
Network-aware Virtual Machine Consolidation for Large Data

Centers

by

Kakadia Dharmesh, Nandish Kopri, Vasudeva Varma

in

The 3rd International Workshop on Network-aware Data Management

Denver, Colorado.

Report No: IIIT/TR/2013/-1

Centre for Search and Information Extraction Lab
International Institute of Information Technology

Hyderabad - 500 032, INDIA
November 2013

Network-aware Virtual Machine Consolidation for Large
Data Centers

Dharmesh Kakadia
International Institute of
Information Technology

Hyderabad, India
dharmesh.kakadia
@research.iiit.ac.in

Nandish Kopri
Unisys Corp.

Bangalore, India
nandish.kopri

@in.unisys.com

Vasudeva Varma
International Institute of
Information Technology

Hyderabad, India
vv@iiit.ac.in

ABSTRACT
Resource management in modern data centers has become a
challenging task due to the tremendous growth of data cen-
ters. In large virtual data centers, performance of applica-
tions is highly dependent on the communication bandwidth
available among virtual machines. Traditional algorithms ei-
ther do not consider network I/O details of the applications
or are computationally intensive. We address the problem of
identifying the virtual machine clusters based on the network
traffic and placing them intelligently in order to improve the
application performance and optimize the network usage in
large data center. We propose a greedy consolidation algo-
rithm that ensures the number of migrations is small and
the placement decisions are fast, which makes it practical
for large data centers. We evaluated our approach on real
world traces from private and academic data centers, using
simulation and compared the existing algorithms on various
parameters like scheduling time, performance improvement
and number of migrations. We observed a ∼70% savings of
the interconnect bandwidth and overall∼60% improvements
in the applications performances. Also, these improvements
were produced within a fraction of scheduling time and num-
ber of migrations.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Network operating systems;
D.4 [Operating Systems]: Scheduling

General Terms
Algorithms

Keywords
network-aware placement, virtual machine scheduling

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
NDM’13 November 17, 2013, Denver CO, USA
Copyright is held by the owner/author(s). Publication rights licensed to
ACM
ACM 978-1-4503-2522-6/13/11 ...$15.00.
http://dx.doi.org/10.1145/2534695.2534702 .

1. INTRODUCTION
Modern data centers are extremely large, complex and

host applications with a wide range of communication re-
quirements that make resource management a challenging
task. In a cloud environment where pay-as-you-go model
and on-demand computing are encouraged, VMs from the
same applications can be placed across data center and net-
work performance among VMs cannot be guaranteed. This
can adversely affect performance of applications, particu-
larly with large east-west traffic and projects that aim to
build cluster computing systems on cloud. In large virtual
dynamic environment where clusters are scaled up and down
frequently, performance of such modern distributed applica-
tion can face performance issues that are acknowledged by
studies [18], showing wide variations in available bandwidth
between VMs.

Using current placement algorithms, which do not take ap-
plication network requirements and dynamism into account,
VMs from the same cluster/application can be deployed in a
non-optimal way and network can be a serious performance
bottleneck. The improper VM placement not only affects
I/O intensive applications but also to other non-I/O inten-
sive applications that will see large I/O waiting time due to
shared interconnect and oversubscription in network equip-
ment common in the data centers. This network unaware
placement also results into the internal network bandwidth
being wasted. Thus internal network saturation not only
harms the data-intensive applications but also all the other
applications running in the data center.

In this paper, we propose a VM placement algorithm whose
primary objective is to consolidate VMs using network aware-
ness. Our specific contributions are,

• VMCluster formation algorithm : to cluster the VMs,
based on their traffic exchange patterns.

• VMCluster placement algorithm : consolidation algo-
rithm for placing the VMClusters such that, the ap-
plication performance increases and the internal data-
center traffic is localized as much as possible.

We use network traffic history to group VMs in virtual
clusters and use greedy algorithm to consolidate VMs so
as to localize traffic from the same group, which results in
better application performance and saving in internal band-
width. The pervious approaches have either been too com-
putationally intensive or application specific or have con-
sidered only CPU or suggest too many migrations, limiting
their applicability in practice.

The reminder of the paper is organized as follows. We
summarize related work in section 2, section 3 describes our
system model of the data center. Section 4 explains our
proposed algorithms and section 5 reports our experimental
results. Finally, we conclude the paper with our findings in
section 6.

2. RELATED WORK
Resource allocation and management in data centers has

received a lot of attention in recent years due to the emer-
gence of cloud computing. This has resulted in a significant
research effort from the community and much advancements
in this area.

Researchers have realized the limitations of current data
center network architectures and have spawned parallel ef-
forts to redesign data center architectures and topologies to
accommodate requirements of the modern data center traf-
fic. PortLand [11] and VL2 [6] are three-tier architectures
with Clos [4] topologies. BCube [7] is a multi-level architec-
ture in which the servers forward traffic on behalf of other
servers and they are considered to be first class citizens of
the network architecture. We approach the problem from
the other end, making better use of the available intercon-
nect bandwidth. Our goal is to come up with the VM place-
ment algorithm that places the high-communicating VMs
near each other, to help scaling the interconnect.

Most of the proposed algorithms for VM placement and
consolidation focus on computation resource utilization. Con-
sidering the computing resource as utility, the VM place-
ment problem can be modeled as various constraint satis-
faction problems [12] [15]. Kusic et al.[9] have used Limited
Lookahead Control (LLC) to solve the continuous consoli-
dation problem as a sequential optimization. They require
application specific learning. The complexity of the pro-
posed model is high and can take even 30 minutes to make
scheduling decision for even a very small number of nodes.

A wide range of heuristics based algorithms has been pro-
posed for VM placement. Beloglazov et al. [2] proposed
heuristic based algorithms for VM consolidation to minimize
the energy utilization. Tang et al. proposed a task schedul-
ing algorithm which is thermal and energy-aware [16]. Affinity-
aware migration was proposed in [14] to minimize the com-
munication overhead. They use a bartering based algorithm
to negotiate VM relocations based on the local information.
This algorithm can take longer to execute because of the ne-
gotiation. Use of local information can result in non-optimal
placement of VMs. In [8] the authors consider demand,
availability and communication constraints and transformed
the VM placement problem into a graph coloring problem.
They also show that each of these constrained subproblems
are NP-hard.

There are some prior approaches to the VM placement
problem, which model it as some form of optimization prob-
lem [10][8]. Tantawi et al. [17] consider the problem of
placing virtual machine clusters on to physical machines in
data center. They use importance sampling based approach
to solve the placement problem. They note that the imple-
mentation of this approach is inefficient and relies on a sam-
pling process to incorporate communication needs and other
constraints of requests within the placement algorithm. In
[19] authors consider the problem of virtual machine place-
ment in virtualized environments with multiple objectives.
They use a genetic algorithm with fuzzy evaluation to search

the solution space and combine the constraints. While the
above approaches can accommodate the network require-
ments, they are computationally intensive and difficult to
scale for real world data centers. Also, they do not consider
the performance benefits of a consolidation and can lead to
excessive migration for very little performance improvement
that can degrade overall performance.

There has been some work to localize the network traf-
fic using application-awareness. While these approaches are
useful in specialized applications such as Hadoop, their ap-
plicability is limited to particular frameworks. Also if these
nodes are running in virtualized environments, which is in-
creasingly the case, the framework will not be effective in lo-
calizing the traffic because of no visibility into virtual infras-
tructure. Modern data centers run a variety of applications
with a variety of network requirements and it may not be
possible for the provider to know the traffic patterns before-
hand. Our work does not assume any application-awareness
and thus is applicable to all data center workloads. Also, as
these frameworks have very specialized traffic patterns, our
algorithm will benefit them automatically.

To summarize, previous work has focused on optimizing
resources like CPU or energy or thermal awareness. The pro-
posed approaches for network-aware consolidation has lim-
ited applicability in real data centers as they require inten-
sive computations and do not consider the benefits against
the migrations.

3. SYSTEM MODEL
We consider typical virtualized data center model consist-

ing of a set of physical machines (PMs) connected through
hierarchical network topology. Applications can have several
tasks, distributed across many VMs and can scale up and
down resulting in dynamic environment where VMs are dy-
namically spawned and terminated and their traffic pattern
changes over the time.

3.1 VMCluster
We introduce the concept of VMCluster to represent a

group of VMs that has large communication cost over time
period T . Our approach does not require knowledge about
application running inside VM and uses metrics readily avail-
able in hypervisor and network devices. This is impor-
tant for large data center operators such as public cloud
providers, which has no knowledge about customer appli-
cations running inside VMs and their communication pat-
terns. Membership of VMs to VMClusters is dynamic and
only property that needs to hold is data exchange between
the VMs for T time period.

3.2 Communication Cost Model
For identifying the VMClusters , we define the following

as our communication cost,

cij = AccessRateij ×Delayij (1)

Where AccessRateij is rate of data exchange between
VMi and VMj and Delayij is the communication delay be-
tween them. We used AccessRate as We measured Delay
as ping delay between corresponding VMs. cij is maintained
over time period T in moving window fashion and mean is
taken as the value.

The intuition behind defining cost as Eq.1 is to ensure that
it captures not only network delay but also how frequent

Figure 1: Example cost tree for a data center with
2 clusters each containing 2 racks

data communication is between VMs. This is important, as
we do not want to optimize placement of VMs which are
very far but exchange very little traffic and similarly for
VMs which have a very small delay, placement optimization
of which will not result in significant performance benefits.

3.3 Cost Tree
We model data center as hierarchical tree structure called

cost tree. The root node in the cost tree represents the data
center and leaves represent physical servers (PM). The levels
below represent clusters, server racks, etc., in superset rela-
tion as shown in Figure 1. The value of a node represents
communication cost of the traffic flowing through the node.
The value at parent node is sum of values of its child nodes.
The leaf nodes have values representing the access cost to
that server. Note that tree representation is logical and not
tied to any specific network topology.

We note that with the advent of the Software Defined Net-
work (SDN) based networking in large data centers, the col-
lection of network information is possible providing a global
view of network. Note that SDN provides one way of collect-
ing network information and we do not require a data center
to be operating SDN. We only require traffic information to
be available.

4. PROPOSED ALGORITHMS
We propose algorithms to form the VMClusters, selection

of VM from VMCluster for migration and placement algo-
rithm for consolidating using cost tree.

4.1 VMCluster Formulation
Traffic information between VMs is maintained in the

form of AccessMatrix,

AccessMatrixn×n =

0 c12 c13 · · · c1n
c21 0 c23 · · · c2n
c31 c32 0 · · · c3n
...

...
...

...
cn1 cn2 cn3 · · · 0

 (2)

Each element cij in the access matrix represents commu-
nication cost between VMi and VMj . It may seem that
AccessMatrix size (n × n) is prohibitively large, which is
not the case. Note that we only collect cij for VMs which
exchange traffic between them, making AccessMatrix ex-
tremely sparse and disjoint and it is maintained in Com-
pressed Sparse Row (CSR) format which makes it very prac-

tical. Further optimization is possible by maintaining only
top-K candidates. We assume communication cost within
VM is negligible and costs are symmetric (∀i, j : cij = cji).
The following is the VMCluster formulation algorithm, used
to identify virtual clusters.

Algorithm 1 VMCluster Formation Algorithm

1: for each row Ai ∈ AccessMatrix do
2: if maxElement(Ai) > (1 + opt threshold) ∗
avg comm cost then

3: form a new VMClusteri from non-zero elements
of Ai

4: end if
5: end for

Each row inAccessMatrix represents communication cost
incurred by the VM. The algorithm considers maximum
of theses costs (max element of the row) and compares it
with avg comm cost. avg comm cost is average commu-
nication cost (calculated as average of AccessMatrix el-
ements cij) of data center that we use as baseline to de-
cide which communication costs are considered significant.
opt threshold ∈ [0, 1], is a parameter which controls the
number of VMClusters to be considered by the algorithm.
If the opt threshold is near one, all the VMClusters with
above average communication cost will be considered and
as the value grows the number of VMClusters will be de-
creasing.

4.2 Consolidation Algorithm
The consolidation algorithm is responsible for placement

of VMClusters to localize the traffic. There are two main
steps of the consolidation algorithm.

VM Selection Choosing which VM to migrate is very
important as it can affect the optimization achieved and the
migration time. We want to choose the VM in such a way
that the chosen VM has large communication cost to the
rest of the VMs or in other words communication cost-wise
farthest from the rest of the VMs in its cluster. The average
distance from each VM to all other VMs in VMCluster is
calculated. The VM with largest average distance is chosen
which ensures that largest communication cost optimized at
each step.

VMtoMigratei = arg max
V Mi

|V MClusterj |∑
j=1

cij (3)

Placement Algorithm The placement decision for mi-
gration destination is hierarchical using cost tree. Each level
in the cost tree represents a decision about the placement.
While selecting destination for the VM, the cost tree is tra-
versed bottom-up candidates for the migration destination
using following recursive definition (CandidateSet for leaf
level is ∅) are tried at each level,

CandidateSeti(VMClusterj) = {c | where
c and VMClusterj has a common ancestor at level i in cost-tree}
− CandidateSeti+1(VMClusterj)

(4)
For example, in Figure 1, if we have a

VMCluster = {PM3, PM4, PM6, PM8}

Algorithm 2 The Consolidation Algorithm

1: for VMClusterj ∈ VMClusters do
2: VMtoMigrate according to Eq. 3
3: for i from leaf to root do
4: CandidateSeti(VMClusterj − VMtoMigrate)

according to eq. 4
5: for PM ∈ candidateSeti do
6: if UtilAfterMigration(PM,VMtoMigrate)
<overload threshold AND
PerfGain(PM,VMtoMigrate) > significance threshold
then

7: migrate VM to PM
8: continue to next VMCluster
9: end if

10: end for
11: end for
12: end for

then the CandidateSets will be
CandidateSet3(VMCluster) = {PM5, PM7}
CandidateSet2(VMCluster) = {PM1, PM3}
Here the members of the CandidateSet3 will be tried first

in the order of their cost. If c5 and c7 do not have sufficient
resources for the incoming VM, members of CandidateSet2
are tried next, and these will be continued towards root.

Before choosing migration destination, we consider re-
source utilization on candidate PM after migration. To de-
termine if the candidate PM has sufficient resources (com-
pute and memory) available by calculating utilization of PM
if the VM is migrated, function UtilAfterMigration is used.
The resource availability decision of PM is controlled by pa-
rameter overload threshold. If PM is estimated to have re-
quired resources, it is chosen as migration destination. Oth-
erwise other candidates in the CandidateSet are tried. If
VM cannot be allocated to any of the PM in CandidateSeti,
PMs in CandidateSeti−1 is tried. This continues recursively
towards root. Candidates within same CandidateSet are
considered in the order of their cost, the higher cost node is
tried first. The algorithm also estimates the benefit that will
be achieved by migrating VM to suggested PM before actual
migration, in terms of percentage improvement in commu-
nication cost after migration as follows,

PerfGain =

|V MCluster|∑
j=1

cij − c′ij
cij

(5)

Where cij is the original communication cost and c′ij is the
cost calculated after migration. c′ij calculation is done using
equation 1, but with the delay updated to reflect the migra-
tion. significance threshold ∈ [0, 1] controls the aggres-
siveness of the algorithm. If PerformanceImprovement is
above administrator defined significance threshold, then
the migration is carried out, otherwise no migration is per-
formed In both the cases, next VMCluster is tried to for
performance improvement.

5. EXPERIMENTAL EVALUATION
In this section we provide experimental results to illustrate

performance of our algorithm.We compared our approach to
traditional placement approaches like Vespa[15] and previ-
ous network-aware algorithm like Piao’s approach[13]. We

Property Uni1 Uni2 Prv1

Number of Short non-I/O-
intensive jobs

513 3637 3152

Number of Short I/O-intensive
jobs

223 1834 1798

Number of Medium non-I/O-
intensive jobs

135 628 173

Number of Medium I/O-
intensive jobs

186 864 231

Number of Long non-I/O-
intensive jobs

112 319 59

Number of Long I/O-intensive
jobs

160 418 358

Number of Servers 500 1093 1088
Number of Devices 22 36 96
Over Subscription 2:1 47:1 8:3
Traffic report delay 10 µs
Trace duration 12 hours over

multiple days

Table 1: Trace statistics

extended NetworkCloudSim[5] to support SDN functionali-
ties and used Floodlight [1] as our SDN controller. Counters
available in Floodlight were used to collect the required net-
work information and T is set to 3s. The server properties
were not dictated in the trace and we assumed them to have
typical data center server specification (HP ProLiant ML110
G5 (1 x [Xeon 3075 2660 MHz, 2 cores]), 4GB) connected
through 1G using HP ProCurve switches in three-tier. We
used traces from three real world data centers, two from
universities (uni1, uni2) and one from private data center
(prv1), to simulate the traffic to evaluate our approach [3].
The statistics of the traces used for simulation are shown in
Table 1.

Appendix A shows the summary of the results achieved
across all the three traces. We now discuss detailed results
and various properties of algorithms.

5.1 Performance Improvement
We have categorized the jobs into 6 different types based

on their I/O requirement and running time for finer eval-
uation of performance on various classes of jobs. We mea-
sured percentage improvement in runtime of jobs of various
classes of jobs. As shown in Figure 2, I/O intensive jobs
are benefited the most but short jobs also have significant
improvements. It is important to note that although short
jobs have generally low n/w requirements, number of such
jobs are typically much larger, making them important for
overall improvement of performance.

5.2 Traffic Localization
The goal of consolidation algorithm is to localize traffic for

better interconnect scaling and improving application per-
formance. The traffic localization can be measured by the
traffic reduction in the higher-level network switches and
increase in the lower-level network switches. The effect of
consolidation on the core and Top of Rack (ToR) switch traf-
fics in all the tree trace scenarios is depicted in the figure
3. In the figure, the traffic after consolidation is shown for
switches are compared for our approach and Piao’s approach
(Vespa isn’t n/w aware). As seen in graph, ∼ 60% increase

Figure 2: Performance Improvement for various
class of traffics

in ToR traffic and ∼ 70% reduction in core traffic confirms
effective localization using our approach, while Piao’s ap-
proach resulted in nearly ∼ 30% increase and ∼ 37% de-
crease correspondingly. This result also confirms that the
network aware placement can mitigate network scalability
issues.

Figure 3: Localization for core and ToR traffic

5.3 Complexity
Complexity of scheduling is an important measure in prac-

tical settings. We report decision making time, stability
(variance) and number of migration for all the three ap-
proaches on various measures in Table 2. Our algorithm
performed significantly better than both of the approaches.
Also the worst-case time and variance in scheduling are im-
portant factors for building practical systems and affect in-
terdependent components. Our approach took 558 ms to in
worst case and only 60 ms variance across traces that shows
the stability of our approach. Vespa on the other hand, took
973 ms in worst case, with 130 ms variance. Piao’s approach
is clearly showing the effect of not keeping time complexity
in mind and in worst case took more than 1.3 secs. The
advantage of complexity is thus confirmed.

Figure 4 compares number of migrations and variance as
it can affect application performance and overall stability.
Small variance in time shows the predictable behavior of
our algorithm compared to other two algorithms. The lack
of consideration for number of migration is clearly visible
in both other algorithms and our approach required much
lesser number of migrations. This also confirms that large
number of migrations is not required for significant perfor-
mance improvement, opposite to what is suggested by most
optimization based approaches.

Measure Trace Vespa Piao’s
approach

Our ap-
proach

Avg. scheduling
Time (ms)

Uni1 504.64 677.66 217.36
Uni2 784.24 1197.54 376.84
Prv1 718.33 1076.33 324.66

Worst-case
scheduling Time
(ms)

Uni1 846 1087 502
Uni2 973 1316 558
Prv1 894 1278 539

Variance in
scheduling Time

Uni1 179.64 146.76 70.68
Uni2 234.24 246.64 98.74
Prv1 214.33 216.66 89.99

Number of Mi-
grations

Uni1 154 213 56
Uni2 547 1145 441
Prv1 423 597 96

Table 2: Complexity – Time, Variance and Migra-
tions

Figure 4: Number of Migrations by different ap-
proaches

5.4 Dependence on Parameters
Figure 5 shows how the performance improvement de-

pends on the parameter significance threshold. As noted
earlier the parameter controls the aggressiveness of the algo-
rithm. As seen in the graph, the initial slow decrease in the
performance (10% decrease when significance threshold
varies from 0.05 to 0.40 in both university traces and 20%
in the private trace) indicates that the benefits of the algo-
rithm saturates around 0.60–0.70. Also much higher values
of significance threshold will force the algorithm to con-
sider most of the possible improvements as insignificant and
very little performance improvements can be realized.

Figure 5: Dependence of performance improvement
on significance threshold

The number of VMClusters to be considered by the algo-
rithm is controlled by opt threshold. Figure 6 shows how the

variation in number of clusters formed with various values
of opt threshold for all three traces. The step-wise decre-
ment in VMClusters shows that performance of our algo-
rithm is stable against small variations in the opt threshold,
but number of VMClusters decrease with increase the in
opt threshold. Number of VMClusters starts saturating
around value 0.6-0.7 and further increase in opt threshold
does not affect VMClusters due to the inherent traffic pat-
terns of the workload.

Figure 6: Dependence of number of VMClusters on
opt threshold

From both of the graphs, it is clear that the algorithm
is stable against small variation in the parameters, but al-
lows the operator making the tradeoffs between performance
improvements and the complexity of the placement.

6. CONCLUSION
In this paper, we proposed algorithms to identify virtual

clusters and consolidating them in order to improve appli-
cation performance and localize traffic. We analyzed per-
formance improvement, number of migrations and schedul-
ing time of our algorithm and existing approaches on real
world traces, with variety of jobs. Our scheduling decisions
achieved better performance and were an order of magnitude
faster and also required a fraction of migrations compared
to others, making it practical for large data centers. Also we
believe that the identified VMClusters using VMFormation
algorithm can be useful outside of the scheduling decision
too, for example in automatically replicating or migrating
an entire service, hosted on group of VMs and would like to
explore it further.

7. REFERENCES
[1] Floodlight openflow controller.

http://floodlight.openflowhub.org.

[2] A. Beloglazov and R. Buyya. Energy efficient
allocation of virtual machines in cloud data centers. In
Proceedings of the 2010 10th IEEE/ACM
International Conference on Cluster, Cloud and Grid
Computing, CCGRID ’10, pages 577–578, Washington,
DC, USA, 2010. IEEE Computer Society.

[3] T. Benson, A. Akella, and D. A. Maltz. Network
traffic characteristics of data centers in the wild. In
Proceedings of the 10th ACM SIGCOMM conference
on Internet measurement, IMC ’10, pages 267–280,
New York, NY, USA, 2010. ACM.

[4] W. Dally and B. Towles. Principles and practices of
interconnection networks. Morgan Kaufmann, 2003.

[5] S. K. Garg and R. Buyya. Networkcloudsim:
Modelling parallel applications in cloud simulations.
In Proceedings of the 2011 Fourth IEEE International
Conference on Utility and Cloud Computing, UCC ’11,
pages 105–113, Washington, DC, USA, 2011. IEEE
Computer Society.

[6] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula,
C. Kim, P. Lahiri, D. A. Maltz, P. Patel, and
S. Sengupta. Vl2: a scalable and flexible data center
network. SIGCOMM Comput. Commun. Rev.,
39(4):51–62, Aug. 2009.

[7] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi,
C. Tian, Y. Zhang, and S. Lu. Bcube: a high
performance, server-centric network architecture for
modular data centers. SIGCOMM Comput. Commun.
Rev., 39(4):63–74, Aug. 2009.

[8] D. Jayasinghe, C. Pu, T. Eilam, M. Steinder,
I. Whally, and E. Snible. Improving performance and
availability of services hosted on iaas clouds with
structural constraint-aware virtual machine
placement. In Services Computing (SCC), 2011 IEEE
International Conference on, pages 72–79. IEEE, 2011.

[9] D. Kusic, J. O. Kephart, J. E. Hanson,
N. Kandasamy, and G. Jiang. Power and performance
management of virtualized computing environments
via lookahead control. In Proceedings of the 2008
International Conference on Autonomic Computing,
ICAC ’08, pages 3–12, Washington, DC, USA, 2008.
IEEE Computer Society.

[10] X. Meng, V. Pappas, and L. Zhang. Improving the
Scalability of Data Center Networks with Traffic-aware
Virtual Machine Placement. In INFOCOM, 2010
Proceedings IEEE, pages 1–9. IEEE, Mar. 2010.

[11] R. N. Mysore, A. Pamboris, N. Farrington, N. Huang,
P. Miri, S. Radhakrishnan, V. Subramanya, and
A. Vahdat. PortLand: a scalable fault-tolerant layer 2
data center network fabric. In Proceedings of the ACM
SIGCOMM 2009 conference on Data communication,
SIGCOMM ’09, pages 39–50, New York, NY, USA,
2009. ACM.

[12] H. Nguyen Van, F. Dang Tran, and J.-M. Menaud.
Autonomic virtual resource management for service
hosting platforms. In Proceedings of the 2009 ICSE
Workshop on Software Engineering Challenges of
Cloud Computing, CLOUD ’09, pages 1–8,
Washington, DC, USA, 2009. IEEE Computer Society.

[13] J. Piao and J. Yan. A network-aware virtual machine
placement and migration approach in cloud
computing. In Grid and Cooperative Computing
(GCC), 2010 9th International Conference on, pages
87–92. IEEE, 2010.

[14] J. Sonnek, J. Greensky, R. Reutiman, and
A. Chandra. Starling: Minimizing communication
overhead in virtualized computing platforms using
decentralized affinity-aware migration. In Parallel
Processing (ICPP), 2010 39th International
Conference on, pages 228 –237, sept. 2010.

[15] C. Tang, M. Steinder, M. Spreitzer, and G. Pacifici. A
scalable application placement controller for enterprise
data centers. In Proceedings of the 16th international
conference on World Wide Web, WWW ’07, pages
331–340, New York, NY, USA, 2007. ACM.

[16] Q. Tang, S. Gupta, and G. Varsamopoulos.
Energy-efficient thermal-aware task scheduling for
homogeneous high-performance computing data
centers: A cyber-physical approach. Parallel and
Distributed Systems, IEEE Transactions on,
19(11):1458–1472, 2008.

[17] A. N. Tantawi. A scalable algorithm for placement of
virtual clusters in large data centers. 2012 IEEE 20th
International Symposium on Modeling, Analysis and
Simulation of Computer and Telecommunication
Systems, 0:3–10, 2012.

[18] G. Wang and T. S. E. Ng. The impact of
virtualization on network performance of amazon ec2
data center. In Proceedings of the 29th conference on
Information communications, INFOCOM’10, pages
1163–1171, Piscataway, NJ, USA, 2010. IEEE Press.

[19] J. Xu and J. A. B. Fortes. Multi-objective virtual
machine placement in virtualized data center
environments. In Proceedings of the 2010 IEEE/ACM
Int’l Conference on Green Computing and
Communications & Int’l Conference on Cyber,
Physical and Social Computing,
GREENCOM-CPSCOM ’10, pages 179–188,
Washington, DC, USA, 2010. IEEE Computer Society.

APPENDIX
A. SUMMARY OF RESULTS

Following table summaries the performance improvements achieved by all three algorithms.

Measure Job type Trace Vespa Piao’s approach Our approach

Percentage Improvement in Avg.
Completion Time

Short non-I/O-Intensive
Uni1 15 31 41
Uni2 26 36 51
Prv1 23 33 45

Short I/O-Intensive
Uni1 17 56 43
Uni2 23 50 59
Prv1 25 58 55

Medium-non-I/O-Intensive
Uni1 28 47 58
Uni2 31 52 62
Prv1 27 45 68

Medium-I/O-Intensive
Uni1 32 59 69
Uni2 37 69 76
Prv1 29 74 73

Long-non-I/O-Intensive
Uni1 28 65 68
Uni2 29 67 81
Prv1 31 77 79

Long-I/O-Intensive
Uni1 25 89 83
Uni2 26 81 86
Prv1 32 85 88

Variance in Completion Time Im-
provement

Short non-I/O-Intensive
Uni1 24 25 21
Uni2 31 37 25
Prv1 29 35 19

Short I/O-Intensive
Uni1 27 24 18
Uni2 36 25 24
Prv1 37 24 20

Medium-non-I/O-Intensive
Uni1 26 38 21
Uni2 34 39 26
Prv1 29 29 23

Medium-I/O-Intensive
Uni1 27 15 18
Uni2 29 27 25
Prv1 22 23 28

Long-non-I/O-Intensive
Uni1 26 20 21
Uni2 33 31 22
Prv1 19 26 24

Long-I/O-Intensive
Uni1 23 22 15
Uni2 31 24 19
Prv1 28 23 18

