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Abstract

The network approach is quickly becoming a fundamental building block of computational methods aiming at elucidating the
mechanism of action (MoA) and therapeutic effect of drugs. By modeling the effect of drugs and diseases on different biological
networks, it is possible to better explain the interplay between disease perturbations and drug targets as well as how drug compounds
induce favorable biological responses and/or adverse effects. Omics technologies have been extensively used to generate the data
needed to study the mechanisms of action of drugs and diseases. These data are often exploited to define condition-specific networks
and to study whether drugs can reverse disease perturbations. In this review, we describe network data mining algorithms that are
commonly used to study drug’s MoA and to improve our understanding of the basis of chronic diseases. These methods can support
fundamental stages of the drug development process, including the identification of putative drug targets, the in silico screening of
drug compounds and drug combinations for the treatment of diseases. We also discuss recent studies using biological and omics-
driven networks to search for possible repurposed FDA-approved drug treatments for SARS-CoV-2 infections (COVID-19).
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Introduction
Biological systems are highly complex involving many
heterogeneous elements interacting with each other and
forming subsystems at different levels of organization.
Network medicine aims to address this complexity by
considering the system holistically rather than focusing
on only the set of direct disease genes or drug targets
[1]. Molecular level interactions have been studied exten-
sively in the context of disease mechanisms and drug dis-
covery. As a result, information about different relations
among and between drugs, diseases, and proteins as well
as other related concepts is readily available in many
databases. This can be naturally represented as networks
where the vertices/nodes represent different molecules,
and the edges/links represent relations or interactions.
Network data mining (NDM) algorithms can be used to
detect interesting structural properties of these networks
which can be useful in identifying relevant mechanisms
for disease subtyping, prognosis, and drug discovery.
However, it is also possible to use NDM algorithms to
predict novel associations between elements without
explicitly considering the mechanisms. For example, by

utilizing the connections and the guilt-by-association
principle it is possible to uncover previously unknown
relations (e.g. drug-target or disease-drug associations)
based on how closely connected different entities are
in the network. Other essential state-of-the-art methods
are those based on matrix factorization and graph neural
networks. Matrix factorization has been extensively used
for drug repurposing based on the use of heterogeneous
networks, while graph neural networks can combine the
extraction of drug- and disease-relevant features with
the prediction task at hand to achieve a higher accuracy.
In this review, we will first describe various types of
biological networks and basic NDM algorithms. Then,
we describe and compare methods that utilize network-
based approaches for the identification of drug-targets
or drug-disease associations, and the prediction of drug
combination or drug sensitivity. We also examine appli-
cations of these methods in COVID-19 drug repurposing.

Construction of biological networks
Biological networks, in general, can be categorized into
different types based on how it has been constructed, the
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content of the network and the data that was used for the
construction of the network. A network may be directed
or undirected depending if the edges of the networks
provide information on the direction of interaction
between the nodes. Pathway-based networks are usually
represented as directed graphs, while gene-gene co-
expression networks on the other hand are usually
undirected networks as though they talk about the
strength of co-expression. Since such networks contain
information regarding the strength of interaction, the
networks are also referred to as weighted networks.
Unweighted networks do not provide information
regarding the strength of interaction. Further, depending
on the type of nodes a network has, it may be classified
as homogeneous and heterogeneous networks. Homo-
geneous networks contain only one type of nodes while
heterogeneous networks may contain nodes of different
types, e.g. drug–disease–gene network. Heterogeneous
networks have shown to be promising in exploring the
interplay of drugs and diseases by connecting available
multifaceted data in a single framework. These networks
can be constructed by either aggregating individual
interaction information between different biological
entities from literature (referred to as curated networks
or knowledge-based networks) or from high-throughput
data (referred as data-driven networks). Given the wide
range of experiments currently available for studying
interactions and for generation of high-throughput data,
the information may be either aggregated to form a single
network or a different network can be constructed based
on different types of interactions (e.g. protein interac-
tions or gene co-expression). While in the first approach
the source of interaction is hidden, the second method
does not allow to combine complementary knowledge
derived from different biological relationships. Multiplex
networks provide a possible solution to the problem
by allowing integration of interaction information from
different experimental types as different layers. However,
there are issues that might arise when building and
using different biological networks involving different
biological entities. First, cross-layer relations are often
not supported by experimental data. Besides, those
that are inferred by computational methods could be
potentially biased (e.g. experimental data are often
available for commonly studied diseases such as cancer)
[2]. Furthermore, the tissue or cell specificity is often
hidden in heterogenous networks. Finally, basic NDM
algorithms need to be re-designed for heterogenous
and multiplex networks [3]. Figure 1 graphically illus-
trates different types of networks that can be built to
study the mechanism of actions (MoA) of drugs and
diseases.

Knowledge-based networks
Knowledge-based networks are created by aggregating
interaction information between different biological
entities that are spread across the literature. The

process of curation of knowledge-based networks might
be tedious and time-consuming but is comparatively
robust as it usually involves manual inspection of each
interaction information in the published literature.
Furthermore, knowledge-based networks might not
be specific to a particular biological condition such
as diseased states and thus might not be useful for
inferring relations that are changed dynamically across
conditions. Also, it has been observed that the amount
of experimentally validated interactions available is
usually skewed towards a few well-studied genes or
diseases or other biological entities. Several databases
are currently available that collect interaction and/or
association events that can aid in understanding effects
of drugs and diseases. But these databases are usually
specific to only a type of interaction. Table 1 lists
different types of interactions that can be retrieved
from different databases. Two widely used interaction
databases are BioGRID [4, 5] and StringDB [6], which
have been extensively used to study the interactions
between the mode of action of drugs and the molecular
mechanisms dysregulated by diseases. Both databases
aim to define different types of interaction. For instance,
STRING contains interaction information obtained from
five major sources including automated text mining of
scientific literature, primary protein–protein interaction
knowledgebases, co-expression, high-throughput experi-
ments and genomic context prediction. PPI networks can
also be built using annotation databases, such as the
Kyoto Encyclopedia of Genes and Genomes (KEGG) [7]
and REACTOME [8].

DrugBank is another widely used resource providing
comprehensive information about approved as well
as experimental and investigational drugs [9]. Besides
molecular information of each drug, it also provides
information pertaining to associations between drugs,
drug-targets, and diseases. DrugBank is also one of the
largest resources of manually curated drug–drug interac-
tions reporting both adverse and beneficial interactions.
Complementing the efforts of DrugBank are the ADReCs
and SIDER databases that collect information about
reported adverse drug reactions for marketed medicines
and can form an interesting resource for understanding
drug toxicity mechanisms [10, 11]. Further association
between genes and diseases can also be retrieved from
databases like DisGeNET [12], OpenTargets [13] and
PharmGKB [14] to create a bipartite network between
diseases and related genes.

In view of the recent COVID-19 pandemic, several
of these databases have stepped up efforts to create
a dedicated section containing information related to
covid. For example, IntAct [15] has assembled about
10 000 protein–protein and RNA-protein interactions
involving SARS-CoV and SARS-CoV2. Therapeutic Target
Database (TTD) has created a comprehensive collec-
tion of anti-coronavirus drugs along with therapeutic
targets. DrugBank’s COVID-19 section provides details
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Figure 1. Different types of networks. (A) An undirected-unweighted network provide information only regarding the possible connections between the
nodes. No information is provided regarding the type of interaction or its strength. (B) Directed network on the other hand provides information about
the direction of interaction, (C) while weighted network tell about the strength of the interaction often denoted by edge. (D) Multiplex networks are
formed by obtaining interaction information from different sources for the same set of nodes. Each layer on a multiplex network refers to interaction
from different sources. As the nodes within each layer is of similar type, the network within each layer could be referred to as homogenous network. (E)
In contrast to homogenous network, heterogenous network involves interaction between different types of nodes.

on approved and unapproved drugs and potential
targets.

Data-driven networks
Data-driven networks can be built upon high-throughput
experimental data (Table 2). These networks aim to
indicate putative biomolecular interaction within a
specific biological condition or disease, or even profiling
patient-specific networks. For example, gene expression
profiling using microarray and RNA sequencing has been
extensively used to define co-expression networks that
can aid in understanding the changes in interaction pat-
terns that occur due to drug or chemical intervention [16,
17] or between normal and diseased states [18]. However,
a major issue with such data-driven networks is that
it can be noisy, and usually a large number of samples
are required for building robust networks. Other forms

of omics data like genomic, epigenomic, metabolomic
and proteomic have also gained importance for under-
standing the mechanism of diseases and drug action,
and accordingly network-based approaches have also
been explored. For example, using methylation profiles
to create weighted co-methylation networks, Xu et al. [19]
was able to identify eight methylated CpG islands that
could distinguish HIV/TB co-infected patients from HIV
mono-infected patients. Each of these different types of
omics data can be used individually, but the growth of
large-scale multi-omics data projects like the Cancer Cell
Line Encyclopedia (CCLE) Project [20], Genomics of Drug
Sensitivity in Cancer (GDSC) [21], NCI-60 pan cancer data
and The Cancer Genome Atlas (TCGA), which provides
reliable data to construct robust network, has also aided
in the extensive use of multi-omics networks. CCLE,
GDSC and NCI-60 pan cancer projects have been widely
used to decipher the underlying molecular mechanisms
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Table 2. A list of databases to build data-driven networks. The rows indicate the databases, while the columns indicate omics data
types

Chemical
structure

Genomic Transcrip-
tomic

Proteomic Metabolomic Epige-
nomic

Drug
sensitivity

References

Chemical Entities of Biological
Interest (ChEBI)

√ [118]

Human Metabolome Database
(HMDB)

√ √ [119]

The Cancer Genome Atlas Program
(TCGA)

√ √ √ √ [120]

Genotype-Tissue Expression (GTEx) √ √ [121]
Clinical Proteomic Tumor Analysis

Consortium (CPTAC)

√ [122]

DrugMatrix (data available via
GEO)

√ [123]

Gene Expression Omnibus (GEO) √ [124]
Open TG-GATEs √ [17]
Library of Integrated

Network-Based Cellular
Signatures (LINCS) (data
available via GEO)

√ [125]

Genomics of Drug Sensitivity in
Cancer

√ [126]

European Nucleotide Archive (ENA) √ √ √ [127]
PRoteomics IDEntifications (PRIDE)

Archive

√ [128]

Catalogue Of Somatic Mutations In
Cancer (COSMIC)

√ [129]

of cancer in response to drug using network biology
approaches. While TCGA includes large-scale genomics
profiles derived from tumor tissues, CCLE, GDSC and
NCI-60 contain anticancer drug response data and omics
profiles of cancer cell lines. Networks created from such
multi-perspective data can help to elucidate disease
networks in a more holistic way and predict therapeutics
[22]. However, integration of multi-omics data is often not
straightforward due to the differences in measured entity
and their probabilistic distribution in each omics data
type. As such, different methods have been explored and
can be grouped into two types—vertical where multiple
omics data from the same set of samples are integrated
and horizontal where data from different biological
samples are mapped to shared or related entities [23]. At
the simplest level, sample-sample similarity networks
can be created based on different types of multi-omics
data followed by fusing them into one network to
represent the full spectrum of underlying data [24].
Another approach based on horizontal integration of
multiomics data was implemented by PaintOmics3 that
allows integration of four types of omics data—gene-
based, metabolite-based, region-based and regulatory
omics to create pathway network where each node
represents pathways and edges represent shared fea-
tures or KEGG database connection [25]. The behavior
of each pathway in a condition is summarized by
pathway enrichment analysis on each omics data.
Similar approach was also used in GraphOmics where
transcriptomic, proteomic and metabolomic data are

mapped to Reactome reactions and pathways based
on their biochemical relationships [23]. Another multi-
omics data integration is iOmicsPASS, which involves
computations of interactions’ scores based on transcrip-
tomic, proteomic and DNA copy number data for all
possible interactions in a transcription factor regulatory
network or PPI network [26]. The weighted network can
then be used to identify sparse subnetworks predictive
of specified phenotypes. Over the last decade, omics
technologies have evolved from analysis of bulk tissue
samples to single cell.

Combining knowledge and data for network
construction
Efforts have also been made to use the information in
curated databases along with high-throughput experi-
mental data for construction of networks. Pouryahya et al.
[27] used known interactions from Human Protein Ref-
erence Database (HPRD) and gene expression data from
GDSC to create weighted protein–protein interaction net-
works which they utilized for prediction of drug sensitiv-
ity in cancer cell lines. While this method focused on cre-
ating homogeneous networks, approaches have also been
explored to create heterogeneous networks connecting
different biological entities using both known interac-
tions and interactions based on high-throughput data.
For example, Scalable Precision Medicine Open Knowl-
edge Engine (SPOKE) is a large heterogeneous network
containing nodes of 11 types including drugs, diseases
and genes, connected by 24 types of interactions sourced
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from existing knowledgebases and based on omics pro-
files like those of LINCS L1000 [28]. SPOKE was created
with the aim to boost discovery of personalized thera-
peutics by linking electronic health records of individual
patients to the different biological entities in the network.
Lee et al. [29] created a multilayered heterogeneous net-
work of SNP-gene disease to identify key genes in demen-
tia. In their network, each layer consisted of a homoge-
nous network of either SNP, gene or disease, and the
three layers were connected based on interrelationships
between them. The disease and gene network was based
on existing data, while the SNP network was created by
calculating interactions between SNPs from GWAS data.

Apart from creating heterogenous networks, knowl-
edge and data can also be combined through similarity-
based networks. For example, drug–drug networks can
be created by calculating the similarity between their
chemical structures [30] or their targets which in turn
can be retrieved from databases like DrugBank. Similarly,
disease–disease similarity networks can be constructed
by measuring the degree of similarity between various
diseases based on different criteria like matched MeSH
terms in medical description of diseases [31], disease-
gene associations [32, 33], comorbidity risk [33] and omics
profiles. In a recent work, Jin et al. [34] utilized simi-
larity network fusion to merge multiple drug–drug net-
works constructed based on known drug–drug interac-
tions, similarities based on its association with proteins
and side effects, omics profiles and structural properties
which were then used to retrieve drug features to be used
in a drug-disease heterogeneous network for predicting
drug-disease associations.

Similarity networks offer a potential solution to com-
bine information from different sources without much
regard to the data structure. They have been particularly
exploited to create the different layers in a multiplex net-
work. Halu et al. [33] created a multiplex network of 779
human diseases by calculating the similarities between
various diseases based on phenotypic and genotypic data
with the aim of characterizing and subtyping diseases.
More recently, Pio-Lopez [35] used network embedding
on multiplex-heterogeneous networks for repurposing
drugs for SARS-CoV-2. The network consisted of two
separate multiplex networks of human molecular inter-
actions and drugs connected by drug-target associations.
Each multiplex layer in the network was created either by
retrieving known interactions or based on similarity.

NDM algorithms
In this section, we briefly introduce basic NDM algo-
rithms that are often applied to study the MoA of diseases
and drugs (see Figure 2).

Graph search algorithms
Exploring graphs means apply graph search algorithms,
which can aim at general discoveries (e.g. to identify
disease-deregulated genes that are close to a given drug

target), or explicit search (e.g. to find the shortest path
[SP] between a given disease-deregulated gene and a
known drug target). Breadth First Search (BFS) [36] and
Depth First Search (DFS) [37] are two NDM algorithms
for traversing a graph, and they are often used as first
step for many other NDM strategies. Figure 2A shows the
order in which the nodes of a graph are visited when
performing BFS and DFS.

Centrality algorithms
Centrality algorithms help identify key players in bio-
logical networks. For example, it has been shown that
highly connected vertices in protein interaction networks
are often functionally important and the deletion of
such vertices is related to lethality [38, 39]. There are
three main centrality algorithms: Degree Centrality (DC),
Closeness Centrality (CC) and Betweenness Centrality
(BC). DC can be used to rank the nodes according to
their degree, which corresponds to the number of edges
linked to the node. For directed networks two-degree
centralities exist: the in-degree centrality and the out-
degree centrality (see Figure 2B). The CC instead uses
information about the length of the SPs within a network;
it compiles the sum of the minimal distances of a node
to all other nodes. Then, BC measures the fraction of the
SPs that pass through a node. It quantifies the ability of
a node to be an important link between other nodes. BC
could be used to improve drug targeting by finding the
control genes for specific diseases. It has also been used
to detect preferential targets of pathogen effectors [40].
Figure 2C shows examples of nodes with a high degree,
betweenness or closeness centrality.

Path finding algorithms
Path finding algorithms utilize graph traversing strate-
gies to explore possible paths between nodes in a molecu-
lar network. There are four main path finding algorithms:
SP, minimum spanning tree (MST), random walk (RW) and
Steiner tree.

The SP algorithms search for the cheapest path in
terms of the number of hops or edge weights. Edge
weights are often included in molecular networks to rep-
resent important information such as the co-expression
level of two interconnected genes (a continuous weight).
SPs can be found by using the Dijkstra’s Algorithm
[41] which determines the path that minimizes the
total distance (weight) between a given node (which
is called the ‘source node’) and all other nodes in a
graph. It should be noted that the weight, in this case, is
assigned to the edge or connection between two nodes.
Dijkstra’s Algorithm first identifies the lowest-weight
relationship from the start node to directly connected
nodes. It keeps track of those weights and moves to the
‘closest’ node. It then performs the same calculation,
but now as a cumulative total from the start node. The
algorithm continues in an iterative way by computing
the same calculations and updating the cumulative
weights. During the iterations, it will always select the
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Figure 2. Basic algorithms in network data mining. (A) Examples of graph search algorithms. (B) Examples of in- and out-degree centrality. (C) Examples
of nodes highlighting the main characteristic of different centrality scores. ‘1’ has a high degree; ‘2’ has a high betweenness score and ‘3’ has a high
closeness score. (D) Network proximity with SP, MST and RW. (E) Example of a Steiner tree. (F) Example of CD in graph. The edges of the SP, MST or ST
are presented in bold.

lowest weighted cumulative path to advance along, until
it reaches the destination node. SP algorithms have been
extensively used to identify drug-target interactions
[42–44].

Another interesting application of pathfinding algo-
rithms is the one based on MST (Weight). A MST of a
graph is a subset of edges that minimize the costs (or
edge weights) needed to connect all the vertices together
without using cycles. Greedy algorithms work well for
computing the MST and there are two main implementa-
tions: the Kruskal’s [45] and Prim’s algorithms. MST can
be used to identify key dysregulated genes in disease-
specific gene and protein networks [46]. Moreover, MSTs
are often applied to implement phylogenetic network
analysis. For example, MST was recently used to derive a

phylogenetic tree and measure differences in SARS-Cov-
2 variants [47].

The RW algorithm [48] is used to verify which nodes
are more frequently visited on a random path in a
graph. It simulates a traversal of the graph in which
the crossed graph edges are chosen at random. After
repeating this process several times, it should then be
possible to measure the node-to-node proximities. In a
classic RW, each edge has the same, possibly weighted,
probability of being selected, and this probability is
not influenced by the previously visited nodes. The
most used variant of RWs is called Random Walk with
Restart. Figure 2D graphically illustrates examples of
SP, RW and MST. The SP and MST edges are shown in
bold.
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Steiner tree algorithms solve a classical combinatorial
optimization problem which focuses on identifying a
subgraph of minimum cost connecting a given set of
seed nodes. Figure 2E includes an example of ST. The
input biological network must include edges with costs
which correspond to confidence or frequency of that
interaction, and prizes for the nodes, which could be
linked to the measurements of differential expression.
The set of nodes with assigned prizes are referred to as
terminal nodes, while nonterminal nodes, interconnect-
ing the nodes with a prize, are called Steiner nodes, which
are represented as black nodes in Figure 2E. STs are a very
powerful network-based tool. They have been used to
study to understand the mechanism of complex diseases
[49], to search for candidate drug targets in SARS-CoV-2
and to extract drug repurposing candidates [50].

Community detection algorithms
These algorithms can find communities within a biolog-
ical network (see Figure 2F). A community is a group of
nodes that is tightly connected and, at the same time, the
same nodes are loosely connected with every other node
in the network [51]. There are many different techniques
that can be implemented for detecting such communi-
ties. Two common techniques are label propagation (LP)
[52] and the Louvain algorithm (LA) [53]. LP identifies
communities by an iterative process where node labels
are spread to the neighbors until convergence is reached,
which means that nodes with the same label constitute
a community. The basic idea of LP is that a single label
can quickly become dominant in a densely connected
group of nodes, but it will not be able to ‘dominate’
when traversing sparsely connected regions. On the other
hand, LA applies a modularity-based strategy. It maxi-
mizes a modularity score for each community, where the
modularity quantifies the quality of an assignment of
nodes to communities. This means evaluating how much
more densely connected the nodes within a community
are, compared to how connected they would be in a
random network. LA utilizes a hierarchical clustering
algorithm that recursively merges communities into a
single node and executes the modularity clustering on
the condensed graphs. Table 3 includes a short descrip-
tion of research studies aiming at using NDMs for study-
ing disease and drug effects upon different biological
networks.

Machine learning and graph embeddings
Biological networks can be transformed into vector space
to allow machine learning algorithms to work with
them and solve important supervised and unsupervised
learning tasks for precision medicine approaches, such
as biomarker discovery [54] and patient subtyping [55].
To this end, however, graph embedding strategies are
often implemented. A graph embedding process aims at
creating a lower dimensional representation of an entire
graph, by preserving general properties of the graph
structure. A more simplistic approach is to use connected

feature extraction strategies, where the objective is to
extract specific features from the analyzed biological
networks. For instance, we could define features repre-
senting connection-related metrics, such as the number
of relationships going into or out of nodes, a count of
potential triangles, and neighbors in common. Moreover,
NDM algorithms, such as community detection (CD), and
network diffusion, can also be used to extract graph-
based features [56]. RW and, more in general, network
propagation methods are commonly used for graph
embedding [57–59]. Graph embedding is often applied to
implement link prediction strategies in drug discovery,
such as identify drug-target interactions [60], drug–drug
interactions [61] and drug-related side effects [62].

NDM in drug discovery
Here we describe computational methods that utilize
NDM for addressing drug discovery–related problems
such as the identification of drug-targets, or drug-disease
associations, drug combination and drug sensitivity pre-
diction. Table 4 reports key information for each tool,
including the availability of the software implement-
ing the proposed methods, and a summary of their key
properties and limitations, which covers the aspects of
scalability and computational complexity.

Computational methods can support fundamental
stages of the drug development process, including
the identification of putative drug targets, the in silico
screening of drug compounds and drug combinations
for the treatment of diseases. In silico screening can not
only prioritize drugs for in vitro testing but also aid in
drug repurposing [63]. These steps can lower the cost of
drug discovery significantly, by evaluating efficacy and
safety aspects of drugs or drug targets. A basic principle
in computational drug discovery is that the best drugs
should target the disease associated genes (or proteins)
as directly as possible. However, not all genes/proteins
are targetable and often we are working with a limited
set of known drugs so the distance between drug targets
and disease genes can be used as a rough estimate of
the potential efficacy of drugs while considering the
network context. These networks can be used to identify
novel drug targets and new use for existing drugs by
using proximity-based efficacy evaluations [64]. Pre-
efficacy evaluations can also be made by considering
how well drugs are able to reverse or target these disease
perturbations. Safety is also of high concern, and it can be
assessed for both putative drug targets and known drugs,
especially when considering drug combinations which
can induce large perturbations in biological systems.
Network approaches allow the examination of the local
properties and topology of drug targets, such as node
centrality, which are key factors contributing to side
effects and should be taken into consideration in rational
drug design [65]. For heterogeneous networks, such as
those linking disease-perturbed genes to other biological
entities (e.g. pathways, known drug adverse reactions),
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Table 3. Application of network data-mining algorithms for studying diseases, drugs and their associations

Algorithm Target Application Description Reference

BFS + DFS Explore disease
and drug effects

Network-based
prioritization of
gene-disease associations

BFS and DFS were used in combination to compute a
low-dimensional vector representation for all nodes in a network.
These vectors are then used for gene prioritization.

[130]

BFS Explore disease
and drug effects

Identify key and master
regulatory genes in
disease-specific gene
network

BFS was applied to find a minimum set of connected genes such
that every other gene in the network is one hop connected with a
gene in this set (a minimum connected dominating set of genes).

[131]

DFS Explore disease
and drug effects

Identify connected
subnetworks in
disease-specific biological
networks

DFS was extended to identify active gene (or protein)-based
modules across multilayer networks (i.e. networks composed of
different layers, where every layer is an independent network).

[132]

Shortest Path Explore disease
and drug effects

Mine associations between
disease and drug targets

Shortest paths were used to compute network proximity of
drug-disease pairs. These proximity scores are then evaluated for
the prediction of effective drug combinations or adverse effects.

[73]

Shortest Path Explore disease
effects

Mine novel
disease-associated genes

Shortest paths were utilized to detect genes that are closely related
to known disease-associated genes.

[43]

Minimum Spanning
Trees

Explore disease
variants

Divergence analysis of
disease variants

A phylogenetic network analysis of 160 complete human severe
acute respiratory syndrome coronavirus 2 (SARS-Cov-2) genomes
uses minimum spanning trees to build a phylogenetic tree and
measure differences SARS-Cov-2 variants.

[47]

Minimum Spanning
Trees

Explore disease
variants

Identify patient-driven
dysregulated networks

A modified Kruskal minimum spanning tree search strategy was
implemented to determine the maximum dysregulated
subnetwork for drug treatment in a cohort of cancer patients.

[46]

Random Walk Explore drug
effects

Predict drug-target
interaction prediction by
using multiple networks

The RWR algorithm was used to infer the cascading effect triggered
by perturbed drug targets. The so-called ‘diffusion state’ is then
used to compute prediction scores of drug target interactions.

[80]

Random Walk Explore
disease-drug
relationships

Identify new indications
for existing drugs

An integrated heterogeneous network was constructed by
combining multiple sources including drugs, drug targets, diseases
and disease genes data. Then, RWR was applied to rank diseases
starting from known drug targets.

[30]

Centrality Explore disease
effects

Identifying gene-disease
associations using
centrality on gene
networks

Text mining and network analysis were used in combination to
build disease-specific gene-interaction networks and mine
gene-disease associations on the basis of four node centrality
scores: degree, eigenvector, betweenness and closeness centrality.

[133]

Centrality Explore
drug-disease
relationships

Explore the SARS-CoV-2
virus-host-drug
interactome for drug
repurposing

A network was built to present viral-host protein interactions,
host-protein interactions and drug-protein interactions. Then,
betweenness and closeness centrality are used to rank and select
known drugs targeting an optimized set including key viral and
host proteins.

[102]

Community
Detection

Explore
drug-disease
relationships

Identify disease-gene and
drug-gene associations

A network including disease-drug interactions is built based on
known disease-gene associations and drug targets. Then,
modularity-based community detection algorithms were used to
identify clusters of diseases and drugs that could suggest novel
drug repositioning candidates

[134]

Community
Detection

Explore disease
effects

Identify phenotype-driven
modules in gene networks

The Louvain algorithm is utilized to identify biologically relevant
gene modules that change under different environmental
conditions and biological states.

[135]

safety can be more carefully addressed by assessing
whether drug targets are linked, for instance, to cancer
hallmark pathways or known drug-ADR properties.

Due to the biological relevance of the properties
of gene networks, topological measures have been
widely adapted for drug-repositioning to uncover func-
tional relationships between drugs and diseases [66].
Particularly popular are the network-based proximity
approaches [64, 67–71], which use shortest distances in
biological networks to estimate efficacy and safety of
drugs given a gene set corresponding to their targets
and disease gene modules in a PPI network. Typically,

these methods define network proximity as the average
distance of each drug target to their closest disease gene
and normalize them based on the network proximity of
random gene sets. They have been applied broadly to
many diseases such as cancer, cardiovascular disease
and COVID-19. SAveRUNNER [72] is a novel network
proximity-based tool for drug repurposing. It enhances
the typical average-closest-distance-based z-score with
a weight derived from clusters computed from network-
proximity-based similarity. Drug and disease clusters
are computed by using a greedy optimization of network
modularity. A quality metric is computed for each cluster
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Table 4. Comparison of NDM-based approaches used in drug discovery. The methods are grouped based on four categories: basic NDM
algorithms network propagation and random-walk based methods (which do not rely on graph embeddings), matrix factorization and
graph neural network-based methods

Software Algorithms Objectives Input data Key properties Limitations

Pure network-based methods
Guney’s
toolbox

Network proximity
between drug targets
and disease modules

In silico screening,
drug repurposing,
drug combinations

PPIs, DTIs, disease
gene sets

• Estimates drug efficacy and safety in
gene interaction network context.

• Uses network-based proximity measures
for the discovery of drug combinations.

• Low computational complexity after
computing the shortest paths between
all proteins.

• Estimation for each drug or drug
combination is independent of each
other and hence it should be highly
scalable.

• Time complexity is not specified, but it
should be bounded by O(N + E log N),
since it is essentially based on the
calculation of shortest paths.

To yield accurate results
the set of interactions and
disease associated genes
should be accurate and
complete.
Currently focused on only
PPIs.

GPSnet Network proximity,
gene module
detection based on
greedy algorithm
with multiple
random
initializations

In silico screening,
drug repurposing

Patient mutation
and
gene-expression
data for disease
modules, DTIs
(combined from 6
sources), PPIs
(combined from 15
sources),
drug-induced
transcriptome data
for GSEA

• Uses cancer-type-specific omics data for
disease module detection and cancer
specific efficacy estimation based on
network proximity.

• Uses GSEA and cell line expression data
to confirm whether disease genes are
up-/downregulated by drugs

• Identifies omics-driven disease gene
modules (or pathways).

• Has low computational complexity and
high scalability.

To yield accurate results
the set of interactions and
disease associated genes
should be accurate and
complete.
Currently focused on only
PPIs.
Benchmarking analysis
based on identified disease
modules, but there is no
accuracy estimated from
known drug-disease
associations.

SAveRUN-
NER

Network proximity,
drug-disease module
detection

In silico screening,
drug repurposing

PPIs, DTIs, disease
gene sets

• Estimates drug efficacy using gene
interaction networks and network
proximity.

• Prioritizes associations between drugs
and diseases located in the same
network neighborhoods.

• Identifies off-label of drugs to be
repositioned.

• Time complexity is not specified, but the
module detection algorithms runs in
near linear time, O(n log2 n) and network
proximity should be bounded by shortest
paths computation, i.e. O(N + E log N).

• High scalability.

To yield accurate results
the set of interactions and
disease associated genes
should be accurate and
complete.
Low benchmark accuracy.

ThETA Dijkstra’s algorithm,
node centrality based
on degree, clustering
coefficients and
betweenness

Target prioritization PPIs, tissue-specific
gene-expression,
disease gene sets

• Drug target efficacy and safety
estimation with network topology
measures.

• Computes tissue-specific efficacy
estimates.

• Time complexity is bounded by
• O(n3) where n is the number of proteins.

It depends on the accuracy
of known disease-gene
associations.
The computation of
betweenness centrality is
expensive for large
networks.

MeTeOR
community
detection

Recursive Louvain
method

Find disease- and
drug-specific
pathways

MeSH term
co-occurrence in
literature

• Identifies novel disease and drug specific
biological pathways from genes
contained in the same communities.

• Efficient module detection via Recursive
Louvain (RL) method.

• Requires computationally expensive text
mining to produce the network in the
first place.

• Might scale poorly with larger networks
due to recursiveness.

• Time complexity is not specified.

The power of the method
for drug discovery depends
on the amount of
literature that is already
published on the topic of
interest.

(Continued)
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Table 4. Continued

Software Algorithms Objectives Input data Key properties Limitations

Network propagation and random-walk-based methods
MBiRW Bi-random walk with

restart
Drug
repurposing

Drug structure for
molecular fingerprints,
MeSH terms of
diseases, known
drug-disease
indications

• Simultaneous random walks on drug
similarity network and disease similarity
network.

• Known associations are systematically used
to adjust similarities and as seed node sets
for random walk with restart.

• Applies clustering analysis to further
increase similarity of drugs and diseases
belonging to the same cluster.

• Time complexity is not specified, but it
should approximately be cubic in the
number of nodes O(n3).

Repeated adjacency
matrix multiplication
scales poorly when the
number of drugs and
diseases becomes very
large.
Additional biological
information could be used
to further improve
similarities.

DrugNet Network propagation Drug
repurposing

Drug annotations,
disease ontology,
known drug-disease
indications, DTIs, PPIs,
disease gene sets

• Able to integrate data from complex
networks involving a wide range of types of
elements and interactions

• The algorithm can work with an arbitrary
number of heterogeneous data networks.

• Computational time relying on network
propagation within a network—O(n3); and
across the network—O(n2).

• Time complexity should approximately be
bounded by O(m × n3), where m is the
number of networks and n is the number of
nodes.

Network completeness
significantly affects the
quality predictions.
The authors identified
issues stemming from
network topology with
certain categories of drugs.
Low scalability.

Matrix factorization-based methods
SCMFDD Similarity

constrained matrix
factorization

Drug
repurposing

Drug-disease
associations, drug
molecular structure,
drug target proteins
and enzymes, drug
pathways, drug–drug
interactions, disease
MeSH DAGs (used for
semantic similarity)

• Predicts drug-disease associations by using
matrix factorization (MF).

• Improves MF by using similarity constraints
to account for the biological context.

• Simple and efficient algorithm (should scale
better for larger networks than MBiRW)

• Time complexity is not specified, but it
should be approximately bounded by
O(n2 + m2 + nmk2), where n ∗ m is the
dimension of the matrix of observed
drug-disease associations and k is the
number of hidden dimensions.

Three hyper-parameters
need to be tuned. Drug
similarities were not
integrated, but rather
tested separately.
Prediction performance
was not much higher than
those of previously
published methods.

NMF-DR Non-negative matrix
factorization,
similarity network
normalization and
fusion

Drug
repurposing

Known drug-disease
indications, drug
similarities and disease
similarities collected
from four previous
studies based on: drug
clinical annotations,
drug structure, drug
targets, drug pathways,
drug–drug interactions,
disease MeSH DAGs,
disease ontology,
disease gene sets

• Novel approach for constructing a
heterogeneous network of drugs and
diseases.

• Aggregates and normalizes similarities
between drugs and diseases from different
data sources by using similarity network
normalization and fusion (SNNF).

• Provides an improved non-negative matrix
factorization (NMF) method which is based
on a rank selection method and singular
value decomposition (SVD) methods.

• Could be applied to other bi-partite
networks with any number of similarities.

• Time complexity is not specified.

The matrix initialization
cost (using SVD) was
identified as a bottleneck
by the authors. The
similarity fusion step can
lose some complementary
information from different
similarities even though it
showed an improvement
over the individual
similarities that were
tested separately.

MSBMF Matrix factorization Drug
repurposing

Drug-disease
associations, drug
clinical annotations,
drug structure, drug
side effects, drug–drug
interactions, drug
targets, disease MeSH
terms, disease ontology

• Uses matrix factorization to decompose the
drug-disease association matrix into a
drug-feature matrix and a disease-feature
matrix.

• Multiple drug- and disease-based similarity
constraints are used without applying a
fusion step.

• Latent features are then extracted to infer
missing drug-disease associations.

• Could be applied to other bi-partite
networks with any number of similarities.

• Time complexity is not specified.

It utilizes non-convex
optimization which can
get stuck in local optima.

(Continued)
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Table 4. Continued

Software Algorithms Objectives Input data Key properties Limitations

DTINet RWR, Diffusion
Component Analysis
(DCA), inductive
matrix completion

Drug-target
prediction,
drug
repurposing

DTIs, drug–drug
interactions,
drug-disease
associations, drug-side
effect associations,
disease gene sets, PPIs,
drug molecular
structures, protein
sequences

• Integrates diverse information from
heterogeneous networks.

• Uses diffusion component analysis
(DCA) to embed nodes of several
networks between drugs, targets,
side-effects and diseases to extract
topological drug and target features.

• Uses inductive matrix completion to find
projection of low-dimensional drug and
disease representation such that known
drug-disease pairs are geometrically
closer in the mapped space.

• Can be applied to other bi-partite
networks with any similarity or
association related to drugs and proteins

• Time complexity is approximately
bounded by O(k1 ∗ n3 + k2 ∗ n3 + n),
where k1 and k2 are, respectively, the
number of drugs and target-based
similarity networks.

Using network
propagation for graph
embedding is no longer
state-of-the-art. A set of
negative training examples
is required for the matrix
completion method used
and in practice they are
sampled from the set of
unknown predictions,
which can cause bias in
the predictions.

Graph neural network-based methods
NeoDTI Deep learning, graph

convolutional
networks

Drug-target
network
completion,
drug
repurposing

DTIs, drug–drug
interactions,
drug-disease
associations,
drug-side-effect
associations, disease
gene sets, PPIs, drug
molecular structures,
protein sequences

• Predicts drug-target interactions by
using several heterogeneous networks
between drugs, side effects, proteins and
diseases.

• Embeds nodes in heterogeneous
networks by using neighborhood
aggregation.

• Implements end-to-end DTI prediction
based on deep learning.

• Uses multi-objective optimization
aiming to preserve topology of input
data via reconstruction.

• Comparatively high predictive
performance (improves DTINet).

• Could be applied to other bi-partite
networks with any similarity or
association related to drugs and proteins.

• It can handle large-scale data.
• Time complexity is not specified.

Computational cost of
deep learning can be high,
although generally it
scales well with more data.
Needs to sample negative
examples randomly from
unknown associations.

DeepDTnet Deep learning,
stacked denoising
autoencoder,
positive-unlabeled
matrix completion

Drug-target
network
completion,
drug
repurposing

DTIs (assembled from
6 sources), drug
molecular structure,
PPIs (15 sources),
drug–drug interactions
(1 source), known
drug-disease
indications (3 sources),
drug side effects (4
sources), protein
sequences, tissue
gene-expression, gene
ontology, drug
annotations, disease
gene sets (3 sources)

• Predicts drug-target interactions by
using multiple heterogeneous networks
between drugs, side effects, proteins and
diseases.

• Node embeddings used as drug and
target features are extracted by DNGR
which uses random surfing, positive
pointwise mutual information and
stacked denoising autoencoders.

• Positive unlabeled matrix completion
addresses sparsity of associations and
lack
of negative examples in drug-target
graph.

• Could be used to integrate any weighted
networks related to DTI or other
bi-partite link prediction.

• Higher predictive performance
compared to DTINet.

• Time complexity is not specified.

Computational cost can be
high for learning multiple
deep autoencoders. The
authors indicate that their
classification of DTI based
on a weak binding affinity
cut-off might risk false
positives. Predictions were
slightly biased against
drugs with lower average
similarity to other drugs,
but still very good.

(Continued)
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Table 4. Continued

Software Algorithms Objectives Input data Key properties Limitations

HeTDR Deep learning,
similarity network
fusion (SNF), sparse
autoencoders, text
mining,
representation
learning for
attributed multiplex
heterogeneous
network

Drug
repurposing

Drug-disease
associations, drug–drug
interactions, DTIs (3
sources), drug-side
effect association (4
sources), drug
molecular structure,
drug clinical
annotations, protein
sequence similarity,
gene ontology (GO),
drug similarities
(structure, clinical
annotation semantics,
target similarity, 3
GO-based semantics),
text-mining-based
disease features

• Utilizes a combination of autoencoder,
text-mining and deep learning-based link
prediction.

• Sparse autoencoder extracts drug
attributes from multiple similarity
measures fused together with SNF.

• Text mining is used to extract rich disease
attributes.

• Link prediction method (GATNE-I) utilizes
attributed heterogeneous network graph
embedding.

• GATNE-I could perhaps be used to
integrate multiple relations between
drugs, diseases and other entities.

• Text mining could be applied to other
corpora.

• Significantly outperformed other methods
in comparison.

• Time complexity is not specified.

Uses three separately
trained deep learning
methods with significant
computational cost. The
final network features
only drugs and proteins
and could perhaps be
improved by adding
relevant biomolecules
such as proteins.

MGRL Deep learning, graph
convolutional
networks, node2vec,
random forest
classifier

Drug
repurposing

Drug-disease
associations, drug
molecular structure,
DTIs, disease MeSH
DAGs (used for
semantic similarity)

• Combines neighborhood attribute
aggregation and non-attributed graph
node embedding.

• Uses graph convolutional networks for
feature extraction by embedding drugs
and diseases based on their immediate
neighborhood and attributes.

• Uses node2vec to embed drugs and
diseases in the global network context.

• Uses random forest for predictions.
• Time complexity is not specified.

It uses a simplified version
of graph convolution that
may not learn rich
representations of the
nodes. Nevertheless, the
computational costs of
deep learning are typically
higher than other
methods. The prediction
performance was only
slightly higher than
previous deep learning
methods.

GRLMN Deep learning,
stacked
autoencoders,
Large-scale
Information Network
Embedding (LINE),
random forest
classifier

Drug
repurposing

Drug-disease
associations, drug
molecular structure,
drug target proteins
and enzymes, drug
pathways, drug–drug
interactions, disease
MeSH DAGs (used for
semantic similarity),
disease and drug
associations for
miRNA, lncRNA and
proteins, DTIs, disease
gene sets, PPIs

• Integrates association networks consisting
of multiple biomolecules.

• Uses heterogeneous network node
embedding for drugs and diseases as well
as a drug fingerprint autoencoder for
feature extraction.

• Uses random forest for predictions based
on node embeddings and attributes.

• Could be used to incorporate relations
among any number of different entities.

• When testing different embedding
algorithms, LINE outperformed node2vec
slightly.

• Time complexity not specified, but LINE is
approximately bounded by O(dKE) where d
is average degree, K is number of negative
examples and E is number of edges.

When updating the input
network, the whole model
needs to be retrained,
although the
computational cost is not
very high according to the
authors. Low improvement
over SCMFDD prediction
performance.

Decagon Deep learning, graph
convolutional
networks, tensor
factorization

Prediction of
side effects
for drug
combina-
tions

PPIs (assembled from 4
sources), DTIs, drug
side effects (2 sources),
drug–drug combination
side-effects

• Predicts polypharmacy side effects.
• Represents side effects for drug

combinations as different drug–drug
relations which represent different side
effects.

• Uses end-to-end deep learning combining
a graph convolutional network as an
encoder of drug–drug and drug-protein
relations as well as tensor factorization as
a decoder to predict drug combination side
effects.

• Significantly outperformed other
multi-relational link prediction methods
in comparison.

• Time complexity is not specified.

It samples random
missing links for negative
examples in training. Side
effects can depend on the
dose and patient, which
cannot be accounted for
by using this method.

(Continued)
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Table 4. Continued

Software Algorithms Objectives Input data Key properties Limitations

Methods for drug sensitivity and synergy prediction
CDCN Network model Drug

sensitivity
prediction

Drug response data (IC50)
in different cancer cell
lines, cell line gene
expression at steady state,
drug molecular structures

• Constructs a heterogenous network of
drugs and cell lines, where drug-cell line
edges are weighted by drug response, and
drug–drug and cell line-cell line edges are
weighted by their similarity.

• Predicts drug response for new drug on
new cell line by using a network model.

• The predictions are optimized by
evaluating a network model over a range
of decay parameter values.

• The optimization algorithm’s time
complexity is bounded by the square of
the number of drug-cell line pairs which
could become an issue with larger datasets.

The suggested strategy for
predicting responses in
patients requires that there
exists a correlated
gene-expression profile for
which drug response data is
known at least for some
drugs; however, in practice
drug response is typically
analyzed in cell lines which
often do not exhibit strong
correlation with patient
profiles.

Pouryahya’s
method

Network model,
clustering, random
forest regressor

Drug
sensitivity
prediction

Drug response data (IC50)
in different cancer cell
lines, cell line gene
expression at steady state,
PPIs, cancer associated
gene set, drug molecular
structures

• Uses a stochastic message-passing process
to define an invariant measure of gene
expression in a PPI network.

• Uses Wasserstein distance and optimal
mass transport to calculate distance
between cell line gene expression profiles.

• Predictions were made with random
forests based on gene expression and
drug molecular features.

• Cell lines and drugs were clustered and
separate regression models were trained
on different cluster pairs.

• Time complexity is not specified.

Predictions depend on
clustering information,
assigning drugs and cell
lines to their nearest cluster
works as long as they are
close to existing clusters,
but might cause issues
otherwise. Limiting analysis
known cancer genes may
discard useful information.
Need to learn one model per
drug-cell line cluster pair.

PaccMann Network
propagation, deep
learning,
multimodal
attention-based
neural networks,
recurrent neural
networks,
convolutional
neural networks

Drug
sensitivity
prediction

Drug response data (IC50)
in different cancer cell
lines, cell line gene
expression at steady state,
drug molecular structures,
PPIs

• Uses network propagation to extract
subset of informative genes that is used
as input in an end-to-end neural network
to predict drug sensitivity.

• Attention-based neural networks offer
better interpretability compared to other
deep learning approaches.

• SMILES-based feature extraction
outperformed molecular fingerprints.

• Time complexity is not specified.

The authors mention that
adding gene expression
profiles from healthy cell
lines could improve the
extraction of cancer specific
features. The method uses
PPI for selecting genes, but
otherwise does not integrate
biological networks.

DeepCDR Deep learning,
graph
convolutional
networks,
convolutional
neural networks,
feed-forward
neural networks

Drug
sensitivity
prediction

Drug response data (IC50)
in different cancer cell
lines, drug molecular
structure, cell line
multi-omic profiles
(mutation, transcriptomic,
epigenomic), patient
multi-omic profiles and
clinical annotations (used
for validation only), known
cancer associated gene set

• Uses a uniform graph convolution network
(UGCN) to extract rich drug representa-
tions from 2D drug graph structure.

• Integrates multi-omic data to characterize
cell lines.

• Based on ablation analysis epigenomic
profiles were particularly useful.

• Significantly outperformed other baseline
machine learning models.

• Time complexity is not specified.

Does not integrate biological
networks. UGCN uses fixed
size inputs by utilizing a
complementary drug
structure graph that is used
to complete the adjacency
matrix.

Y Guan’s
method

Network
propagation,
random forest
regressor

Drug synergy
prediction

Monotherapy and drug
combination response
data (IC50) and synergy
scores in different cancer
cell lines, DTIs, multi-omic
cell line profiles
(mutations, transcriptome,
epigenome), gene network

• Uses network propagation to simulate
post treatment molecular profiles for drug
combinations in each cell line.

• The simulated profiles were used as
features for random forest-based
regression.

• Trains ensemble of models restricted to
subsets of all, one or two drugs for training.

• The monotherapy data was found more
informative than simulated post
combination treatment features, but still
provided additional value for predictions.

• Time complexity is not specified.

The local synergy model
trains one classifier for each
drug combination, which
does not scale well for a large
number of drugs, although
could still be reasonable by
choosing an efficient method
or appropriate
hyper-parameters.

(Continued)
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Table 4. Continued

Software Algorithms Objectives Input data Key properties Limitations

PRODeep
Syn

Deep learning, graph
convolutional
network, matrix
completion

Synergistic
drug
combination
prediction

Drug combination
response data (IC50)
and synergy scores in
different cancer cell
lines, drug molecular
structures, cell line
gene expression and
mutation profiles, PPIs,
gene sets used to
define node attributes
(position, motif,
immunological
signature)

• Merges PPIs, gene annotations and cell line
gene expression to represent cell lines.

• Performs attributed graph node
embedding with GCN to extract features
for predicting cell line-specific gene
expression profiles from PPI and gene
annotations.

• The learned cell line hidden state and drug
features are used in a fully connected deep
neural network to predict drug synergy.

• Time complexity is not specified.

The authors noted that the
predicted synergies tended
to be lower than observed
for drug combinations
with high synergy scores
due to potential issues
with low synergy scores
being very common in the
training data. The
performance improvement
over other deep learning
methods was quite low.

Dcombo
Net

Heterogenous
network RWR

Synergistic
drug
combination
prediction

Known synergistic drug
combinations, drug
annotations, drug
molecular structure,
drug side effects, DTIs,
drug-related pathways,
PPIs, cancer pathways,
baseline and drug
exposed cell line gene
expression profiles

• Predicts anticancer drug combinations.
• Uses random walk in a heterogeneous

network of drugs, genes and pathways.
• The walker jumps between subnetworks

depending on jumping probability and the
subnetwork.

• Can predict sample-specific drug
combinations by modifying the network
based on gene expression.

• Time complexity is not specified, but the
main random walk algorithm is
approximately bounded by O(n3) where n
is the number of nodes in the
heterogeneous network.

Three different jumping
probabilities need to be
optimized. Performance
was evaluated by
classifying drugs into two
or three groups
(combinable,
uncombinable,
intermediate). Drugs with
unique mechanisms that
are relatively disconnected
from the rest of the
network are less likely to
be predicted well.

and then used to adjust the drug-disease similarities
which are finally normalized with a sigmoid function.
The final similarities were then exploited to prioritize
drugs for repurposing. Another recently published net-
work proximity-based method is GPSnet [73]. It targets
specific disease gene modules derived from integrating
patient DNA and RNA profiles with a PPI network. The
modules are initialized randomly and extended based on
several criteria including PPI connectivity significance,
gene co-expression significance and mutation frequency.
The identified disease modules are then used in the
GPSnet targeting algorithm which combines network
proximity of known drug-target genes to module genes
and gene-set enrichment analysis (GSEA) based on
drug-induced transcriptome data from ConnectivityMap
[16]. This method could be applied to subtype-specific
modules within a given cancer disease to identify
repurposable drugs for precision medicine. However,
the results are highly dependent on the data used to
infer disease modules and consequently the approach
requires a large enough dataset to infer sufficiently
relevant gene co-expression networks and mutation
profiles. On the other hand, these datasets do not need
to consist of the same set of patients, i.e. if the DNA and
RNA profiles represent the same disease (sub)type, the
disease module inference can utilize different datasets.
An important advantage of proximity-based methods
is that the efficacy estimation does not depend on
other drugs or diseases and similarities between them.

However, the quality of estimates greatly depends on
the accuracy of drug and disease associated gene sets.
Furthermore, predictions can be sensitive to missing
links in the network.

Network topology measures can also be used to rank
drug targets. ThETA [44] estimates the efficacy of target-
genes in treating diseases by utilizing tissue-specific gene
co-expression networks and gene-expression data. It also
estimates safety based on network centrality measures
as well as ADR and onco-driven scores [43]. Efficacy and
safety estimates of target-genes can be used to priori-
tize the development of new drugs targeting the most
efficacious and safe genes and are also applicable to
drug repurposing. In addition to topology measures, basic
algorithms such as module detection can be applied to
discover relations in heterogeneous networks. MeTeOR-
RL [74] is a literature-driven NDM approach in which
the authors used CD algorithms to extract cluster of
heterogenous biological entities from a heterogeneous
network, namely MeTeOR. The network links Medical
Subject Headings (MeSH) terms of genes, diseases and
drugs that co-occurred in publications, and the commu-
nities can include both drugs and diseases as well as
sets of shared genes. The authors aimed to efficiently
synthesize pathway information from literature-mined
associations between gene terms, and to verify whether
these de novo pathways could link diseases with known
drugs. Such a network can also support disease gene dis-
covery and drug repurposing through novel predictions
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of disease- and drug-specific mechanisms. Interestingly,
the authors observed that genes in drug-specific commu-
nities were enriched for genes up-/down-regulated by the
corresponding drugs, by using the gene expression pro-
files from the LINCS database. Furthermore, successful
cases of repurposed drugs were confirmed. More inter-
estingly, diseases sharing communities had high comor-
bidity with each other and drugs sharing communities
had many common side effects, consistent with related
mechanisms. This confirms that when searching for drug
combinations, selecting drugs from different communi-
ties can decrease the risk of adverse drug reactions [42].

RW is another powerful algorithm often used in
network-based drug-discovery. For example, MBiRW
[75] uses an alternating bi-RW algorithm with restart
between a bipartite drug-disease network as well as
drug–drug and disease–disease similarity networks to
predict new drug-disease associations for drug repo-
sitioning. The authors defined drug similarities based
on molecule fingerprints and normalized Tanimoto
similarity based on randomly shuffled molecules. They
then applied CD on the drug similarity network and use
prior interaction information to adjust the network such
that drugs belonging to the same cluster were more
similar. The bi-RW algorithm was used to run two RWs
with restart in parallel, one on the drug–drug network
and one on the disease–disease network where the walks
are initialized by the known drug-disease indications
and the steps are averaged between the walks. Higher
affinities were finally used to infer probable drug-
disease indications. DrugNet [76] is another example
of network diffusion algorithm for mining drug-disease
and disease-drug prioritization through heterogeneous
networks. DrugNet utilizes a NDM algorithm that
exploits paths across different network domains (e.g.
genes, disease, proteins) to define distances between
queried sets of nodes (e.g. diseases) and nodes available
in different network domains (e.g. drugs). These paths
can then be used to perform drug-disease and disease-
drug prioritization. RW methods are in principle highly
scalable, although the scalability also depends on the
implementation of the RWR which could determine
different accuracy and scalability results. An alternative
approach to RWR is that based on matrix factorization
(MF).

Matrix factorization methods can be applied to drug-
disease network completion where the known associ-
ations are approximated with a product of two low-
rank matrices sometimes called feature matrices. The
approximation can be used to predict new associations,
e.g. a completed bi-partite drug-disease graph adjacency
matrix can be used for drug-repurposing. SCMFDD [77]
uses matrix factorization on drug-disease associations
with drug and disease similarity-based regularization
to bring similar drugs and diseases closer in the low
rank spaces. Recently developed methods such as NMF-
DR [78] and MSBMF [79] focus on integrating drug–drug
and disease–disease similarities from multiple sources.

NMF-DR first integrates disease and drug similarities
individually, and then applies an improved nonnegative
matrix factorization-based method to score unknown
drug-disease pairs. On the other hand, MSBMF includes
separate similarity constraint terms for each similarity
type in the objective function for matrix completion
instead of fusing multiple similarities into a single sim-
ilarity matrix. Then, there are methods that focus on
predicting drug targets for known drugs. For example,
DTINet [80] integrates various networks, such as drug–
drug or protein–protein interactions and similarities as
well as drug-disease and protein-disease associations by
using RWR and diffusion component analysis to obtain
low-dimensional matrix representations (graph embed-
dings) of drugs and proteins. It then uses inductive matrix
completion to find the optimal projection from drug rep-
resentations to protein representation space such that
the mapped features of drugs are close to proteins that
they are known to interact with. The matrix completion
step is very similar to matrix factorization approaches,
although predictions for novel DTIs are based on dis-
tances between drugs and proteins in the mapped space
rather than the completed matrix. The graph embed-
dings in DTINet are learned in an unsupervised manner
separate from the prediction. A disadvantage of this
approach is that the unknown drug-target interaction
is treated as the negative training set. However, this set
is noisy, as it may include novel, unknown drug-target
interactions in itself.

New trends in network-driven drug discoveries also
include graph neural network-based approaches. For
example, NeoDTI [81] implements an end-to-end neural
network to learn the embeddings via graph convolutional
networks and uses a topology a preserving objective
to learn to reconstruct the weights of the input graph.
The network can then be queried for drug-protein
pairs to predict their interaction. DeepDTnet [82] is
very similar to DTINet except that it uses deep neural
network architecture for learning graph embeddings
and positive-unlabeled matrix completion to find the
best projection from the drug space onto target (protein)
space, such that the projected feature vectors of drugs
are geometrically close to the feature vectors of their
known interacting targets. New targets are the inferred
by geometric proximity to the projected feature vector of
the drug in the projected space. An interesting advantage
provided by the DeepDTnet method, with respect to
previously developed methods, is that unobserved drug-
target associations are not treated as negative examples.

Most existing methods utilize a few data sources to
represent disease similarities. To include further disease-
related features, HeTDR [34], a newly developed method,
utilizes biomedical text mining [83] to elaborate an
extensive set of disease features which improves the
accuracy of drug-disease associations’ prediction. HeTDR
also uses network affinity propagation in combination
with spare autoencoders [84] to derive drug-related
features. Then, drug- and disease-related features are
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used as node attributes in a drug-disease network that
is then embedded using GATNE-I [85], a deep learning-
based approach for multiplex heterogeneous network
embedding and link prediction by using edge and node
embeddings with node attributes. These three elements
are trained separately such that the drug and disease
features are extracted without using drug-disease
association data (other than text in disease-related
literature). HeTDR combines many state-of-the-art
methods to improve heterogeneous-graph-embedding-
based drug repurposing. A major advantage of these
methods is the possibility to include any number of node
and edge types and to predict any type of interaction.
A disadvantage that is shared with all link prediction
methods is that predictions depend on the completeness
of the interaction graph and similarity information used
for learning which can significantly impact predictions
for novel drugs or targets [81].

Another interesting niche of network-driven methods
is that based on graph convolutional networks (GCNs),
which are quickly becoming one of the most widely
adopted deep learning architectures in drug discovery
[86]. GCN architectures can support various types of net-
works from simple networks to attributed multiplex het-
erogeneous networks. These methods can be applied to
link prediction as well as node and graph classification or
to learn representations for small molecules. One of the
advantages of GCNs is that they can learn directly from
the network, and therefore there is no need to extract rel-
evant features separately. However, GCNs often include
a high number of parameters that need to be trained,
i.e. overparameterization can be a major issue especially
with heterogeneous and multiplex/multi-relational net-
works that must handle different types of nodes and
edges. COMPGCN [87] aims to solve this issue for multi-
relational networks by using linear combinations of basis
embedding vectors.

Many methods use graph embeddings from GCN, RW
or MF to extract features for a standard supervised
machine learning classifier. For example, MGRL [88]
uses GCNs to extract features for drugs and diseases
from attributed bi-partite networks containing drugs
and diseases from CTD [89]. Disease attributes were
based on MeSH terms and drug attributes on molecular
fingerprints. They also apply RW to separately embed
nodes in the drug-disease graph. Lastly, they apply
a random forest classifier to predict drug-disease
associations based on the extracted features. GRLMN [90]
integrates associations between drugs, diseases, proteins,
lncRNA and miRNA and PPI. The nodes were attributed
with heterogeneous features such as fingerprints, MeSH
terms and nucleic acid sequences. Then, a graph
embedding algorithm is used to extract node features
that are subsequently used to train random forest-based
classifiers to predict drug-disease associations.

Many existing network-driven methods for identify-
ing drug-target or disease-drug associations do not ade-
quately address safety aspects. Indeed, there are a few

methods that try to identify side effects that may be
liked to novel drug targets or drug combinations. A very
interesting method that has recently been developed is
Decagon [62], which utilizes graph convolutional neural
networks and heterogeneous networks to predict adverse
drug reactions (ADRs) for drug combinations. Decagon
integrates PPI, DTI and DDI networks where different link
types are used to represent different side effects of drug
pairs. It uses graph convolution to represent nodes in a
low-dimensional hidden layer which is used as input to
a feed forward neural network that predicts ADRs. End-
to-end neural networks can also achieve higher accuracy
than two-stage models since the learned intermediate
representation should be optimized for the task. The
largest downside is perhaps that deep learning requires
a large data set to learn model parameters that yield
relevant latent representations and generalizable predic-
tions. The method also cannot predict adverse reactions
for combinations of novel drugs that do not have known
adverse effect profiles and might perform poorly for
newer drugs with fewer known side effects.

Network-based approaches have also been used to
predict drug sensitivity and synergy. Synergistic drugs
have potential to kill tumor cells more effectively while
requiring lower doses; however, sensitivity and synergy
are cancer specific, which makes drug combination par-
ticularly challenging. CDCN [91] builds a cell line-drug
complex network in order to model drug sensitivity based
on a weighted average of all other known sensitivities
with weights that are based on drug and cell line simi-
larities. The similarities were based on Tanimoto coeffi-
cient on drug features and correlation of cell line gene-
expression profiles. Another novel method, here indi-
cated as Pouryahya’s method, utilized stochastic pro-
cesses and optimal mass transport (OMT) to compute
distances between cell line gene-expression profiles in a
PPI network and between drugs in a similarity network
based on drug features. They clustered cell lines and
drugs and then used random forest (RF) to predict drug
sensitivity from the original gene-expression profiles and
drug features, while training different RF for different
cell line and drug cluster pairs. They showed that their
distance measure could be used in CDCN to improve pre-
dictions and that the clustered RF model performed even
better [27]. PaccMann [92] is another method for drug
sensitivity prediction based on the use in combination
of a PPI network, cell line gene expression profiles and
deep learning. The PPI was used to reduce the set of genes
by using RWR from known drug targets and selecting top
20 genes for each drug. They tested various deep learn-
ing architectures for encoding strings and compared to
engineered fingerprints, showing that their model could
improve upon them. Due to their availability, SMILES can
be more convenient to use in encoders, but 2D graph
representations of drugs are much richer and can be
extracted with GCNs as demonstrated by DeepCDR [93].

The AstraZeneca-Sanger DREAM challenge also
demonstrated the importance of using NDM algorithms
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for computational prediction of cancer drug combina-
tions in a pharmacogenomic screen [94]. Indeed, the
winning method, here indicated as Y Guan’s method,
predicted drug response synergy in cancer cell lines by
using network propagation in heterogeneous networks
to extract informative features for machine learning–
based prediction [95]. They used monotherapy data and
approximated effects based on baseline molecular data,
a gene interaction network, drug target information
and network propagation-based features to train an
ensemble of random forest classifiers focusing on
different subsets of data.

PRODeepSyn [96] is a recently published method that
applies GCN to embed cell lines based on omics data
and a PPI network and then predicts drug-combination
synergy based on the embedding and drug features. A
novel idea proposed by this method is to learn a low-
dimensional latent representation of cell lines which is
based on optimizing a projection to the omics profiles
associated with cell lines. The GCN learns to produce
a projection matrix from PPI and node attributes from
various gene sets thereby integrating prior biological
knowledge to the learning of the latent features. Drug
features and cell line latent representations were then
exploited in a fully connected (FC) feed forward neural
network (FFNN) to predict synergies. Their ablation
study showed a minor improvement associated with
the knowledge integration when compared to learning
the projection directly, analogous to matrix factorization
methods, or by using autoencoders. This method,
along with other deep learning approaches for synergy
prediction, outperformed common supervised machine
learning methods. However, it should be considered that
often training data sets for drug-combination prediction
are very sparse. RW has also been applied to predict
synergistic drug combinations, e.g. DComboNet [97],
which integrates five generic networks, including known
drug–drug, drug-gene, gene–gene, drug-pathway and
pathway-pathway association networks. DComboNet
can also address the construction of sample specific
networks from gene expression profiles in drug-exposed
and baseline cell-lines, which can be used to implement
personalize medicine-based strategies for drug combi-
nation prediction. A major flaw in these drug sensitivity
studies is the use of summary metrics, such as IC50,
as the target instead of the whole response curve over
a range of doses. It has been shown that predicting the
whole response curve improves prediction quality also in
terms of summary metrics [98]. Predicting responses for
different doses also provides better translational utility
since it can be used to identify the ideal dose that is
maximally effective while minimally toxic. In addition,
tensor factorization and random forests have also been
applied to predict dose response matrices for drug
combinations [99]. Integration of biological knowledge in
network-based methods has been shown to improve over
pure machine learning methods, so perhaps they can

also be used to improve whole dose-response prediction
as well.

Drug repurposing for COVID-19 with NDM
strategies
The emergence of SARS-CoV-2 caused a surge of interest
in drug repositioning to treat COVID-19 [100]. Network-
based strategies such as network proximity have been
applied by various researchers [68–71]. For example, a
novel method called SAveRUNNER [69] was applied to
COVID-19 drug prioritization. It uses proximity for drug-
disease prioritization while also weighing drug-disease
pairs by using clustering such that pairs with target sets
and disease gene sets in the same cluster are preferred.
In the absence of in vitro validation, other computational
estimators such as gene set enrichment analysis (GSEA)
based on drug gene-expression signatures in human cell
lines acquired from the Connectivity Map database and
COVID-19-related transcriptomic datasets were typically
used to see if the drugs could reverse the disease expres-
sion pattern [69–71] similarly to the method described by
Sirota et al. [101].

In addition, large population data from COVID-19 reg-
istries have been applied to validate predictions [70].
Meanwhile, Gysi et al. [68] compared several methods
including machine learning from graph embeddings, net-
work diffusion and network proximity. Finding the meth-
ods to be complementary to each other, they combined
their predictions into a single score and used it to predict
repurposable drugs for COVID-19. Then, in order to val-
idate their predictions, they screened 918 drugs against
SARS-Cov-2 in the VeroE6 cell line for a large number of
drugs and then in human lung cells for the most promis-
ing drugs and thus identified several potentially effective
drugs which they compared to the list of drugs in clinical
trials for COVID-19. In addition to single drug prioritiza-
tion, drug combinations for treating COVID-19 have also
been analyzed [71]. CoVex [102] is a tool developed for
exploring the COVID interactome, and it provides various
network medicine-related information in an online plat-
form. CoVex utilizes various network approaches includ-
ing a multi-Steiner tree algorithm to uncover biological
pathways related to a given set of viral proteins as well
as closeness centrality to find drugs capable of target-
ing those pathways. Network-based analysis of COVID-
19 comorbidities was also considered by many studies
in the form of gene set network proximities between
diseases [69, 70]. These methods and their highlighted
drug repurposing results are summarized in Table 5.

One key difference with network-based analysis of
infectious diseases compared to chronic ones is that
the pathogen-host interactome needs to be considered.
In this context antiviral drugs can aim to target viral
proteins or host proteins [103] while repurposable drugs
target host proteins. Regardless, network-based drug
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Table 5. Drug-repurposing results for COVID-19 from various authors applying network proximity algorithms. Drugs in bold indicate
drugs which have FDA emergency use authorization for COVID-19 treatment as listed on https://www.fda.gov/ (accessed 9 February
2022). Curly brackets {} indicate drug combinations

Objective Network-based approach Selected drugs Validation Ref

Host interactome
exploration and drug
(target) identification

Various NMD algorithms applied to
combined virus-host PPI including:
a Steiner tree algorithm, closeness
centrality and network proximity
(average closest
shortest-path-distance between
gene sets)

Starting from the PPI of viral proteins:
Ramipril, Captopril, Perindopril,
Enalaprilat, Icatibant, Bradykinin.
Starting from a PPI inducing viral
proteins potentially involved in
immune response and host genes
differentially expressed in SARS-CoV-2
infected cells: tofacitinib, ruxolitinib,
masitinib, erlotinib, sorafenib

Experimental validation
data not available. Web
application: https://exbio.
wzw.tum.de/covex/

[102]

Network medicine
drug-repurposing

Ensemble-based approach which is
based on three different
graph-based approaches: ML
combined with graph embeddings,
diffusion-based algorithms and
proximity-based algorithms.

Auranofin, Azelastine, Vinblastine,
Fluvastatin, Methotrexate and
Digoxin.

Experimental validation
data: in vitro - VeroE6 cell
line; Huh7 cells. Software:
https://github.com/
Barabasi-Lab/COVID-19

[68]

Identify drug-disease
associations and
repurposing drugs

SAveRUNNER aims to quantify the
vicinity between the drug targets
and the disease-associated
proteins in the human interactome
via a novel network-based
similarity measure that rewards
associations between drugs and
diseases located in the same
network neighborhoods by
applying community detection.

SARS & COVID-19: chloroquine,
hydroxychloroquine, tocilizumab,
heparin COVID-19: {lopinavir,
ritonavir, remdesivir, chloroquine,
hydroxychloroquine}, dabigatran,
adalimumab

Experimental validation
data not available.
Software: github.com/
giuliafiscon/SAveRUNNER

[69]

Identify drug-disease
associations in virus-host
PPI.

Network proximity (average closest
shortest-path-distance between
gene sets) in host-virus PPI.

Cefdinir, Toremifene, Irbesartan,
Melatonin, Carvedilol.

Experimental validation
data not available.
Software not available.

[70]

Repurposing single and
drug combinations in
virus-host PPI.

Network proximity (average closest
shortest-path-distance between
gene sets) in host-only PPI,
complementary exposure for
combinations.

Mesalazine, Toremifene,
Eplerenone, Paroxetine, Sirolimus,
Dactinomycin, irbesartan,
mercaptopurine, melatonin,
quinacrine, carvedilol, colchicine,
camphor, equilin, oxymetholone,
emodin {sirolimus, dactinomycin},
{toremifene, emodin},
{mercaptopurine, melatonin}.

Experimental validation
data not available.
Software not available.

[71]

discovery can be attempted with or without the pathogen-
host interactome. In the present review, [69, 71] used
only the host interactome while [68, 70, 104] included
interactions between the viral proteins and host proteins
identified with affinity-purification mass spectrometry
by Gordon et al. [105] who also suggested potential drugs
for repurposing but considered direct targets rather than
the network medicine approach in the wider human
interactome.

Discussion
In this review, we revisit the different data sources and
methods that can be used for construction of networks
and explore the trends in methods used for analyzing the
networks for modeling the effect of drugs and diseases.
Precisely, we focus our attention towards databases
that curate interaction or association information that
can be readily used for construction of networks. We
also describe the methods for creation of omics-based

networks which are being increasingly used for char-
acterizing diseases for which sufficient experimentally
validated interaction data for network construction is
not available.

The networks themselves can be utilized in several
ways, and the two main categories of methods are
those that use network topology to reason about the
potential effects of drugs to perform in silico screening
and those that utilize known drug-disease or drug-target
associations to predict unknown associations of the
same kind. Conceptually, in silico screening is a slightly
different problem from drug repurposing. The former
can be used to optimize efficacy and safety profiles as
desired for repurposing or to pre-screen drugs for in vitro
testing, while the latter is focused on completing partially
observed drug-target and drug-disease association
networks under the assumption that known associations
are indicative of safe and efficacious drugs for their
indicated diseases and that the available information can
be used to predict similarly good associations. Thus, drug
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repurposing methods can use side effects as a source of
information for predicting drug-disease associations (e.g.
HeTDR) or drug-target associations (e.g. NeoDTI) without
explicitly estimating efficacy and safety. On the other
hand, efficacy and safety can be estimated with machine
learning methods (e.g. PRODeepSyn and Decagon) or by
using network topology (e.g. GPSnet and ThETA).

When it comes to drug repurposing in general,
network-based approaches include network propagation,
matrix factorization, graph embedding or representation
learning and the general trend is to use additional
sources of information to describe the features of
different entities in the networks or the similarities
between them. Many recent methods use deep learning
approaches, such as autoencoders or graph convo-
lutional networks, to extract features or to directly
learn from structured network data in an end-to-end
learning process which can be especially powerful as the
latent representations will be specifically optimized for
the prediction task. The graph convolutional network
architecture in particular has many applications in drug
repurposing, such as representation learning for graph
nodes or whole graphs (such as drug structures). The
interpretability of neural networks is often brought up
as a potential downside, but attention-based neural
network architectures might help researchers gain
insight into the biological mechanisms that underlie
a successful prediction. The general issues of drug
repurposing methods are related to the incompleteness
and sparsity of biological and drug-related networks.
For drug-disease association prediction especially, the
set of known associations is used for training and thus
predicting new associations for novel drugs or diseases
without known associations can be challenging.

The individual differences between patients are criti-
cal component that is often overlooked during modeling
the effect of drugs and diseases. The course of forma-
tion of a disease can be different in different persons
and, accordingly, they might require different treatment
strategies. The use of network biology to understand
how different biomolecular components are associated
to different phenotypes has greatly aided in deciphering
the finer differences between patient subgroups and sub-
sequently identify precise therapeutic strategies for the
distinct patient/disease categories. Besides this, the use
of multi-omics data in characterizing patient-specific
networks has also aided towards achieving personalized
medicine. Yet, a major limitation of current NDM algo-
rithms for drug discoveries is that they only consider
differences in patients based on disease formation and
do not consider how different patients even with the
same subtype of disease would respond to the drug.
Currently, drug response data are limited to very few,
specific projects such as GDSC, NCI ALMANAC and LINCS
L1000 Connectivity Map, which limit the development
of more patient-centered network approaches. However,
more large-scale pharmacogenomics and toxicogenomic
projects may arise in the future, giving the possibility to

implement robust network-based approaches imputing
repurposable drugs or drug targets for individual patients
or patient subgroups.

Data availability
No new data were generated or analyzed in support of
this research.

Key Points

• NDM algorithms have been broadly applied to drug dis-
covery problems. The network medicine paradigm aims
to utilize mechanistic relationships to uncover effective
drugs that indirectly address disease perturbations.

• Network-based analysis can be used for in silico efficacy
and safety screening of drugs and drug combinations to
lower the cost of drug development.

• The use of heterogeneous networks and node attributes
or node similarities can boost drug repositioning accu-
racy. Matrix factorization and deep learning methods
have been adapted to integrate multiple sources of infor-
mation.

• Networks from patient-specific omics data can aid in
precision medicine by identifying disease modules that
could be targeted by drugs or by estimating sample-
specific drug responses.

• The SARS-CoV-2 pandemic is still an ongoing crisis,
and while several treatments for severe COVID-19 have
been authorized by the FDA, at the time of writing (28
April 2022) the search for the most effective treatments
continues. While most initial clinical trials focused on
existing antiviral drugs, network proximity algorithms
have been applied to several repurposable drugs acting
on a broader set of targets.
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