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ABSTRACT Anomaly-based intrusion detection systems (IDSs) have been deployed to monitor network

activity and to protect systems and the Internet of Things (IoT) devices from attacks (or intrusions). The

problem with these systems is that they generate a huge amount of inappropriate false alarms whenever

abnormal activities are detected and they are not too flexible for a complex environment. The high-level rate

of the generated false alarms reduces the performance of IDS against cyber-attacks and makes the tasks of

the security analyst particularly difficult and the management of intrusion detection process computationally

expensive. We study here one of the challenging aspects of computer and network security and we propose

to build a detection model for both known and unknown intrusions (or anomaly detection) via a novel

nonparametric Bayesian model. The design of our framework can be extended easily to be adequate for

IoT technology and notably for intelligent smart city web-based applications. In our method, we learn

the patterns of the activities (both normal and anomalous) through a Bayesian-based MCMC inference for

infinite bounded generalized Gaussian mixture models. Contrary to classic clustering methods, our approach

does not need to specify the number of clusters, takes into consideration the uncertainty via the introduction

of prior knowledge for the parameters of the model, and permits to solve problems related to over- and

under-fitting. In order to get better clustering performance, feature weights, model’s parameters, and the

number of clusters are estimated simultaneously and automatically. The developed approach was evaluated

using popular data sets. The obtained results demonstrate the efficiency of our approach in detecting various

attacks.

INDEX TERMS Intrusion detection systems (IDS), anomaly intrusion detection, infinite mixture models,

bounded generalized Gaussian models, Bayesian inference, Markov chain Monte Carlo (MCMC).

I. INTRODUCTION

Cyber-security systems are broadly used to protect informa-

tion and computers from attack, destruction, and unautho-

rized access. In particular, intrusion detection systems (IDS)

have been proposed as an effective tool to monitor network

activity, to help in determining unauthorized use, to iden-

tify information systems destruction, and to protect sys-

tems from internal and external intrusions (intrusions from

within or from outside the firm). On the other hand, IDS

can be considered as one of the most significant security

The associate editor coordinating the review of this manuscript and
approving it for publication was Jorge Parra.

solutions for new online web-based applications related

to smart city and Internet of Things (IoT) environment.

Indeed, IDSs have attracted recently the attention of secu-

rity specialists to protect IoT networks, devices appli-

cation domains such as smart homes/cities, and health

monitoring [1]. Old IDS-based solutions are usually oper-

ated by external providers which can cause difficulties in

term of security management for smart city managers, since

these solutions are implemented by different technologies

(protocols, devices, etc.) which may result in an extremely

varied environment. However, IDS-based systems generate

generally a huge amount of inappropriate and false alarms

whenever abnormal activities are detected. The high level
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FIGURE 1. Classification of intrusion detection techniques.

rate of the generated false alarms reduces the performance

of IDS against cyber-attacks and makes the tasks of the

security analyst particularly difficult and the management

of intrusion detection process computationally expensive.

Moreover, using traditional IDS-based methods to IoT can

fail and will not authorize the rapid expansion of smart city

applications given the specifications and constraints related

of IoT devices and networks such as the specific used pro-

tocol stacks, standards, and constrained-resource devices.

These problems have received considerable attention from

researchers in computer and network security community and

so the designing of modern and smart IDS-based solutions,

which represents an important challenge, is of high priority

for users, security researchers, manufacturers, and IoT infras-

tructures. Therefore, the design of more robust information

security systems will authorize especially the rapid expansion

of smart city applications and IoT technology. New systems

should be the basis for providing resilient services and rein-

forcing smart city applications.

A possible division of existing IDS is based often on which

cyber analytic technique is used: misuse-based (signature-

based) or anomaly-based [2]. Figure 1 shows an overview of

main existing approaches. Misuse (Signature)-based detec-

tion [3] has been proven effective to detect only known attacks

and they are used in the several commercial tools. In this case,

signatures (patterns) are created for known attacks and stored

as a prior knowledge into specific databases. These databases

are then used to verify if the current activity matches a known

pattern, indicating the presence of an anomaly. The problem

with this approach is it cannot identify unknown attacks since

they are not saved into the datasets; for that reason they must

be regularly updated with new attack’s signatures.

Anomaly-based detection [4] use generally models

(e.g., statistical profiles) for supervising normal activities.

If an activity deviates from the normal behavior, the admin-

istrator will be informed about this anomalous traffic to take

suitable actions for them.On the other hand, if the constructed

model is not well-defined, we can have a lot of false alerts.

The challenge for such approach is related to the specification

of the normal network behavior and a threshold that can pre-

vent false alerts. The main advantages of such approach are

the ability to identify unusual behavior and to detect attacks

without any prior knowledge. But, in practice, a large number

of false alerts are produced due to small ‘‘training sets’’

that characterize normal behavior. Techniques driven from

this approach are essentially thresholding-based methods,

statistical-based methods (parametric, non-parametric), rule-

based methods, and machine learning-based methods (neural

networks, genetic algorithms, hidden Markov model, etc.).

II. RELATED WORKS

Due to the importance of this area of research, complete

and extensive surveys have been provided in [5]–[8] where

interested readers can found sophisticated descriptions of

various techniques for cyber intrusion detection. In particular,

some promising soft computing, data mining and machine

learning-based techniques have been proposed in the liter-

ature for intrusion detection [2]. For performance evalua-

tion, most researchers investigate some well-known recorded

benchmarks such as the KDDCup’99 dataset.1 Among the

most relevant approaches from the state of the art that can

achieve good results in term of low false alarm rate and high

accuracy, we can cite for example the recent work published

in [9]. In this work, soft computing techniques like fuzzy logic

and genetic algorithm are considered to deal with imprecision

and uncertainties and are employed to make a decision if an

instance contains an anomaly or not. A hybrid approach is

developed in [10], where some algorithms are combined into

the samemulti-level formalism including amodified k-means

as a pre-processing step (for training the dataset), SVM

classifier and an extreme learning machine method. In [11],

an unsupervised alternative of the k-means clustering method

to detect anomalous behaviors is also proposed. In fact, a data

point is considered as an anomaly if and only if it is located

so far from the cluster’s center. SVM is also used as an online

discriminative learning classifier to deal with high-speed

1http : //kdd .ics.uci.edu/databases/kddcup99/kddcup99.html
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network’s requirements and to reduce the huge number of

false alerts in [12]. The proposed online self-trained classi-

fier, which is based on different modes of learning of large

scale datasets, is validated on three different datasets: vir-

tualized (KDDCup’99), realistic (Kyoto 2006+), and syn-

thesized (ISCX) datasets. Another clustering approach based

on fuzzy association rules is developed to determine natural

relationship patterns [13]. The mechanism of alert correlation

is also adopted in this context via Naive Bayes classifier

to detect complex attacks [14]. Indeed, correlation between

attack plans (anomalies) is performed via expert knowledge,

clustering techniques and similarity measures. Other issues

in anomaly detection problem are also addressed in order

to diminish the high volume of false alerts generated by

systems, to uncover complex patterns of possible attacks, and

to reduce computational issues. One of these issues is the

online and real-time attacks detection which is investigated

via some clustering approaches like in [15], [16]. In partic-

ular, anomalies can be identified in an online fashion using

a genetic weighted K-nearest-neighbor (K-NN) based classi-

fier [16]. In [17], authors studied and compared the perfor-

mances of various anomaly detection-based methods such as

the k-medoids, k-means, EM and distance-based techniques.

Another important issue is determining the boundaries (bor-

ders) between known and unknown intrusions classes which

is tackled by [18]. Indeed, authors designed an artificial algo-

rithm allowing generating anomalies so as to find a precise

border between normal known clusters and anomalies ones.

This strategy has the advantage to not provide in advance the

abnormal data type but to discover boundaries between the

two classes, and also to increase the detection performance.

According to the literature review, some pertinent intrusion

detection methods (most significant and related to our focus

in this work) have been based on clustering paradigm given

that they are based on totally unlabeled traffic data. A lot

of research is going on for improving the output of anomaly

intrusion detection methodologies while the research on this

hot area needs more flexible and powerful models to achieve

accurate results. Most of existing instance-based learning

techniques can only be applied to identify known cyber

attacks and rarely discover new ones because they are not

learned before. Clustering is an essential problem used to

accurately model data in order to help analysts for taking

appropriate and automatic actions (decisions). In particular,

unsupervised clustering is a very useful tool for attack’s

patterns discovery and high-dimensional data grouping on the

basis of some criteria. Its application for intrusion detection

is highly desirable in order to achieve good performance in

term of detection rate, false positive rate, and accuracy.

It is noteworthy that there are various popular clustering

methods such as: k-means, k-nearest neighbors, hierarchical

clustering, mixture models, density-based models, expecta-

tion maximization (EM) algorithm, graph models, etc. Some

of these algorithms have been applied with success for cyber

security [19]–[21] but others are not well-defined and so fail

in achieving high accuracy. Thus, it is important to develop

more powerful clustering-based method able to detect accu-

rately abnormal activities, to represent them in a compact

form, and to well-describe normal/abnormal attack patterns

in order to reduce as much as possible false positive alarms

and to provide early warnings against cyber-intrusions.

III. MOTIVATIONS

In recent years some attractive machine learning-based tech-

niques have been proposed to address the aforementioned

issues and especially to deal with complex patterns in order

to take correct decisions while considering into account the

observed data. In particular, the named ‘‘finite mixture mod-

els (FMM)’’ [22], [23] have been developed as a powerful

machine learning tool to solve the problem of complex data

clustering and modeling in a formal way [24]–[26]. Even

though finite unbounded mixtures (e.g. unbounded Gaussian)

have been extensively used in data analysis thanks to their

approximation properties, other mixtures such as the bounded

generalized Gaussian (BGG) mixture have been revealed to

offer more flexibility in modeling data and can be an inter-

esting alternative for data clustering and especially anomaly

detection. It should be noted also that, within finite mixture

models, the most difficult problem is selecting the optimal

number of data clusters in order to avoid under and over-

fitting. This complication can be solved by extending finite

models to infinite mixtures [27]–[29]. On the other hand,

data-features can be either informative (relevant) or unin-

formative (irrelevant). Considering all possible features will

augment the computational cost and becomes an obstacle

against high performance as cited in [30]–[34]. In fact,

the presence of irrelevant features can form new false clusters

and this issue may lead to raise the false positive intrusion

detection rate and make the overall process time consuming.

It should be noted that several anomaly detection techniques

ignored this step of feature selection or solved it indepen-

dently as a pre-processing step. However, it is extremely

imperative to found an intelligent way to enable the removal

of uninformative features during the clustering process. Here,

we are motivated by the issue of selecting and weighting

automatically and simultaneously the most informative data-

features. This step is very important since it will increase the

flexibility and capability of the developed algorithm and also

reduce the computational cost.

Based on all these assumptions, we are mainly motivated

by developing a new fully Bayesian-based approach for infi-

nite bounded Generalized Gaussian mixture model (InBGG)

for anomaly-based IDS detection problem in general. Then,

in the future, we plan to adapt and extend the developed

framework to be useful for specific problems related to IoT

and smart cities-based security. The main advantages of using

Bayesian statistical methodology are to avoid under and over-

fitting, to formalize our prior knowledge and to express

our uncertainty through probability as cited in [35], [36].

On the other hand, the major benefit in using the infinite

assumption instead of finite one is that the problem of

determining the correct number of mixture components can
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FIGURE 2. Proposed Bayesian-based framework for intrusion data classification.

be handled and solved. The proposed framework has also

the advantage to take into account estimating -at the same

time- feature weights with model’s parameters in a closed-

form which can definitely increase the performance of the

anomaly intrusion detection especially in the context of smart

city web-based applications. The efficiency of our proposed

method is confirmed by testing it on anomaly intrusions

detection application, while comparing it to other published

methods from the literature. To the best of our knowledge,

very little works have been implemented to date while con-

sidering flexible statistical models and unsupervised feature

selection mechanism simultaneously.

In the next section we present the infinite mixture model

with feature selection as well as a fully Bayesian learning

approach. Section 4 is dedicated to the experimental results.

Finally, we end this work with a conclusion in section 5.

IV. INFINITE BOUNDED MIXTURE MODEL

WITH FEATURES SELECTION

In this work, we address the classification problem of intru-

sion anomaly by constructing a statistical Bayesian model

that allows grouping network traffic behaviors into a Multi-

class anomaly (i.e., a set of categories: one for normal and

others for different type of attacks) and not as One-class

anomaly (i.e., two categories: normal or attack). It is note-

worthy that the Multi-class anomaly approaches are more

interesting than One-class anomaly methods especially if we

want to recognize more different attack types. We solve this

problem by developing an infinite mixture model with feature

selection as well as a fully Bayesian learning approach -

as depicted in figure 2- that we will present in the next

subsections.

A. THE FINITE BOUNDED MIXTURE WITH

FEATURES SELECTION: (FIGG-FS)

The bounded mixture models are proposed in order to

solve the problem of unbounded distributions with support

range (−∞, +∞). In particular, the finite bounded gener-

alized Gaussian mixture model (FiBGG) can be seen as an

extensible model to the unbounded (FiGG) which is able to fit

compactly supported data. LetY = {EY1, EY2, . . . , EYN }, be a set
of D-dimensional vectors where EYn = (EYn1, . . . , EYnD), n =
1, . . . ,N , be the observed data from aM -component mixture

distribution. A crucial problemwhen deploying finitemixture

models is the choice of the per-components distributions.

In this work, we assume that each of these vectors is generated

from a FiBGGwithM components which gives the following

likelihood:

p(Y|2) =

N
∏

n=1

M
∑

j=1

πjBGG(EYn|θj) (1)

where 2 = (Eπ, θ), the {πj}’s are the mixing parameters.

πj > 0 and
∑

j πj = 1. Eπ = (π1, . . . , πM ), and the

θ = {θj} = {µ1, ..., µM , σ1, ..., σM , λ1, ..., λM } are vec-

tors containing the model’s parameters (mean, variance and

shape). Each EYn is supposed to be drawn from one of the

M -components (clusters), but the cluster memberships are

not known and they should be determined. Indeed, πj =
p(Zn = j), where Zi indicates from which cluster each vector
EYn arose. In our case, Zn = j means that EYn comes from

component j and according to Bayes’s theorem, we have

p(Zn = j| EYn) ∝ πjBGG(EYn|θj) (2)

The BGG is defined by:

BGG( EYi|θj) =

D
∏

l=1

BGG( EYil |θjl) =

D
∏

l=1

p( EYil |θjl)H ( EYil |�j)
∫

δj
p( EYil |θjl)dy

(3)

where p( EYil |θjl) represents the generalized Gaussian distri-

bution of the lth feature in the component j. It is defined as

follows:

p( EYil |θjl) = p(EYil | Eµjl, Eσjl, Eλjl)

= A(λjl)exp

[

−B(λjl)
∣

∣

∣

Xil − µjl

σjl

∣

∣

∣

λjl
]

(4)
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where A(λjl) =
λjl

[

Ŵ(3/λjl )

Ŵ(1/λjl )

]1/2

2σjlŴ(1/λjl )
; B(λjl) =

[

Ŵ(3/λjl )

Ŵ(1/λjl )

]λjl/2
; Ŵ(.) is

the Gamma function defined as: Ŵ(t) =
∫ ∞
0 ut−1e−udt .

B. THE INFINITE BOUNDED MIXTURE WITH

FEATURES SELECTION: (INBGG-FS)

So far, we have assumed that M has a fixed value. In this

section, we present the infinite bounded generalized Gaus-

sian (BGG) mixture model with feature selection by consid-

ering that M → ∞ which provides us:

p(EYi|2) =

∞
∑

j=1

πjBGG(EYi|θj) =

∞
∑

j=1

πj

D
∏

l=1

BGG(EYil |θjl)

(5)

In our case, we adopt also an unsupervised learning

scheme for feature selection as cited in [37]. Indeed,

the lth feature is considered irrelevant if it follows a

common density, that is, if its distribution is indepen-

dent of the class labels and follows a BGG distribu-

tion: BGG(EYil |ϕl), where ϕl = (µirr
l , σ irrl , λirrl ). Let

Eφ = (φ1, . . . , φD) be a set of binary parameters and

known as the feature relevance indicator, where: φl =
{

0 when then lth feature is irrelevant (i.e. noise)

1 Otherwise

Based on the assumption given in [38], our distribution can

be rewritten as:

BGG(EYil |θjl, φl, ϕl) ≃
[

BGG(EYil |θjl)
]φl

[

BGG(EYil |ϕl)
]1−φl

(6)

And in this case the mixture density will be expressed as:

p(EYi|ξ ) =

∞
∑

j=1

πj

D
∏

l=1

[ρlBGG(EYil |θjl) + (1 − ρl)BGG(EYil |ϕl)]

(7)

where ρl = p(φl = 1) represents the probability that the lth

feature is relevant for the clustering task, and ξ represents the

set of all parameters ξ = {2, {φl}}.

C. BAYESIAN LEARNING

In this section, we develop a Bayesian inference frame-

work for learning (i.e. model selection, feature selection and

parameters estimation) the parameters of our infinite mixture

model IBGGM. It is noteworthy that for Bayesian learning,

prior distributions are defined over all the model’s parame-

ters, and the posteriors are used for the inference. By adopting

a Dirichlet prior, with equal parameters η, over the mixing

weights and letting the number of components goes to infin-

ity, we obtain the following conditional posterior [39]

p(Zn = j|η,Z−n)

=











a−n,j

N − 1 + η
if a−n,j > 0 (cluster j ∈ R)

η

N − 1 + η
if a−n,j = 0 (cluster j ∈ U )

(8)

whereR and U are the sets of represented and unrepresented

clusters, respectively, Z−n = {Z1, . . . ,Zn−1,Zn+1, . . . ,ZN },
a−n,j is the number of observations, excluding EYn, in cluster j.
The previous equation describe in fact a Dirichlet process

and is very important in our intrusion detection problem

especially in the case of unknown attacks. Indeed, if a given

attack nature is unknown it creates a new cluster.

Our learning Bayesian inference framework is based on

estimating the posterior distribution of the mixture model

using Markov Chain Monte Carlo (MCMC) techniques.

In particular, we consider Gibbs sampling which allows to

update each model’s parameter, using its posterior, in turn

given the rest of all parameters in the model.

In order to obtain our posteriors, we consider the following

priors for the parameters of the distributions representing the

relevant features and irrelevant features

µjl ∼ N (µ0, σ
2
0 ), σjl ∼ G(ασ , βσ ), λjl ∼ G(αλ, βλ)

µirr
l ∼ N (µ0, σ

2
0 ), σ irrl ∼ G(ασ , βσ ), λirrl ∼ G(αλ, βλ)

where N (µ0, σ
2
0 ) is a bounded normal distribution, defined

in the same bounded region as the mixture model, with mean

µ0 and variance σ 2
0 , G(ασ , βσ ) is a Gamma distribution with

shape parameter ασ and rate parameter βσ , and G(αλ, βλ)

is a Gamma distribution with shape parameter αλ and rate

parameter βλ. It is noteworthy thatµ0, σ
2
0 , ασ , βσ , αλ, and βλ

are called the model’s hyperparameters. Then, it is straight-

forward to obtain all parameters posteriors by multiplying the

chosen priors by the complete model’s likelihood.

Concerning the weights ρl , we know that they are defined

in [0,1], then a good prior would be a Beta distribution with

parameters δ1 and δ2, common to all dimensions:

p(ρl |δ1, δ2) =

[

Ŵ(δ1)Ŵ(δ2)

Ŵ(δ1 + δ2)

]

ρ
δ1−1
l (1 − ρl)

δ2−1 (9)

We know that ρl = p(φl = 1) and 1 − ρl = p(φl = 0),

l = 1, . . . ,D, thus φl follows a Bernoulli distribution and we

have

p(φl |ρl) = ρ
φl
l (1 − ρl)

1−φl (10)

Then, the posterior for ρl is given by

p(ρl | . . .) ∝ p(ρl |δ1, δ2)p(φl |ρl) ∝ ρ
δ1+φl−1
l (1 − ρl)

δ2−φl

(11)

An important part when dealing with infinite mixture mod-

els is the posterior of the membership variables Zn which

will allow to assign a new observed vector to an existing

cluster or to force the creation of a new cluster. Having the

conditional priors in Eq. 8, the conditional posteriors are

obtained by combining these priors with the likelihood of the

data [40], [41]

p(Zn = j| . . .)

=











a−n,j

N − 1 + η
p(EYn|θj, {ϕl},Zn) if j ∈ R

∫

ηp(EYn|θj, {ϕl},Zn)p(θj, {ϕl})

N − 1 + η
dθjdϕl if j ∈ U

(12)
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FIGURE 3. Proposed classification strategy of intrusion data.

Having all the posteriors, we can employ a Gibbs sampler,

as the one developed in [27], and each iteration can be sum-

marized by the following steps:

• Generate Zn from Eq. 12 and then update aj, j =
1, . . . ,M , n = 1, . . . ,N .

• Update the number of represented components M .

• pj =
aj

N+η
, j = 1, . . . ,M and the mixing parameters of

unrepresented components pU = η
η+N .

• Generate ρl from Eq. 11, l = 1, . . . ,D.

• Generate θj and ϕl , j = 1, . . . ,M , l = 1, . . . ,D, from

their respective posteriors.

V. EXPERIMENTAL RESULTS

The objective of this section is to conduct experiments in

order to investigate the performance of our statistical frame-

work applied to the anomaly intrusion detection challenging

problem and test it against comparable approaches. We adopt

here the multi-class anomaly with a different set of classes:

one for normal intrusion and several others for anomalies. The

output of the proposed classification strategy is illustrated as

in 3. Indeed, any new incoming data will be classified as a

normal attack or anomalous one. If it is an anomaly attack,

it will be assigned to one of the known existing classes or to

a new cluster. For evaluation, we have considered different

old and new challenging publicly available datasets such as

the KDD Cup’99,2 the Kyoto 2006+,3 and the ISCX that we

describe in the following subsection.

A. DATASETS

1) KDDCup’99 DATASET [42]

KDDCup’99 is one of the most widely employed bench-

mark for the performance evaluation of network-based intru-

sion detection systems. It was produced by simulation over

virtual network and is built on the basis of a subset data

taken from DARPA’98 program. The KDDCup’99 contains

4,898,431 records, and each consists of 41 features which

can be classified as normal or malicious attacks. In total the

data set has 5 classes, one ‘‘Normal’’ and four attack classes

which are: ‘‘Denial of Service attack (DoS)’’, ‘‘User to root

attack (U2R)’’, ‘‘Probing attack (Probe)’’, and ‘‘Remote to

local (R2L)’’. From the whole KDDCup’99 dataset, only

2http : //kdd .ics.uci.edu/databases/kddcup99/kddcup99.html
3http : //www.takakura.com/Kyoto_data/

10% are designed for training purpose, and the rest for

testing. It is noteworthy that KDDCup’99 dataset presents

many issues such as the fact that its data cannot reflect real

traffic and it cannot represent up to date network traffic since

it was produced by simulation. Moreover, the normal and

attack’s behaviors are too different from up to date network

traffic and it contains a lot of redundant records which could

lead to erroneous results. To deal with the drawbacks of

KDDCup’99, some researchers proposed new ones such as

the ISCX developed in [43].

2) KYOTO 2006+ DATASET [44]

The Kyoto 2006+ dataset is a set of real traffic data obtained

from different honeypots which can directly capture and

analyze the network traffic and this process was done from

2006 to 2009 by Kyoto University. It was created without

any deletion or modification using the IDS named ‘‘BRO’’.

It consists of 24 features where 14 are extracted from the

KDDCup’99 dataset and 10 additional features that can be

used to investigate more efficiently the network’s character-

istics and especially examine the new attacks in the network.

In our case, this dataset contains 784,000 21-dimensional

records where 388,632 are attacks and 395,368 are normal

records. Nevertheless, its major limitation is that there are

no measures for labeled traffic and it is limited to attacks

generated only from honeypots and not from other systems.

Moreover, there is no legitimate (normal) traffic to be evalu-

ated since the output of honeypots is considered only attack

traffic. For this reason, we propose to evaluate our framework

on the basis of another challenging dataset which is the

‘‘ISCX dataset’’.

3) ISCX DATASET [43]

The ISCX (Information Security Centre of Excellence) is a

benchmark intrusion detection dataset that was designed to be

used for oneweek formalware prevention and security testing

in 2011. Each record is taken from simulation for one week

and consists of 11 features. This dataset contains descriptions

of both synthetic attack and legitimate network traffic. The

major benefit of this data set is that it contains both captured

traffics and description of them.

B. RESULTS

For performance investigation, we run the developed Infinite

bounded generalized Gaussian mixture with feature selection

(InBGG-Fs) for the three data sets described above. For com-

parison purposes, we have applied also the followingmixture-

based methods: finite Gaussian mixture (FiG), finite bounded

Gaussian (FiBG), finite generalized Gaussian (FiGG), finite

bounded generalized Gaussian (FiBGG), finite Gaussian

mixture with feature selection (FiG-Fs), finite bounded

Gaussian with feature selection (FiBG-Fs), finite gener-

alized Gaussian with feature selection (FiGG-Fs), finite

bounded generalized Gaussian with Feature selection

(FiBGG-Fs), infinite Gaussian (InG), infinite bounded

Gaussian (InBG), infinite generalized Gaussian (InGG),
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TABLE 1. Accuracy when deploying the different mixture models without feature selection to the different datasets.

TABLE 2. FPR when deploying the different mixture models without feature selection to the different datasets.

infinite bounded generalized Gaussian (InBGG), infinite

Gaussian with feature selection (InG-Fs), infinite bounded

Gaussian with feature selection (InBG-Fs), infinite general-

ized Gaussian with Feature selection (InGG-Fs). All these

approaches have been implemented using Bayesian-based

MCMC inference.

The average classification accuracy rate (Accuracy) and

the false positive rate (FPR) have computed when applying

each approach for quantitative comparison:

• Accuracy metric: represents the percentage of correctly

classified instances compared to the total number of

instances. In other word, it computes the overall detec-

tion’s percentages which indicates the success rate

of any intrusion detection method. It is given by:

Accuracy = (TN + TP)(TP+ FP+ TN + FN ).

• False Positive Rate (FPR): it represents the percent-

age of normal instances wrongly categorized as mal-

ware attacks compared with the total number of normal

instances. It is given by: FPR = FP(FP+ TN ).

where FP, TN are the number of false positives and true

negatives, respectively. A perfect intrusion detection method

should have a 100% accuracy while a 0% false positive

rate (FPR)which indicate that it can detect all possible attacks

without any error (misclassification) which is very difficult

and may be impossible in real environments.

Tables 1 and 2 summarize the accuracy and FPR results,

respectively, when deploying the different finite and infinite

mixture models without feature selection. According to the

results, it is clear that the proposed infinite InBGG model

provides the best detection results. Indeed, if we see at the

accuracies for the KDDCup’99 dataset, it is about 83.49% for

our infinite bounded mixture model (InBGG), but for finite

Gaussian mixture (FiG) it is equal to 81.34% and for finite

generalized Gaussian mixture (FiGG) it is equal to 82.52%

and for the finite bounded FiBGG model is about 82.77%.

Similarly, we can obtain the best values with our method as

compared to other finite models, for Kyoto 2006+ and ISCX

datasets. These outcomes confirm evidently that our choice

for the infinite formalism allows improving expected detec-

tion accuracy since the determining of the optimal number of

classes becomes more precise. On the other hand, we can see

also that the bounded generalized Gaussian outperforms the

other distributions when deployed in both finite and infinite

mixture models. We can notice also that bounded support

distribution improves the results slightly as compared to their

unbounded counterparts. In particular, the best values for

infinite models is found for the infinite bounded generalized

Gaussian InBGG with 83.49%, 87.41%, and 90.40% for

KDDCup’99, Kyoto 2006+ and ISCX datasets, respectively.

In the same way, for the case of finite models, the bounded

one outperforms also all the rest finite Gaussian-based

models.
A comparative study was also carried out for showing the

merits of integrating a feature selection mechanism with the

statistical model. Tables 3 and 4 display the accuracy and FPR

results, respectively, when integrating feature selectionwithin

the different models. The results show that feature selec-

tion improves the detection in terms of accuracy and FPR.

According to these results, the best accuracies are obtained

with our method and are equal to 84.06%, 88.13%, and

91.82% for KDDCup’99, Kyoto 2006+ and ISCX datasets,

respectively. Similarly, the minimum percentage of normal

instances wrongly categorized as malware attacks compared

with the total number of normal instances (i.e. FPR) are

obtained with our model with feature selection (InBGG-Fs).
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TABLE 3. Accuracy when deploying the different mixture models with feature selection to the different datasets.

TABLE 4. FPR when deploying the different mixture models with feature selection to the different datasets.

These results are justified and they are due to the importance

of taking into account only most relevant features. This is

actually expected since this step allows to eliminate fea-

tures that may compromise the detection process. Moreover,

we can notice again that the generalizedGaussian-basedmod-

els outperform the Gaussian-based ones which is due to the

flexibility that the generalizedGaussian add to datamodeling.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have addressed the problem of anomaly-

based intrusion detection and we have developed a novel

fully Bayesian-based approach for infinite bounded Gener-

alized Gaussian mixture model. An important characteristic

of the developed model is that it integrates a feature selection

mechanism to prevent irrelevant features from compromis-

ing the modeling process. Our choice of Bayesian inference

methodology is motivated by the fact that it permits to avoid

under and over-fitting, to formalize our prior knowledge and

to express our uncertainty through probability distributions.

In addition, the main goal of using the infinite assumption

instead of finite one is its capability in learning simultane-

ously (i.e. parameters estimation and model selection) the

model’s parameters and number of components. On the other

hand, the integration of a feature selection mechanism aims

at eliminating irrelevant features and considering only most

relevant ones and then increasing the performance in term of

accuracy. The effectiveness of our framework is confirmed

by testing it on the challenging application namely anomaly

intrusion detection, while comparing it to other comparable

published methods from the literature. Future works could

be devoted to adapt and extend the developed framework

to be useful for specific problems related to IoT and smart

cities-based security. We are trying also to build our own data

sets for a real IoT environment. To achieve these objectives,

we plan to implement a generative discriminative framework

based on the bounded models in order to avoid drawback

of generative methods alone and to enhance expected results

when taking simultaneously the advantages of both discrim-

inative/generative approaches. Another future work could be

the handling of more large scale IDS-based datasets to offer

a deep comprehensive analysis and detection system.
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