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Abstract

Background: A huge amount of associations among different biological entities (e.g., disease, drug, and gene) are

scattered in millions of biomedical articles. Systematic analysis of such heterogeneous data can infer novel

associations among different biological entities in the context of personalized medicine and translational research.

Recently, network-based computational approaches have gained popularity in investigating such heterogeneous

data, proposing novel therapeutic targets and deciphering disease mechanisms. However, little effort has been

devoted to investigating associations among drugs, diseases, and genes in an integrative manner.

Results: We propose a novel network-based computational framework to identify statistically over-expressed

subnetwork patterns, called network motifs, in an integrated disease-drug-gene network extracted from Semantic

MEDLINE. The framework consists of two steps. The first step is to construct an association network by extracting

pair-wise associations between diseases, drugs and genes in Semantic MEDLINE using a domain pattern driven

strategy. A Resource Description Framework (RDF)-linked data approach is used to re-organize the data to increase

the flexibility of data integration, the interoperability within domain ontologies, and the efficiency of data storage.

Unique associations among drugs, diseases, and genes are extracted for downstream network-based analysis. The

second step is to apply a network-based approach to mine the local network structure of this heterogeneous

network. Significant network motifs are then identified as the backbone of the network. A simplified network based

on those significant motifs is then constructed to facilitate discovery. We implemented our computational

framework and identified five network motifs, each of which corresponds to specific biological meanings. Three

case studies demonstrate that novel associations are derived from the network topology analysis of reconstructed

networks of significant network motifs, further validated by expert knowledge and functional enrichment analyses.

Conclusions: We have developed a novel network-based computational approach to investigate the heterogeneous

drug-gene-disease network extracted from Semantic MEDLINE. We demonstrate the power of this approach by

prioritizing candidate disease genes, inferring potential disease relationships, and proposing novel drug targets,

within the context of the entire knowledge. The results indicate that such approach will facilitate the formulization

of novel research hypotheses, which is critical for translational medicine research and personalized medicine.

* Correspondence: yuzhang@som.umaryland.edu
1Division of Biostatistics and Bioinformatics, University of Maryland

Greenebaum Cancer Center and Department of Epidemiology and Public

Health, University of Maryland School of Medicine, Baltimore, MD, USA

Full list of author information is available at the end of the article

JOURNAL OF
BIOMEDICAL SEMANTICS

© 2014 Zhang et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited.

Zhang et al. Journal of Biomedical Semantics 2014, 5:33

http://www.jbiomedsem.com/content/5/1/33

mailto:yuzhang@som.umaryland.edu
http://creativecommons.org/licenses/by/2.0


Background
A large amount of associations among biomedical en-

tities are scattered in biomedical literature. Systematic

analysis of such heterogeneous data provides biomedical

scientists with unprecedented opportunities to infer novel

associations among different biological entities in the

context of personalized medicine and translational re-

search studies. MEDLINE (http://www.nlm.nih.gov/bsd/

pmresources.html), for instance, currently contains more

than 22 million citations of biomedical literature. Semantic

MEDLINE is a knowledge base consisting of associations

automatically extracted from MEDLINE by integrating

document retrieval, advanced natural language processing

(NLP), and automatic summarization and visualization

[1]. However, it is computationally challenging to perform

queries directly from Semantic MEDLINE where associa-

tions among different biomedical entities are very complex

yet sparse. It is also very difficult to investigate those asso-

ciations at a large scale. Advance informatics approaches

have the potential to fill gaps between knowledge needs of

translational researchers and existing knowledge discovery

services.

In Semantic MEDLINE, biomedical entities and associa-

tions are semantically annotated using concepts in the

Unified Medical Language System (UMLS) [2]. The se-

mantic information defined in the UMLS can be further

leveraged to extract associations among concepts in spe-

cific domains and identify domain patterns for specific

studies through advanced computational methods such as

network-based analysis.

In the last decade, network-based computational ap-

proaches have gained popularity and become a new

paradigm to investigate associations among drugs, dis-

eases, and genes. Applications of these approaches in-

clude disease gene prioritization [3-5], identification of

disease relationships [6,7] and drug repositioning [8,9].

However, majority of these approaches focus on rela-

tionships between only two kinds of entities (e.g., asso-

ciation between gene and disease). For instance, Hu and

Agarwar [10] created a human disease-drug network

based on genomic expression profiles collected from

the Gene Expression Omnibus (GEO) (http://www.ncbi.

nlm.nih.gov/geo/). In total, 170,027 interactions between

diseases and drugs were considered significant, including

645 disease-disease, 5,008 disease-drug, and 164,374 drug-

drug associations. These expression-based associations

among diseases and drugs could serve as a backend

knowledge base to facilitate discovery. Bauer-Mehren

et al. [11] developed a comprehensive disease-gene as-

sociation network by integrating associations from sev-

eral sources that cover different biomedical aspects of

diseases. The results indicate a highly shared genetic

origin of human diseases. Functional modules were also

detected in several Mendelian disorders as well as in

common diseases. To systematically analyze drug-disease-

gene relationships, Daminelli et al. [12] proposed a

network-based approach to predict novel drug-gene

and drug-disease associations by completing incom-

plete bi-cliques in the network. This approach holds

great potential for drug repositioning and discovery of

novel associations. However, the analysis was limited

to only certain associations among drugs, genes, and

diseases (e.g., drug-disease and drug-gene associations). A

network-based investigation of all pair-wise associations

among these entities is necessary to understand the com-

plexity of existing associations and to infer novel associa-

tions within the context of the whole knowledgebase.

Network-based computational approaches enable us

to analyze heterogeneous networks such as drug-disease-

gene networks by decomposing them into small sub-

networks, called network motifs (NMs) [13]. NMs are

statistically significant recurring structural patterns found

more often in real networks than would be expected in

random networks with the same network topologies. They

are the smallest basic functional and evolutionarily con-

served units in biological networks. Our hypothesis is that

NMs of a network are the significant sub-patterns that

represent the backbone of the network, which serves as

the focused portion out of thousands of nodes (e.g., drugs,

diseases, and genes,) [14,15]. These NMs could also form

large aggregated modules that perform specific functions

by forming associations in overlapping NMs.

In this paper, we propose a network-based compu-

tational framework to analyze the complex network

formed by a large amount of associations. We focus on

a heterogeneous drug-disease-gene network derived

from Semantic MEDLINE and investigated underlying

associations using network-based systems biology ap-

proaches. Three case studies demonstrate that our ap-

proach has potential to facilitate formulization of novel

research hypotheses, which is critical for translational

medicine research. In the following, we first present

Materials and methods. We then describe the results

and case studies in detail.

Materials and methods
To comprehensively investigate the integrated drug-

disease-gene network formed by associations available in

Semantic MEDLINE, we propose the following two-step

computational framework: (1) extraction and optimization

of drug-disease-gene network in Semantic MEDLINE; (2)

network topology analysis of this heterogeneous network

at two levels: statistics and degree distribution of high-

confidence association networks, and distinct pattern de-

tection at NM level. In this section, we first describe the

steps to extract association network data from MEDLINE

database, followed by a description of the proposed

network-based approach to investigate this heterogeneous
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drug-disease-gene association network. Figure 1 illustrates

the steps of the proposed approach.

Data sources and preprocessing

Extraction of association data from Semantic MEDLINE

Semantic MEDLINE currently contains more than 56

million associations extracted from MEDLINE citations

and consists of eight tables, including concepts, concept

semantic types, concept translations, predication, predi-

cation arguments, and sentences. Data from different

tables need to be joined in order to obtain information

for a particular association between two entities. The

database contains an all-embracing joined table that pro-

vides information about associations (source concept,

predicate, and object concept), and their source PubMed

IDs (PMIDs).

We optimize and reorganize the relevant data in

Semantic MEDLINE into the Resource Description

Framework (RDF) format. Based on the UMLS semantic

types and groups [16], we extract unique associations

among drugs, diseases, and genes, and represent them in

six views in relational database tables. We then use the

Web RDF transformation tool D2R server to convert

the six views into RDF triples through a D2RQ mapping

file (http://d2rq.org/d2r-server). This mapping file spe-

cifies the mappings between those six relational data-

base table schemas and the output RDF graphs [17]. A

detailed description of this approach is described in our

previous work [18]. These six tables are used as prelim-

inary association data resources including all unique

associations from Semantic MEDLINE.

Data preprocessing using FDA-approved drugs in DrugBank

Since the extraction accuracy of associations in Semantic

MEDLINE is about 77% (precision is 76% to 96%, and

recall is 55-70%) [19], a filtering strategy is applied to

extract high-confidence association data using the FDA-

approved drug list from DrugBank, a database contain-

ing drug information and the corresponding drug target

and treatment indication information [20]. As of July 31

2012, the database contains 1,578 FDA-approved drug

entries, including 131 FDA-approved biotech drugs, and

1,447 FDA-approved small molecule drugs. We extract as-

sociations involving these FDA-approved drugs from each

drug-related association table. After manually removing

generic and nonsensical terms in the association tables

(e.g., gene, homologous gene, and protein), we limit the

drug-drug, drug-gene, and drug-disease associations to
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Figure 1 Overview of the network-based computational framework for an integrated drug-disease-gene network.
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those involved in the 1,578 FDA-approved drugs. Based

on the filtered drug-gene and drug-disease associations,

we generate related gene and disease lists and then ob-

tained gene-gene, disease-disease, and gene-disease associa-

tions using these genes and diseases. This filtering strategy

enables us to focus on associations related to FDA-

approved drugs only in this study. These associations are

then analyzed by the proposed network-based approach.

Network motif analysis

Network motifs are topologically distinct subnetwork

patterns that are present more frequently in true net-

works than in random networks [21]. They are usually

well conserved and possess specific processing tasks in

same types of networks. For example, in gene regulatory

networks, the same set of network motifs have been

repeatly identified in diverse organisms from bacteria to

human [22]. The hypothesis is that network motifs were

independently selected by evolutionary processes in a

converging manner and have characteristic dynamical

functions [23]. This suggests that network motifs serve

as building blocks of in gene regulatory networks that

are beneficial to the organism.

In this study, we extend network motif analysis to the

disease-drug-gene network. Six different types of associ-

ations among drugs, diseases, and genes are integrated

into a heterogeneous disease-drug-gene network. In this

network, nodes represent biomedical entities stored in

the RDF triples (i.e., diseases, drugs, or genes in “subject”

and “object”), and edges represent associations between

two biomedical entities (i.e., relationships in “predicate”).

For simplicity, we consider all associations as undirec-

tional association relationships in this study, discarding

the directionality and types in the original RDF graph. In

other words, as long as there is an association between

two nodes, we consider there is an edge between these

two nodes. We hypothesize that even within such sim-

plified disease-drug-gene association network, network

motifs in the network can (1) represent basic inter-

relationships among diseases, drugs, and genes; (2) re-

flect a framework in which particular functions are

achieved efficiently. Specifically, we focus on three-node

network motifs in this disease-drug-gene network since

they are the building blocks for larger size network motifs

(number of nodes > 3) [24]. All connected subnetworks

containing three nodes in the association network are col-

lated into isomorphic patterns [25], and the frequency of

the patterns are counted. We also generated 1000 random

networks from the original network by switching edges

between vertices and preserving the number of edges be-

tween types of nodes (i.e., disease, drug and gene). By the

default of FANOMD algorithm, if the number of occur-

rences for each pattern is at least five in the real network,

which is significantly higher than randomized networks,

the pattern is considered to be a network motif. Statistical

significance test is performed by computing the fraction of

randomized networks in which the pattern appears at least

as often as in the interaction network [24]. The z score is

calculated using the following equation:

Z ¼
N real− N randh i

σrand

ð1Þ

where Nreal is the number of times one three-node sub-

network is detected in the real network, Nrand is the

mean number of times this subnetwork is detected in

1000 randomized networks, and σrand is the standard devi-

ation of the number of times this subnetwork is detected

in randomized networks. The p value of a motif is the num-

ber of random networks in which it occurs more often than

in the original networks, divided by the total number of

random networks. A pattern with p ≤ 0.05 is considered

statistically significant. This network motif discovery pro-

cedure is performed using the FANMOD tool [26].

Construction of the core drug-disease-gene network

It has been shown that in gene regulatory networks, for

each network motif, the majority of matches overlap and

aggregate into homologous motif clusters [27]. Many of

these motif clusters largely overlap with modules of

known biological processes [28]. The clusters of overlap-

ping matches of these motifs aggregate into a superstruc-

ture that presents the backbone of the network and is

assumed to play a central role in defining the global topo-

logical organization. Accordingly, we aggregate matches of

significant network motifs into a core drug-disease-gene

network. In this core network, we investigate the distribu-

tion of the connectivity degree of different types of nodes.

Nodes with significantly larger number of links in the

network are called hub nodes, which is critical in the

information flow exchange throughout the entire network.

Results
An integrated drug-disease-gene network reconstructed

from Semantic MEDLINE

We constructed a drug-disease-gene network with the

following two steps:

First, we extracted unique association data from

Semantic MEDLINE. Using a use-case driven database

optimization approach developed in our previous work

[18], we extracted six different types of associations

from Semantic MEDLINE database. Table 1 shows basic

statistics of these six groups of associations. As illustrated

in Table 1, the number of unique associations (the Unique

Association column) for each type of associations is

significantly less than the number of total associations

(the Record column). Since the prediction accuracy of

Semantic MEDLINE is approximately 77% [29], we used a
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filtering strategy to focus on associations involving FDA-

approved drugs for downstream network-based analysis.

Second, we constructed association related data involving

FDA-approved drugs. We applied the filtering strategy

discribed in the Materials and methods section to extract

association data involving FDA-approved drugs from the

unique association data set. As shown in the “Associations

Involving FDA-approved Drugs” column in Table 1, the

association number of each table was further reduced.

We used this focused association data to construct an

integrated disease-drug-gene network for downstream

network-based analysis.

Network topology analysis of the core drug-disease-gene

network

The network motif analysis was performed on the inte-

grated disease-drug-gene network obtained in Section

An integrated drug-disease-gene network reconstructed

from Semantic MEDLINE. Since the network contains

thousands of associations among 865 drugs, 2791 genes,

and 3578 diseases (Table 1), it is too complex for a direct

visualization. We overcame this problem by identifying

enriched network motifs and interpreting them through

an enhanced visualization. Out of this heterogeneous

network consisting of 84,317 associations among 7,234 en-

tities (including drugs, diseases, and genes), five significant

network motifs were identified. Figure 2 presents de-

tailed statistics on these network motifs. The matches of

these network motifs were extracted and number of

matches for each network motif was counted (“Num-

ber of Matches” column in Figure 2).

Based on the network motifs identified in the analysis,

we constructed a core disease-drug-gene network aggre-

gated from significant network motif instances. We then

Table 1 Statistics of the six extracted association types

Association type Record in Semantic MEDLINE Unique associations Associations involving
FDA-approved drugs

Unique entity number

Disease-Disease 2,516,049 843,221 1684 2,248

Disease-Gene 206,155 111,117 21,444 5,954

Disease-Drug 3,021,256 1,277,879 54,996 3,414

Drug-Gene 398,572 248,491 3758 1,451

Drug-Drug 4,780,394 1,900,576 266 382

Gene-Gene 108,035 49,593 2169 2,792

Total 11,030,461 4,430,877 84,317 7,2431

1This is the unique number of entities by summarizing all the associations.

Figure 2 Degree distribution of three biomedical entities: drug, gene, and disease.
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investigated the degree distribution of different types of

entities in the integrated network. Figure 3 represents

the degree distribution of disease, drug, and gene nodes

in the core drug-disease-gene network. All three distri-

butions follow the power-law distribution, indicating

that networks related to different types of nodes are

scale-free. The majority of the nodes in the network

have only a few (less than 10) links but few other

nodes have a large number of links. Such distributions

have been observed in many studies of biological

networks [30]. Our analysis demonstrates for the first

time that in an integrated network consisting of het-

erogeneous associations, the scale-free network struc-

ture still holds. The hub nodes (i..e, the nodes have a large

number of links) can provide scientists future research

directions.

Local network structure: from network to network motif

The five significant network motif patterns in Figure 2

have strong biological meanings and could suggest

(A)

(B) (C)
Figure 3 Subnetworks extracted from NM 1. (A) Overview of the subnetwork, consisting of 126 diseases and 79 genes. (B) Subnetwork

associated with “Malignant neoplasm of prostate” and “tumor growth”. (C) Subnetwork associated with “communicable diseases”, “West Nile viral

infection” and “multicentric Castleman's disease”.
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scientists future directions in their research field. We

provided three case studies in the following sections to

illustrate results based on three significant network

motifs.

Case study 1 - prioritization of disease genes

We first investigated whether the network motif analysis

could help prioritize disease genes based on the associa-

tions between diseases and their surrounding genes. One

example is Network Motif 1 (NM 1) in Figure 2, in

which two diseases that are associated with each other

are also associated with one common disease gene. This

indicates that diseases identified to be associated in lite-

rature are more likely to share same associated disease

genes. To further investigate the relationships highlighted

by NM 1, We extracted all associations relationships

among 126 diseases and 79 genes in NM 1. In total, there

are 71 disease-disease, 853 disease-gene, and 3 gene-gene

associations (Figure 4(A)) in this subnetwork, suggesting

that diseases that are associated with each other are more

likely to associate with a group of common disease genes.

For instance in Figure 4(B), “Malignant neoplasm of pros-

tate” shares all 35 associated genes with “tumor growth”.

Similar findings have also been discovered in other studies

demonstrating same functional modules/pathways being

affected in similar diseases [6,31,32]. There are 10 genes

only associated to “tumor growth” in literature. Such in-

formation will help scientists generate testable hypotheses

of possible roles of these genes in prostate cancer research.

Another example is shown in Figure 4(C), where “commu-

nicable diseases” was identified to have common associ-

ated genes with both “West Nile viral infection” and

“multicentric Castleman’s disease”. Thirteen genes associ-

ated only with “communicable diseases” can be considered

as candidate disease genes for the other two diseases and

help scientists design future exploratory experiments. The

detailed network information is presented in Additional

file 1: File S1.

Case study 2 - inference of disease relationships

Very interestingly, we also identified another similar

disease-gene network motif in our analysis (NM 4). The

only difference between NM 1 and NM 4 is that NM 4

doesn’t have the associations between two diseases

themselves. We extracted all associations among 2,664

diseases and 1,122 genes in NM 4. In total, there are 860

disease-disease, 17,242 disease-gene, and 310 gene-gene

associations in this subnetwork (Figure 5(A)). Based on

the “guilt by association” rule – diseases similar to each

other are more likely to be affected by the same genes/

pathways, two diseases involved in the same NM 4 are

more likely to be similar/associated than other diseases

[6]. For instance in Figure 5(B), “Kidney Failure” and

“skin disorder” are associated with a group of five

common associated genes. A wide variety of different

skin disorders have been observed in patients with kid-

ney diseases [33]. One example is the “psoriasis” disease.

During the treatment of psoriasis with fumaric acid

derivatives, patients could develop acute kidney failure

[34]. In the subnetwork that consists of first neighbors

of these two diseases, psoriasis is also included and has

common associated genes with both “kidney failure” and

“skin disorder”. Some genes in the network are associ-

ated with one of these diseases only but not both. To

investigate enriched biological functions/processes, we

performed functional enrichment analysis on neighbor

genes of three diseases with Ingenuity Pathway Analysis

(IPA) Suite (http://www.ingenuity.com/). These genes are

enriched in kidney-related disease categories (Table 2).

Although a major portion of neighbor genes are related

to “skin disorder” or “psoriasis” only, they have been an-

notated with kidney related dysfunctions in the IPA

database. Given the fact that associations among thou-

sands of diseases are complex yet incomplete, the in-

ferred association relationships based on our network

motif-based analysis can mine the significant network

topology properties of association networks and guide

scientists to investigate significant association relation-

ships in future experiments. The detailed network infor-

mation is presented in Additional file 2: File S2.

Case study 3 – Drug repositioning

Network Motif 2 (NM 2) suggests another association

pattern between diseases and drugs, in which two dis-

eases associated with each other are targets for the same

drug. It has been shown by Suthram et al. [7] that diseases

with significant correlations based on mRNA gene expres-

sion data also share common drugs. This NM supports

the hypothesis that similar diseases can be treated by same

drugs, allowing us to make hypotheses for drugs reposi-

tioning purpose. We extracted all associations among 468

disease and 162 drugs in NM 2. In total, there are 279

disease-disease, 8,730 disease-drug, and 14 drug-drug

associations in this subnetwork (Figure 6(A)). We further

investigated whether any drugs or diseases were “hub”

nodes in this subnetwork. In Figure 6(B), “Alzheimer’s

Disease” and “nervous systems disorder” are hub diseases

surrounded by 51 FDA-approved drugs. Both diseases are

associated with 20 common drugs, while “nervous systems

disorder” has associations with additional 31 drugs. These

drugs can be considered repositioned for treatment of

“Alzheimer’s Disease” since it is a central nervous system

disorder characterized by the presence of neurofibrillary

tangles, neuritic plaques and dystrophic neurites in the

brain [35]. In Figure 6(C), we observed two “hub” drugs

surrounding by 129 diseases, 16 of which have associa-

tions with both drugs. Dobutamine is a sympathomimetic

drug used in the treatment of heart failure and cardiogenic
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(A)

(B)
Figure 4 Subnetworks extracted from NM 4. (A) Overview of the subnetwork, consisting of 2,664 diseases and 1,122 genes. (B) Subnetwork

associated with “Kidney Failure” and “skin disorder”.
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shock. Doxorubicin is a drug used in cancer chemother-

apy. Chemotherapy side effects may increase the risk of

heart disease in cancer patients [36]. This series of under-

lying connections can provide clinicians potential side

effects related to certain drug treatment. This could take

years to study in the clinic to identify such side effects.

The results derived from our approach can serve as

in silico exploratory analysis to guide such studies. The

detialed network information is presented in Additional

file 3: File S3.

Three-gene network motif (NM 3) was also identi-

fied in this heterogeneous network. This NM is a very

common motif pattern in the protein-protein inter-

action network or gene regulatory network [37,38], in-

dicating that NM detection analysis of heterogeneous

networks can identify significant NMs even enriched

(A)

(B) (C)
Figure 5 Subnetworks extracted from NM 2. (A) Overview of the subnetwork, consisting of 468 disease and 162 drugs. (B) Subnetwork

associated with “Alzheimer’s Disease” and “nervous systems disorder”. (C) Subnetwork associated with “Dobutamine” and “Doxorubicin”.
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in a single type of associations in a heterogeneous

association network.

Comparisons of network motifs from different networks

Since all five network motifs identified involve only two

out of three node types, we further investigated whether

the networks involving only two node types can generate

the same NMs. To accomplish that, we performed NM

analysis on disease-gene, disease-drug and gene networks

respectively. Not all NMs detected in the complete net-

work can be detected in disease-gene, disease-drug and

gene networks respectively (Additional file 4: File S4). The

results indicate that although the NMs don’t contain all

three different node types due to small NM size, the

additional associations still introduce additional informa-

tion in the NM detection analysis.

Discussion
Literature mining approaches have been successful to

extract associations among biological entities in the last

decade. However, such information is usually large, com-

plex and multidimentional, making it impossible for bio-

medical researchers to directly investigate such data. To

leverage the gap between knowledge needs of translational

researchers and existing knowledge discovery services, we

have proposed a network-based informatics approach to

investigate the underlying relationships among different

biological entities based on associations automatically

Table 2 Enriched disease and disorder categories in IPA analysis

Category p-value Molecules

Renal Inflammation 6.62E-09 VEGFA,COL4A5,CD40LG,APCS,IL1RN,CLU,MYH9,COL4A4,VDR,ACTN4,NFKB1,TNF,FAS

Renal Nephritis 6.62E-09 VEGFA,COL4A5,CD40LG,APCS,IL1RN,CLU,MYH9,COL4A4,VDR,ACTN4,NFKB1,TNF,FAS

Congenital Heart Anomaly 3.41E-06 VEGFA,HSPG2,TRIM21,EDNRA,ECE1

Liver Cirrhosis 4.13E-06 ADAM17,CD40LG,C5AR1,EDNRB,BSG,PTAFR,TNF,CCR7

Glomerular Injury 5.22E-06 VEGFA,CLU,MYH9,ACTN4

Cardiac Infarction 6.38E-06 PON1,BCL2L1,CD40LG,IL1RN,HSPA1A/HSPA1B,CLU,TNNI3,TNF,LRP1

Renal Atrophy 7.66E-06 CD40LG,EDNRB,FGF23,EDNRA,VDR,AQP2

Liver Damage 9.94E-06 BCL2L1,NLRP3,BSG,IL1RN,NFKB1,TNF,FAS

Liver Proliferation 1.75E-05 VEGFA,SOCS3,EDNRB,IL1RN,EDNRA,NFKB1,TNF,FAS

Pulmonary Hypertension 3.13E-05 EDNRB,IL1RN,KIT,EDNRA

Liver Hepatitis 4.73E-05 BCL2L1,IL23A,TNF,CCR7,FAS

Liver Necrosis/Cell Death 6.57E-05 SOCS3,BCL2L1,CD40LG,IL1RN,HSPD1,NFKB1,TNF,FAS

Cardiac Inflammation 6.64E-05 IL33,CLU,TNNI3,IL23A,NFKB1,TNF

Heart Failure 6.76E-05 BCL2L1,CA2,TNNI3,VDR,NFKB1,TNF,AQP2,PRKCA

Hepatocellular Carcinoma 6.87E-05 VEGFA,CA2,BCL2L1,SOCS3,ADAM17,BSG,KEAP1,CLU,IGFBP3,S100A4,KIT,MKI67,TNF

Liver Hyperplasia/Hyperproliferation 6.87E-05 VEGFA,CA2,BCL2L1,SOCS3,ADAM17,BSG,KEAP1,CLU,IGFBP3,S100A4,KIT,MKI67,TNF

Renal Dysfunction 2.46E-04 BSG,FGF23,TNF

Cardiac Necrosis/Cell Death 3.17E-04 VEGFA,SOCS3,BCL2L1,S100B,HSPD1,TNF,LRP1,NAD+

Cardiac Hypertrophy 5.67E-04 IL33,ADAM17,S100A6,HSPA1A/HSPA1B,FGF23,EDNRA,DMD,VDR,NFKB1,TNF,PRKCA

Renal Necrosis/Cell Death 5.83E-04 BCL2L1,HSPA1A/HSPA1B,IGFBP3,CLU,PAX2,NFKB1,TNF,FAS,PRKCA

Liver Inflammation 8.62E-04 IL1RN,FOXP3,NFKB1,TNF,FAS

Kidney Failure 1.37E-03 VEGFA,SLC9A3,PKD2,MYH9,VDR,TNF,AQP2

Cardiac Proliferation 1.66E-03 ADAM17,KIT,TNF,PRKCA

Renal Dilation 1.67E-03 EDNRB,EDNRA,AQP2

Nephrosis 2.35E-03 CLU,ACTN4

Liver Fibrosis 2.48E-03 VEGFA,SOCS3,EDNRB,PKD2,EDNRA,NFKB1,TNF,CCR7

Renal Proliferation 2.48E-03 SOCS3,HSPG2,TJP1,HSPD1,TNF,CCR7

Increased Levels of AST 3.13E-03 TNF,FAS

Cardiac Fibrosis 4.69E-03 TNNI3,DMD,VDR,NFKB1,TNF,DIO3

Increased Levels of Albumin 5.63E-03 VEGFA

Liver Regeneration 5.85E-03 SOCS3,IL1RN,TNF
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extracted from literature. The proposed approach has

advantages in several aspects.

Our approach is one of the first attempts to investigate

the disease-drug-gene associations in an integrative man-

ner. To demonstrate the superiority of NM analysis on the

heterogeneous network, we performed NM analysis on

disease-gene, disease-drug and gene networks respectively

and compared results with the ones derived from the

complete disease-drug-gene network. Not all network mo-

tifs detected in the complete network can be detected in

disease-gene, disease-drug and gene networks respectively.

The results indicates that although NMs doesn’t contain all

three different node types due to their small size in this

study, the additional associations still introduce additional

information in the analysis. In addition, NM analysis of

such heterogeneous networks can extract and highlight the

hotspots in the network, leading experts in different fields

to generate testable hypotheses in their future research.

We are aware that there are many other network ana-

lysis approaches for both social networks and biological

networks. These approaches are designed for different

purposes. For instance, biological networks can be inter-

rogated by their overall properties (e.g., average cluster-

ing coefficient and overall distributions of node degrees),

significant NMs, or clustered subnetworks/modules. In

this work, we focus on identifying statistically significant

three-node NM patterns that can help infer novel disease-

drug-gene relationships. The NM analysis can decompose

the whole heterogeneous network into smallest network

patterns that recurrently discovered in the network, con-

sidered as the backbone associations of diseases, drugs,

and genes. For instance, in NM 1 instances in Figure 2,

most of these NMs contain the first two same diseases,

while the third gene is different. By extracting all the asso-

ciations involving these two diseases from the original as-

sociation network, we found that while these two diseases

share a significant number of associated genes, they also

have some unique associations with other genes respect-

ively. Based on the assumption that similar diseases are

more likely to associate with same group (s) of genes or

involve same biological processes, the genes associated

only with one disease can be prioritized as candidate

ID Network Motif

Frequency

[Original] 

Mean-Freq

[Random] 

Standard-

Dev[Random] 

Z-Score p-Value 

Number of 

Matches

Number of 

Entities

1 0.0096% 0.0035% 9.2982e-006 6.5 < 0.001 131

126 diseases 

and 79 genes

2 0.038% 0.025% 2.3404e-005 5.4 <0.001 522

468 disease and 

162 drugs

3 0.0075% 0.0055% 7.5124e-006 2.7 0.008 103

286 genes

4 5.9% 5.1% 0.004215 2.2 0.026 81105

2664 diseases 

and 1122 genes

5 0.032% 0.024% 4.1072e-005 2.0 0.032 437

432 disease and 

148 drugs

Figure 6 Statistics of significant network motifs. Node color: black – drug, green – disease, red – gene. Edge color denotes the associations

between different biomedical entities: black – association between disease and disease, yellow - association between disease and gene, green -

association between disease and drug, red - association between gene and gene.
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disease genes of the second disease. Such inference could

only be possible through NM level analysis by considering

significant network patterns (i.e., NMs) as well as their

neighborhood in the whole network. In addition, since

these NMs are statistically significant subnetworks, they

represent the “real” signal from the network which usually

contains considerable amount of false positive associa-

tions, especially those from literature mining techniques.

Due to the limitation of computational resource, we didn’t

include the NMs with more than three nodes. We plan to

extend our work to NMs with more nodes (i.e., >3) when

the computational resource become available. We believe

that the proposed network-based approach can comple-

ment other existing network analysis methods and provide

researchers a unique way to look at these huge heteroge-

neous networks.

From our preliminary study [18], we found that Semantic

MEDLINE lacks of gene-gene associations since such

information usually are illustrated in the main text of

literature. Semantic MEDLINE contains gene-gene inter-

action data from PubMed literature abstracts (Figure 2).

We included all the associations in Figure 2 in our analysis.

However, the number of gene-gene association in Semantic

MEDLINE (2,169 high-confidence pairs) is relevantly small

comparing to other public databases (e.g., HPRD [4]). For

instance, we compared the gene-gene associations in

Semantic MEDLINE with those in HPRD, a manually

curated gene-gene association database in human [4].

The overlap between these two databases is very small

(about 10% associations of Semantic MEDLINE can be

found in HPRD). HPRD contains many more associa-

tions than Semantic MEDLINE (41,327 versus 2,169).

Therefore, we believe that combining Semantic MED-

LINE with other public resources (such as HPRD [39]

and STRING [40]) will increase the coverage of asso-

ciations and build a more comprehensive association

database. Using linked data approach, it will be relatively

easier to link our data graph with such databases.

Conclusions and future work
In this paper, we proposed a network-based computa-

tional framework to investigate integrated heterogeneous

network extracted from MEDLINE literature, including

associations among three major entity categories: drug,

gene, and disease. Five significant NMs were identified

and considered as the backbone of the entire network.

The potential biological meanings of each network motif

were further investigated. The results demonstrated that

the proposed approach holds the potential to 1) prioritize

candidate disease genes, 2) identify potential disease rela-

tionships, and 3) propose novel drug targets, within the

context of the entire knowledge. We believe that such

analyses can facilitate the process of inferring novel rela-

tionships between drugs, genes, and diseases. One future

direction is to develop module-based approaches to

understand associations between different biomedical

entities. Modules are condensed subnetworks in a net-

work. Modules identified in heterogeneous networks

are a group of related diseases, drugs and genes, which

gives researchers a focused network view of the associ-

ation relationships among these entities. Topology ana-

lysis of heterogeneous networks using graphic theory

can also be applied in future studies, which can lead to

the identification of diseases/drugs/genes in the context

of association networks. Pathway level information

could also be integrated in future analyses to extend

current association network.
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