly network information now consisted of a com-

bined PPI and miRNA-target gene network. We call the

corresponding variant of our method stSVM(mi-mRNA). We

compared stSVM(mi-mRNA) to the graph fusion approach by

Gade et al. [21] (GraphFusion). In their original paper Gade

et al. used CoxBoost [15] to make survival risk prediction. In our

classification based framework we replaced CoxBoost by the

related PathBoost algorithm [15].

Moreover, we compared stSVM(mi-mRNA) to sgSVM trained

on mRNA data only, on miRNA data only and to a meta-

classifier, which combines classification outputs from the mRNA

and miRNA sgSVM classifiers into one consensus classifier

Figure 4. Prediction performance of stSVM on integrated gene and miRNA expression data compared to other approaches.
doi:10.1371/journal.pone.0073074.g004

Network Smoothed T-Statistics
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(sgSVM(meta)). This was done as follows: The sgSVM method

was separately trained on both datasets to yield a linear SVM

classifier using significant differentially expressed genes and

miRNAs, respectively. Each of these SVM classifiers yields a

ranking (not classification) function of the form

f (w)~
Xn

i~1

aiyiwizb

where ai are the fitted Lagrangian multipliers, yi [ f{1,1g the

class labels and b the intercept [65]. Note that the corresponding

classification function can be obtained by taking the sign of f (w):
Let f1(x), f2(z) be the SVM ranking functions for mRNA profile x
and miRNA profile z, respectively. Then both rankings can be

combined into a meta-classifier by fitting a logistic regression

function

Pr (yi~1Df1(x),f2(z))~
1

1z exp ({h0{h1f1(x){h2f2(z))

where h0,h1,h2 are parameters, which can be fitted to the data.

The comparison of our stSVM(mi-mRNA) approach to the

graph fusion algorithm as well as to the above described meta-

classifier approach (sgSVM(meta)) revealed a superior perfor-

mance of our method. GraphFusion was outperformed with large

margin (Figure 4), and the gain compared to sgSVM(meta) was

still weakly/moderately significant (p~0:065 for ovarian and

p~0:041 for prostate cancer; Wilcoxon signed rank test). In that

context it was interesting that only on the prostate cancer dataset a

significant improvement by integration of mRNA and miRNA

data could be observed at all: The comparison of stSVM(meta)

versus stSVM yielded a p-value of 0:008 (Wilcoxon signed rank

test). On the ovarian cancer dataset miRNA expression data did

not appear to contribute any useful classification information. This

is also highlighted by the weak performance of the sgSVM

classifier trained only on miRNA expression data

(sgSVM(miRNA)).

Consistently Selected Features Form Disease Related
Network Modules
Taking the set of genes and miRNAs, which were consistently

selected by stSVM in the above investigated ovarian and MSKCC

prostate cancer datasets, we asked the question, whether these

features were connected to each other on network level, indicating

that stSVM preferentially selected network connected genes and

miRNAs.

To answer this question we looked for the largest sub-network

that was purely formed by consistently selected features. In case of

the ovarian cancer dataset we found 368 genes and 50 miRNAs

out of 377 genes and 235 miRNAs to form such a network

module. In case of the MSKCC prostate cancer dataset 384 genes

and 96 miRNAs out of 386 genes and 254 miRNAs were inside

one network module. This demonstrates that stSVM preferentially

selected features, which were connected to each other on network

level. The fraction of consistently selected genes that were inside

one network module was, however, higher than the corresponding

fraction of miRNAs. The reason could be that differential

expression of a miRNA does not automatically imply that its

target genes are also differentially expressed. Consequently

miRNA markers do not always (but still in a significant proportion

– see prostate cancer dataset) cluster together with gene markers

on network level.

For both, ovarian and prostate cancer, network modules were

highly enriched for known disease genes (p~4:39e{11 for prostate

cancer in MSKCC prostate cancer case, p~1:18e{3 for ovarian

cancer in ovarian cancer case) according to FunDO. Figure 5 and

Figure 6 visualize sub-networks of these modules centered at the

Figure 5. Sub-graph of disease related module identified by
stSVM (MSKCC prostate cancer). The shown sub-graph consists of
consistently selected genes in the interactome of the AR. For better
visualization edges between neighbors of the AR are omitted. Red:
cancer related genes; yellow: prostate cancer related genes.
doi:10.1371/journal.pone.0073074.g005

Figure 6. Sub-network of disease related module identified by
stSVM (ovarian cancer). The shown sub-graph consists of consis-
tently selected genes in the interactome of the BRCA1. For better
visualization edges between neighbors of the BRCA1 are omitted. Red:
cancer related genes.
doi:10.1371/journal.pone.0073074.g006

Network Smoothed T-Statistics
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AR (MSKCC prostate cancer) and BRCA1 (ovarian cancer),

respectively.

Discussion and Conclusion

In this article we proposed network smoothed t-statistics as a

method to integrate network information as well as different types

of experimental data into one classifiers for biomarker signature

discovery. Our method smoothed a widely used marginal statistic

(the t-statistic) for differential expression over the graph structure

of a biological network using random walk kernels. Our approach

has on the technical level certain similarities with kernel based

ranking methods for gene prioritization, which have been

proposed e.g. by Moreau and co-workers to predict putative

disease causing genes in genetic disorders [66–68]. Note, that this

is a rather different problem than finding prognostic biomarker

signatures.

We showed that our approach overall leads to a highly

predictive, stable and biologically interpretable classifier. We

exemplified the straight forward integration of different types of

experimental data here by building joint classifiers of gene and

miRNA expression data. Other kinds of data (e.g. methylation,

copy number variations) could principally be integrated in a

similar manner. This is, however, not necessarily straight forward

and thus subject to future research.

Taken together we think that our method is a step towards the

challenging goal to build integrative classification models, which

not only make use of biological background information, but also

allow to combine various kinds of molecular data in order to make

accurate predictions for an individual patient. In the light of the

TCGA project and other large scale efforts the time is now ripe to

move into this direction.

Supporting Information

Figure S1 Stability index and signature sizes within the
10 times repeated 10-fold CV procedure. A) stability index

according to Eq. (1) in main document,B) number of selected

probesets.

(TIF)

Figure S2 Enrichment of signatures with KEGG path-
ways: Depicted is a heatmap of the -log p-value for the
10 most significant pathways.
(TIF)

Figure S3 Classification performance of stSVM using
two different sources of network information.
(TIF)

Table S1 10 consistently selected genes in ovarian
cancer dataset.
(XLS)

Table S2 10 consistently selected genes in breast cancer
dataset.
(XLS)

Table S3 10 consistently selected genes in prostate
cancer dataset (GSE25136).
(XLS)

Table S4 10 consistently selected genes in prostate
cancer dataset (MSKCC).
(XLS)

Table S5 False discovery rates resulting from pairwise
Wilcoxon signed rank tests to compare AUC values for
different classification algorithms: breast cancer data-
set.
(XLS)

Table S6 False discovery rates resulting from pairwise
Wilcoxon signed rank tests to compare AUC values for
different classification algorithms: overian cancer data-
set.
(XLS)

Table S7 False discovery rates resulting from pairwise
Wilcoxon signed rank tests to compare AUC values for
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17. Johannes M, Brase JC, Fröhlich H, Gade S, Gehrmann M, et al. (2010)

Integration of pathway knowledge into a reweighted recursive feature
elimination approach for risk stratification of cancer patients. Bioinformatics

26: 2136–2144.
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