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Abstract: Genome-wide association studies (GWAS) can be used to infer genome intervals that
are involved in genetic diseases. However, investigating a large number of putative mutations for
GWAS is resource- and time-intensive. Network-based computational approaches are being used for
efficient disease-gene association prediction. Network-based methods are based on the underlying
assumption that the genes causing the same diseases are located close to each other in a molecular
network, such as a protein-protein interaction (PPI) network. In this survey, we provide an overview
of network-based disease-gene association prediction methods based on three categories: graph-
theoretic algorithms, machine learning algorithms, and an integration of these two. We experimented
with six selected methods to compare their prediction performance using a heterogeneous network
constructed by combining a genome-wide weighted PPI network, an ontology-based disease network,
and disease-gene associations. The experiment was conducted in two different settings according to
the presence and absence of known disease-associated genes. The results revealed that HerGePred,
an integrative method, outperformed in the presence of known disease-associated genes, whereas
PRINCE, which adopted a network propagation algorithm, was the most competitive in the absence
of known disease-associated genes. Overall, the results demonstrated that the integrative methods
performed better than the methods using graph-theory only, and the methods using a heterogeneous
network performed better than those using a homogeneous PPI network only.

Keywords: disease-gene associations; disease gene prioritization; protein-protein interaction net-
works; disease networks; heterogeneous networks

1. Introduction

Identification of genes causing diseases is a primary goal in human health research
for accurate disease diagnosis, treatment, and prevention [1,2]. In the process of cloning
and dividing genes, structural changes can occur in a gene that can transform biological
processes and cause diseases. Existing methods of genome-wide association studies (GWAS)
infer genome intervals that are involved in genetic diseases [3–5]. However, because GWAS
are used to investigate millions of putative genetic mutations, collecting candidate genes is a
time-consuming and expensive task. To resolve such issues of GWAS, recent computational
approaches have focused on the systematic analysis of molecular networks to predict
associations between diseases and genes. These network-based methods have become an
effective strategy to complement GWAS.

Numerous network-based approaches have recently been proposed for disease-gene
association prediction. In this article, we provide a broad overview of the network-based
methods. The underlying assumption of these methods is that phenotypically similar
diseases are caused by functionally related genes which are located close to each other
in molecular networks, such as protein-protein interaction (PPI) networks, co-expression
networks, and gene regulatory networks [6–10]. Among these molecular networks, PPI
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networks are the most frequently used because proteins that interact with each other
perform common biological functions. Moreover, proteins with similar functional roles
have common topological features in the PPI network, such as the degree and centrality
of nodes, and the pathways elucidating disease mechanisms are typically represented as
strongly connected paths in the PPI network.

However, it is widely known that experimentally determined PPI datasets include
numerous false positives. In addition, the PPI datasets that are obtained in a genomic scale
can be biased toward highly studied proteins. Therefore, the genome-wide PPIs from many
open-source databases have been curated using domain knowledge such as gene expression
and gene ontology (GO). For our experiments in this article, we use a genome-wide PPI
network that is weighted by GO and its annotation data [11]. GO provides a standardized
structure for biological terms by linking them based on the relationships between their
meanings. GO also provides annotations of genes and gene products for these terms.
The functional relationships among interacting proteins can thus be evaluated using GO
structures and annotation data to curate PPI data, as mentioned previously herein.

We can divide network-based approaches for disease-gene association prediction into
three groups as follows: methods using graph-theoretic algorithms, such as random walks,
network propagation, and path search; those using machine learning algorithms, such
as deep learning; and those integrating graph theory and machine learning techniques.
Because previous methods in these three categories have been evaluated using different
data sources and different experimental conditions, it has been difficult to rationally com-
pare their prediction performance. In this survey, we define the disease-gene association
prediction task and provide an overview of the state-of-the-art network-based approaches.
In addition, we experimented with several selected methods to compare their prediction
performance using a uniform dataset that includes a PPI network, a disease network and
known disease-gene associations. This experiment was conducted in two different settings
according to the presence and absence of known disease-associated genes.

Disease-Gene Association Prediction

Predicting disease-gene associations, also called disease gene prioritization, is a task
to identify all genes that are involved in a disease. Network-based computational methods
predict associations by measuring the likelihood of genes being linked to a disease in a
network. The networks used in these methods can be categorized into homogeneous,
heterogeneous, and multiplex networks according to the types of nodes and edges [12].

First, a homogeneous network consists of a single type of node and edge. This can
be denoted as G = (V, E), where V is a set of nodes and E is a set of edges. As a typical
example, a PPI network is constructed with proteins as nodes and PPIs as edges. Second, a
heterogeneous network is created by integrating two or more homogeneous networks and
linking them together. For example, in a disease-gene heterogeneous network G = (V, E),
V consists of two different sets of nodes of V = {Vdiseases ∪Vgenes}, and E consists of three
different sets of edges, such as disease similarities, PPIs, and disease-gene associations,
represented as E = {Ediseases ∪ Egenes ∪ Eassociations}. Finally, a multiplex network consists
of a single type of node and several types of edges. For example, a multiplex network of
proteins G = (V, E) can be constructed using V as a set of proteins and E consisting of
PPIs, pathways, and co-expressions.

Disease-gene association prediction methods can return a list of candidate genes for
each disease. Methods using a disease-gene heterogeneous network as input measure the
likelihood of genes being linked to the query disease and list the candidates. However,
methods using a PPI homogeneous network as input measure the similarity between
genes and each known gene associated to the query disease, called a seed gene, to select
candidates. Therefore, in this case, at least one disease-associated gene should be known.
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2. Survey of Network-Based Disease-Gene Association Prediction Methods

Existing network-based methods for disease-gene association prediction are listed in
Table 1. This table includes data sources that are used for each method, the network type
that each method can accept, and key techniques that are applied to each method. The meth-
ods used disease data from OMIM [13] or HPO [14]; PPI data from HPRD [15], BIND [16],
BioGrid [17], IntAct [18], STRING [19], ConsensusPathDB [20] or Interactome [21]; disease-
gene association information from OMIM, HPO, DisGeNet [22], or CTD [23]; gene-gene
similarity information from GO [11] or co-expression databases; and disease-disease simi-
larity information from HPO or MimMiner [24]. We survey the network-based methods in
three categories in this section.

Table 1. List of network-based methods for disease-gene association prediction including data
sources, input network type, and key techniques.

Method Data Source Network Format Technique

RWR [25] OMIM, HPRD, BIND, BioGrid,
IntAct, STRING homogeneous network random walk

RWRH [26] OMIM, HPRD, MimMiner heterogeneous network random walk

PRINCE [27] OMIM, HPRD, GO heterogeneous network network propagation

DADA [28] OMIM, HPRD, BIND, BioGrid,
MimMiner homogeneous network random walk

RWR-MH [29] OMIM, HPO, Interactome heterogeneous, multiplex network random walk

PhenoRank [30] OMIM, HPRD, BioGrid, IntAct,
HPO heterogeneous network network propagation

NetCore [31] DisGeNet, ConsensusPathDB homogeneous network random walk

PRYNT [32] CTD, STRING homogeneous network path search, random walk

CIPHER [33] OMIM, HPRD, BIND, MimMiner heterogeneous network linear regression

CrossRank [34] OMIM, PubMed tissue-specific heterogeneous
network network propagation

pBRIT [35] HPO, ConsensusPathDB, GO homogeneous network Bayesian ridge regression

Scuba [36] HPRD, STRING, Reactome, PID homogeneous network graph node kernels

IDLP [37] OMIM, HPRD, BioGrid, IntAct,
Interactome, MimMiner heterogeneous network network propagation

HerGePred [38] HPO, DisGeNet, MalaCard,
Orphanet heterogeneous network network embedding, random walk

2.1. Methods Using Graph-Theoretic Algorithms
2.1.1. RWR

While typical network-based disease-gene association prediction methods prioritize
genes using only a local part of the network, such as direct interactions and shortest paths,
RWR (Random Walk with Restart) [25] adopts random walk to prioritize candidate genes
in a global network. Random walk is the process of a walker moving in random directions
in a graph. That is, a walker randomly selects and moves to its neighboring nodes. In a
weighted graph, the probability of selecting a neighboring node reflects the weight of the
edge between the current and neighboring nodes.

RWR provides the restart probability to a random walk for every step t. The walker
then returns to the starting node with a probability of r at every step or moves randomly to
a neighboring node with a probability of 1− r, as shown in the following equation:

pt+1 = (1− r)W ′pt + rp0 (1)
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where pt is the probability that the walker stands in each node at t; p0 is the initial probabil-
ity vector, with all start nodes having equivalent values and the rest consisting of zero; and
W ′ is a transition matrix, which is a transposed matrix of the column-normalized adjacency
matrix of the graph. If this step of the random walk is sufficiently repeated, then p becomes
the steady-state probability vector p∞ which is a state such that the difference between pt

and pt+1 was less than 10−6 in the L1 norm.

2.1.2. RWRH

Because functionally similar genes can cause similar diseases, candidate genes can be
prioritized using other genetic and phenotypic data. In this sense, RWR was extended to
RWRH (Random Walk with Restart on Heterogeneous network) [26] using a heterogeneous
network. That is, the gene network and phenotype network are merged into a heteroge-
neous network by gene-phenotype associations, which represents a bipartite graph. In
RWRH, the transition matrix of the heterogeneous network is redefined as a combined form
of the transition matrices of individual networks. In addition, the jumping probability is
given to allow a walker in the gene network to jump to the phenotype network or vice versa
via gene-phenotype associations. The initial probability vector assigns different weights to
seed nodes.

2.1.3. PRINCE

PRINCE (PRIoritizatioN and Complex Elucidation) [27] adopts a propagation algo-
rithm that uses the global topology of a heterogeneous network to prioritize disease genes
and infers protein complexes. The underlying principle of this method is that prior infor-
mation is propagated through the associations of diseases similar to the query disease. The
overall process of PRINCE is very similar to that of RWR, but its transition matrix contains
information regarding the node where the flow of prior information arrives, as well as the
node where the flow of information is sent.

2.1.4. DADA

Erten et al. [28] demonstrated that the performance of global prioritization methods,
such as random walk and network propagation, is highly biased toward the degree of
candidate genes. They proposed a strategy of statistical adjustment that adjusts the degree
bias to improve the performance of genes in low degrees. They used the degree distribution
of PPI networks based on three reference models, the degree of seed nodes, degree of
candidates, and likelihood ratio using eigenvector centrality. These models can be used
to evaluate the statistical importance of the links between candidate and disease genes.
However, these models identify lowly-connected genes precisely but do not work well for
highly-connected genes, suggesting a method that combines raw scores and statistically
adjusted scores. Therefore, a uniform prioritization method, named DADA, was created to
prioritize candidate genes using raw scores for genes with high connections and adjusted
scores for genes with low connections.

2.1.5. RWR-MH

To address the typical noise issues of biological data, Valdeolivas et al. [29] suggested
the integration of multiple sources. However, aggregating them might ignore the features
and topologies of each network. Therefore, they introduced a multiplex network that
shares nodes with different types of edges. RWR-MH (RWR to Multiplex-Heterogeneous
networks) [29] uses a combination of a multiplex network and a heterogeneous network as
an extension of RWRH. After composing a single multiplex network of genes by integrating
PPIs, pathways, and co-expressions at each layer, the multiplex network was connected to
a disease network by associations. In this network, a walker can move to the same node in
another layer, to a neighboring node in the same layer, or to a different network through
an association.
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2.1.6. PhenoRank

PhenoRank [30] uses PPIs and phenotypes from evolutionarily distant species, such as
humans and mice, to prioritize disease-associated genes. Similarities between phenotypes
measured using ontologies and annotations can be biased because of the numbers of
phenotype terms and annotating genes, which reflect how well these entities are studied. To
avoid this problem, PhenoRank computes gene scores based on the sum of the phenotypic
similarities with the associated diseases and mutants of orthologous mouse genes. The
gene scores are propagated through the PPI network such that the genes interacting with
high-scoring genes also score high. The gene score generated for the query disease is
compared with the gene score generated for the simulated set of phenotype terms, and
the p-value is calculated for each gene. Candidate genes are prioritized by these p-values,
which represent the probability of a gene score at least as great as that observed.

2.1.7. NetCore

Barel and Herwig [31] proposed NetCore, a method that uses network propagation
with node coreness to predict phenotype-gene associations and identify modules. Node
coreness is a topological feature that reflects whether a node belongs to a densely connected
part of the network or its periphery. This can be calculated using the k-shell decomposition
algorithm. For network propagation, they used a permutation test, which is network
randomization using the double-edge swap algorithm, and re-ranked the genes by p-values
with the same significance level. The authors recommended the use of 100 permutations.
They also normalized the adjacency matrix of the PPI network based on node degree, core,
the difference between the node degree and core, and the ratio between the node degree
and core.

2.1.8. PRYNT

PRYNT [32] applies a combination of the shortest-path search and random walk to
a PPI network to prioritize disease genes. The PPI network from the STRING database is
contextualized by adding the deregulated proteins regardless of their confidence level and
by grouping the proteins within the cliques. The rank of proteins is obtained by multiplying
the ranks from the shortest-path search algorithm and random walk. They demonstrated
that this combination strategy performs better than direct ranking.

2.2. Methods Using Machine Learning Algorithms
2.2.1. CIPHER

CIPHER (Correlating protein Interaction network and PHEnotype network to pRedict
disease genes) [33] observed that genes causing the same or similar diseases are often
located close to each other in a PPI network. A similarity profile is composed of the
similarities between the query phenotype and other phenotypes, and a closeness profile
is calculated using the topological distance between the candidate gene and all known
disease genes. The relationship between the two profiles is quantified using a concordance
score and modeled by regression. CIPHER includes two different types, CIPHER-SP and
CIPHER-DN, depending on whether the shortest paths or direct neighbors are used when
calculating gene closeness.

2.2.2. CrossRankStar

Ni et al. [34] pointed out that previous gene prioritization methods tend to assume
that all diseases share the same molecular network, and they use a single network to rank
disease-related genes. However, a disease can occur in different tissues, and the molecular
networks in these tissues are usually different. They thus proposed the construction
of tissue-specific networks, named NoN (network of networks) and NoSN (network of
star networks). In NoN, each disease in the disease network has its own tissue-specific
molecular network. NoN can be expanded to NoSN, which has a tissue-specific network
for each disease consisting of a central network and auxiliary networks. They developed
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prioritization methods called CrossRank and CrossRankStar, which can be applied to NoN
and NoSN, respectively. These methods repeatedly update the ranking score vector of
genes in an objective function based on three criteria: within-network smoothness, within-
network seed preference, and cross-network consistency that is optional. The objective
function is finally minimized by gradient descent.

2.2.3. pBRIT

Kumar et al. [35] categorized several data sources such as PubMed abstracts, GO, Hu-
man Phenotype Ontology (HPO), protein sequence similarities, pathways, PPIs, and gene
associations into functional and phenotypic annotations. Their method, pBRIT (Prioritiza-
tion using Bayesian Ridge regression and Information Theoretic model), uses a text-mining
technique, such as TF-IDF, to provide a static weight for each pair between a gene and a
feature in the sparse annotation matrices. For each entry of the matrices, TF-IDF multiplies
the frequency of each feature in a gene by the inverse frequency of the feature in all genes.
If the feature of a gene has a high frequency and the feature of all genes has a low frequency,
then the feature has a high weight with the gene. The gene-gene proximity profiles are
calculated as the cosine similarity of TF-IDF and SVD transformed from the annotation
matrices. According to the hypothesis that genes causing similar diseases share functional
and phenotypic characteristics, functional and phenotypic annotations can be formulated
by regression. Because regression is affected by model uncertainty, the uncertainty of
annotations is modeled by a Bayesian approach while learning the linear mapping between
functional and phenotypic annotation sources.

2.2.4. Scuba

Scuba [36] is a scalable kernel-based method for disease gene prioritization. Among the
multiple kernel learning (MKL) algorithms for data integration, Scuba adopted EasyMKL [39],
which computes the optimized kernel without being affected by the number of kernels, with
linear time complexity. It maximizes the distance between positive and negative examples
and optimizes the margin distribution. However, for disease gene prioritization, the following
difficulties are commonly encountered. First, the number of known disease genes is extremely
small compared to the number of candidates. Second, the negative examples are not certain.
To solve these problems of an unbalanced setting, Scuba expanded EasyMKL by dividing the
kernel into positive and unlabeled sub-kernels.

2.3. Integrated Methods of Graph Theory and Machine Learning
2.3.1. IDLP

Zhang et al. [37] attempted to tackle the issue that numerous false-positive interactions
exist in the PPI data set. Considering the PPI network as a variable, noise was reduced
by optimizing the loss function. They proposed IDLP (Improved Dual Label Propagation)
which optimizes the following objective function

L(Y, S1, S2) = L1(Y, S1) + L2(Y, S2) (2)

where Y is a disease-gene association matrix to be learned, and S1 and S2 are the weighted
PPI network and weighted disease network, respectively. In this formula, L1 is the objective
function when label propagation is performed for all phenotypes in the PPI network
assuming that the PPI network contains noise. L2 is the objective function when label
propagation is performed for all genes in the disease network assuming that the disease
network contains noise.

2.3.2. HerGePred

Yang et al. [38] integrated disease-gene associations, disease-symptom associations,
PPIs, and GO term annotations into a heterogeneous disease-gene network (HDGN) and
proposed HerGePred by applying network embedding representation algorithms such
as node2vec [40] and LINE [41] to obtain low-dimensional vector representation (LVR)
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in HDGN. Subsequently, they proposed LVR-based similarity prediction (LVRSim) and
random walk with restart based on a reconstructed heterogeneous disease-gene network
(RW-RDGN). In LVRSim, because LVR can contain the local and global structure infor-
mation of the network, disease-gene similarity can be computed using LVR-based cosine
similarity. RW-RDGN reconstructs a heterogeneous network using new disease and gene
networks. Finally, the RWR algorithm is applied to the reconstructed heterogeneous net-
work to prioritize the candidate genes.

3. Experiments
3.1. Experimental Data
3.1.1. Gene Networks

For our experiment, human PPI data were acquired from BioGRID [17] and filtered for
physical interactions. The self-loops were eliminated. The interacting proteins were paired
with the genes that were produced, maintained, and treated as gene-gene interactions.

For weighting interactions, we quantified functional similarity between interacting
genes based on semantic similarity using GO [11]. GO is structured based on the parent-
child relationships of its terms and provides comprehensive annotations of molecular
products based on published evidence. In GO, we extracted terms and their relationships in
the domains of molecular function and biological process, excluding cellular components.
In addition, to ensure the quality of the annotation data, we removed annotations with
the evidence code of IEA. If any genes from the PPI data were not included in the GO
annotations, their interactions were eliminated.

The functional similarity of interacting gene pairs was computed by integrating term-
based and annotation-based semantic similarity measures [42–44]. The semantic similarity
between two GO terms is defined as follows:

sim(C1, C2) =
∑Ci∈At(C1)∩At(C2)

log P(Ci)

∑Cj∈At(C1)∪At(C2)
log P(Cj)

(3)

where C1 and C2 are the GO terms annotating genes g1 and g2, At(C1) and At(C2) are the
sets of the ancestral terms of C1 and C2, respectively, in the ontology. P(Ci) is the probability
of being annotated to term Ci, and − log P(Ci) indicates the information content of Ci. The
semantic similarities of all term pairs annotating g1 and g2 are aggregated to the functional
similarity between g1 and g2 by best-match averaging, which returns the average of the
best matching semantic similarity scores for each term as follows:

sim(g1, g2) =
∑i maxj sim(Ci, Cj) + ∑j maxi sim(Ci, Cj)

|Ci|+ |Cj|
(4)

where |Ci| and |Cj| are the numbers of GO terms annotated as g1 and g2, respectively. This
process creates a gene network as an undirected weighted graph, which was found to
comprise 14,663 genes as nodes and 258,476 edges weighted by Equation (4).

3.1.2. Disease Networks

A disease network for our experiment was constructed using Human Phenotype
Ontology (HPO) [14]. We extracted all sub-terms of Phenotypic Abnormality in HPO,
which indicate abnormal phenotypes caused by any disease or disorder. The diseases
from OMIM [13], OrphaNet [45] and DECIPHER [46] were annotated to the terms in HPO.
However, in our experiment, the annotations of diseases from OMIM were only used
because the diseases were linked to genes based on disease-gene associations provided
by OMIM.

Similarities between all possible pairs of diseases were measured using the same
semantic similarity method as that used for weighting the gene network. The similarities
between HPO terms were computed using Equation (3) where C1 and C2 are HPO terms
annotating diseases g1 and g2. The similarity between the diseases g1 and g2 were computed



Int. J. Mol. Sci. 2022, 23, 7411 8 of 17

using Equation (4). A disease network was formed by adding the weighted edges for the
disease pairs with similarities greater than 0.1. This was found to comprise 6465 diseases
as nodes and 4,354,956 edges, with a density of 20% approximately.

3.1.3. Disease-Gene Associations

Disease-gene associations were acquired from the morbid map of the OMIM database [13].
OMIM provides information regarding the relationship between phenotypes and genotypes.
For our experiment, associations with genes or diseases that do not occur in our gene network
or disease network were removed. Finally, we obtained 5024 disease-gene associations, which
created a heterogeneous network including 3258 genes and 4506 diseases. The statistics of
our experimental dataset including the gene network, the disease network, and disease-gene
associations are summarized in Table 2.

Table 2. Numbers of nodes and edges in each network for the experiment.

Experimental Data Number of Nodes Number of Edges

Gene network 14,663 258,476
Disease network 6465 4,354,956
Disease-gene associations - 5024

3.2. Experimental Settings

For this experiment, we randomly extracted two samples consisting of 100 diseases
and their associations. Sample-1 was extracted only for diseases with more than one disease-
gene association, and sample-2 was extracted regardless of the number of disease-gene
associations including the case of diseases with a single disease-associated gene. Sample-
1 consisted of 100 diseases, 357 genes and 431 associations whereas sample-2 consisted
of 100 diseases, 166 genes and 175 associations. In sample-2, only 14 diseases had two
or more associations with genes. Using these samples, leave-one-out cross-validation
was performed to evaluate the accuracy of disease-gene association prediction. In other
words, we iteratively used each disease and its association(s) in the samples as test data
and computed the area under the curve (AUC). The AUC is generally considered the
most effective means of measuring predictive power. We also showed recall, which is the
ratio of correctly predicted associations (i.e., true positives) to all actual associations, for
prediction accuracy.

Our experiment was performed in two different settings as follows: (setting-1) pre-
diction in case that known disease-associated genes of the disease of interest exist and
(setting-2) prediction in case that known disease-associated genes of the disease of interest
do not exist. In setting-1, we removed only one association of each disease from sample-1 to
predict the removed association. However, in setting-2, we removed all associations of each
disease from sample-2 to predict any of them. In setting-1, each disease-gene association
was in a query, whereas each disease was in a query in setting-2. Both settings returned the
priority of genes for the disease of interest.

The results from these two settings were evaluated in two ways. First, we computed
AUC and recall based on the ranks of the predicted genes for each sampled disease. Second,
we computed them based on the prediction scores of genes across all sampled diseases.
Further details are presented in the following sections.

4. Results
4.1. Prediction with Known Disease-Associated Genes

For the prediction accuracy comparison, we selected six previous methods, RWR,
PRINCE, DADA, IDLP, HerGePred, and NetCore. The selected methods were executed
in two different settings, as previously described. Our first experiment was to predict
additional disease-gene associations when at least one disease gene was known. In other
words, because each disease in sample-1 was associated with multiple genes, only one
association with the disease became the test data and the rest became the training data.
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4.1.1. Evaluation by Ranks

First, we ranked the genes associated with each disease from sample-1. AUC and recall
were computed using the prediction results with ranks higher than the rank parameter
value. We tested with the rank parameter r at 100, 500, 1000, 5000, and 10,000. This indicates
that we considered the top r predicted genes for each disease-gene association to measure
the prediction accuracy. If there were n associations, the AUC and recall were computed
based on the results of the total r × n cases. If the gene with a rank higher than r for
each association was correctly predicted, it was considered a true positive. If not, it was
considered a false positive.

The AUC and recall values are listed in Tables 3 and 4, respectively. These results indi-
cated that HerGePred performed best in the presence of known disease-associated genes.
RWR, DADA, and NetCore tended to predict associations well when r was low. From this
result, we can conclude that network propagation, which is a common technique applied
by HerGePred, RWR, DADA and NetCore, is effective in increasing prediction accuracy.

Figure 1 shows the ROC and recall curves. The recall curve was created by varying
r from 1 to 10,000, whereas the ROC result was achieved with a threshold r of 10,000. In
other words, for the ROC curve, true positives and false positives above the threshold
were only considered. These two plots indicate that HerGePred had the best predictive
performance. Interestingly, the prediction accuracy of IDLP increased significantly when r
was approximately 1800 as shown in Figure 1b.

(a) (b)

Figure 1. ROC (a) and recall (b) curves evaluated by gene ranks for disease-gene association predic-
tion with known disease-associated genes.

Table 3. AUC results evaluated by gene ranks for disease-gene association prediction with known
disease genes from sample-1.

Method r = 100 500 1000 5000 10,000

RWR 0.813 0.800 0.791 0.775 0.733
PRINCE 0.561 0.636 0.620 0.694 0.703
DADA 0.816 0.789 0.785 0.782 0.741
IDLP 0.596 0.559 0.524 0.650 0.791
HerGePred 0.838 0.863 0.835 0.800 0.778
NetCore 0.790 0.805 0.792 0.764 0.745
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Table 4. Recall values evaluated by gene ranks for disease-gene association prediction with known
disease genes from sample-1.

Method r = 100 500 1000 5000 10,000

RWR 0.225 0.350 0.425 0.657 0.863
PRINCE 0.077 0.197 0.306 0.673 0.898
DADA 0.230 0.357 0.436 0.680 0.889
IDLP 0.019 0.091 0.176 0.617 0.661
HerGePred 0.302 0.401 0.471 0.719 0.889
NetCore 0.197 0.295 0.364 0.633 0.817

4.1.2. Evaluation by Prediction Scores

In the evaluation by ranking, even if genes are predicted in the same rank for different
diseases, their prediction scores can be significantly different. To address this problem,
we evaluated the prioritization results by aligning the genes in decreasing order of their
prediction scores, regardless of the diseases associated with them. Similar to the rank
parameter, we used the score parameter, which indicates the total number of predicted
associations for evaluation.

To compare this with the results of the previous evaluation method based on ranks in
Tables 3 and 4, we set the number of predicted associations with all diseases using the score
parameter s as r× n, where r is the rank parameter and n is the number of disease-gene
associations. Because sample-1 contained 431 associations with all 100 diseases, n was 431
and the rank parameter r was set as 100, 500, 1000, 5000, and 10,000. If the gene with a rank
higher than r× n across all sampled diseases was correctly predicted, it was considered a
true positive. If not, it was considered a false positive.

The AUC and recall values are shown in Tables 5 and 6, respectively. Similar to the
previous results in Tables 3 and 4, HerGePred had the best predictive performance, and
NetCore and PRINCE showed relatively good performance. In Figure 2, the ROC and
recall curves confirmed that HerGePred performed the best. The results showed that
DADA had a sudden increase in prediction accuracy when r was slightly above 5000 as
shown in Figure 2b. DADA typically scores in two different ways; one is achieved by
random walks and the other is computed statistically. This could lead to inconsistencies in
successful predictions.

Table 5. AUC results evaluated by prediction scores for disease-gene association prediction with
known disease genes from sample-1.

Method s/n = 100 500 1000 5000 10,000

RWR 0.391 0.533 0.443 0.528 0.550
PRINCE 0.543 0.643 0.620 0.694 0.702
DADA 0.442 0.682 0.540 0.548 0.484
IDLP 0.663 0.532 0.543 0.709 0.632
HerGePred 0.795 0.834 0.835 0.794 0.774
NetCore 0.622 0.738 0.764 0.761 0.732

Table 6. Recall values evaluated by prediction scores for disease-gene association prediction with
known disease genes from sample-1.

Method s/n = 100 500 1000 5000 10,000

RWR 0.007 0.037 0.104 0.439 0.745
PRINCE 0.079 0.195 0.306 0.673 0.898
DADA 0.012 0.030 0.058 0.209 0.715
IDLP 0.016 0.095 0.176 0.357 0.552
HerGePred 0.302 0.411 0.469 0.722 0.889
NetCore 0.179 0.325 0.394 0.638 0.826
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(a) (b)

Figure 2. ROC (a) and recall (b) curves evaluated by prediction scores for disease-gene association
prediction with known disease-associated genes.

4.2. Prediction without Known Disease-Associated Genes

To determine how well each selected method predicts disease-gene associations with-
out any known disease genes, we removed all associations of each disease from sample-2
and predicted any associations that were removed. However, this setting cannot be imple-
mented with RWR, DADA, and NetCore because these methods use a PPI network only
and thus should preselect the seed genes from the PPI network with known associations.
In contrast, because PRINCE, IDLP, and HerGePred take a disease-gene heterogeneous
network as input, they can predict the genes associated with a disease that is not linked to
the PPI network. Therefore, we applied this setting to PRINCE, IDLP, and HerGePred only.

4.2.1. Evaluation by Ranks

Similar to that for setting-1 in Section 4.1, we used the ranking of the genes associated
with each disease from sample-2. For this experiment, the same values of the rank parameter
r were used as 100, 500, 1000, 5000 and 10,000. If the gene with a rank higher than r for each
disease was correctly predicted, it was considered a true positive. If not, it was considered
a false positive.

The AUC and recall values are listed in Tables 7 and 8, respectively. Unlike the results
in Tables 3 and 4, PRINCE had the best predictive performance in the absence of known
disease genes, and HerGePred, which was the best in Tables 3 and 4, was the least predictive
among the three methods in this experiment. These results were also observed precisely in
the ROC and recall curves as shown in Figure 3.

Table 7. AUC results evaluated by gene ranks for disease-gene association prediction without known
disease genes from sample-2.

Method r = 100 500 1000 5000 10,000

PRINCE 0.485 0.655 0.576 0.685 0.663
IDLP 0.333 0.478 0.559 0.698 0.644
HerGePred 0.257 0.647 0.536 0.534 0.520



Int. J. Mol. Sci. 2022, 23, 7411 12 of 17

Table 8. Recall values evaluated by gene ranks for disease-gene association prediction without known
disease genes from sample-2.

Method r = 100 500 1000 5000 10,000

PRINCE 0.086 0.171 0.303 0.594 0.846
IDLP 0.011 0.086 0.166 0.446 0.749
HerGePred 0.011 0.034 0.069 0.343 0.657

(a) (b)

Figure 3. ROC (a) and recall (b) curves evaluated by gene ranks for disease-gene association predic-
tion without known disease-associated genes.

4.2.2. Evaluation by Prediction Scores

The prediction results without any known disease genes were also evaluated using
the prediction scores of the genes that were associated with all diseases in sample-2. To
compare the results with those in Tables 7 and 8, we set the score parameter s to r × m
where r is the rank parameter and m is the number of sampled diseases which was 100.
The same values of r were used as performed previously.

The AUC and Recall values are shown in Tables 9 and 10, respectively. The overall
results were similar to those in Tables 7 and 8. PRINCE had the highest prediction accuracy,
where HerGePred had the lowest accuracy. These results were also demonstrated by the
ROC and recall curves in Figure 4.

Table 9. AUC results evaluated by prediction scores for disease-gene association prediction without
known disease genes from sample-2.

Method s/m = 100 500 1000 5000 10,000

PRINCE 0.480 0.651 0.571 0.684 0.663
IDLP 0.550 0.367 0.468 0.642 0.657
HerGePred 0.351 0.566 0.567 0.499 0.531

Table 10. Recall values evaluated by prediction scores for disease-gene association prediction without
known disease genes from sample-2.

Method s/m = 100 500 1000 5000 10,000

PRINCE 0.086 0.171 0.303 0.594 0.846
IDLP 0.011 0.097 0.194 0.451 0.640
HerGePred 0.023 0.040 0.074 0.371 0.646
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(a) (b)

Figure 4. ROC (a) and recall (b) curves evaluated by prediction scores for disease-gene association
prediction without known disease-associated genes.

4.3. Degree Effect in Association Prediction

We next tested whether the predictive performance of each method was affected by the
degree of disease-related genes in the PPI network. It has been validated that high-degree
proteins in a PPI network generally play significant roles as the functional cores in modules.
In Figure 5, the grey bar represents the number of disease genes with respect to their degree
in the PPI network, which indicates the ground truth. The other bars represent the number
of true positives, which indicate the disease genes that each method successfully predicted.
Figure 5a shows the prediction results with known disease genes using sample-1, and
Figure 5b shows the prediction results without known disease genes using sample-2. In
these Figures, we discretized the degrees in the range between 2i−1 + 1 and 2i where i is a
positive integer.

PRINCE, which applies simple network propagation, had more true positives with
genes in higher degrees. However, it did not accurately predict genes in lower degrees.
The prediction accuracy of PRINCE had a positive relationship with the degrees of genes.
This pattern is shown in Figure 5a,b regardless of the presence or absence of known disease
genes. Previous studies [28] have already pointed out the problem of network propagation
algorithms that are sensitive to gene degrees in the PPI network.

HerGePred showed high prediction accuracy with known disease genes (Figure 5a),
whereas it had low accuracy without known disease genes (Figure 5b). HerGePred recon-
structs a heterogeneous network using a graph embedding technique such as node2vec.
This method measures the similarity of nodes based on structural equivalence, which
represents the structural roles of nodes such as hubs and bridges. This topological analysis
might be more susceptible to the prediction setting without known disease genes because
all links to genes are removed for each disease. The low accuracy of HerGePred appeared
particularly in the prediction of genes in higher degrees, as shown in Figure 5b.

IDLP also had a lower accuracy for the prediction of genes in higher degrees, as shown
in both Figure 5a,b. Because IDLP treated the gene and disease networks as variables,
even if this algorithm was based on network propagation, it predicted low-degree genes
relatively well. However, as the gene degree increased, the number of successful predictions
generally decreased.
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(a) (b)

Figure 5. Numbers of disease-associated genes (i.e., ground-truth) and true positives with each
method according to their degree in the PPI network in prediction with known disease genes from
sample-1 (a) and without known disease genes from sample-2 (b).

5. Conclusions

Identifying disease-gene associations is crucial for detecting disease-causing genes
and understanding disease mechanisms. Network-based approaches have recently been
highlighted for their efficient disease-gene association prediction. In this survey, we provide
a comprehensive overview of the existing network-based methods in three categories as
follows: methods using graph-theoretic algorithms such as random walk, propagation
and path search; methods using machine learning algorithms such as deep learning; and
integrative methods of graph theory and machine learning techniques. We compared the
prediction performance of the six selected methods using a heterogeneous disease-gene
network that was constructed by integrating a genome-wide PPI network, an ontology-
based disease network from HPO, and known disease-gene associations from OMIM.

To demonstrate prediction performance of each method, we employed ROC and recall.
For ROC, we used a threshold, called a ranking parameter in our experiments, which
indicates how many disease-associated genes are predicted for each disease. The ROC then
showed the changes of the true positive rate and false positive rate among the predicted
results within the threshold. The recall values, correct predictions out of actual disease-gene
associations, were achieved by varying the threshold. In our experiments, we did not show
precision, correct predictions out of predicted results. Because all previous methods had
very low precision in this genome-scale analysis, comparing precision was meaningless.

Our experimental results revealed that HerGePred, an integrative method of graph
theory and machine learning techniques, outperformed the others overall. This method
had the best performance in the presence of known disease-associated genes, i.e., when
at least one link to a gene was provided for the query disease. Although it had the lowest
prediction accuracy among the three selected methods in the absence of known disease
genes, it predicted well disease-associated genes with low degrees in the PPI network. This
method only had difficulty predicting the genes with high degrees when disease-related
genes are unknown.

In contrast, PRINCE, which adopts a typical network propagation algorithm, had the
best performance in the absence of known disease-associated genes whereas it was less
competitive in the presence of known disease-associated genes, particularly when the rank
parameter value was small. The prediction accuracy of PRINCE was also greatly influenced
by the degree of disease genes in a PPI network. This means that the network propagation
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algorithm predicts well the links from the genes of higher degrees, which contain more
information topologically and biologically.

Relatively, IDLP and HerGePred are less affected by the degree of disease genes in a
PPI network. The strength of IDLP is to handle noise that may exist in the gene network
and disease network. However, if very reliable network data are used, the IDLP algorithm
may not be advantageous. In terms of elapsed time, PRINCE and RWR run very fast,
whereas HerGePred and NetCore need very long time to complete prediction.

From our experimental results, we can conclude that integrative methods such as
HerGePred and IDLP performed better than methods using graph theory only. Moreover,
PRINCE, HerGePred and IDLP, which take a heterogeneous network as input, performed
better than RWR, DADA, and NetCore, which use a homogeneous PPI network only.
These results indicate that both PPIs and disease similarities undoubtedly contributed to
improving the prediction performance. Consolidating all relevant data into a weighted
heterogeneous network enables us to view the prediction problem at a single system level
and devise systematic approaches more effectively using network features. As a future
direction, we can address the need to integrate heterogeneous and multiplex networks for
more effective use of diverse network features.

These studies for predicting disease-gene associations can be extended to a more
challenging problem of drug repositioning. In the recent pandemic, our top priority was
to quickly develop medication to treat the new disease. However, it usually takes too
long to bring new drugs to the market. The costly and time-consuming paradigm of drug
development is not suitable for handling rapidly emerging and widespread diseases. One
of the best solutions is to choose some already approved drugs to control such diseases,
called drug-repositioning, based on the assumption that approved drugs do not have any
critical side-effects. Network-based computational approaches, similar to the methods
introduced in this survey, can be applied to solve the problem of drug repositioning by
predicting drug-target-disease associations.

Author Contributions: Conceptualization, Y.-R.C.; data curation, Y.K. and J.-H.P.; formal analysis,
Y.K., J.-H.P. and Y.-R.C.; writing—original draft preparation, Y.K., J.-H.P. and Y.-R.C.; writing—
review and editing, Y.K., J.-H.P. and Y.-R.C.; visualization, Y.K. and J.-H.P.; supervision, Y.-R.C.;
project administration, Y.-R.C.; funding acquisition, Y.-R.C. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was supported by the National Research Foundation of Korea (NRF) grant
funded by the Korea government, the Ministry of Science and ICT (No. 2021R1A2C101194612).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

PPI Protein-Protein Interaction
GWAS Genome-wide association studies
GO Gene Ontology
HPO Human Phenotype Ontology
ROC Receiver operating characteristic
AUC The area under the curve

References
1. Kann, M.G. Advances in translational bioinformatics: Computational approaches for the hunting of disease genes. Briefings

Bioinform. 2010, 11, 96–110. [CrossRef] [PubMed]
2. Wang, X.; Gulbahce, N.; Yu, H. Network-based methods for human disease gene prediction. Briefings Funct. Genom. 2011,

10, 280–293. [CrossRef]

http://doi.org/10.1093/bib/bbp048
http://www.ncbi.nlm.nih.gov/pubmed/20007728
http://dx.doi.org/10.1093/bfgp/elr024


Int. J. Mol. Sci. 2022, 23, 7411 16 of 17

3. Hirschhorn, J.N.; Daly, M.J. Genome-wide association studies for common diseases and complex traits. Nat. Rev. Genet. 2005,
6, 95–108. [CrossRef]

4. McCarthy, M.I.; Abecasis, G.R.; Cardon, L.R.; Goldstein, D.B.; Little, J.; Ioannidis, J.P.A.; Hirschhorn, J.N. Genome-wide association
studies for complex traits: Consensus, uncertainty and challenges. Nat. Rev. Genet. 2008, 9, 356–369. [CrossRef]

5. Altschuler, D.; Daly, M.J.; Lander, E.S. Genetic mapping in human disease. Science 2008, 322, 881–888. [CrossRef]
6. Oti, M.; Brunner, H.G. The modular nature of genetic diseases. Clin. Genet. 2007, 71, 1–11. [CrossRef] [PubMed]
7. Goh, K.-I.; Cusick, M.E.; Valle, D.; Childs, B.; Vidal, M.; Barabasi, A.-L. The human disease network. Proc. Natl. Acad. Sci. USA

2007, 104, 8685–8690. [CrossRef]
8. Ideker, T.; Sharan, R. Protein networks in disease. Genome Res. 2008, 18, 644–652. [CrossRef]
9. Barabasi, A.-L.; Gulbahce, N.; Loscalzo, J. Network medicine: A network-based approach to human disease. Nat. Rev. Genet.

2011, 12, 56–68. [CrossRef] [PubMed]
10. Vidal, M.; Cusick, M.E.; Barabási, A.L. Interactome networks and human disease. Cell 2011, 144, 986–998. [CrossRef]
11. The Gene Ontology Consortium. The Gene Ontology resource: Enriching a GOld mine. Nucleic Acids Res. 2021, 49, D325–D334.

[CrossRef] [PubMed]
12. Ata, S.K.; Wu, M.; Fang, Y.; Ou-Yang, L.; Kwoh, C.K.; Li, X.-L. Recent advances in network-based methods for disease gene

prediction. Briefings Bioinform. 2021, 22, bbaa303. [CrossRef] [PubMed]
13. Amberger, J.S.; Bocchini, C.A.; Scott, A.F.; Hamosh, A. OMIM.org: Leveraging knowledge across phenotype–gene relationships.

Nucleic Acids Res. 2019, 47, D1038–D1043. [CrossRef]
14. Kohler, S.; Gargano, M.; Matentzoglu, N.; Carmody, L.C.; Lewis-Smith, D.; Vasilevsky, N.A.; Danis, D.; Balagura, G.; Baynam, G.;

Brower, A.M.; et al. The Human Phenotype Ontology in 2021. Nucleic Acids Res. 2021, 49, D1207–D1217. [CrossRef]
15. Keshava Prasad, T.S.; Goel, R.; Kandasamy, K.; Keerthikumar, S.; Kumar, S.; Mathivanan, S.; Telikicherla, D.; Raju, R.; Shafreen, B.;

Venugopal, A.; et al. Human protein reference database–2009 update. Nucleic Acids Res. 2009, 37, D767–D772. [CrossRef]
16. Gilbert, D. Biomolecular interaction network database. Briefings Bioinform. 2005, 6, 194–198. [CrossRef]
17. Oughtred, R.; Rust, J.; Chang, C.; Breitkreutz, B.-J.; Stark, C.; Willems, A.; Boucher, L.; Leung, G.; Kolas, N.; Zhang, F.; et al. The

BioGRID database: A comprehensive biomedical resource of curated protein, genetic, and chemical interactions. Protein Sci. 2021,
30, 187–200. [CrossRef]

18. Kerrien, S.; Aranda, B.; Breuza, L.; Bridge, A.; Broackes-Carter, F.; Chen, C.; Duesbury, M.; Feuermann, M.; Hinz, U.; Jandrasits,
C.; et al. The IntAct molecular interaction database in 2012. Nucleic Acids Res. 2012, 40, D841–D846. [CrossRef]

19. Szklarczyk, D.; Gable, A.L.; Nastou, K.C.; Lyon, D.; Kirsch, R.; Pyysalo, S.; Doncheva, N.T.; Legeay, M.; Tao, F.; Bork, P.
The STRING database in 2021: Customizable protein–protein networks, and functional characterization of user-uploaded
gene/measurement sets. Nucleic Acids Res. 2021, 49, D605–D612. [CrossRef]

20. Kamburov, A.; Stelzl, U.; Lehrach, H.; Herwig, R. The ConsensusPathDB interaction database: 2013 update. Nucleic Acids Res.
2013, 41, D793–D800. [CrossRef]
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