
Zhou et al. Cell Discovery            (2020) 6:14 Cell Discovery
https://doi.org/10.1038/s41421-020-0153-3 www.nature.com/celldisc

ART ICLE Open Ac ce s s

Network-based drug repurposing for novel
coronavirus 2019-nCoV/SARS-CoV-2
Yadi Zhou1, Yuan Hou1, Jiayu Shen1, Yin Huang1, William Martin 1 and Feixiong Cheng1,2,3

Abstract
Human coronaviruses (HCoVs), including severe acute respiratory syndrome coronavirus (SARS-CoV) and 2019 novel

coronavirus (2019-nCoV, also known as SARS-CoV-2), lead global epidemics with high morbidity and mortality.

However, there are currently no effective drugs targeting 2019-nCoV/SARS-CoV-2. Drug repurposing, representing as

an effective drug discovery strategy from existing drugs, could shorten the time and reduce the cost compared to de
novo drug discovery. In this study, we present an integrative, antiviral drug repurposing methodology implementing a

systems pharmacology-based network medicine platform, quantifying the interplay between the HCoV–host

interactome and drug targets in the human protein–protein interaction network. Phylogenetic analyses of 15 HCoV

whole genomes reveal that 2019-nCoV/SARS-CoV-2 shares the highest nucleotide sequence identity with SARS-CoV

(79.7%). Specifically, the envelope and nucleocapsid proteins of 2019-nCoV/SARS-CoV-2 are two evolutionarily

conserved regions, having the sequence identities of 96% and 89.6%, respectively, compared to SARS-CoV. Using

network proximity analyses of drug targets and HCoV–host interactions in the human interactome, we prioritize 16

potential anti-HCoV repurposable drugs (e.g., melatonin, mercaptopurine, and sirolimus) that are further validated by
enrichment analyses of drug-gene signatures and HCoV-induced transcriptomics data in human cell lines. We further

identify three potential drug combinations (e.g., sirolimus plus dactinomycin, mercaptopurine plus melatonin, and

toremifene plus emodin) captured by the “Complementary Exposure” pattern: the targets of the drugs both hit the

HCoV–host subnetwork, but target separate neighborhoods in the human interactome network. In summary, this

study offers powerful network-based methodologies for rapid identification of candidate repurposable drugs and

potential drug combinations targeting 2019-nCoV/SARS-CoV-2.

Introduction
Coronaviruses (CoVs) typically affect the respiratory

tract of mammals, including humans, and lead to mild to

severe respiratory tract infections1. In the past two dec-

ades, two highly pathogenic human CoVs (HCoVs),

including severe acute respiratory syndrome coronavirus

(SARS-CoV) and Middle East respiratory syndrome cor-

onavirus (MERS-CoV), emerging from animal reservoirs,

have led to global epidemics with high morbidity and

mortality2. For example, 8098 individuals were infected

and 774 died in the SARS-CoV pandemic, which cost the

global economy with an estimated $30 to $100 billion3,4.

According to the World Health Organization (WHO), as

of November 2019, MERS-CoV has had a total of 2494

diagnosed cases causing 858 deaths, the majority in Saudi

Arabia2. In December 2019, the third pathogenic HCoV,

named 2019 novel coronavirus (2019-nCoV/SARS-CoV-

2), as the cause of coronavirus disease 2019 (abbreviated

as COVID-19)5, was found in Wuhan, China. As of 24

February 2020, there have been over 79,000 cases with

over 2600 deaths for the 2019-nCoV/SARS-CoV-2 out-

break worldwide; furthermore, human-to-human trans-

mission has occurred among close contacts6. However,

there are currently no effective medications against 2019-
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nCoV/SARS-CoV-2. Several national and international

research groups are working on the development of vac-

cines to prevent and treat the 2019-nCoV/SARS-CoV-2,

but effective vaccines are not available yet. There is an

urgent need for the development of effective prevention

and treatment strategies for 2019-nCoV/SARS-CoV-2

outbreak.

Although investment in biomedical and pharmaceutical

research and development has increased significantly over

the past two decades, the annual number of new treat-

ments approved by the U.S. Food and Drug Administra-

tion (FDA) has remained relatively constant and limited7.

A recent study estimated that pharmaceutical companies

spent $2.6 billion in 2015, up from $802 million in 2003,

in the development of an FDA-approved new chemical

entity drug8. Drug repurposing, represented as an effec-

tive drug discovery strategy from existing drugs, could

significantly shorten the time and reduce the cost com-

pared to de novo drug discovery and randomized clinical

trials9–11. However, experimental approaches for drug

repurposing is costly and time-consuming12. Computa-

tional approaches offer novel testable hypotheses for

systematic drug repositioning9–11,13,14. However, tradi-

tional structure-based methods are limited when three-

dimensional (3D) structures of proteins are unavailable,

which, unfortunately, is the case for the majority of

human and viral targets. In addition, targeting single virus

proteins often has high risk of drug resistance by the rapid

evolution of virus genomes1.

Viruses (including HCoV) require host cellular factors

for successful replication during infection1. Systematic

identification of virus–host protein–protein interactions

(PPIs) offers an effective way toward elucidating the

mechanisms of viral infection15,16. Subsequently, targeting

cellular antiviral targets, such as virus–host interactome,

may offer a novel strategy for the development of effective

treatments for viral infections1, including SARS-CoV17,

MERS-CoV17, Ebola virus18, and Zika virus14,19–21. We

recently presented an integrated antiviral drug discovery

pipeline that incorporated gene-trap insertional muta-

genesis, known functional drug–gene network, and

bioinformatics analyses14. This methodology allows to

identify several candidate repurposable drugs for Ebola

virus11,14. Our work over the last decade has demon-

strated how network strategies can, for example, be used

to identify effective repurposable drugs13,22–27 and drug

combinations28 for multiple human diseases. For example,

network-based drug–disease proximity sheds light on the

relationship between drugs (e.g., drug targets) and disease

modules (molecular determinants in disease pathobiology

modules within the PPIs), and can serve as a useful tool

for efficient screening of potentially new indications for

approved drugs, as well as drug combinations, as

demonstrated in our recent studies13,23,27,28.

In this study, we present an integrative antiviral drug

repurposing methodology, which combines a systems

pharmacology-based network medicine platform that

quantifies the interplay between the virus–host inter-

actome and drug targets in the human PPI network. The

basis for these experiments rests on the notions that (i)

the proteins that functionally associate with viral infection

(including HCoV) are localized in the corresponding

subnetwork within the comprehensive human PPI net-

work and (ii) proteins that serve as drug targets for a

specific disease may also be suitable drug targets for

potential antiviral infection owing to common PPIs and

functional pathways elucidated by the human interactome

(Fig. 1). We follow this analysis with bioinformatics vali-

dation of drug-induced gene signatures and HCoV-

induced transcriptomics in human cell lines to inspect

the postulated mechanism-of-action in a specific HCoV

for which we propose repurposing (Fig. 1).

Results
Phylogenetic analyses of 2019-nCoV/SARS-CoV-2

To date, seven pathogenic HCoVs (Fig. 2a, b) have been

found:1,29 (i) 2019-nCoV/SARS-CoV-2, SARS-CoV,

MERS-CoV, HCoV-OC43, and HCoV-HKU1 are β gen-

era, and (ii) HCoV-NL63 and HCoV-229E are α genera.

We performed the phylogenetic analyses using the whole-

genome sequence data from 15 HCoVs to inspect the

evolutionary relationship of 2019-nCoV/SARS-CoV-2

with other HCoVs. We found that the whole genomes of

2019-nCoV/SARS-CoV-2 had ~99.99% nucleotide

sequence identity across three diagnosed patients (Sup-

plementary Table S1). The 2019-nCoV/SARS-CoV-

2 shares the highest nucleotide sequence identity (79.7%)

with SARS-CoV among the six other known pathogenic

HCoVs, revealing conserved evolutionary relationship

between 2019-nCoV/SARS-CoV-2 and SARS-CoV (Fig. 2a).

HCoVs have five major protein regions for virus struc-

ture assembly and viral replications29, including replicase

complex (ORF1ab), spike (S), envelope (E), membrane

(M), and nucleocapsid (N) proteins (Fig. 2b). The ORF1ab

gene encodes the non-structural proteins (nsp) of viral

RNA synthesis complex through proteolytic processing30.

The nsp12 is a viral RNA-dependent RNA polymerase,

together with co-factors nsp7 and nsp8 possessing high

polymerase activity. From the protein 3D structure view

of SARS-CoV nsp12, it contains a larger N-terminal

extension (which binds to nsp7 and nsp8) and polymerase

domain (Fig. 2c). The spike is a transmembrane glyco-

protein that plays a pivotal role in mediating viral infec-

tion through binding the host receptor31,32. Figure 2d

shows the 3D structure of the spike protein bound with

the host receptor angiotensin converting enznyme2

(ACE2) in SARS-CoV (PDB ID: 6ACK). A recent study

showed that 2019-nCoV/SARS-CoV-2 is able to utilize
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ACE2 as an entry receptor in ACE2-expressing cells33,

suggesting potential drug targets for therapeutic devel-

opment. Furthermore, cryo-EM structure of the spike and

biophysical assays reveal that the 2019-nCoV/SARS-CoV-

2 spike binds ACE2 with higher affinity than SARS-CoV34.

In addition, the nucleocapsid is also an important subunit

for packaging the viral genome through protein oligo-

merization35, and the single nucleocapsid structure is

shown in Fig. 2e.

Protein sequence alignment analyses indicated that the

2019-nCoV/SARS-CoV-2 was most evolutionarily

conserved with SARS-CoV (Supplementary Table S2).

Specifically, the envelope and nucleocapsid proteins of

2019-nCoV/SARS-CoV-2 are two evolutionarily con-

served regions, with sequence identities of 96% and 89.6%,

respectively, compared to SARS-CoV (Supplementary

Table S2). However, the spike protein exhibited the lowest

sequence conservation (sequence identity of 77%)

between 2019-nCoV/SARS-CoV-2 and SARS-CoV.

Meanwhile, the spike protein of 2019-nCoV/SARS-CoV-2

only has 31.9% sequence identity compared to MERS-

CoV.

Fig. 1 Overall workflow of this study. Our network-based methodology combines a systems pharmacology-based network medicine platform that

quantifies the interplay between the virus–host interactome and drug targets in the human PPI network. a Human coronavirus (HCoV)-associated

host proteins were collected from literatures and pooled to generate a pan-HCoV protein subnetwork. b Network proximity between drug targets

and HCoV-associated proteins was calculated to screen for candidate repurposable drugs for HCoVs under the human protein interactome model.

c, d Gene set enrichment analysis was utilized to validate the network-based prediction. e Top candidates were further prioritized for drug

combinations using network-based method captured by the “Complementary Exposure” pattern: the targets of the drugs both hit the HCoV–host

subnetwork, but target separate neighborhoods in the human interactome network. f Overall hypothesis of the network-based methodology: (i) the

proteins that functionally associate with HCoVs are localized in the corresponding subnetwork within the comprehensive human interactome

network; and (ii) proteins that serve as drug targets for a specific disease may also be suitable drug targets for potential antiviral infection owing to

common protein–protein interactions elucidated by the human interactome.
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Fig. 2 (See legend on next page.)
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HCoV–host interactome network

To depict the HCoV–host interactome network, we

assembled the CoV-associated host proteins from four

known HCoVs (SARS-CoV, MERS-CoV, HCoV-229E,

and HCoV-NL63), one mouse MHV, and one avian IBV

(N protein) (Supplementary Table S3). In total, we

obtained 119 host proteins associated with CoVs with

various experimental evidence. Specifically, these host

proteins are either the direct targets of HCoV proteins or

are involved in crucial pathways of HCoV infection. The

HCoV–host interactome network is shown in Fig. 3a. We

identified several hub proteins including JUN, XPO1,

NPM1, and HNRNPA1, with the highest number of

connections within the 119 proteins. KEGG pathway

enrichment analysis revealed multiple significant biologi-

cal pathways (adjusted P value < 0.05), including measles,

RNA transport, NF-kappa B signaling, Epstein-Barr virus

infection, and influenza (Fig. 3b). Gene ontology (GO)

biological process enrichment analysis further confirmed

multiple viral infection-related processes (adjusted P value

< 0.001), including viral life cycle, modulation by virus of

host morphology or physiology, viral process, positive

regulation of viral life cycle, transport of virus, and virion

attachment to host cell (Fig. 3c). We then mapped the

known drug–target network (see Materials and methods)

into the HCoV–host interactome to search for druggable,

cellular targets. We found that 47 human proteins (39%,

blue nodes in Fig. 3a) can be targeted by at least one

approved drug or experimental drug under clinical trials.

For example, GSK3B, DPP4, SMAD3, PARP1, and IKBKB

are the most targetable proteins. The high druggability of

HCoV–host interactome motivates us to develop a drug

repurposing strategy by specifically targeting cellular

proteins associated with HCoVs for potential treatment of

2019-nCoV/SARS-CoV-2.

Network-based drug repurposing for HCoVs

The basis for the proposed network-based drug repur-

posing methodologies rests on the notions that the pro-

teins that associate with and functionally govern viral

infection are localized in the corresponding subnetwork

(Fig. 1a) within the comprehensive human interactome

network. For a drug with multiple targets to be effective

against an HCoV, its target proteins should be within or

in the immediate vicinity of the corresponding

subnetwork in the human protein–protein interactome

(Fig. 1), as we demonstrated in multiple diseases13,22,23,28

using this network-based strategy. We used a state-of-the-

art network proximity measure to quantify the relation-

ship between HCoV-specific subnetwork (Fig. 3a) and

drug targets in the human interactome. We constructed a

drug–target network by assembling target information for

more than 2000 FDA-approved or experimental drugs

(see Materials and methods). To improve the quality and

completeness of the human protein interactome network,

we integrated PPIs with five types of experimental data:

(1) binary PPIs from 3D protein structures; (2) binary PPIs

from unbiased high-throughput yeast-two-hybrid assays;

(3) experimentally identified kinase-substrate interactions;

(4) signaling networks derived from experimental data;

and (5) literature-derived PPIs with various experimental

evidence (see Materials and methods). We used a Z-score

(Z) measure and permutation test to reduce the study bias

in network proximity analyses (including hub nodes in the

human interactome network by literature-derived PPI

data bias) as described in our recent studies13,28.

In total, we computationally identified 135 drugs that

were associated (Z <−1.5 and P < 0.05, permutation test)

with the HCoV–host interactome (Fig. 4a, Supplementary

Tables S4 and 5). To validate bias of the pooled cellular

proteins from six CoVs, we further calculated the network

proximities of all the drugs for four CoVs with a large

number of know host proteins, including SARS-CoV,

MERS-CoV, IBV, and MHV, separately. We found that

the Z-scores showed consistency among the pooled 119

HCoV-associated proteins and other four individual CoVs

(Fig. 4b). The Pearson correlation coefficients of the

proximities of all the drugs for the pooled HCoV are 0.926

vs. SARS-CoV (P < 0.001, t distribution), 0.503 vs. MERS-

CoV (P < 0.001), 0.694 vs. IBV (P < 0.001), and 0.829 vs.

MHV (P < 0.001). These network proximity analyses offer

putative repurposable candidates for potential prevention

and treatment of HCoVs.

Discovery of repurposable drugs for HCoV

To further validate the 135 repurposable drugs against

HCoVs, we first performed gene set enrichment analysis

(GSEA) using transcriptome data of MERS-CoV and

SARS-CoV infected host cells (see Methods). These

transcriptome data were used as gene signatures for

(see figure on previous page)

Fig. 2 Phylogenetic analysis of coronaviruses. a Phylogenetic tree of coronavirus (CoV). Phylogenetic algorithm analyzed evolutionary

conservation among whole genomes of 15 coronaviruses. Red color highlights the recent emergent coronavirus, 2019-nCoV/SARS-CoV-2. Numbers

on the branches indicate bootstrap support values. The scale shows the evolutionary distance computed using the p-distance method. b Schematic

plot for HCoV genomes. The genus and host information of viruses was labeled on the left by different colors. Empty dark gray boxes represent

accessory open reading frames (ORFs). c–e The 3D structures of SARS-CoV nsp12 (PDB ID: 6NUR) (c), spike (PDB ID: 6ACK) (d), and nucleocapsid (PDB

ID: 2CJR) (e) shown were based on homology modeling. Genome information and phylogenetic analysis results are provided in Supplementary

Tables S1 and S2.
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Fig. 3 Drug-target network analysis of the HCoV–host interactome. a A subnetwork highlighting the HCoV–host interactome. Nodes represent

three types of HCoV-associated host proteins: targetgable (proteins can be targeted by approved drugs or drugs under clinical trials), non-targetable

(proteins do not have any known ligands), neighbors (protein–protein interaction partners). Edge colors indicate five types of experimental evidence

of the protein–protein interactions (see Materials and methods). 3D three-dimensional structure. b, c KEGG human pathway (b) and gene ontology

enrichment analyses (c) for the HCoV-associated proteins.
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HCoVs. Additionally, we downloaded the gene expression

data of drug-treated human cell lines from the Con-

nectivity Map (CMAP) database36 to obtain drug–gene

signatures. We calculated a GSEA score (see Methods) for

each drug and used this score as an indication of bioin-

formatics validation of the 135 drugs. Specifically, an

enrichment score (ES) was calculated for each HCoV data

set, and ES > 0 and P < 0.05 (permutation test) was used as

cut-off for a significant association of gene signatures

between a drug and a specific HCoV data set. The GSEA

score, ranging from 0 to 3, is the number of data sets that

met these criteria for a specific drug. Mesalazine (an

Fig. 4 A discovered drug-HCoV network. a A subnetwork highlighting network-predicted drug-HCoV associations connecting 135 drugs and

HCoVs. From the 2938 drugs evaluated, 135 ones achieved significant proximities between drug targets and the HCoV-associated proteins in the

human interactome network. Drugs are colored by their first-level of the Anatomical Therapeutic Chemical (ATC) classification system code. b A

heatmap highlighting network proximity values for SARS-CoV, MERS-CoV, IBV, and MHV, respectively. Color key denotes network proximity (Z-score)

between drug targets and the HCoV-associated proteins in the human interactome network. P value was computed by permutation test.
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Fig. 5 (See legend on next page.)
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approved drug for inflammatory bowel disease), sirolimus

(an approved immunosuppressive drug), and equilin (an

approved agonist of the estrogen receptor for menopausal

symptoms) achieved the highest GSEA scores of 3, fol-

lowed by paroxetine and melatonin with GSEA scores of

2. We next selected 16 high-confidence repurposable

drugs (Fig. 5a and Table 1) against HCoVs using subject

matter expertise based on a combination of factors: (i)

strength of the network-predicted associations (a smaller

network proximity score in Supplementary Table S4); (ii)

validation by GSEA analyses; (iii) literature-reported

antiviral evidence, and (iv) fewer clinically reported side

effects. Specifically, we showcased several selected

repurposable drugs with literature-reported antiviral evi-

dence as below.

Selective estrogen receptor modulators

An overexpression of estrogen receptor has been shown

to play a crucial role in inhibiting viral replication37.

Selective estrogen receptor modulators (SERMs) have

been reported to play a broader role in inhibiting viral

replication through the non-classical pathways associated

with estrogen receptor37. SERMs interfere at the post viral

entry step and affect the triggering of fusion, as the

SERMs’ antiviral activity still can be observed in the

absence of detectable estrogen receptor expression18.

Toremifene (Z= –3.23, Fig. 5a), the first generation of

nonsteroidal SERM, exhibits potential effects in blocking

various viral infections, including MERS-CoV, SARS-

CoV, and Ebola virus in established cell lines17,38. Com-

pared to the classical ESR1-related antiviral pathway,

toremifene prevents fusion between the viral and endo-

somal membrane by interacting with and destabilizing the

virus membrane glycoprotein, and eventually inhibiting

viral replication39. As shown in Fig. 5b, toremifene

potentially affects several key host proteins associated

with HCoV, such as RPL19, HNRNPA1, NPM1, EIF3I,

EIF3F, and EIF3E40,41. Equilin (Z= –2.52 and GSEA

score= 3), an estrogenic steroid produced by horses, also

has been proven to have moderate activity in inhibiting

the entry of Zaire Ebola virus glycoprotein and human

immunodeficiency virus (ZEBOV-GP/HIV)18. Altogether,

network-predicted SERMs (such as toremifene and

equilin) offer candidate repurposable drugs for 2019-

nCoV/SARS-CoV-2.

Angiotensin receptor blockers

Angiotensin receptor blockers (ARBs) have been

reported to associate with viral infection, including

HCoVs42–44. Irbesartan (Z= –5.98), a typical ARB, was

approved by the FDA for treatment of hypertension and

diabetic nephropathy. Here, network proximity analysis

shows a significant association between irbesartan’s tar-

gets and HCoV-associated host proteins in the human

interactome. As shown in Fig. 5c, irbesartan targets

SLC10A1, encoding the sodium/bile acid cotransporter

(NTCP) protein that has been identified as a functional

preS1-specific receptor for the hepatitis B virus (HBV)

and the hepatitis delta virus (HDV). Irbesartan can inhibit

NTCP, thus inhibiting viral entry45,46. SLC10A1 interacts

with C11orf74, a potential transcriptional repressor that

interacts with nsp-10 of SARS-CoV47. There are several

other ARBs (such as eletriptan, frovatriptan, and zolmi-

triptan) in which their targets are potentially associated

with HCoV-associated host proteins in the human

interactome.

Immunosuppressant or antineoplastic agents

Previous studies have confirmed the mammalian target

of rapamycin complex 1 (mTORC1) as the key factor in

regulating various viruses’ replications, including Andes

orthohantavirus and coronavirus48,49. Sirolimus (Z

= –2.35 and GSEA score= 3), an inhibitor of mammalian

target of rapamycin (mTOR), was reported to effectively

block viral protein expression and virion release effec-

tively50. Indeed, the latest study revealed the clinical

application: sirolimus reduced MERS-CoV infection by

over 60%51. Moreover, sirolimus usage in managing

patients with severe H1N1 pneumonia and acute

respiratory failure can improve those patients’ prognosis

significantly50. Mercaptopurine (Z= –2.44 and GSEA

score= 1), an antineoplastic agent with immunosup-

pressant property, has been used to treat cancer since the

1950s and expanded its application to several auto-

immune diseases, including rheumatoid arthritis, systemic

lupus erythematosus, and Crohn’s disease52.

(see figure on previous page)

Fig. 5 A discovered drug-protein-HCoV network for 16 candidate repurposable drugs. a Network-predicted evidence and gene set

enrichment analysis (GSEA) scores for 16 potential repurposable drugs for HCoVs. The overall connectivity of the top drug candidates to the HCoV-

associated proteins was examined. Most of these drugs indirectly target HCoV-associated proteins via the human protein–protein interaction

networks. All the drug–target-HCoV-associated protein connections were examined, and those proteins with at least five connections are shown. The

box heights for the proteins indicate the number of connections. GSEA scores for eight drugs were not available (NA) due to the lack of

transcriptome profiles for the drugs. b–e Inferred mechanism-of-action networks for four selected drugs: b toremifene (first-generation nonsteroidal-

selective estrogen receptor modulator), c irbesartan (an angiotensin receptor blocker), d mercaptopurine (an antimetabolite antineoplastic agent

with immunosuppressant properties), and e melatonin (a biogenic amine for treating circadian rhythm sleep disorders).
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Table 1 Top 16 network-predicted repurposable drugs with literature-derived antiviral evidence.
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Mercaptopurine has been reported as a selective inhibitor

of both SARS-CoV and MERS-CoV by targeting papain-

like protease which plays key roles in viral maturation and

antagonism to interferon stimulation53,54. Mechan-

istically, mercaptopurine potentially target several host

proteins in HCoVs, such as JUN, PABPC1, NPM1, and

NCL40,55 (Fig. 5d).

Anti-inflammatory agents

Inflammatory pathways play essential roles in viral

infections56,57. As a biogenic amine, melatonin (N-acetyl-

5-methoxytryptamine) (Z= –1.72 and GSEA score= 2)

plays a key role in various biological processes, and offers

a potential strategy in the management of viral infec-

tions58,59. Viral infections are often associated with

immune-inflammatory injury, in which the level of oxi-

dative stress increases significantly and leaves negative

effects on the function of multiple organs60. The anti-

oxidant effect of melatonin makes it a putative candidate

drug to relieve patients’ clinical symptoms in antiviral

treatment, even though melatonin cannot eradicate or

even curb the viral replication or transcription61,62. In

addition, the application of melatonin may prolong

patients’ survival time, which may provide a chance for

patients’ immune systems to recover and eventually era-

dicate the virus. As shown in Fig. 5e, melatonin indirectly

targets several HCoV cellular targets, including ACE2,

BCL2L1, JUN, and IKBKB. Eplerenone (Z= –1.59), an

aldosterone receptor antagonist, is reported to have a

similar anti-inflammatory effect as melatonin. By inhi-

biting mast-cell-derived proteinases and suppressing

fibrosis, eplerenone can improve survival of mice infected

with encephalomyocarditis virus63.

In summary, our network proximity analyses offer

multiple candidate repurposable drugs that target diverse

cellular pathways for potential prevention and treatment

of 2019-nCoV/SARS-CoV-2. However, further preclinical

experiments64 and clinical trials are required to verify the

clinical benefits of these network-predicted candidates

before clinical use.

Network-based identification of potential drug

combinations for 2019-nCoV/SARS-CoV-2

Drug combinations, offering increased therapeutic effi-

cacy and reduced toxicity, play an important role in

treating various viral infections65. However, our ability to

identify and validate effective combinations is limited by a

combinatorial explosion, driven by both the large number

of drug pairs and dosage combinations. In our recent

study, we proposed a novel network-based methodology

to identify clinically efficacious drug combinations28.

Relying on approved drug combinations for hypertension

and cancer, we found that a drug combination was ther-

apeutically effective only if it was captured by the

“Complementary Exposure” pattern: the targets of the

drugs both hit the disease module, but target separate

neighborhoods (Fig. 6a). Here we sought to identify drug

combinations that may provide a synergistic effect in

potentially treating 2019-nCoV/SARS-CoV-2 with well-

defined mechanism-of-action by network analysis. For the

16 potential repurposable drugs (Fig. 5a, Table 1), we

showcased three network-predicted candidate drug

combinations for 2019-nCoV/SARS-CoV-2. All predicted

possible combinations can be found in Supplementary

Table S6.

Sirolimus plus Dactinomycin

Sirolimus, an inhibitor of mTOR with both antifungal

and antineoplastic properties, has demonstrated to

improve outcomes in patients with severe H1N1 pneu-

monia and acute respiratory failure50. The mTOR sig-

naling plays an essential role for MERS-CoV infection66.

Dactinomycin, also known actinomycin D, is an approved

RNA synthesis inhibitor for treatment of various cancer

types. An early study showed that dactinomycin (1 μg/ml)

inhibited the growth of feline enteric CoV67. As shown in

Fig. 6b, our network analysis shows that sirolimus and

dactinomycin synergistically target HCoV-associated host

protein subnetwork by “Complementary Exposure” pat-

tern, offering potential combination regimens for treat-

ment of HCoV. Specifically, sirolimus and dactinomycin

may inhibit both mTOR signaling and RNA synthesis

pathway (including DNA topoisomerase 2-alpha

(TOP2A) and DNA topoisomerase 2-beta (TOP2B)) in

HCoV-infected cells (Fig. 6b).

Toremifene plus Emodin

Toremifene is among the approved first-generation

nonsteroidal SERMs for the treatment of metastatic breast

cancer68. SERMs (including toremifene) inhibited Ebola

virus infection18 by interacting with and destabilizing the

Ebola virus glycoprotein39. In vitro assays have demon-

strated that toremifene inhibited growth of MERS-

CoV17,69 and SARA-CoV38 (Table 1). Emodin, an

anthraquinone derivative extracted from the roots of

rheum tanguticum, has been reported to have various

anti-virus effects. Specifically, emdoin inhibited SARS-

CoV-associated 3a protein70, and blocked an interaction

between the SARS-CoV spike protein and ACE2 (ref. 71).

Altogether, network analyses and published experimental

data suggested that combining toremifene and emdoin

offered a potential therapeutic approach for 2019-nCoV/

SARS-CoV-2 (Fig. 6c).

Mercaptopurine plus Melatonin

As shown in Fig. 5a, targets of both mercaptopurine and

melatonin showed strong network proximity with HCoV-

associated host proteins in the human interactome
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network. Recent in vitro and in vivo studies identified

mercaptopurine as a selective inhibitor of both SARS-CoV

and MERS-CoV by targeting papain-like protease53,54.

Melatonin was reported in potential antiviral infection via

its anti-inflammatory and antioxidant effects58–62. Mela-

tonin indirectly regulates ACE2 expression, a key entry

receptor involved in viral infection of HCoVs, including

2019-nCoV/SARS-CoV-2 (ref. 33). Specifically, melatonin

was reported to inhibit calmodulin and calmodulin

interacts with ACE2 by inhibiting shedding of its ecto-

domain, a key infectious process of SARS-CoV72,73. JUN,

also known as c-Jun, is a key host protein involving in

HCoV infectious bronchitis virus74. As shown in Fig. 6d,

mercaptopurine and melatonin may synergistically block

c-Jun signaling by targeting multiple cellular targets. In

summary, combination of mercaptopurine and melatonin

may offer a potential combination therapy for 2019-

nCoV/SARS-CoV-2 by synergistically targeting papain-

like protease, ACE2, c-Jun signaling, and anti-

inflammatory pathways (Fig. 6d). However, further

experimental observations on ACE2 pathways by mela-

tonin in 2019-nCoV/SARS-CoV-2 are highly warranted.

Discussion
In this study, we presented a network-based metho-

dology for systematic identification of putative repurpo-

sable drugs and drug combinations for potential

treatment of 2019-nCoV/SARS-CoV-2. Integration of

drug–target networks, HCoV–host interactions, HCoV-

induced transcriptome in human cell lines, and human

protein–protein interactome network are essential for

such identification. Based on comprehensive evaluation,

we prioritized 16 candidate repurposable drugs (Fig. 5)

and 3 potential drug combinations (Fig. 6) for targeting

2019-nCoV/SARS-CoV-2. However, although the major-

ity of predictions have been validated by various literature

data (Table 1), all network-predicted repurposable drugs

and drug combinations must be validated in various 2019-

nCoV/SARS-CoV-2 experimental assays64 and rando-

mized clinical trials before being used in patients.

We acknowledge several limitations in the current

study. Although 2019-nCoV/SARS-CoV-2 shared high

nucleotide sequence identity with other HCoVs (Fig. 2),

our predictions are not 2019-nCoV/SARS-CoV-2 specific

by lack of the known host proteins on 2019-nCoV/SARS-

CoV-2. We used a low binding affinity value of 10 μM as a

threshold to define a physical drug–target interaction.

However, a stronger binding affinity threshold (e.g., 1 μM)

may be a more suitable cut-off in drug discovery, although

it will generate a smaller drug–target network. Although

sizeable efforts were made for assembling large scale,

experimentally reported drug–target networks from

publicly available databases, the network data may be

incomplete and some drug–target interactions may be

functional associations, instead of physical bindings. For

example, Silvestrol, a natural product from the flavagline,

was found to have antiviral activity against Ebola75 and

Coronaviruses76. After adding its target, an RNA helicase

enzyme EIF4A76, silvestrol was predicted to be sig-

nificantly associated with HCoVs (Z= –1.24, P= 0.041)

by network proximity analysis. To increase coverage of

drug–target networks, we may use computational

approaches to systematically predict the drug-target

interactions further25,26. In addition, the collected

virus–host interactions are far from completeness and the

quality can be influenced by multiple factors, including

different experimental assays and human cell line models.

We may computationally predict a new virus–host

interactome for 2019-nCoV/SARS-CoV-2 using

sequence-based and structure-based approaches77. Drug

targets representing nodes within cellular networks are

often intrinsically coupled with both therapeutic and

adverse profiles78, as drugs can inhibit or activate protein

functions (including antagonists vs. agonists). The current

systems pharmacology model cannot separate therapeutic

(antiviral) effects from those predictions due to lack of

detailed pharmacological effects of drug targets and

unknown functional consequences of virus–host interac-

tions. Comprehensive identification of the virus–host

interactome for 2019-nCoV/SARS-CoV-2, with specific

biological effects using functional genomics assays79,80,

will significantly improve the accuracy of the proposed

network-based methodologies further.

Owing to a lack of the complete drug-target information

(such as the molecular “promiscuity” of drugs), the

dose–response and dose–toxicity effects for both

(see figure on previous page)

Fig. 6 Network-based rational design of drug combinations for 2019-nCoV/SARS-CoV-2. a The possible exposure mode of the HCoV-

associated protein module to the pairwise drug combinations. An effective drug combination will be captured by the “Complementary Exposure”

pattern: the targets of the drugs both hit the HCoV–host subnetwork, but target separate neighborhoods in the human interactome network. ZCA
and ZCB denote the network proximity (Z-score) between targets (Drugs A and B) and a specific HCoV. SAB denotes separation score (see Materials

and methods) of targets between Drug A and Drug B. b–d Inferred mechanism-of-action networks for three selected pairwise drug combinations:

b sirolimus (a potent immunosuppressant with both antifungal and antineoplastic properties) plus dactinomycin (an RNA synthesis inhibitor for

treatment of various tumors), c toremifene (first-generation nonsteroidal-selective estrogen receptor modulator) plus emodin (an experimental drug

for the treatment of polycystic kidney), and d melatonin (a biogenic amine for treating circadian rhythm sleep disorders) plus mercaptopurine (an

antimetabolite antineoplastic agent with immunosuppressant properties).
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repurposable drugs and drug combinations cannot be

identified in the current network models. For example,

Mesalazine, an approved drug for inflammatory bowel

disease, is a top network-predicted repurposable drug

associated with HCoVs (Fig. 5a). Yet, several clinical

studies showed the potential pulmonary toxicities

(including pneumonia) associated with mesalazine

usage81,82. Integration of lung-specific gene expression23

of 2019-nCoV/SARS-CoV-2 host proteins and physiolo-

gically based pharmacokinetic modeling83 may reduce

side effects of repurposable drugs or drug combinations.

Preclinical studies are warranted to evaluate in vivo effi-

ciency and side effects before clinical trials. Furthermore,

we only limited to predict pairwise drug combinations

based on our previous network-based framework28.

However, we expect that our methodology remain to be a

useful network-based tool for prediction of combining

multiple drugs toward exploring network relationships of

multiple drugs’ targets with the HCoV–host subnetwork

in the human interactome. Finally, we aimed to system-

atically identify repurposable drugs by specifically target-

ing nCoV host proteins only. Thus, our current network

models cannot predict repurposable drugs from the

existing anti-virus drugs that target virus proteins only.

Thus, combination of the existing anti-virus drugs (such

as remdesivir64) with the network-predicted repurposable

drugs (Fig. 5) or drug combinations (Fig. 6) may improve

coverage of current network-based methodologies by

utilizing multi-layer network framework16.

In conclusion, this study offers a powerful, integrative

network-based systems pharmacology methodology for

rapid identification of repurposable drugs and drug

combinations for the potential treatment of 2019-nCoV/

SARS-CoV-2. Our approach can minimize the transla-

tional gap between preclinical testing results and clinical

outcomes, which is a significant problem in the rapid

development of efficient treatment strategies for the

emerging 2019-nCoV/SARS-CoV-2 outbreak. From a

translational perspective, if broadly applied, the network

tools developed here could help develop effective treat-

ment strategies for other emerging viral infections and

other human complex diseases as well.

Methods and materials
Genome information and phylogenetic analysis

In total, we collected DNA sequences and protein

sequences for 15 HCoVs, including three most recent

2019-nCoV/SARS-CoV-2 genomes, from the NCBI

GenBank database (28 January 2020, Supplementary

Table S1). Whole-genome alignment and protein

sequence identity calculation were performed by Multiple

Sequence Alignment in EMBL-EBI database (https://

www.ebi.ac.uk/) with default parameters. The neighbor

joining (NJ) tree was computed from the pairwise

phylogenetic distance matrix using MEGA X84 with 1000

bootstrap replicates. The protein alignment and phylo-

genetic tree of HCoVs were constructed by MEGA X84.

Building the virus–host interactome

We collected HCoV–host protein interactions from

various literatures based on our sizeable efforts. The

HCoV-associated host proteins of several HCoVs,

including SARS-CoV, MERS-CoV, IBV, MHV, HCoV-

229E, and HCoV-NL63 were pooled. These proteins were

either the direct targets of HCoV proteins or were

involved in critical pathways of HCoV infection identified

by multiple experimental sources, including high-

throughput yeast-two-hybrid (Y2H) systems, viral pro-

tein pull-down assay, in vitro co-immunoprecipitation

and RNA knock down experiment. In total, the virus–host

interaction network included 6 HCoVs with 119 host

proteins (Supplementary Table S3).

Functional enrichment analysis

Next, we performed Kyoto Encyclopedia of Genes and

Genomes (KEGG) and Gene Ontology (GO) enrichment

analyses to evaluate the biological relevance and func-

tional pathways of the HCoV-associated proteins. All

functional analyses were performed using Enrichr85.

Building the drug–target network

Here, we collected drug–target interaction information

from the DrugBank database (v4.3)86, Therapeutic Target

Database (TTD)87, PharmGKB database, ChEMBL

(v20)88, BindingDB89, and IUPHAR/BPS Guide to

PHARMACOLOGY90. The chemical structure of each

drug with SMILES format was extracted from Drug-

Bank86. Here, drug–target interactions meeting the fol-

lowing three criteria were used: (i) binding affinities,

including Ki, Kd, IC50, or EC50 each ≤10 μM; (ii) the target

was marked as “reviewed” in the UniProt database91; and

(iii) the human target was represented by a unique Uni-

Prot accession number. The details for building the

experimentally validated drug–target network are pro-

vided in our recent studies13,23,28.

Building the human protein–protein interactome

To build a comprehensive list of human PPIs, we

assembled data from a total of 18 bioinformatics and

systems biology databases with five types of experimental

evidence: (i) binary PPIs tested by high-throughput yeast-

two-hybrid (Y2H) systems; (ii) binary, physical PPIs from

protein 3D structures; (iii) kinase-substrate interactions

by literature-derived low-throughput or high-throughput

experiments; (iv) signaling network by literature-derived

low-throughput experiments; and (v) literature-curated

PPIs identified by affinity purification followed by mass

spectrometry (AP-MS), Y2H, or by literature-derived low-
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throughput experiments. All inferred data, including

evolutionary analysis, gene expression data, and metabolic

associations, were excluded. The genes were mapped to

their Entrez ID based on the NCBI database92 as well as

their official gene symbols based on GeneCards (https://

www.genecards.org/). In total, the resulting human

protein–protein interactome used in this study includes

351,444 unique PPIs (edges or links) connecting 17,706

proteins (nodes), representing a 50% increase in the

number of the PPIs we have used previously. Detailed

descriptions for building the human protein–protein

interactome are provided in our previous studies13,23,28,93.

Network proximity measure

We posit that the human PPIs provide an unbiased,

rational roadmap for repurposing drugs for potential

treatment of HCoVs in which they were not originally

approved. Given C, the set of host genes associated with a

specific HCoV, and T, the set of drug targets, we com-

puted the network proximity of C with the target set T of

each drug using the “closest” method:

dCTh i ¼
1

jjCjj þ jjT jj

X

c2C

mint2T d c; tð Þ þ
X

t2T

minc2C d c; tð Þ

 !

;

ð1Þ

where d(c, t) is the shortest distance between gene c and t

in the human protein interactome. The network proxi-

mity was converted to Z-score based on permutation

tests:

ZdCT ¼
dCT � dr

σr

;
ð2Þ

where dr and σr were the mean and standard deviation of

the permutation test repeated 1000 times, each time with

two randomly selected gene lists with similar degree

distributions to those of C and T. The corresponding

P value was calculated based on the permutation test

results. Z-score <−1.5 and P < 0.05 were considered

significantly proximal drug–HCoV associations. All net-

works were visualized using Gephi 0.9.2 (https://gephi.org/).

Network-based rational prediction of drug combinations

For this network-based approach for drug combinations

to be effective, we need to establish if the topological

relationship between two drug–target modules reflects

biological and pharmacological relationships, while also

quantifying their network-based relationship between

drug targets and HCoV-associated host proteins

(drug–drug–HCoV combinations). To identify potential

drug combinations, we combined the top lists of drugs.

Then, “separation” measure SAB was calculated for each

pair of drugs A and B using the following method:

SAB ¼ dABh i �
dAAh i þ dBBh i

2
;

ð3Þ

where d�h i was calculated based on the “closest” method.

Our key methodology is that a drug combination is

therapeutically effective only if it follows a specific

relationship to the disease module, as captured by

Complementary Exposure patterns in targets’ modules of

both drugs without overlapping toxic mechanisms28.

Gene set enrichment analysis

We performed the gene set enrichment analysis as an

additional prioritization method. We first collected three

differential gene expression data sets of hosts infected by

HCoVs from the NCBI Gene Expression Omnibus (GEO).

Among them, two transcriptome data sets were SARS-

CoV-infected samples from patient’s peripheral blood94

(GSE1739) and Calu-3 cells95 (GSE33267), respectively.

One transcriptome data set was MERS-CoV-infected

Calu-3 cells96 (GSE122876). Adjusted P value less than

0.01 was defined as differentially expressed genes. These

data sets were used as HCoV–host signatures to evaluate

the treatment effects of drugs. Differential gene expres-

sion in cells treated with various drugs were retrieved

from the Connectivity Map (CMAP) database36, and were

used as gene profiles for the drugs. For each drug that was

in both the CMAP data set and our drug–target network,

we calculated an enrichment score (ES) for each HCoV

signature data set based on previously described meth-

ods97 as follows:

ES ¼
ESup � ESdown; sgn ESup

� �

≠ sgn ESdownð Þ

0; else

(

ð4Þ

ESup and ESdown were calculated separately for the up-

and down-regulated genes from the HCoV signature data

set using the same method. We first computed aup/down
and bup/down as

a ¼ max
1�j�s

j

s
�
V jð Þ

r

� �

; ð5Þ

b ¼ max
1�j�s

V jð Þ

r
�
j� 1

s

� �

; ð6Þ

where j= 1, 2, …, s were the genes of HCoV signature

data set sorted in ascending order by their rank in the

gene profiles of the drug being evaluated. The rank of

gene j is denoted by V(j), where 1 ≤V(j) ≤ r, with r being

the number of genes (12,849) from the drug profile. Then,
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ESup/down was set to aup/down if aup/down > bup/down, and

was set to −bup/down if bup/down > aup/down. Permutation

tests repeated 100 times using randomly generated gene

lists with the same number of up- and down-regulated

genes as the HCoV signature data set were performed to

measure the significance of the ES scores. Drugs were

considered to have potential treatment effect if ES > 0 and

P < 0.05, and the number of such HCoV signature data

sets were used as the final GSEA score that ranges from

0 to 3.
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