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Abstract

Online social networks expose their users to privacy leakage risks. To measure the risk, privacy scores can be computed 
to quantify the users’ profile exposure according to their privacy preferences or attitude. However, user privacy can be also 
influenced by external factors (e.g., the relative risk of the network, the position of the user within the social graph), but 
state-of-the-art scores do not consider such properties adequately. We define a network-aware privacy score that improves the 
measurement of user privacy risk according to the characteristics of the network. We assume that users that lie in an unsafe 
portion of the network are more at risk than users that are mostly surrounded by privacy-aware friends. The effectiveness 
of our measure is analyzed by means of extensive experiments on two simulated networks and a large graph of real social 
network users.

Keywords Privacy measures · Online social networks · Centrality · Simulation · Computational social science

1 Introduction

Online social networks are permeating most aspects of our 
life. More than two billions active social accounts are pro-
ducing petabytes of behavioral and interaction data daily. At 
the same time, the famous “six degrees of separation” theory 
has been far exceeded in Facebook, where an average degree 
of 3.57 has been recently observed.1 This massive intercon-
nection intrinsically exposes social network users to the risk 
of privacy leakage.

If, on the one hand, many users are informed about the 
risks linked to the disclosure of sensitive information (pri-
vate life events, sexual preferences, diseases, political ideas, 
among others), on the other hand the awareness of being 
exposed to privacy breaches each time we disclose infor-
mation that apparently is not sensitive is still insufficiently 
widespread. In this regard, daily activities may reveal infor-
mation that can be used by others in a negative manner. For 
example, a GPS tag far from home or pictures taken during 

a journey may alert potential burglars, or the disclosure of 
family relationships may expose our own or other family 
members’ privacy to criminal offense risks, as well as source 
of tort liability. Most troubling of all, it has been shown that 
by leveraging Facebook user’s activity it is possible to infer 
some very private traits of the user’s personality (Kosin-
ski et al. 2013). This inference capability has been recently 
exploited to help propel Donald Trump to victory in the last 
US presidential elections (González 2017) and was at the 
very center of the Facebook–Cambridge Analytica scandal 
in early 2018. This privacy breach event has multiplied the 
interests in the protection of human dignity and personal 
data, and privacy has become a primary concern among 
social network providers and web/data scientists.

Although social platforms often provide some kind of 
notification intended to inform their users about the risks of 
private information disclosure, many people simply overlook 
the dangers due to the uncontrolled disclosure of their (and 
others’) personal data. Therefore, following the recent scan-
dals, most social media have considerably improved their 
tools for controlling the privacy settings of the user profile 
(e.g., Instagram can now limit the visibility of stories to 
“close friend”), but such tools are often hidden and not that 
user-friendly. Consequently, they are barely utilized by most 
users. Recent machine learning and data mining studies try 
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to go beyond these limitations by proposing some meas-
ures of users’ profile privacy based on the way they custom-
ize their privacy settings (Liu and Terzi 2010; Wang et al. 
2014), or lightening the customization process of the privacy 
settings by means of guided tools and wizards (Fang and 
LeFevre 2010; Song et al. 2018). Privacy measures (Wag-
ner and Eckhoff 2018), in particular, when associated with 
pop-up alerts or other visual components [e.g., gauges or 
discharging batteries (Talukder et al. 2010)], may enhance 
user’s perception of privacy, according to the principles of 
Privacy by Design specifications (Cavoukian 2012).

However, the privacy measures proposed so far (Liu and 
Terzi 2010; Wang et al. 2014) have a strong limitation. In 
fact, the privacy risk is not just a matter of users’ prefer-
ences (i.e., to which friends a user is wishing to disclose 
each particular action/post); it is also heavily affected by 
the characteristics of the social network they belong to., i.e., 
their centrality within the network and the attitude of their 
friends toward privacy. According to a recent computational 
science study (Bioglio and Pensa 2017), even restraining pri-
vacy settings are ineffective when the user is located within 
an unsafe network, i.e., a network where the majority of 
nodes have little or no awareness about their own and oth-
ers’ privacy. When a user posts something private or sensi-
tive in a subnetwork where the majority of individuals are 
aware about their own and others’ privacy, the risk that her 
sensitive information spread in the network is low. (This 
condition is similar to a very well-known phenomenon in 
epidemiology, called herd immunity.) Hence, her privacy 
risk is lower than the risk of a user posting something private 
in a network where many individuals are not aware about 
their own or others’ privacy. In the latter case, a “like” or a 
comment under the post in question may trigger the diffu-
sion of private information in the network. Malicious users 
may leverage this information to cheat or commit some evil 
acts against the author of the post at issue. To explain the 
influence of the network on user privacy, let us consider two 
examples.

Example 1 Two users u
1
 and u

2
 share the same attitude to 

their own privacy protection. However, user u
1
 occupies a 

central position within the social network [her centrality is 
high (Newman 2010)], while u

2
 is a peripheral user (her 

centrality is low). According to these hypotheses, user u
1
 

should be more exposed to privacy leakage than u
2
 , since 

u
1
 ’s posts have more chance of being diffused than u

2
 ’s posts.

Example 2 Two users u
1
 and u

2
 have exactly the same atti-

tude toward the protection of their own privacy. However, 
user u

1
 is mostly connected to friends that do not care that 

much about their own privacy leakage, while u
2
 is princi-

pally surrounded by friends that, instead, care about their 
own (and others’) privacy. According to these hypotheses, 

user u
1
 has higher probability of being exposed to privacy 

leakage than u
1
 . Roughly speaking, there will be some por-

tions of the social network that are weaker than others from 
the point of view of privacy leakage.

These sample scenarios lead to the intuition that privacy 
risk in a social network may be modeled similarly as page 
authority in a hyperlink graph of web pages. According to 
a well-known theory (Brin and Page 1998), more authorita-
tive web sites are likely to receive more links from other 
web sites that are authoritative in their turn. In this paper, 
we make the hypothesis that the concept of “importance” of 
a web page can be transposed into the concept of “privacy 
risk” of users in a social network as follows: The more an 
individual is surrounded by friends that are careless about 
their privacy, the more the privacy of that individual is likely 
to be exposed to concrete privacy leakage risks.

With the goal of helping users enhance their privacy 
awareness in their cybersocial world, in this paper we pro-
pose a new network-aware computational method for meas-
uring the privacy risk, inspired by personalized Pagerank 
(Jeh and Widom 2003), one of the best known algorithms 
to rank web pages according to a personalized view of their 
authority (or importance). Furthermore, with the aim of sup-
porting our claims, we report on a social experiment we 
performed, which involves more than one hundred Face-
book users. Thus, our approach is validated on a sample 
which is unusually large for this type of experiments (Furini 
and Tamanini 2015). Thanks to this experiment, we show 
the effectiveness of our privacy measure not only on two 
simulated networks but also on a large network of real Face-
book users. Additionally, these experiments also allow us 
to infer a practical estimate of the intrinsic risk due to the 
user attitude toward privacy (i.e., the risk due principally to 
the users’ willingness to disclose their own personal data to 
other users) using the information carried out by the social 
graph as an alternative to state-of-the-art policy-based pri-
vacy scores (Liu and Terzi 2010; Wang et al. 2014). Our risk 
estimation is inferred from the privacy attitude computed 
for a group of real Facebook users and, additionally, lends 
itself to an intuitive interpretation based on common social 
network user experience.

The main contributions of this paper can be summarized 
as follows: (1) We propose a centrality-driven privacy score 
that takes into account the level of privacy awareness of the 
subnetwork when estimating the privacy risk of each individ-
ual user; (2) starting from a survey conducted on real Face-
book users, we identify a practical estimator of the intrinsic 
privacy risk of each user; (3) we show experimentally that 
our privacy score captures a more reasonable risk of privacy 
disclosure and leakage in realistic social networks.

The remainder of the paper is organized as follows: 
We briefly review the related literature in Sect.  2; the 
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network-aware privacy score and the intrinsic risk compu-
tation are presented in Sect. 3; Sect. 4 provides the details 
and results of our experimental study; finally, in Sect. 5, 
we draw some conclusions, discussing both limitations and 
strengths of our approach, and propose some future research 
directions.

2  Related work

The increasing success of online social networks in early 
2010s has also soon highlighted their weaknesses, so that 
more and more research efforts have been devoted to study-
ing privacy protection methods for social profiles. Most 
research works focus on three main strategies: (1) using 
data anonymization and obfuscation techniques to preserve 
the identity of social network users; (2) designing privacy 
protection mechanisms involving access control rules and 
policy definition; (3) measuring the privacy level of users 
to provide them with a practical means to assess their actual 
risk.

Identity disclosure protection In privacy and social net-
work analysis, most research interests have been focused 
on the identification and formalization of different privacy 
breaches and on the anonymization of identities in net-
worked data (Rathore et al. 2017). This goal is achieved 
by modifying the social graph so as to minimize the prob-
ability of identifying an individual within the network, by 
either anonymizing only the network structure or anonymiz-
ing both network structure and user attributes (Zheleva and 
Getoor 2011). The most relevant contributions address the 
problem of graph anonymization by applying edge generali-
zation (Hay et al. 2008; Cormode et al. 2009), randomization 
(Ying and Wu 2011; Vuokko and Terzi 2010), modification 
(Zou et al. 2009; Liu and Terzi 2008; Zhou and Pei 2011) or 
differentially private mechanisms (Hay et al. 2009; Task and 
Clifton 2012). The problem of identity disclosure leveraging 
user activity in online social networks has been explored as 
well: Buccafurri et al. (2016), for instance, propose a cryp-
tographic method to protect the identity of the individuals 
performing “like” actions on social media. All these research 
works are only marginally related to ours.

Access control and policy definition Although it is well 
established that user privacy protection in social media 
involves multiple complex factors (Litt 2013), the exist-
ing privacy controls for online social networking sites are 
barely utilized in practice, since they are not fully socially 
aware (Misra and Such 2016). This statement is confirmed 
by Liu et al. (2011), who show that 36% of Facebook con-
tent is shared without modifying the default privacy set-
tings and, consequently, it is exposed to more users than 
expected. Privacy fatigue (i.e., the tendency of online users 
to disclose greater information over time due to increasingly 

complex and less usable privacy controls) is another fac-
tor that has been recognized to play a significant role in 
favoring behaviors which endanger information privacy 
(Choi et al. 2018). Thus, many research efforts aim at sup-
porting people to recognize and prevent privacy issues in 
social media. Squicciarini et al. (2014) propose an ontology-
based mechanism for privacy protection, which supports 
semi-automated generation of access rules for users’ profile 
items. Fang and LeFevre (2010), instead, propose a proto-
type of social networking wizard leveraging active learning. 
Their tool builds a classification model of a user’s friends 
based on their profile to assign them access privileges on the 
user’s profile items. The model is improved incrementally 
by asking the user to allow or deny the visibility of profile 
items to friends selected according to an uncertainty sam-
pling criterion. More recently, Song et al. (2018) have pro-
posed a taxonomy-guided learning model that predicts which 
personal aspects are uncovered by the posts and constructs 
standard guidelines to regularize users’ actions for prevent-
ing their privacy leakage. Such and Rovatsos (2016) and 
Such and Criado (2016) suggest to negotiate (and possibly 
merge) conflicting privacy preferences of multiple users on 
any individual item by using a computational mechanism. 
Other very recent works focus on recommendation of pri-
vacy settings for images representing sensitive content (Yu 
et al. 2017) and on solving possible privacy leakage conflicts 
in photographs containing individuals others than the user 
who posted them (Xu et al. 2017). Finally, in Pensa and Blasi 
(2017), the authors propose a profile control framework to 
adjust personal privacy settings according to a measured 
risk of leakage.

Tools and metrics for privacy assessment In most cases, 
disclosing information on the web is the result of a voluntary 
activity. Hence, a common opinion is that users should care 
about their privacy during their interaction with other social 
network users. Thus, the problem of measuring and improv-
ing risk perception has gained popularity among research-
ers. Cetto et al. (2014), for instance, present an online game 
that allows Facebook users to test their knowledge of the 
visibility of their actual shared personal items and provides 
them with some recommendations aimed at improving their 
privacy settings. Akcora et al. (2012a, b) propose a measure 
that quantifies of how much it might be risky to have interac-
tions with friends, in terms of disclosure of private informa-
tion. As Fang and LeFevre (2010), they also use an active 
learning approach to estimate user risk from few required 
user interactions. Talukder et al. (2010) present a privacy 
protection tool that measures the inference probability of 
sensitive attributes from friendship links. In addition, they 
suggest self-sanitization actions to regulate the amount of 
leakage. Becker and Chen (2009) show that a majority of 
users’ personal attributes can be inferred from social circles 
and present a tool to detect unintentional information loss 
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in online social networks by quantifying the privacy risk 
attributed to friend relationships in Facebook. Privacy met-
rics, whose goal is to measure the degree of privacy enjoyed 
by users in a system and the amount of protection offered by 
privacy-enhancing technologies (Wagner and Eckhoff 2018), 
have attracted the interest of several important studies. Liu 
and Terzi (2010), for instance, propose a framework to com-
pute a privacy score measuring the user’s potential privacy 
risk. This score increases with the sensitivity of information 
items and their visibility, e.g., the number of users know-
ing about each item, and leverages the item response theory 
(Keller and Schweid 2011) as theoretical basis for the math-
ematical formulation of the score. Similarly, Wang et al. 
(2014) measure the user privacy exposure in a social net-
work using a privacy index. Differently from Liu and Terzi 
(2010), however, this index requires predefined sensitivity 
values for users’ items and requires the availability of user 
privacy settings. Several privacy scores are also proposed 
in a recent social network simulation game designed to help 
teachers educate school children on privacy issues (Bioglio 
et al. 2018). However, these scores are intended as a reward 
mechanism, rather than risk assessment measures.

The positioning of our work is, in fact, in the last branch 
of research. However, differently from the above mentioned 
papers, our proposal takes into account the context of the 
user subnetwork. In detail, we propose a privacy score that, 
compared to those presented in the closest related works 
(Liu and Terzi 2010; Wang et al. 2014), takes into account 
the privacy attitude of the network as well as the centrality 
of the user.

3  Computing privacy scores

When measuring users’ privacy in online social network, 
their preferences are only one side of the coin; in fact, user 
leakage risk is also affected by the context in which an indi-
vidual is immersed. Besides users’ own attitude on disclos-
ing very private facts, the attitude of their friends toward 
privacy plays an important role too: Users that likes or share 
friends’ posts more often than the others contribute most to 
the rapid spread of information (Bioglio and Pensa 2017). 
Another factor influencing users risk is constituted by their 
position within the network. (Marginal users are certainly 
less exposed than very central users.) In this section we 
present a score that quantifies the privacy leakage of users 
considering the risks due not only to their attitude toward 
privacy but also to the attitude of their subnetwork. Before 
addressing the technical details of our proposal and formal-
izing the problem, we briefly introduce some basic necessary 
mathematical notations.

We consider a set of n users participating in a social net-
work, here represented as a directed graph G(V, E), where 

V is a set of n vertices {v1,… , v
n
} such that each vertex 

v
i
∈ V  represents a user and E is a set of directed edges 

E = {(vi, vj)} . Given a pair of users vi, vj ∈ V  , (vi, vj) ∈ E iif 
there exists a link from v

i
 to vj (e.g., user vj is in the friend 

list/circle of v
i
 or v

i
 follows vj ). Each user is characterized 

by an intrinsic privacy risk �p(vi) , which is defined as the 
user propensity to privacy leakage. Two examples of social 
graphs with two different privacy risk values are given in 
Fig. 1a, b. The assumption is that some users are more prone 
to disclose their personal data than others. This propensity is 
reflected in the way users configure their privacy settings. In 
the following, we first provide the definition of our network-
aware privacy score independently from the specific choice 
of a reliable intrinsic privacy risk measure. Then, we instan-
tiate �p(vi) according to an established and reliable definition 
of privacy score (Liu and Terzi 2010).

3.1  Network‑aware privacy score

By definition, the intrinsic privacy risk �p(vi) does not con-
sider the context in which an individual is immersed. How-
ever, the actual privacy leakage risk of users is crucially 
affected by the properties of the social network they belong 
to: Two users sharing the same attitude toward their own pri-
vacy protection are not necessarily subject to the same risk. 
If a user is mostly surrounded by friends that do not care 
that much about privacy, then she should be more exposed 

Fig. 1  Privacy risk and network-aware privacy score in two differ-
ently aware networks
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to privacy leakage than a user who is principally connected 
to friends that care about their own (and others’) privacy. 
This consideration leads to the intuition that privacy risk in 
a social network may be modeled similarly as page authority 
in a hyperlink graph of web pages. Hence, we transpose the 
concept of “importance” of a web page into the concept of 
“privacy risk” of users in a social network as follows: The 
more an individual is surrounded by friends that are careless 
about their privacy, the less the individual herself/himself is 
likely to be protected from privacy leakage. One of the most 
popular algorithms to rank web pages based on their central-
ity (or authority) is Pagerank (Brin and Page 1998). For a 
given directed graph G(V, E), where V is a set of n vertices 
{v1,… , v

n
} and E is a set of directed edges E = {(vi, vj)} , 

Pagerank is defined as the distribution that satisfies:

where P =
[

p(v1),… , p(v
n
)
]⊤

 is the Pagerank vector ( p(vi) 
being the Pagerank associated with vertex v

i
 ), d = [0, 1] 

is the damping factor (the 1 − d quantity is also known as 
restart probability), 1 is a vector of n ones, and A is a n × n 
matrix such that each element aij = 1∕deg+(vi) ( deg+(v

i
) 

being the outdegree of v
i
 ) if (vi, vj) ∈ E ( aij = 0 otherwise).

The computation of Pagerank values can be done using 
the well-known power iteration method (Golub and van der 
Vorst 2000), whose complexity is O(I × |E|) , I being the 
number of iterations (Bianchini et al. 2005). The algorithm 
is reported to converge quickly even for graphs containing 
millions of nodes (Brin and Page 1998); thus, the effective 
complexity is linear in the number of edges. Nevertheless, 
many research efforts have been devoted to speeding up Pag-
erank computation (Chen et al. 2004; Kamvar et al. 2003; 
McSherry 2005).

In our specific problem, each user v
i
∈ V  has an asso-

ciated intrinsic privacy score �p(vi) . Consequently, instead 
of considering a uniform constant vector for the com-
putation of Pagerank, we will use a non-uniform vector 
where the component corresponding to node v

i
 is equal to 

�p(vi)∕
∑n

k=1
�p(vk) . This setting is similar to the definition 

of personalized Pagerank (Jeh and Widom 2003), used to 
create a personalized view of the relative importance of 
the nodes. We can now introduce our network-aware pri-
vacy score (called NetP-Score), defined by the following 
distribution:

where � =
[

�
p
(v1),… , �

p
(v

n
)
]⊤

.
In those settings where the link between two users 

is always reciprocal (if there is a link from v
i
 to vj then 

there is also a link from vj to v
i
 ), the social network is 

(1)P = dA
⊤

P +
(1 − d)

n
1

(2)P = dA
⊤

P +
(1 − d)

∑n

k=1
�p(vk)

�

represented as an undirected graph G(V, E), where E is 
such that if (vi, vj) ∈ E , then (vj, vi) ∈ E . In this case, A is 
symmetric and each element aij = aji = 1∕deg(vi) ( deg(v

i
) 

being the degree of v
i
 ) if (vi, vj) ∈ E ( aij = 0 otherwise).

Equation 2 provides a set of values that are not neces-
sarily in the same scale as the intrinsic risk. Hence, the 
final values of the privacy score, namely NetP-Score(v

i
) , 

require the execution of the following re-scaling operation:

where p(vi) is the network-aware privacy score value for node 
v

i
 and NetP-Score(v

i
) denotes the recomputed privacy score 

value. Moreover, range(�p) = max{�p(vj)} − min{�p(vj)} , 
range(p) = max{p(vj)} − min{p(vj)} are the overall range 
of the values of the intrinsic risk and of the network-aware 
score, respectively. In practice, the network-aware privacy 
score is adjusted so as to have the same range as the intrinsic 
risk.

An example of network-aware score computation is 
given in Fig. 1. In Fig. 1a, we provide an example of graph 
where an aware user (the central one) is surrounded by 
unaware users (i.e., users with high intrinsic risk). Fig-
ure 1c represents the same network with the computed 
NetP-Scores: The score value of the central user is adjusted 
according to the network and it is sensibly higher than in 
Fig. 1a. Instead, in Fig. 1b, we provide a network with the 
same topology but different intrinsic risks. In particular, 
the unaware central user (with high risk) is surrounded by 
rather aware users (with low privacy risk). In this case, 
our measure for the central user is revised downward (see 
Fig. 1d), according to a context in which all other users 
form a kind of barrier protecting the privacy of the central 
users. In this little toy example we use an intermediate 
damping factor value ( d = 0.5).

3.1.1  Choice of a reliable damping factor

The choice of damping factor d is not trivial in our setting. 
A common assumption in information retrieval is that d 
should be set to 0.85 (Brin and Page 1998), which gives 
much more importance to inbound links. However, in 
our case, this may depend on the particular type of social 
network involved. For instance, some social networking 
platforms heavily promote sharing actions. In this case a 
high value of d may provide a better estimate of the real 
privacy risk to users that, despite their restrictive privacy 
settings, are located in a relatively unsafe subnetwork. On 
the contrary, in those scenarios where sharing actions of 
users are not that visible to other users, small values of d 
provide more realistic privacy leakage estimates.

(3)NetP-Score(vi) = p(vi) ⋅
range(�p)

range(p)
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3.2  Policy‑based intrinsic privacy risk

We have defined the intrinsic privacy risk as the user pro-
pensity to privacy leakage. Assuming that users’ activity in 
a social network is known, measuring their intrinsic privacy 
risk is not trivial. Our choice is based on the privacy score 
defined by Liu and Terzi (2010). Each user in V may disclose 
information related to a set of m topics T = {t1,… , t

m
} , cor-

responding, for instance, to personal aspects such as religion, 
workplace, political views, health status, birthplace, gender, 
age, vacations.2 An n × m response matrix R is associated 
with the set of n users V and the set of m topics T. Each 
element rij of R corresponds to a privacy degree encoding 
the willingness of user v

i
 to make information associated 

with topic tj visible to other social network users. Here we 
adopt the multinomial case, where entries in R take any non-
negative integer values in {0, 1,… ,�} , where rij = h (with 
h ∈ {0, 1,… ,�} ) means that user v

i
 discloses information 

related to topic tj to users that are at most h links away in the 
social network G (e.g., if rij = 0 user u

i
 wants to keep infor-

mation about tj private, if rij = 1 user v
i
 is willing to make 

information related to tj available to all friends, if rij = 2 
user v

i
 is willing to let the friends of her or his friends access 

information about tj , and so on). An example of response 
matrix for four users and three topics is given in Fig. 2a.

Thanks to the response matrix R , the two main compo-
nents of the privacy score can be computed, namely the sen-
sitivity �j of a topic tj , and the visibility �ij of a topic tj due to 
v

i
 . Liu and Terzi (2010) use a mathematical model based on 

polytomous item response theory [a well-known theory in 
psychometrics (Keller and Schweid 2011)] to compute sen-
sitivity and visibility. Differently from Liu and Terzi (2010), 
we adopt a simpler but still effective formulation that, addi-
tionally, is computationally less expensive.

According to this formulation, for any visibility degree 
h = {1,… ,� − 1} , sensitivity is calculated as follows:

(4)�jh =
1

2

�

n −
∑n

i=1
�(rij≥h)

n
+

n −
∑n

i=1
�(rij≥h+1)

n

�

where �
A
 is the function returning 1 when condition A is true 

and 0 when A is false. When h equals one of the two extreme 
values ( h = 0 or h = � ), the sensitivity values are computed 
differently. In detail,

for h = 0 , and

when h = �.
Equations 4, 5 and 6 have the following meaning: The 

less users adopt at least privacy degree h for topic tj , the 
more sensitive tj is w.r.t. degree h. Instead, when h takes 
intermediate values (i.e., h = {1,… ,� − 1} ), sensitivity is 
computed according to both degrees h and h + 1 . This guar-
antees that �j0 < �j1 < ⋯ < �j�.

Example 3 (Sensitivity computation) Given the response 
matrix depicted in Fig. 2a and � = 4 , the sensitivity values 
for the topic Job are computed as follows:

– �
Job0

=
4−4

4
= 0 (all users have set the visibility level to 

at least 1),

– �
Job1

=
1

2

(

4−4

4
+

4−4

4

)

= 0 (all users have set the visibil-

ity to at least 2),

– �
Job2

=
1

2

(

4−4

4
+

4−2

4

)

=
1

4
 (only users u

3
 and u

4
 have set 

the visibility level to at least 3),

– �
Job3

=
1

2

(

4−2

4
+

4−1

4

)

=
5

8
 (only users u

3
 and u

4
 have set 

the visibility level to at least 3, and u
4
 is the only user 

having set the visibility to 4),
– �

Job4
=

4−1

4
=

3

4
 ( u

4
 is the only user having set the vis-

ibility level to 4).

In the simplified formulation, the visibility, for any degree 
h = {0,… ,�}, is calculated as follows:

where Pr(rij = h) is the probability that rij equals h. Under 
the assumption that topics and users are mutually independ-
ent, probability Pr(rij = h) can be computed using the fol-
lowing formula:

(5)�j0 =
n −

∑n

i=1
�(rij≥1)

n

(6)�j� =
n −

∑n

i=1
�(rij≥�)

n

(7)�ijh = Pr(rij = h) × h

Fig. 2  A response matrix of a 
small set of users and topics 
(left) and the resulting intrinsic 
privacy risk (right)

User Age Job Politics
u1 2 2 0
u2 3 2 1
u3 3 3 1
u4 4 4 4

(a) A sample response matrix R

User ρ
p
(Age) ρ

p
(Job) ρ

p
(Politics) ρp

u1 0.0556 0.2222 0.0000 0.2778
u2 0.3611 0.3194 0.1111 0.7917
u3 0.6667 0.4167 0.1111 1.1944
u4 1.0000 1.0000 1.0000 3.0000

(b) Intrinsic privacy risks for the response matrix R

2 In this work, we refer to T as a fixed set of user-decided topics/
aspects. It is out of the scope of this paper to consider automatic 
topic/aspect inference of each user’s action or posted item.
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The intuitive interpretation of Eq. 7 is that visibility �ijh is 
higher when the sensitivity of topic tj is low and user vj has 
a low attitude toward her own privacy protection, regardless 
of the topic.

Example 4 (Visibility computation) Given the response 
matrix depicted in Fig. 2a and � = 4 , the visibility values 
�

2Jobh
 for the topic Job and user u

2
 are computed as follows:

– �
2Job0

=
0

4
⋅

0

3
⋅ 0 = 0,

– �
2Job1

=
0

4
⋅

1

3
⋅ 1 = 0,

– �
2Job2

=
2

4
⋅

1

3
⋅ 2 =

1

3
,

– �
2Job3

=
1

4
⋅

1

3
⋅ 3 =

1

4
,

– �
2Job4

=
1

4
⋅

0

3
⋅ 4 = 0.

To compute the intrinsic privacy risk �p(vi, tj) for a given 
user v

i
 and a given topic tj , we use the following formula:

where

and max
vk∈V

�p(vk, tj) is the maximum value of Eq. 10 among all 

users. Although normalization is not strictly required, we 
use it to unify the scale of the intrinsic risk.

Finally, the overall intrinsic privacy risk �p(vi) for any 
given user v

i
 can be computed as follows:

The intuitive interpretation of Eqs. 9, 10 and 11 is as fol-
lows: �p(vi) = 0 means that either the topic tj is not sensitive 
at all (i.e., in each element of the summation, �jh = 0 ), or the 
information on topic tj is kept private (i.e., in each element 
of the summation, �ijh = 0 ). Conversely, the privacy risk is 
maximum when a user v

i
 makes all sensitive information 

( �jh = 1 ) visible to all her or his friends ( �ijh = 1 ). As a con-
sequence, users that have the tendency to make information 
about sensitive topics visible to a larger public are more 
susceptible to privacy leakage.

Example 5 (Intrinsic risk computation) Given the response 
matrix depicted in Fig. 2a and � = 4 , the (non-normalized) 

(8)
Pr(rij = h) =

∑n

i=1
�(rij=h)

n
×

∑m

j=1
�(rij=h)

m

(9)�p(vi, tj) =
�p(vi, tj)

max
vk∈V

�p(vk, tj)

(10)�p(vi, tj) =

�
∑

h=0

�jh × �ijh.

(11)�p(vi) =

m
∑

j=1

�p(vi, tj).

intrinsic risk �
p
(u2, Job) to the topic Job and user u

2
 is com-

puted as follows:

The values of the intrinsic privacy risk to all users and top-
ics are given in Fig. 2b, together with the overall intrinsic 
privacy risks (rightmost column).

3.3  Theoretical complexity

Here we investigate the theoretical time complexity for 
computing our network-aware privacy score in realistic 
scenarios. Let n be the total number of users in the social 
network and m the overall number of topics. Computing the 
response matrix R requires O(n × m) operation. Hence, the 
computation of the intrinsic privacy risk to all users requires 
O(n × m × �) operations for obtaining all sensitivity values 
�jh ( � being the overall number of visibility degrees in R ), 
the same cost for obtaining all visibility values �ijh as well 
as the final value of the risk. The overall time complexity 
for computing the privacy risk values for all users and top-
ics is then in O(n × m × �) . However, it is straightforward to 
suppose that, in a real-world scenario, � ≪ m and m ≪ n . 
According to these realistic assumptions, n dominates all 
other terms and the overall time complexity of the intrin-
sic privacy risk computation is in O(n). We recall that the 
power iteration method, needed to compute the values of 
the network-aware privacy score, requires O(I × |E|) opera-
tions (where I is the number of iterations and |E| is the total 
number of edges in the network). We can easily assume that 
n ≪ |E|. (For instance, the number of edges in the Facebook 
social network is 95 times the number of nodes (Ugander 
et al. 2011), although, according to a more recent survey,3 
the ratio is even larger) and I ≪ |E| (Brin and Page 1998), so 
we conclude that the overall time complexity for computing 
all network-aware privacy scores in a social network with |E| 
friendship links is in O(|E|).

4  Experimental results

In this section we report and discuss the results of the experi-
ments that we conducted on two simulated networks and a 
Facebook graph generated from the ego-networks of real 
Facebook users. The main objectives of our experiments 
are as follows: (1) to analyze the relationship between users’ 
attitude toward privacy self-protection and the value of the 

�
p
(u2, Job) = 0 ⋅ 0 + 0 ⋅ 0 +

1

4
⋅

1

3
+

5

8
⋅

1

4
+

3

4
⋅ 0 = 0.2396.

3 http://www.pewre searc h.org/fact-tank/2014/02/03/6-new-facts 
-about -faceb ook/.

http://www.pewresearch.org/fact-tank/2014/02/03/6-new-facts-about-facebook/
http://www.pewresearch.org/fact-tank/2014/02/03/6-new-facts-about-facebook/
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network-aware privacy score; (2) to show the relationship 
between users’ privacy score and their centrality in the social 
network; (3) to study the relationship between the scores and 
the effects of information propagation in the network.

This section is organized as follows: First, we describe the 
data and how we gathered them; then, we analyze the behav-
ior of our network-aware privacy score; finally, we study the 
relationships between information propagation and users’ 
privacy. All experiments are performed on a server equipped 
with 2 Intel Xeon E5-2643 quad-core CPU’s, 128 GB RAM, 
running Arch Linux (kernel release: 4.5.1).

4.1  Datasets

In our experiments we use two simulated networks and a 
snapshot of the Facebook graph consisting on the ego-net-
works of real Facebook users. The two simulated networks 
(SN10K and SN50K) are generated using LDBC–SNB Data 
Generator4 which produces graphs that mimic the charac-
teristics of real social networks (Erling et al. 2015). The 
two graphs have 10,000 and 50,000 nodes, respectively, and 
are generated using the default configuration which tries to 
model the degree distribution as that observed in Facebook.

The third network (FB75K) is a snapshot of the real Face-
book graph that has been generated leveraging an online 
experiment. This experiment was conducted as follows. 
We promoted an online experiment aimed at obtaining the 

required data to infer an approximate distribution of the pri-
vacy risk depending on the node degree. The online experi-
ment was conducted in two phases. In the first phase we pro-
moted the web page of the experiment5 where people could 
voluntarily grant us access to their friends network. The par-
ticipants were perfectly aware about the data we asked for 
and the purpose of our experiment. Moreover, all data were 
collected, stored and processed according to all EU regula-
tions in force at the time.6 In this first phase, data were gath-
ered through version 1.0 of Facebook Graph API, used in a 
Facebook application written in Java. During spring 2015, 
we collected the anonymous ego-networks of 185 volun-
teers. We also asked them for some demographic data. From 
the related statistics reported in Fig. 3 it turns out that there 
is not an emergent category of participants, even though, 
in general, they are highly educated. The social network of 
all participants plus their friends consists of 75,193 nodes 
and 1,377,672 edges. Although the overall social network 
has been obtained by merging the participants’ anonymous 
ego-networks, the largest connected component contains 
73,050 nodes (i.e., 97.15% of the overall social graph) and 
1,333,276 edges (i.e., 96.78% of the number of edges in the 
overall graph). To achieve this goal, we foster the virality 
or our Facebook application by allowing it to propose the 
publication of a special post inviting all the participants’ 

Fig. 3  Demographic statistics of 
the volunteers that participated 
in our online experiment. In the 
graph concerning education, 
ND stands for “no diploma,” HS 
stands for “high school,” UNI 
for “university/college degree” 
and PHD for “Ph.D. or other 
postgraduate degrees.” In the 
graph representing job posi-
tions, UN stands for “unem-
ployed,” STU for “student,” 
TEACH for “professor/teacher/
researcher,” MAN for “man-
ager/professional” and RE for 
“retired.” The y-axis represents 
the number of respondents

(a) (b)

(c) (d)

4 https ://githu b.com/ldbc/ldbc_snb_datag en.

5 http://kdd.di.unito .it/priva cyawa renes s.
6 The data collection/storage and processing protocols have been 
approved by the Law Office of our institution.

https://github.com/ldbc/ldbc_snb_datagen
http://kdd.di.unito.it/privacyawareness
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friends to join the experiment. Note that, once collected, the 
nodes identities were entirely replaced by anonymous IDs.

Some network statistics (number of edges and nodes, 
average clustering coefficient, average degree) about the 
datasets are reported in Table 1, while Fig. 4 presents their 
degree distribution. All graphs used in the experiments are 
considered as undirected.

4.2  Intrinsic risk estimation

The intrinsic privacy risk defined in Sect. 3.2 requires the 
availability of the privacy policy settings decided by each 
user or, alternatively, it can be inferred by the actual social 
activity of the users. However, this information is often 
missing (some social networking platforms implement very 
basic privacy policies), unreliable (e.g., some users often set 
privacy settings lazily) or simply not available (not provided 
by social platform APIs). This is a major issue for security 
and complex network scientists as well: The privacy settings 
of users strongly influence the way the information is propa-
gated across the network. Moreover, knowing the attitude of 
users toward privacy is crucial to understand whether (and 
to whom) a user is willing to share a post/link. Last but not 

the least, privacy attitude is the first factor contributing to 
determining the privacy risk of users.

As a first experiment, we try to estimate the intrinsic pri-
vacy risk using the only local information often largely 
available in social networks: the degree of a user node (i.e., 
the number of friends in Facebook or followers in asym-
metric social networks such as Twitter or Instagram). It is 
worth noting that there is no need to access the entire social 
network in order to know the degree of a node. To this pur-
pose all the participants in the online experiments described 
in the previous section were contacted for an online survey. 
The participants had to indicate to which extent they were 
willing to disclose five different topics (job, relationship sta-
tus, vacations, political views and personal life). Possible 
answers were as follows: visible to no one, to close friends 
only, to friends except acquaintances, to all friends, to all 
friends of friends, visible to everyone on Facebook. The 
topics were proposed in form of direct questions (see 
Table 2) with different degrees of sensitivity. In winter 
2015/2016, 101 out of 185 participants answered all ques-
tions of the survey. We used the answers to fill the 101 × 5 
response matrix R (see Sect. 3.2). Entries in R take values 
in {0,… , 5} , where rij = 0 means that participant v

i
 does not 

want to disclose information about question Qj , rij = 1 means 
that participant v

i
 is willing to make information related to 

Qj available to close friends and so on. Finally, we computed 
the intrinsic privacy risk of all 101 participants according to 
Eq. 11 described in Sect. 3.2. Consequently, for each of the 
101 volunteers, we have the node degree and the true privacy 
score computed according to Liu and Terzi (2010). Since we 
want to model the behavior of the intrinsic risk according to 

(a) (b) (c)

Fig. 4  Degree distribution in the three networks

Table 1  Some dataset characteristics

Dataset #Nodes #Edges Avg. deg. Avg. CC

SN10K 9226 183,004 39.671 0.160

SN50K 42,969 1,233,281 57.403 0.113

FB75K 75,193 1,377,672 36.644 0.613

Table 2  Five questions (and 
related topics) of our online 
survey

Question Question text Topic

Q1 Which people would you like to tell that you have just changed job? Job

Q2 If your relationship status changed, which friends would you like to tell? Relationship status

Q3 After a nice holiday, which friends would you share your photos with? Vacations

Q4 With whom would you like to share a comment on current affairs/politics? Political views

Q5 With whom would you like to share your mood or something personal that 
happened to you?

Personal life



 Social Network Analysis and Mining (2019) 9:15

1 3

15 Page 10 of 15

the degree, we build graph such that the x-axis represents the 
node degrees, while the y-axis is proportional to the intrinsic 
risk associated with each node degree. Consequently, with 
each participant v

i
 , we associate a point (xi, yi) in the graph, 

where x
i
= deg(v

i
) and yi =

�p(vi)
∑

vi
�p(vi)

 , where �p(vi) is the 

intrinsic risk associated with user v
i
 and computed according 

to Eq. 11.
In order to infer the correct distribution function fitting 

the set of (xi, yi) points, we analyze the skewness–kurtosis 
plot (Cullen and Frey 1999) using the approach described in 
Delignette-Muller and Dutang (2015) on our sample. Skew-
ness is a measure of symmetry, or more precisely, the lack of 
symmetry, while kurtosis is a measure of whether the data 
are heavy-tailed or light-tailed relative to a normal distribu-
tion. The obtained plot suggests that the best two candidate 
distribution families are Gamma and Weibull. Hence, we use 
the maximum likelihood estimation method to fit our data 
to both Gamma and Weibull distributions and analyze the 
resulting empirical and theoretical PDF (probability distri-
bution function), CDF (cumulative distribution function), 
P–P (probability–probability) and Q–Q (quantile–quantile) 
plots (see Fig. 5). The two sets of plots are almost identical, 
but the Gamma distribution seems to fit slightly better our 
data than Weibull distribution. This is also confirmed by the 
values obtained by applying the Akaike information crite-
rion (Akaike 1974) (respectively, 12,982.52 and 12,996.07 
for Gamma and Weibull). Consequently, we retain the Γ(k, �) 
(Gamma) distribution with the shape and scale parameters 

estimated by the maximum likelihood method ( k = 2.2989 
and � = 169.9461).

According to this choice, the estimated intrinsic privacy 
risk of a user v

i
 is given by:

where deg(v
i
) is the degree of node/user v

i
 , �(deg(v

i
);k, �) is 

the probability density function, and Γ(k) is the gamma func-
tion Γ(z) for z = k . Since the mode of a generic distribution 
Γ(k, �) is given by (k − 1)� , the maximum value is known. 
Hence, our measure (that we name Γ-Score) can be easily 
normalized and is given by

Notice that, if the social graph were directed, one should 
take into account the indegree deg−(v

i
) of each node v

i
.

We can try to provide a practical explanation to the par-
ticular shape (given by parameter k) of the distribution (see 
the top-left plot in Fig. 5a). The key of the interpretation 
comes from the typical user experience in social networks. 
Let us consider a user who has just joined a social platform. 
At the very beginning of her cybersocial experience, she 
will probably have very few followers/friends and a weak 
social activity (few published posts/pictures and other con-
tents). The more she adds new connections, the more she 
gets involved in the cybersocial environment and is eager 

(12)

�p(vi, k, �) = �
(

deg(vi);k, �
)

=
1

Γ(k)�2
× deg(vi)

k−1 × e
−

deg(vi )

�

(13)Γ-Score(vi) = �p(vi, k, �) =
�p(vi, k, �)

�((k − 1)�;k, �)

(a) (b)

Fig. 5  Distribution plots showing the agreement between the real distribution and two possible estimations
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to publish new (possibly sensitive) content, being more 
exposed to privacy leakage. However, when the number of 
friends becomes large, according to well-established socio-
logical and anthropological theories (Roberts et al. 2009; 
Dunbar 2016), many links are likely to be weak (i.e., they 
represent sporadic online and off-line interactions) and the 
user starts to be more conscious about the leakage risks con-
cerning her and her friends’ privacy. When the number of 
user’s connection is very high (Facebook allows a maximum 
of 5000 friends), privacy is unlikely to be an issue: People 
with such large ego-networks are popular personalities or 
celebrities that usually publish posts of general interest or 
like/share content from other popular social profiles.

Additionally, the particular estimation of parameter � may 
also be explained intuitively. First, notice that lower values 
of � result in lower values of the mode and a shrunk bell 
shape,7 i.e., the maximum value of the Γ-Score is reached 
with a low number of friends. Conversely, for higher values 
of � , the maximum value of the Γ-Score is reached with 
a higher number of friends, and the bell is larger. In our 
experimental study, we obtain � = 169.9461 , and it can be 
observed that this value is not far from 150, a salient and 
well-known number in sociology. It corresponds to the Dun-
bar’s number (Roberts et al. 2009), i.e., the cognitive limit 
to the number of individuals with whom one can maintain 
stable social relationships. Even more interestingly, our � is 
very close to half the average number of Facebook friends, 
which is reported to be 338 for adult users.8 These find-
ings seem to confirm that our estimation is founded on solid 
bases, despite its simplicity.

4.2.1  E�ects of the biased sampling

As a result of our particular recruitment campaign, our sam-
ple is biased toward highly educated people. In fact, from 
Fig. 3c it turns out that most respondents own a university 
diploma or a higher degree. To assess the impact of this bias 
on our experiment, we first measure the mean and standard 
deviation of the intrinsic privacy risk (computed according 
to Eq. 11) in each of the following three subpopulations: 
people owning at most a high school diploma (HS), people 
with a university or college degree (UNI), and people own-
ing a Ph.D. or another postgraduate degree (PHD). The com-
puted means show slight differences among the three groups: 
2.6110 ± 0.6069 for the HS group, 2.1970 ± 0.8482 for the 
UNI group, and 2.3466 ± 0.8710 for the PHD group. Thus, 
we observe that there exists no proportionality between 
education degree and intrinsic privacy risk. In addition, to 

assess the statistical significance of these differences, we 
perform an unpaired two-tailed t test for unequal sample 
sizes. We used the Benjamini–Hochberg correction pro-
cedure to control the false discovery rate (Benjamini and 
Hochberg 1995). The results clearly indicate ( p > 0.1 in all 
tests) that the null hypothesis that the P-Scores are drawn 
from the same distribution cannot be rejected: The differ-
ences are not statistically significant. Consequently, we can 
reasonably conclude that the level of education is unlikely 
to constitute a major bias in our experiment.

4.3  Results on simulated networks

In Sect. 3.1 we have introduced our score that measures the 
privacy risk of users according to the characteristics of their 
subnetworks. Here, we investigate experimentally to what 
extent it is a good estimate of the objective privacy risk of 
the users. To this purpose, we conducted several experiments 
involving the two simulated networks (SN10K and SN50K) 
as follows. First, we compute the intrinsic privacy risk of 
each node using the Γ-Score (see Sect. 4.2) according to the 
following strategy. First, the intrinsic risk of each node v

i
 is 

generated randomly from a Gaussian distribution N(�, �2) 
with � = �p(vi, k, �) and �2

= 1.0 , where � ∈ [50, 3000] and 
k = 2.2989 (as computed in Sect. 4.2). Then, for each experi-
mental setting we compute the network-aware privacy score 
using the power iteration method (Golub and van der Vorst 
2000) to solve Eq. 2 (see Sect. 3.1). The number of itera-
tions is set to 100. We repeat the experiments for varying 
values of the damping factor d in the interval [0.05, 0.95] . We 
then measured the Spearman’s rank correlation coefficient 
(Spearman 1904) between the intrinsic privacy risk and the 
network-aware privacy score (NetP-Score).

The Spearman’s rank coefficient assesses monotonic 
relationships between two series of values. Given a set of 
n objects X = x

i
… x

n
 and two functions f ∶ X → ℝ and 

g ∶ X → ℝ , the Spearman’s coefficient is computed as:

where rankf (xi) and rankg(xi) are the ranks of object x
i
 in the 

two series of function values computed for X. It measures 
the correlation between the two rankings of the same set of 
objects, and its values range between −1 (when the rankings 
are maximally inversely correlated) and +1 (for the maxi-
mum positive rank correlation). The significance of the rank 
correlation can be assessed by verifying whether the null 
hypothesis (i.e., that � is not significantly different from zero) 
can be rejected. Since the quantity t = �

√

(n − 2)∕(1 − �2) is 
distributed approximately as the Student t-distribution with 

(14)� = 1 − 6 ×

∑n

i=1

�

rankf (xi) − rankg(xi)
�2

n(n2 − 1)

7 The typical shape of the Gamma distribution is a skewed bell.
8 http://www.pewre searc h.org/fact-tank/2014/02/03/6-new-facts 
-about -faceb ook/.

http://www.pewresearch.org/fact-tank/2014/02/03/6-new-facts-about-facebook/
http://www.pewresearch.org/fact-tank/2014/02/03/6-new-facts-about-facebook/
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n − 2 degrees of freedom, the null hypothesis can be verified 
by performing the well-known two-tailed t test.

We denote the Spearman � between the intrinsic privacy 
risk and the network-aware privacy score with �

s
 . To achieve 

significant results, we run each experiment 30 times. Moreo-
ver, to investigate the ability to consider the network topol-
ogy in the computation of the privacy score, we measured 
the Spearman’s correlation between the network-aware pri-
vacy score and the eigenvector centrality (Newman 2010) 
of each node. We use �

c
 to denote this measure. Finally, 

we compute a quality index taking into account both �
s
 and 

�
c
 as  =

[

(1 + �
s
)(1 + �

c
)
]

∕4 . This index takes values in 
[0, 1] and is maximum (resp. minimum) when both Spear-
man coefficients are equal to 1 (resp. −1 ). The goal of this 
index is to identify a range of parameters values enabling the 
computation of network-aware privacy scores that exhibit a 
strong correlation with both the intrinsic privacy risk and 
the centrality of the nodes.

The average results are reported in Fig. 6a, b. Noticeably, 
the  index values are always high (  > 0.55 ), even though 
in the region defined by the two intervals 0.5 ≤ d ≤ 0.7 and 
100 ≤ � ≤ 300 the quality index reaches its maximum values 
(around 0.90, meaning that NetP-Scores are strongly posi-
tively correlated with both the intrinsic risk and the eigen-
vector centrality). It is worth noting that in these experi-
ments the p-values are always very small ( p < 10−15 ), thus 
indicating that the results are statistically significant.

4.4  Results on the Facebook graph

We set up a slightly different experiment for the social net-
work retrieved from Facebook (FB75K). The main differ-
ence is that, instead of computing the Γ-Score for all nodes, 
for the nodes corresponding to the participants in our survey 
we use the P-Score (Liu and Terzi 2010) computed from 
the response matrix R obtained by processing their answers. 

All other 75, 193 − 101 nodes are handled as described in 
Sect. 4.3. The remainder of the experimental setup is the 
same as described in Sect. 4.3. The results are reported in 
Fig. 6c, but, differently from the previous setting, the Spear-
man’s coefficient is computed only on the set of 101 par-
ticipants. Contrary to the simulated setting, in this case the 
network-aware privacy score (NetP-Score) exhibits slightly 
smaller quality index w.r.t. the P-Score. It can be observed 
that, overall, the quality index  ranges between 0.45 and 
0.65. In detail, the average Spearman’s correlation between 
the intrinsic privacy risk and the network-aware privacy 
score is 0.1292. This result probably means that, for some 
users, the privacy score defined by Liu and Terzi (2010) is 
not always a good estimate of their objective privacy risk: 
The low value of the Spearman’s coefficient shows that 
there is a gap between the privacy leakage risk computed 
by only leveraging users’ privacy preferences and the real 
privacy risk which takes into account the weakness of the 
network surrounding them. On the other hand, the network-
aware privacy scores computed on the 101 participants are 
always positively correlated with their eigenvector centrality, 
despite their intrinsic risk. These results confirm our initial 
claim: To measure the objective privacy risk, any privacy 
metric should be contextualized within the social graph by 
considering its influence on each user.

4.4.1  Visual inspection of the Facebook graph

In addition to the previous analysis, we also report here an 
in-depth visual inspection of a small portion of the Facebook 
graph (FB75K). To obtain this portion, we first extract the 
subgraph consisting of all participants in the experiment 
described in Sect. 4.1 that are directly connected to at least 
another participant. 74 out of 101 participants are selected 
in this phase. Then, we consider the subgraph induced by 
these 74 nodes, which, in its turn, consists of 163 undirected 
edges, with an average degree of 4.405 and 4 connected 

(a) (b) (c)

Fig. 6  Quality index  based on Spearman’s correlation computed once between the network-aware privacy score and the intrinsic privacy risk 
and once between the network-aware privacy score and the eigenvector centrality of nodes



Social Network Analysis and Mining (2019) 9:15 

1 3

Page 13 of 15 15

components. By using the intrinsic privacy risk (P-Score) 
obtained as specified in Sect. 4.2, we compute the network-
aware privacy score (NetP-Score) using Eq. 3. Note that, 
since we only consider a small portion of the network, the 
results are different from those obtained in Sect. 4.4, which 
are computed on a more realistic snapshot. However, by rec-
omputing the scores for this small subgraph, we are able 
to show some interesting insights. In Fig. 7 we report the 
largest connected component of this subgraph, consisting 
of 67 nodes and 159 edges. In Fig. 7a nodes are colored 
according to their intrinsic risk. (Darker nodes correspond 
to higher scores.) In Fig. 7b, instead, node darkness is pro-
portional to our network-aware privacy score. It is interest-
ing to notice that, due to the low degree of almost all nodes 
and their rather “peripheral” position in the network, the 
NetP-Scores are lower than the P-Scores. There are only 
few exceptions, the most evident of which is represented 
by the highlighted node in the two pictures: It consists of a 
very central node (its degree is 43 and its eigenvector cen-
trality is the maximum among all 67 nodes), surrounded by 
several nodes that exhibit a higher intrinsic score. Although 

real social networks are more complex than that presented 
in Fig. 7, the outcomes of this visual analysis confirm the 
importance of considering the impact of the overall network 
on individual nodes.

4.5  Reliability of the privacy scores

As a concluding experiment, we study the relationship 
between the different privacy score definitions and the 
effects of information propagation across the network. A 
good privacy score should take into account the amount of 
nodes that may potentially access and diffuse some infor-
mation coming from other nodes in the same network. For 
this reason, we perform several Monte Carlo simulations 
of an information propagation scenario within the two syn-
thetic networks (SN10K and SN50K) and our snapshot of 
Facebook (FB75K). In particular, we adopted the suscep-
tible–infectious–recovered (SIR) epidemic model, a well-
studied model that describes the transmission of a disease 
through a population. At each step an individual may be 
susceptible (S) to the disease, infectious (I) or recovered 
(R), that is immune to the epidemic. An infectious individual 
may infect a susceptible one with an infection probability 
� , and convert him into an infectious individual, or recover 
from the disease with a recovery probability � , becoming 
recovered. The SIR model has been also applied for mod-
eling the diffusion of information in social networks (Gruhl 
et al. 2004). In our experiments, for all nodes we set an infec-
tion probability � = 0.5 and a recovery probability � = 0.3 . 
Then, we select N seed nodes that, in turn, are considered 
as the individuals that start the infection (i.e., information 
diffusion process) and measure the number of nodes (called 
prevalence rate) that are either infected (I) or recovered (R) 
after each step of the simulation. For datasets SN10K and 
SN50K we select N = 100 random nodes, while for FB75K 
the seed nodes are the 101 Facebook users that participated 
in our online experiment. Finally, for each simulation step 
we compute the Spearman’s � coefficient between the preva-
lence rate and the privacy scores ( Γ-Score and NetP-Score 

(a) (b)

Fig. 7  A snapshot of a small portion of the Facebook graph (FB75K) 
consisting of a connected component with 67 participants and their 
computed intrinsic risk (left) and network-aware privacy scores 
(right). Darker nodes have higher scores (best viewed in color ver-
sion)

(a) (b) (c)

Fig. 8  Spearman’s correlation computed once between the intrinsic 
privacy risk (P-Score or Γ-Score) and the total number of infected 
nodes (prevalence) and once between the network-aware privacy 

score (NetP-Score) and the total number of infected nodes (preva-
lence). In all the experiments p < 0.005 (worst value) except for the 
P-Score (Liu and Terzi 2010) in FB75K ( p > 0.3)
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for SN10K and SN50K; P-Score (Liu and Terzi 2010) and 
NetP-Score for FB75K). Parameters d and � for the simu-
lated networks are set according to the best results obtained 
in the previous experiments (see Sect. 4.3), while for the 
Facebook networks � is set according to Sect. 4.2. (The 
damping factor is the same as for the simulated networks.) 
The results are reported in Fig. 8. (Parameter settings are 
given in the captions.) As expected, our NetP-Score shows 
a better privacy leakage estimation than the Γ-Score (see 
Fig. 8a, b). However, the most interesting result concerns 
the Facebook network (Fig. 8c): In this case, in fact, the 
gap between the P-Score’s � and our network-aware score’s 
� in the very first iterations is significantly large. Assuming 
that the P-Score correctly measures the privacy risk based 
on users’ privacy preferences, a possible explanation is that 
the users underestimate their centrality within the network. 
Undoubtedly, by construction, our Facebook snapshot can-
not be considered a statistically valid sample of the entire 
Facebook graph, but the huge difference in terms of correla-
tion with the prevalence rate confirms that privacy leakage 
metrics should not ignore the context in which the users 
operate within the social network.

5  Conclusions and future work

With the final goal of supporting users’ privacy awareness 
in online social networks, we have proposed a context-aware 
definition of privacy score, inspired by Pagerank. This meas-
ure, as shown in our experiments, is a good estimate of the 
objective privacy risk of the users. Moreover, we have also 
inferred experimentally a new intrinsic privacy risk score 
that estimates well the real user attitude toward privacy. 
The results highlight the necessity of incorporating privacy 
measure computation within any domain-specific or general-
purpose social media and networking platforms. Addition-
ally, the low computational requirements of our measure 
would not affect the responsiveness of social platforms and 
can be of inspiration for the design of privacy-enhancing 
social networking components, in compliance with the prin-
ciples of Privacy by Design (Cavoukian 2012).

As future work we plan to better define our intrinsic 
privacy score by conducting an extensive experimental 
campaign involving more online social network users. 
Furthermore, the policy-based definition that we adopted 
to compute the intrinsic privacy risk is limited to a well-
defined set of topics or aspects (e.g., work status, photograph 
albums, relationship status). However, topic detection tech-
niques can be applied to natural language posts or pictures to 
understand their contents, as proposed by Song et al. (2018). 
A further refinement of this work will consist in directly 
inferring the sensitivity of posted items by leveraging topic 
modeling, natural language processing techniques and text 

categorization algorithms. Finally, an interesting research 
question deserving further investigation is whether, in gen-
eral, aware users are mostly surrounded by aware users and 
vice versa. Although some effects related to homophily—the 
theory according to which similar nodes may be more likely 
to attach to each other than dissimilar ones (McPherson et al. 
2001)—may exist, the role of privacy attitude in determining 
social network ties is probably involved in more complex 
phenomena.
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