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ABSTRACT

This paper proposes and evaluates a Network Aware Forward
Caching approach for determining the optimal deployment strategy
of forward caches to a network. A key advantage of this approach
is that we can reduce the network costs associated with forward
caching to maximize the benefit obtained from their deployment.
We show in our simulation that a 37% increase to net benefits could
be achieved over the standard method of full cache deployment to
cache all POPs traffic. In addition, we show that this maximal point
occurs when only 68% of the total traffic is cached.

Another contribution of this paper is the analysis we use to moti-
vate and evaluate this problem. We characterize the Internet traffic
of 100K subscribers of a US residential broadband provider. We
use both layer 4 and layer 7 analysis to investigate the traffic vol-
umes of the flows as well as study the general characteristics of
the applications used. We show that HTTP is a dominant protocol
and account for 68% of the total downstream traffic and that 34%
of that traffic is multimedia. In addition, we show that multime-
dia content using HTTP exhibits a 83% annualized growth rate and
other HTTP traffic has a 53% growth rate versus the 26% over all
annual growth rate of broadband traffic. This shows that HTTP
traffic will become ever more dominent and increase the poten-
tial caching opportunities. Furthermore, we characterize the core
backbone traffic of this broadband provider to measure the distance
travelled by content and traffic. We find that CDN traffic is much
more efficient than P2P content and that there is large skew in the
Air Miles between POP in a typical network. Our findings show
that there are many opportunties in broadband provider networks
to optimize how traffic is delivered and cached.

Categories and Subject Descriptors

D.4.8 [Performance]: Measurements—web caching

General Terms

Networking Optimization

1. INTRODUCTION
Over the past decade, as the new “killer" Internet applications

emerge, new content delivery mechanisms are invented to meet the
demand of these new applications. This is evidenced by the fol-
lowing two examples. Web (text/image) is the first “killer" Internet
application, thus HTTP protocol dominated Internet traffic usage
in the first several years of the Internet [10, 29]. Web caches and
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Content Distribution Networks (CDNs) were thus invented to im-
prove Web performance. When Peer-to-Peer (P2P) file sharing be-
came popular a few years later, it was shown to be dominant in
studies conducted in 2002 to 2005 for DSL, cable, and fiber broad-
band networks [7,15,22]. A lot of approaches have been proposed
to improve the delivery efficiency of P2P. With the recent emer-
gence of user-generated video, social networking, and TV/Movie-
on-demand services, most of which run on top of HTTP, we sus-
pect that HTTP protocol has become the dominant content delivery
protocol, especially for multimedia (video/audio) content. For ex-
ample, an informal report in a lightreading article in 2006 [1] in-
dicates that “network operators are reporting a rise in overall web
traffic and a rise in HTTP video streaming". Furthermore, the mul-
timedia content we see today might be just the tip of the iceberg of
what is coming in the next decade as more providers join the busi-
ness and make more, higher-definition content available and more
subscribers access it. As such, we believe it is timely and impor-
tant to investigate the new opportunities for more efficient delivery
mechanisms for HTTP traffic again.

A natural solution is forward caching (proposed in the 90s),
which is to deploy HTTP caches within an Internet Service
Provider’s (ISP) network caching all cacheable HTTP traffic ac-
cessed by the customers of the ISP. Caching makes intuitive sense
in that Internet content popularity is often very skewed thus offering
good opportunity for reusing. This is especially true for video con-
tent, as shown in recent studies [5,6,16]. Unfortunately, most large
US based ISPs currently do not operate forward caches within their
network. The main reason for this decision lies in the economics of
deploying forward caches. Forward caches are additional hardware
components (typically UNIX servers) which have to be purchased,
deployed and managed at a large number of locations. In the US
the bandwidth savings can often not justify the cost of such a server
deployment. To reduce the costs associated with forward caching
in an ISP, we believe that the most cost effective way of deploying
forward caches is to only deploy them in selected POPs (Point of
Presences) caching only selected expensive-to-deliver content. We
call this approach Network Aware Forward Caching.

To motivate and justify our solution, we first provide a systematic
measurement study of the characteristics of the content transmitted
over the Internet today and shows the dominance of HTTP traffic,
followed by the comparison of the efficiency of existing delivery
mechanisms (HTTP, CDN and P2P), and the cacheability of HTTP
content. We then formulate the cache placement problem, and pro-
pose and evaluate our heuristics.

To show how dominant HTTP content is compared to other types
of content transmitted over the Internet today, we characterize the
Internet traffic of 100K subscribers of a US residential broadband
provider. Using both layer 4 and layer 7 analysis, we confirm our
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hypothesis that HTTP is the dominant protocol, which contributes
to 68% of the total downstream peak traffic. Furthermore, HTTP
has become the workhorse for data delivery: 80% of multimedia
content uses HTTP as its distribution protocol (mainly flash video)
and file downloads via HTTP contributes 10% of downstream traf-
fic in contrast to 0.3% for FTP. This is a drastic change since a few
years ago, when HTTP contributed to 9% of the total traffic [22],
P2P was dominiant [7, 15, 22], and 63% of total residential volume
was user-to-user traffic [7]. Our results show that recently the vol-
ume of HTTP content per subscriber is increasing much faster than
the 26% overall increase rate: multimedia streams over HTTP and
other HTTP traffic exhibits a 83% and a 53% annualized growth
rate, respectively. This means that HTTP’s share will even increase
further.

Our study shows that among the existing delivery mechanisms,
CDNs are currently serving already a significant portion (46%) of
the large file transfers in the network and are efficient in bring-
ing the content closer to the content consumers, much better than
the existing P2P technologies or typical HTTP content providers
by a factor of 2 to 3 when comparing average bit-distance. Dis-
tance travelled on the network is strongly related to the network
cost of the traffic. Furthermore, the distance traversed on a net-
work by different sources of traffic to different points of presence
(POPs) varies significantly. The traffic to some remote POPs can
benefit significantly from better delivery mechanisms such as for-
ward caching. In the HTTP traffic cacheability study, we found
that 60% of the traffic can potentially be reused overall because it
is requested more than once. However, only 33% of the content is
suited for an optimized delivery infrastructure when adding more
realistic constraints.

Finally, based on these observations, we introduce and evaluate
our new proposal, network aware forward caching, that increases
efficiency, reduces backbone traffic and network costs and in-
creases end-user performance. Contrary to a simple all-or-nothing
forward caching deployment in a network, we argue that, by being
network aware, partial deployments of forward caches for a sub-
set of the POPs and a subset of the traffic sources provides greater
benefits per dollar invested. Indeed, we just showed the disparity
in efficiency and the fact that some sources, such as CDNs are al-
ready efficient and, therefore, don’t need to be cached. In addition
to that observation about the differences in efficiency of each source
to each POP, we also note that an Internet Service Provider incurs
different costs based on the nature of the neighbor sending the traf-
fic (e.g. transit traffic is more expensive than peering traffic, and
customer traffic even generates revenue), and we include this addi-
tional dimension in our decision process when selecting the content
that will be stored on the caches. We formulate the problem of de-
termining the optimal deployment, and shows that it is NP-hard.
We propose one pseudo-polynomial algorithm that solves the exact
problem, and a greedy heuristic algorithm that is much faster. Our
evaluation of the heuristic algorithm using realistic data shows that
the optimal deployment in terms of network costs occurs when only
68% of the total traffic is cached. Moreover, that solution is clearly
senstive to the backbone costs and the caching costs.

The remainder of the paper is organized as follows. Section 2 de-
scribes our measurement methodology. Section 3 presents over-all
content composition results. Section 4 studies how current deliv-
ery mechanisms work, and Section 5 presents the content cacha-
bility results. Section 6 presents the formulation, algorithms, and
evaluation results for our network aware forward caching approach.
Section 7 reviews related work, and Section 8 concludes the paper.

2. MEASUREMENT METHODOLOGY
This section presents our network monitoring infrastructure and

data sets used in the analysis of this paper. To achieve our ob-
jectives in this paper of characterizing broadband traffic usage and
evaluating our network aware caching approach, we obtained traces
from multiple vantage points of a US Broadband Providers network
to understand the different aspects concerning the delivery of con-
tent to a subscriber. In particular, the three types of data sets that
we utilize in our analysis are as follows: aggregated traffic records
from broadband subscriber aggregation access points, aggregated
netflow records of the core backbone traffic, and unsampled HTTP
header records from a single aggregation point. In the following
subsections we elaborate on each type data set. Our analysis is
based on a US Provider and networks in different geographic loca-
tions may not exhibit the same characteristics.

2.1 Access Traffic
Our network monitoring infrastructure [11] consists of five net-

work monitors analyzing traffic from 100K subscribers of a US
broadband provider. The monitors are diversely located on five
BRAS (Broadband Remote Access Servers; an aggregation point
of Digital Subscribers Lines, or DSLs) in three states (California,
Texas and Illinois). The subscriber data we analyzed was from the
week of February 25, 2007 to September 30, 2008.

For our study, network monitors summarized the observed traf-
fic volumes every 5 minutes into flow records. The flow records
measure the number of packets and bytes for each identified appli-
cations class (described below). To reduce resource consumption,
the network monitors perform a combination of packet sampling
and flow sampling when computing these flow records [12]. The
5-minute flow records are used to compute hourly summaries of the
aggregate traffic from all the subscribers observed at the monitor.

Our application classification relies on application header,
heuristic, and port number analysis to determine a final classifi-
cation of a flow into an application class.

Overall, we classify our traffic into 16 categories: Web (HTTP),
Multimedia (HTTP, RTSP, RMTP, etc), File Sharing (P2P), Games
(Quake, WoW), Net News (NNTP), Business (VPN, Databases),
VoIP (SIP), Chat (IM, IRC), Mail (POP3, IMAP), DNS, FTP, Secu-
rity Threats, Other, ICMP, Other-TCP and Other-UDP. (The exam-
ples in brackets are non-exhaustive of what we identify.) We base
these categories on a determination of the use of the data and not
explicitly on the protocol. This is most significant for HTTP traf-
fic, which we classified into either Web or Multimedia category.
Therefore, we separate HTTP traffic by mime type–if the mime
type of a flow is for a video or audio format we classify this flow as
HTTP Multimedia instead of HTTP Web. In addition, Gnutella and
BitTorrent tracker-based HTTP traffic is classified as those specific
P2P applications.

We adopt many of the same packet payload signatures described
by Sen et al. [25] and Karagiannis et al. [20]. We also use addi-
tional signatures to identify application subclasses. For instance, as
outlined above we use the mime type information in HTTP flows
to further classify HTTP flows. In addition, we extract from the
control channel the information needed to identify the data channel
of the FTP, RTSP, and Skype protocols.

Additional P2P traffic was identified with other P2P specific
heuristics. For example, we use the announced port in the tracker
messages for BitTorrent to identify incoming encrypted flows as
P2P. However, due to P2P applications such as BitTorrent using
encryption to obfuscate their protocols, we believe much of our un-
known TCP traffic (in the Other-TCP class) is P2P as well. We
have based this inference on additional analysis we performed on
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the Other-TCP traffic. In particular, we have found that based on
the flow characteristics and the payload information in the flows
this traffic is consistent with encrypted P2P traffic. Generating and
validation of additional signatures for encrypted P2P traffic is left
as future work.

Lastly, we use some layer 4 port numbers to identify any remain-
ing traffic not classified using signatures and heuristics.

2.2 Core Backbone Traffic
Another type of data utilized in our analysis are aggregated Net-

Flow [9] records from the core backbone of the network. This data
allows us to measure the ingress and egress traffic on the various
Peering, Transit or On-Net links of the network. The data used
in our analysis is from September 27, 2008 until October 5, 2008.
The data sets were obtained using a NetFlow collected on the back-
bone router of a US Broadband Provider. These traces provide the
amount of ingress and egress traffic volume between core routers.
To minimize the performance impact on the routers, we used de-
terministic packet sampling with a rate of 1 packet out of 500. We
then use smart sampling [12] to further reduce the data volume.

2.3 HTTP Traffic
To facilitate the study of HTTP cacheability, we analyzed the

HTTP header data from approximately 20K subscribers during
the week of January 27, 2008 to February 2, 2008. During our
analysis we correlated the HTTP requests with the actual TCP
flows to obtain the actual flow sizes. This step was taken be-
cause not all content sizes are available in the Content-Length
field of the HTTP header. For instance, some objects such as dy-
namically generated pages or streaming content will sometimes
have a Content-Length of 0. In our analysis we used from the
HTTP header fields the GET, POST, Cache-Control, Pragma, and
Content-Length fields of the HTTP header and the IP address of the
web server. All other information such as the subscriber IP address
and cookie values were not analyzed. In total, we analyzed approx-
imately 550 million requests representing 45 TB of traffic with an
average request size of 91 KB. Unlike the smart-sampled records
in the previous two types of data sets we use, the HTTP data in our
analysis is unsampled and includes all requests.

3. BROADBAND TRAFFIC OVERVIEW
This section provides an overview of the growth and overall ap-

plication breakdown in the broadband data we studied. We show
that the volume and fraction of multimedia content delivered using
HTTP is increasing rapidly and that P2P traffic as a percentage of
traffic is actually decreasing. HTTP is more generally becoming the
protocol of choice for various kinds of activities such as software
distribution, multimedia and P2P applications.

3.1 Growth of Broadband Traffic
Figure 1 shows that a large US broadband ISP saw a relatively

stable growth rate of the average downstream traffic per subscriber
of 26% per year, with an above average growth rate for the last 2
years. An interesting observation when looking closer at the busy
hour traffic per subscriber is that, while in the first years of this
period, the average downstream traffic per subscriber was grow-
ing faster than the downstream traffic per subscriber, the opposite
can now be observed in the last 2 years. This indicates that syn-
chronous applications (e.g. instant watching multimedia streams)
are recently growing faster than asynchronous applications (e.g.
P2P file sharing). It is also important to keep in mind that the be-
havior during the busy hour is what really matters. The Internet
infrastructure is engineered for the peak demand and that generally
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Figure 2: Normalized Weekly traffic per Application Class dur-
ing the Busy Hour

has spare capacity the rest of the time. The busy hour is defined as
the 1-hour time span during a day which exhibits the largest aver-
age traffic.

Figure 2 shows the weekly normalized application traffic vol-
umes during the busy hour based on our aggregate BRAS traffic
records. There are two major trends that can be seen. The first
is that HTTP traffic, both Web and Multimedia, shows consistent
growth during the busy hour over the observed period. In the fig-
ure, HTTP Multimedia and HTTP Web traffic exhibit a 83.1% and
a 52.9% annualized growth rate, respectively. The second is that
P2P traffic has remained steady and shows a decline in its percent-
age share of the overall traffic mix. These may be important obser-
vations as they contradict reports claiming that P2P traffic is con-
tinuing to increase at dramatic rates. The growth of HTTP traffic
and especially the HTTP Multimedia traffic is the most significant
cause of broadband subscribers traffic growth.

3.2 Broadband Subscriber Traffic Mix
Next, we look at the characterization of the overall application

mixture of the traffic. Table 1 shows the application mixture of
the downstream and upstream traffic at all five monitors during the
week of January 28, 2008 to February 3, 2008. The downstream
traffic volumes are typically 3 times greater than the upstream traf-
fic volumes during the busy hour. HTTP is the dominant protocol
and accounts for the largest volume of traffic on the network and
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Table 1: Application Mix During the Busy Hour

Class
Downstream Upstream

Busy Hour Average Busy Hour Average

HTTP Web 41.8% 39.8% 23% 17.5%
HTTP Multimedia 25.8% 21.5% 2.7% 1.9%
FileSharing 9% 12.3% 25% 27.6%
Other-TCP 8.2% 9.7% 26.2% 30.4%
Multimedia Other 4.7% 4.7% 2.1% 1.7%
Other-UDP 2.5% 3% 10.3% 10.2%
Games 1.4% 1.3% 3.2% 2.3%
NetNews 1.4% 1.6% 0.1% 0.1%
Business 1.1% 1.7% 2.2% 2.8%
Voip 1% 1.1% 1.1% 0.9%
Chat 0.6% 0.5% 0.5% 0.4%
Mail 0.5% 0.8% 0.9% 1.2%
Dns 0.5% 0.4% 0.6% 0.4%
Ftp 0.3% 0.3% 0.4% 0.3%
SecurityThreat 0.2% 0.4% 0.5% 0.7%
Other 0% 0% 0% 0.1%
ICMP 0% 0% 0.3% 0.3%

Table 2: HTTP Breakdown
Class % Busy Hour Traffic % Average Traffic

/http/video 30% 31.9%
/http/text-image 25.6% 25.9%
/http/download 18.9% 16.2%
/http/javascript 5.6% 5.8%
/http/audio 4.4% 5.5%
/http/other 4.4% 4.4%
/http/flash 4.1% 4.4%
/http/https 3.7% 2.8%
/http/otherapp 1.5% 1.2%
/http/xml 1% 1.1%
/http/binary 0.2% 0%
/http/office 0.1% 0.1%
/http/rss 0% 0%

accounts for 68% of the downstream traffic during the busy hour.
HTTP has also taken over file downloads and FTP is now only a
very small percentage of the overall traffic.

P2P makes up at least 9% of the downstream traffic during the
busy hour and 12.3% of all downstream traffic. If we assume in part
that much of the TCP-Other traffic is due to encrypted or uniden-
tified P2P traffic, then P2P still makes up a maximum of 17% of
the downstream traffic. As we have already noted, P2P’s percent-
age share of the overall traffic has been decreasing. However, P2P
is still the dominant protocol in the upstream. Because P2P proto-
cols are designed to exploit subcribers’ sharing of data, this class of
traffic has more symmetrical data flows than Web/Multimedia pro-
tocols that are generally asymmetric [2]. The volume of P2P traffic
has been quoted with various statistics in the media [4] and litera-
ture [19]. In many cases, the value quoted is the upstream volume.
Depending on the time and direction we could state a number be-
tween 17% to 58%. In a DSL environment, upstream link capacity
is dedicated per subscriber and shared backbone links have sym-
metric capacity. Therefore, upstream traffic is not a problem and
the traffic in the busiest direction in the busy hour is more of inter-
est (i.e., the downstream direction). However, for cable-based ISPs,
the P2P upstream volume may be more of a factor as subscribers
share the capacity of local cable lines.

Network News accounts for a surprising amount of the traffic.
This is due to NetNews being used to download large files such as
movies, music, and software.

We turn next to the categories of HTTP and Multimedia to get a
better understanding of specific protocols and applications that are
used.

Table 2 shows the breakdown of the subcategories for HTTP traf-
fic (HTTP Web in Table 1). When a file is requested using the
HTTP protocol, the HTTP header in the servers response includes
a Content-Type field which contains the mime type of the file.
We have based these subcategories primarily on the mime types ex-

Table 3: Multimedia Breakdown (includes HTTP Multimedia)
Class % Busy Hour Traffic % Average Traffic

/http/video 70.1% 70.9%
/http/audio 10.4% 12.3%
/multimedia/rtmp 7.9% 7.3%
/multimedia/rtsp 6.6% 5.5%
/multimedia/rtp 3% 2.5%
/multimedia/shoutcast 0.8% 0.5%
/multimedia/ms-streaming 0.5% 0.4%
/multimedia/other 0.2% 0.1%
/multimedia/realaudio 0.1% 0.1%
/multimedia/h323 0% 0%

tracted from the HTTP stream. For example, an image file might
have the mime type of image/gif and would be classified as
/web/text-image. In our categories, we group similar mime types
together.

The /web/no-http subcategory is not based on mime type. This
category is for traffic on a standard HTTP port that does not use the
HTTP protocol. This unidentified traffic makes up 7.1% of the web
traffic. Though there is no traffic shaping to be evaded on the broad-
band network being studied, this could be the result of encrypted
P2P applications using a default HTTP port to avoid firewalls and
traffic shaping on other ISP networks.

An interesting category is the /web/download. This traffic is for
the download of compressed (e.g., .zip, .rar., .tar.gz) or executable
files (e.g., .exe). This shows that HTTP has replaced FTP as the dis-
tribution mechanism for these types of files and software patches.
HTTP download traffic accounts for 10.2% of all traffic, whereas,
the volume of FTP traffic is a quite small, 0.3%, as shown in Ta-
ble 1.

Table 3 shows the breakdown of Multimedia traffic (HTTP Mul-
timedia in Table 1) into subcategories. HTTP is used to provide
more than 80% of the multimedia data, substantially more than
the 20% of multimedia traffic supported by traditional multimedia
streaming protocols such as RTSP and RTMP. Upon further inves-
tigation, we found that 85% of the /web/video is flash video (flv)
used by popular User Generated Content (UGC) sites like YouTube
to deliver video content. These UGC sites account for about 40% of
total multimedia traffic. Some of the possible reasons why HTTP is
used to provide so much of the multimedia content on the Internet
could be the result of no license fee costs for streaming servers (as
required by traditional multimedia streaming protocols), compata-
bility between operating systems, ability to easily traverse firewalls,
and ease of integration into CDN services.

The conclusions we draw from this section are that HTTP is the
prevalent protocol on the Internet, accounting for 66% of the traf-
fic and is the main driver of per subscriber broadband traffic grow
today. It is very much the workhorse for data delivery and is very
versatile. HTTP has moved beyond its historical role in delivery of
web text and image content and is increasingly being used to han-
dle most of the Internet’s tasks, such as distribution of software, up-
dates, patches, and multimedia, and by P2P applications (gnutella,
torrent trackers, torrent distribution).

4. DELIVERY MECHANISMS

4.1 Efficiency of Content Distribution
An important consideration for the performance of a data dis-

tribution mechanisms is the distance the data travels to reach the
broadband subscriber. The distance traveled directly affects the ef-
ficiency of data delivery, and minimizing it is of interest to both the
broadband subscriber and the ISP. Average bit-distance traveled is
strongly related to the direct network costs associated with transfer-
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ring the data. We conducted this part of our study using NetFlow
data from the backbone of a Tier-1 US ISP.

From the perspective of the broadband subscriber, increased
travel distances affects the load time of web pages and file down-
loads, and reduces throughput (e.g., TCP throughput is limited by
the round trip time). One method content providers use to enhance
the quality of their data delivery is to outsource it to a CDN to
place the data objects closer to the users, for fast, efficient access.
From the perspective of the ISP, the network miles data travels re-
flects the direct cost of delivery of the data over their backbone, so
shorter distances mean lower costs.

We can calculate the efficiency and speed of data transfer by
measuring the average bit-distance traveled assuming direct con-
nectivity, which we call Air Miles. We calculate the distance trav-
eled as the direct physical distance between two end points. Thus,
Air Miles can be calculated as: AM = sum of distance each bit trav-
els / total number of bits. In order to remove the impact of interdo-
main routing, we isolate the traffic exchanged between customers
(On-Net traffic), following intradomain routing from the source to
the destination. We would like to note that the best metric to use
would be layer 1 route miles; however, computation of this is diffi-
cult and average bit-distance metric is a close approximate of route
miles.

The data we used for our analysis is from September 27, 2008
until October 5, 2008. Note that for this data we only used L4
application mappings to obtain application information.

Figure 3 shows ON-Net air miles of different anonymized con-
tent providers, CDNs, P2P, and Web. The ALL traffic represents
all the traffic including P2P and Web. Overall, the distance trav-
eled by P2P applications are typically 25% longer than the distance
of HTTP traffic. Currently, the CDN’s air miles are 2 to 3 times
lower than P2P and other content providers such as large web sites.
This indicates that CDNs are effective and are having a significant
impact on the delivery of data.

There are several conclusions we can draw from this section.
The first is that the current generation of P2P applications are quite
inefficient in air miles. However, there have been some progress
recently to address this issue with P2P. For instance, the P4P Work-
ing Group has been working on P4P (Proactive network Provider
Participation for P2P) to use topology information from ISPs to op-
timize P2P traffic on P2P networks. Xie et al. show where broad-
band subscribers experience increased throughput using P2P appli-
cations due to significantly more data being served On-Net [8, 31].
The second conclusion is that CDNs are doing a good job of bring-
ing data closer to the end user. This allows the users to have a better
multimedia experience because these large multimedia files can be
served from a CDN and obtain higher bitrates. This allows more

and better quality content to be consumed and show that large files
are typically served from CDNs.

4.2 Air Mile Differences Between POPs
Figure 4 shows the distribution of relative air miles travelled to

POPs (Point of Presence) in the network. Figure 5 shows for the
POPs with the highest, lowest, and an average of all POPs the dis-
tribution of air miles to different ASNs. The main observation to
take away from graphs is that on the Broadband Providers network
there are many opportunities for optimizations. The traffic going to
some POPs are significantly more expensive, on average, to trans-
port than others. In addition, at each POP there are some ASN that
are significantly more expensive, on average, to transport as well.
These observations help to motivate our proposed caching solution
later presented in Section 6.

5. CACHEABILITY
Many applications on the Internet have data flows that could po-

tentially be reused to save network bandwidth because the same
content is being requested more than once. For instance, multiple
requests to the same web page could be cached and either served
from a local or network cache. Another example is multiple users
streaming the same video file, which could be served using multi-
cast or P2P.

The application classes of Web, Multimedia, P2P, and Network
News are the most likely candidates for transferring content that is
reusable. These traffic classes were shown in Section 3.1 to repre-
sent 89% of the network traffic during the busy hour. Other traffic
classes such as VoIP, Chat and Business are less unlikely to contain
any reusable content in their data flows but represent only 11% of
the network traffic. The analysis in this section is based off of our
HTTP traffic trace. By using these HTTP records we can look at
how much traffic is reusable for Web and Multimedia because 95%
application classes are served using the HTTP protocol.

5.1 Time-To-Live Analysis
The Time-To-Live (TTL) length specified in Control-Cache

field of the HTTP records indicates how long an object should be
kept in a cache before it needs to be refreshed.

Figure 6 shows the CDF of the TTL length specified by different
file sizes. We find noticeable amounts of records with TTLs set as:
1 hour, 1 day, and 7 days.

We also looked at the impact CDNs have on the temporal char-
acteristics of the traffic. To identify which requests are from a CDN
we employ a similar methodology as Huang et al. [17]. To facil-
itate this analysis we used dumps of the DNS tables used by the
subscribers at the broadband ISP. These dumps were collected on
February 2nd, 2008.
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Table 4: Percentage of Bytes for Large Flow vs. Small Flows of
CDNs and Other

Class <1MB 1-10MB 10-100MB 100MB + Overall

CDN 8.0% 7.0% 18.2% 46.1% 8.0%
Other 92.0% 93.0% 81.8% 53.9% 92.0%
Total 100.0% 100.0% 100.0% 100.0% 100.0%

We use a two-fold approach to identify CDN requests. The first
step in our analysis is to look up the DNS entry for each hostname
in the HTTP requests. If the hostname resolves to a CNAME that
belongs to a CDN provider then we label these requests as CDN
traffic. In the second step, for the remaining traffic we use the server
IP address to resolve the AS number. If the AS number is from a
known CDN provider then we label these requests as CDN traffic
as well.

Figure 7 and Figure 8 show the CDFs of the TTL lengths when
weighted by requests and total bytes, respectively. When compar-
ing both graphs together we observed that while the distribution for
requests and bytes are similar for small TTLs. The TTLs for bytes
is smaller indicating that large file sizes have larger TTLs on aver-
age than smaller file sizes. A noticeable artifact in the graph is that
for the byte distribution of CDN requests over 50% of the bytes
have a TTL of 10 days. However, overall we found that there were
no other substantial differences in how the TTLs were set between
CDN and non-CDN traffic that would indicate a difference in the
cachability of the CDN content.

Table 4 shows the percentage of all bytes in the downstream traf-
fic broken down by source. We found that a significant amount of
the large files are being served by CDNs. In particular, over 46% of
flows greater than 100 Mbytes in size are originating from a CDN
today.

5.2 Cache Analysis
Not all HTTP requests are cacheable. This occurs for a vari-

ety of reasons–the web page may contain private information like

a cookie, or is dynamically generated. In the HTTP 1.1 proto-
col there are two fields, Cache-Control and Pragma, in the
HTTP header that can be used to indicate cacheability [14]. The
Content-Control field can be used by a server to indicate if
the document is not cacheable or the time the document can be
kept before it is stale. The Pragma field can be used by the client
to indicate a request for a fresh copy of the file. For instance, hitting
the refresh button on most browsers causes the HTTP request to be
marked as no-cache when sent. We used both of these fields in
the HTTP records we analyzed.

If we remove from the HTTP traffic the 42% that is marked non-
cacheable, in total, approximately 60% of all traffic is potentially
reusable. We define content as reusable if there is more than one
request for a specific object during the period the object is valid
(e.g. not stale or modified). The results in Figure 9 assume that the
cache has an unlimited size. Thus, we do not assume removal of
items from the cache.

These assumptions are more general in some cases and pro-
vide a potentially more optimistic result than if explicitly studying
caching. Our methodology of identifying uncacheable documents
and using an unlimited cache size is similar to the approach taken
by Feldmann et al. who completed a comprehensive studies of
HTTP headers in relation to caching in 1999 [13].

We have tested three different algorithms for calculating
reusability. The first, which we denote as “Greedy”, is where we
ignore the Content-control and Pragma directives including TTLs.
In our second algorithm, denoted as “No-Cache”, we only respect
the directives that indicate the content should not be cached or not
served from cache. The third algorithm, denoted as “TTL-Cache”,
takes into account all directives and also the TTL values assigned to
each request. We have chosen these three algorithms to take into ac-
count different hypothetical scenarios. The Greedy algorithm pro-
vides us with an upper bound for the potentially cacheable content,
and the TTL-Cache algorithm the lower bound if all the optional
parameters are followed explicitly. However, in reality, caches op-
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erate somewhere in between. For instance, some caches serve ob-
jects after they become stale.

Figure 9 shows the caches byte hit ratio as we process our data
set over time. We found with our Greedy algorithm that 92.2% of
requests and 67.9% of bytes could have been served from cache.
With the No-Cache algorithm we found 70.1% of requests and
37.4% of bytes could have been served from cache. Finally, with
the TTL-Cache algorithm 62.0% of the requests and 32.5% of the
bytes would be served from cache. Notice that when taking into
account the TTL of the objects that there is only a small 5% change
in the bytes served from cache.

We also found that the total cache size using the Greedy and
No-Cache algorithms was 17.4TB and 11.3TB, respectively. These
cache sizes may be economically infeasible to deploy in all scenar-
ios. However, in today’s environment where disk space is relatively
cheap and large ISPs have regional data centers (POPs) that serve
upwards of 150,000 to 1,000,000 subscribers, the deployment of a
10TB cache is both economically and technically feasible.

Our results allow us to estimate that 30% of Web and Multime-
dia content is reusable and that 70% of the traffic during the busy
hour is web and multimedia traffic, hence about 24% of network
traffic could be optimized to take advantage of the fact it is be-
ing requested more than once. (We have calcuated the bandwidth
savings soley on caching Web and Multimedia traffic, however, a
P2P-based cache could also deployed.)

In addition to simulating an unlimited cache size we imple-
mented a caching program to test the TTL-Cache algorithm with
various cache sizes. For our simulation, we used Least-Recently-
Used (LRU) as our caching policy. The choice of LRU was made
because most caching products utilize LRU. In industry this is be-
cause it is simple, understandable, and works just as well as any
other algorithm when you have enough disk space. Figure 10 shows
the results of our simluations using cache sizes varying from 1GB
to 1.5 TB in size. The parallel line in the graph shows the maxi-
mum amount cacheable bytes (32.5% calcualated previously) if we
had an unlimited cache size.

6. NETWORK AWARE FORWARD

CACHING
Forward caching has been proposed in the 90s to address the

issues of improved client performance and reduced network cost
which we highlighted in the previous sections. A forward cache
is an HTTP cache deployed within an Internet Service Provider’s
(ISP) network caching all cacheable HTTP traffic accessed by the
customers of the ISP. In contrast to CDNs a forward cache is de-
ployed for the customers benefit and under the control of the ISP,
rather than for the benefit of the content owner.

As forward caches are quite frequently collocated with cooperate
firewalls caching HTTP traffic of the employees of the cooperation,
most large US based ISPs currently do not operate forward caches
within there network. The main reason for this decision lies in
the economics of deploying forward caches. Forward caches are
additional hardware components (typically UNIX servers) which
have to be purchased, deployed and managed at a large number of
locations. In the US the bandwidth savings can often not justify the
cost of such a server deployment.

To reduce the costs associated with forward caching in an ISP
we propose Network-Aware Forward Caching which is motivated
by the insights presented in the previous section. Our goal is to find
the set of addresses at each POP that when cached maximizes the
cost savings for the network. In particular we noticed that some
traffic is already originating close to the ISPs customers (e.g. CDN

traffic) and, therefore, the benefits of caching the content again us-
ing a forward cache in the ISPs POP is minimal both in terms of
performance and cost savings. On the other hand some traffic tra-
verse expensive transit or backbone links and caching would be
both cost effective and improve performance. In a second dimen-
sion we also noticed that POPs themselves have a high variability
in terms of distance to HTTP sources as well as peering links. For
example, a remote POP might be far away from a CDN server,
whereas a metropolitan POP might be very close to a CDN server.

Considering these insights it becomes clear that the most cost
effective way of deploying forward caches is to only deploy them
in selected POPs that are caching only selected expensive-to-deliver

content that is requested frequently. This expensive content can be
identified using a metric like air miles as we have done. We call
this approach Network-Aware Forward Caching. In the remainder
of this section we will formally state the problem of how to place
caches and decide what content to cache, propose a solution and
evaluate our approach in a case study using data from a large tier
one US ISP.

6.1 Problem Formulation
We first define the notations used for the formulation of for-

ward caching problem. The network has a set of POPs P =
{1, 2, 3, . . . }. The distance (air mileage) between POPs are defined
as L = (li,j), where i, j ∈ P . The HTTP traffic are downloaded
from a set of IP address sets S = {0, 1, 2, . . . }. For example, an
address set can be an address prefix (i.e., 100.200.0.0/24), or the
collection of addresses that belong to the same organization or au-
tonomous system (AS). Define V = (vi,j,s) as the monthly HTTP
traffic volume from address set s that enter the network at ingress
POP j and leaves the network at egress POP i. The monthly transit
cost per unit volume for address set s is defined T = (ts), where
ts > 0 for provider traffic, ts < 0 for customer traffic, ts = 0 for
peer traffic.

Assume we have a total budget of N dollars to purchase and
deploy caches. Each cache costs γ dollars, has a disk space of b,
and can handle a traffic throughput of e Mbps. We define a boolean
variable to denote whether to cache s at POP i: C = (ci,s), where
ci,s = 1 if yes, ci,s = 0 if not. We further define U = (ui,j,s)
as the monthly HTTP traffic volume from s with ingress POP j
and egress POP i which cannot be possibly retrieved even from a
cache at s with infinite computational power and disk space. We
define the disk space needed for caching address set s at POP i as
X = (xi,s). Note that X is different from U in that an object with
size x might have to downloaded twice due to TTL expiration, but
just needs x to store.

We define the backbone cost unit as α dollars per mile-byte, and
transit cost unit as β dollars per byte. We can then compute the
backbone cost, transit cost (TC), and upfront caching cost (CC),
when caches are deployed. HTTP traffic vi,j,s’s contribution to
backbone cost is α · li,j · ui,j,s when the objects in s are cached
at i (i.e.,ci,s = 1), and α · li,j · vi,j,s when the objects in s
are not cached at s(i.e.,ci,s = 0). Thus the total backbone cost
BC = α ·

P

∀i∈P,j∈P,s∈S li,j · ((1 − ci,s) · vi,j,s + ci,s · ui,j,s).
Similarly, transit Cost TC = β ·
P

∀i∈P,j∈P,s∈S
ts · ((1 − ci,s) · vi,j,s + ci,s · ui,j,s). The

total traffic volume at POP i is
P

∀s∈S,j∈P
ci,s · vi,j,s, thus

the number of cache units at POP i required by the compu-
tational power is ⌈

P

∀s∈S,j∈P
ci,s · vi,j,s/e⌉. Similarly, the

number of cache units at POP i required by disk space is
⌈
P

∀s∈S
ci,s · xi,s/b)⌉. The upfront caching cost at POP i is the

maximum of that required by computational power and that re-
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quired by disk space. Thus the total upfront caching cost CC = γ ·
P

∀i∈P ⌈max(
P

∀s∈S,j∈P ci,s · vi,j,s/e,
P

∀s∈S ci,s · xi,s/b)⌉.
the problem is to find ci,s such that
minimize: BC + TC + CC
subject to: CC ≤ N
After refactoring, the object function becomes:
minimize:

P

∀i∈P,j∈P,s∈S
vi,j,s · (α · li,j + β · ts) −

(
P

∀i∈P,s∈S
ci,s ·

P

j∈P
(vi,j,s − ui,j,s) · (α · li,j + β · ts) − γ ·

P

∀i∈P
⌈max(

P

∀s∈S,j∈P
ci,s · vi,j,s/e,

P

∀s∈S
ci,s · xi,s/b)⌉)

let Bi,s =
P

j∈P
(vi,j,s − ui,j,s) · (α · li,j + β · ts), which is

the benefit of caching s at i, excluding the upfront cost. The objec-
tive function becomes:

maximize:
P

∀i∈P,s∈S
ci,s · Bi,s−

γ ·
X

∀i∈P

⌈max(
X

∀s∈S,j∈P

ci,s · vi,j,s/e,
X

∀s∈S

ci,s · xi,s/b)⌉ (1)

subject to :
P

∀i∈P ⌈max(
P

∀s∈S,j∈P ci,s · vi,j,s/e,
P

∀s∈S ci,s · xi,s/b)⌉ ≤

⌊N/γ⌋ = N ′

6.2 Algorithm
It is easy to see that our final Formulation 1 of the problem for

the case that we have only one POP, i.e., |P | = 1, is as hard as
the knapsack problem. In the knapsack problem, given a set of n
different items, each with a weight and a value (benefit), our goal
is to determine the set of items to include so that the total weight
is less than a given limit W and the total value is as large as possi-
ble. It is well-known that the knapsack problem is NP-hard though
it can be solved in pseudo-polynomial time1 using dynamic pro-
gramming. In addition, the problem has a polynomial-time 1 − ǫ-
approximation algorithm (an algorithm whose output has a value
at least 1 − ǫ times the optimum solution) based on dynamic pro-
gramming, for arbitrary small constant ǫ > 0.

First, let us observe that our problem formulation also has a
pseudo-polynomial-time dynamic programming algorithm. Con-
sider any POP i. For a content s, we denote its needed compu-
tational power by Cs =

P

j∈P
vi,j,s and its needed disk space by

Ms = xi,s. Now we fill in a table T [s,C, M ] which determines the
maximum benefit that we can obtain from contents 1, 2, . . . , s with
at most C total computational power and M total disk space, where
⌈C/e⌉ (⌈M/b⌉) is at most the maximum number of cache units
that we can afford in our total budget, i.e., N ′. T [0, C, M ] = 0
for all feasible values of C and M . For s > 0, T [s,C, M ] =
max{T [s − 1, C, M ], T [s − 1, C − Cs, M − Ms] + Bi,s}, for
C ≥ Cs and M ≥ Ms, and ∞ otherwise. Next, define T ′i[U ] to be
T [|S|, e ·U, b ·U ] which is the maximum benefit that we can obtain
by caching of contents in POP i with at most 0 ≤ U ≤ N ′ (as the
maximum of computational power or disk space) units of caches.
Finally having T ′i[U ]s, we compute our final table T ′′[i, U ] which
is the maximum benefit that we can obtain from POPs 1, 2, . . . , i
with at most 0 ≤ U ≤ N ′ units of caches. T ′′[0, U ] = 0 for
all affordable values of 0 ≤ U ≤ N ′, and for i > 0, T ′′[i, U ] =
max0≤j≤U{T ′′[i−1, U−j]+T ′i[j]}. Therefore, the maximum of
our objective in Formulation 1 is max1≤U≤N′{T ′′[|P |, U ]−γU}.

By using standard techniques analogous to those for the knap-
sack problem, it is not hard to transform the above pseudo-
polynomial-time dynamic programming to a polynomial-time 1−ǫ-
approximation algorithm, for arbitrary small constant ǫ > 0.

1In computational complexity theory, a numeric algorithm runs in
pseudo-polynomial time if its running time is polynomial in the
numeric value of the input (which is exponential in the length of
the input – its number of digits).
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Figure 11: CCDF of Total Benefit at Each i,s Pair

It is worth mentioning that in practice with large values, dynamic
programming approaches similar to the aforementioned one in this
section are time-consuming and not desirable. Due to this reason
we consider a well-known greedy heuristic for the knapsack prob-
lem which sorts the items in decreasing order of value per unit of
weight and then proceeds to insert them into the knapsack until
there is no longer space in the knapsack for more. This heuristic
for the knapsack problem is not only very fast and easy to imple-
ment but also gives a guaranteed approximation factor 2 for some
versions of knapsack. Below we generalize this greedy algorithm
for our purpose and report its evaluation results in the next section.

Our greedy heuristics is based on the idea that the total number of
caches n is within the range of [0, N ′]. Therefore, we can “guess"
and enumerate n. Thus the problem becomes:

maximize:
P

∀i∈P,s∈S
ci,s · Bi,s − γ · n

subject to : n ≤ N ′

By enumerating over all n, γ · n is just a fixed cost that can be
ignored for the maximization purposes. As we discussed in the
previous section, Bi,s is the benefit of caching s at i. On the other
hand, the weight of content s to be cached on POP i is wi,s =
γ max(

P

∀j∈P vi,j,s/e, xi,s/b).2

Now, for a fixed number n of caches, we have essentially a knap-
sack problem that we want to maximize the benefit of selected el-
ements (i.e., the cache assignment) while our total weight is re-
stricted by the number n of caches. Thus inspired by the aforemen-
tion greedy algorithm for the knapsack problem, for a fixed n, our
algorithm is to choose the most cost-efficient (i, s) pair (i.e., cache
s at i) first. A formal description of our algorithm is as follows:

1: for n = 0 to N ′ do
2: ci,s = 0 for all i and s //clear all ci,s

3: for (i, s) pairs ranked by Bi,s/wi,s descendingly do
4: ci,s = 1 as long as the total number of used caches so far

is not more than n;
5: end for
6: end for
7: find the lowest (BC+TC+CC) across different n, and output

the corresponding C = (ci,s);

2Note that indeed, ⌈wi,s⌉ is the number of caches needed if we
cache content s on POP i alone. This weight might be smaller if
we cache other contents on POP i as well. However in some sense
we “over-provision" the caches, which is often needed in practice,
since we do not want to utilize the caches 100%.
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6.3 Evaluation
We implemented a simulation program to evaluate our network-

aware caching approach using the heuristic we described in Sec-
tion 6.2.

To run the simulation we assume that transit (β) and backbone
(α) costs are approximately $4 Mbps/month [30] and the upfront
cost of a caching server is $20,000 which can be amortized over 36
month and costs approximately $555 a month to run. We assume
that this $20K server will be able to handle 400 Mbps of through-
put (e) and as have a disk size of 4 TB (b). We then vary these
parameters to study the sensitivity of the results.

In the simulation we base our network specific inputs P , S,
Vi,j,s, and Li,j from our Core Backbone Traffic data set we pre-
viously analyzed in Section 4. In our analysis, we have chosen to
use AS numbers in S. However, our approach can use other levels
of detail such as prefixes if more granular measurements are avail-
able. To estimate the values of Ui,j,s and Xi,s we used our analysis
from Section 5 that calculated the values Ui,s and Xi,s for a single
BRAS in this network. In the simulation we use the U and X val-
ues from this BRAS as estimates that are scaled appropriately for
all other POPs.

Our simulation program calculates the net benefit (Equation 1)
as the number of cache servers (n) increases. We find the best de-
ployment solution by selecting n which maximizes the net benefit.
In our program, the net benefit is calculated in dollars saved. How-
ever, in our figures we plot the relative net benefit. This is done

to preserve the anonymity of our data source. Figure 11 shows the
CCDF distribution of Bis. This shows that most of the benefit can
be obtained from caching a small subset of the i, s pairs.

Overall, we find in Figure 12 and Figure 13 that using our
stated assumptions for backbone, transit and cache costs and the
US Broadband Provider’s network data that the maximum bene-
fits would occur when only 68% of the caches are deployed that
would have other otherwise been needed to cover all HTTP traf-
fic. Our simulation results show that the relative net positive ben-
efit increased from 0.501 to 0.688 (a 37% overall improvement in
benefits) when the network-aware caching approach’s strategy was
compared to the benefits of deploying caches to cover all POPs.
Figure 15 shows the distribution of cache servers to each POP based
on our maximal solution. This shows that in the our optimum solu-
tion 25% of POPs do not any postive net benefit by having a cache
server place there. Only 15% of POPs have a maximumnet net
benefit by having all HTTP traffic covered.

Figures 12, 13, and 14 show selected results of varying each of
these factors by a couple magnitudes to see their overall affect on
the final cost benefit analysis.

Figure 12 shows that transit costs in our simulated network min-
imally affect the overall maximum net benefit. This is due in our
case to the amount of transit traffic that is cacheable is quite low.
However, in other network this may not be the case and therefore
have a large impact in the results.

Figure 13 shows that the backbone cost is a large factor influenc-
ing how much the net benefit is. As the backbone cost increases
the cost benefit curve is shifted upwards and maximum net benefit
point shifts right.

Figure 14 shows the net benefit cost as the cost of each cache
changes but all other parameters remain fixed. When the server
cost is set to $0 per server the theoretical maximum benefit ob-
tainable is depicted. As the server cost is increases the net benefit
decreases and the optimum number of caches to deploy shifts to the
left. This follow intuition that as the cache cost increases that less
traffic would have a positive net benefit to cache.

7. RELATED WORK
Forward caches which are also known as proxy caches or for-

ward proxy caches have received a great deal of attention during
the dot com boom. As there exists a large volume of prior art on
various aspects of forward proxies we refer the interested reader
to [24] for a broader discussion of forward caching and focus the
related work discussion in this section more narrowly on the prob-
lem of cache placement and selective content caching.
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Proxy placement algorithms can be characterized in two classes.
First there are multiple proposals of how to optimize the cache
placement within a CDN. For example [3, 21, 27, 28] explores this
problem. Our goal differs in that we are interested in how to place
caches which cache only partial HTTP traffic to optimize the cost
within an ISPs network and not how to optimize the placement of
caches within a CDN.

Another paper optimizing placement of proxy servers in a CDN
is [23]. This work does introduce a greedy algorithm similar in
spirit to our approach. However, it does not address the problem of
deciding which content to cache on which proxy while solving the
proxy placement problem in an access ISP. It rather focuses on the
optimal placement of proxies to server content from a given Web
server through a CDN.

A second line of work looks at proxy placement under vari-
ous topologies [3, 26] as well as proxy placement over multiple
ASes [18]. Again neither of this work considers the problem of se-
lective caching and cache placement within an access ISP to reduce
deployment cost.

As CDNs cache only content for which they are paid. We are
unaware of any work which explicitly restricts which content to
cache in a forward cache deployment to minimize the deployment
cost of the cache infrastructure. In addition to this new aspect of re-
stricting cachability on forward proxies we also provide a detailed
case study of our approach using real network traces and network
topology of a US broadband ISP.

8. CONCLUSION AND FUTURE WORK
This paper proposed and evaluated a Network Aware Forward

Caching approach for determining the optimal deployment strategy
of forward caches to a network. We find that this is an NP-hard
problem. A key advantage of our approach is that we can reduce
the costs associated with forward caching to maximize the benefit
obtained from their deployment. In our case study, we show in our
analysis that a 37% increase to net benefits could be achived over
the standard method of a deploying caches to all POPs and caching
all traffic. This maximal point occurs when only 68% of the total
traffic is cached. At this point, we find that 25% of POPs should
not have a cache and that only 15% of POP% should have all traffic
cached.

Another contribution of this paper is the analysis we use to moti-
vate and evaluate this problem. We characterize the Internet traffic
of 100K subscribers of a US residential broadband provider. We us
both layer 4 and layer 7 analysis to investigate the traffic volumes
of the flows as well study the general characteristics of the applica-
tions used. We show that HTTP is a dominant protocol and account
for 68% of the total downstream traffic. In addition, we show that
multimedia content using HTTP exhibits a 83% annualized growth
rate and other HTTP traffic has a 53% growth rate versus the 26%
over all annual growth rate of broadband traffic. This shows that
HTTP traffic will become ever more dominent and increase the
potential caching opportunities. Furthermore, we characterize the
core backbone traffic of this broadband provider to measure the ef-
ficiency content and traffic is delivered. We find that CDN traffic is
much more efficient than P2P content and that there is large skew
in the Air Miles between POP in a typical network and shows many
opportunties in broadband provider networks to optimize how traf-
fic is delivered and cached.

Several opportunities exists for future work. In this paper, we
have focused on the fastest growing and biggest component to
broadband ISP traffic. However, additional work could be done
in to determine strategies for caching or increasing the delivery ef-
ficiency of other applications such as P2P and multicast.
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