
  ACCEPTED VERSION 
 
 

Peng Shi, Huijiao Wang, and Cheng-Chew Lim 
Network-based event-triggered control for singular systems with quantizations 
IEEE Transactions on Industrial Electronics, 2016; 63(2):1230-1238 
 
 
© 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE 
permission. 

Published version available at: http://dx.doi.org/10.1109/TIE.2015.2475515 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://hdl.handle.net/2440/99220 

PERMISSIONS 

http://www.ieee.org/publications_standards/publications/rights/rights_policies.html 

 

 

Authors and/or their employers shall have the right to post the accepted version of 
IEEE-copyrighted articles on their own personal servers or the servers of their 
institutions or employers without permission from IEEE, provided that the posted 
version includes a prominently displayed IEEE copyright notice (as shown in 8.1.9.B, 
above) and, when published, a full citation to the original IEEE publication, including a 
Digital Object Identifier (DOI). Authors shall not post the final, published versions of 
their articles. 

 

 

 

21 September 2016 

http://dx.doi.org/10.1109/TIE.2015.2475515
http://hdl.handle.net/2440/99220
http://www.ieee.org/publications_standards/publications/rights/rights_policies.html


IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS 1

Network-Based Event-Triggered Control for
Singular Systems With Quantizations

Peng Shi, Fellow, IEEE , Huijiao Wang, and Cheng-Chew Lim, Senior Member, IEEE

Abstract—This paper investigates the problem of event-
triggered H∞ control for a networked singular system
with both state and input subject to quantizations. First,
a discrete event-triggered scheme, which activates only at
each sampling instance, is presented. Next, two new sector
bound conditions of quantizers are proposed to provide
a more intuitive stability analysis and controller design.
Then, network conditions, quantizations, and the event-
triggered scheme are modeled as a time-delay system. With
this model, the criteria are derived for H∞ performance
analysis, and codesigning methods are developed for the
event trigger and the quantized state feedback controller.
An inverted pendulum controlled through the network is
given to demonstrate the effectiveness and potential of the
new design techniques.

Index Terms—Event-triggered control, networked singu-
lar system, quantization, sector bound condition.

I. INTRODUCTION

E
VENT-TRIGGERED schemes, where the sampled signal

is transmitted according to an event-triggered condition

other than a fixed time interval, have received increasing atten-

tion due to its capacity for reducing communication load. Many

results have been reported on the problem of event-triggered

control or event-based control, such as [1]–[4] and the reference

therein. Among them are two types of event-triggered scheme:

one with a continuous event-triggered condition [1], [2], and

the other with is a discrete event-triggered condition [3], [4].

The continuous event trigger relies on additional hardware to

continuously supervise the system state to detect whether the
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current state exceeds a trigger threshold. Moreover, the con-

tinuous event-triggered scheme can only be effective under a

given controller, and the controller and the triggered parameters

cannot easily be codesigned. In the discrete event-triggered

scheme, the triggered condition is detected in discrete sampled

instants, and incorporating a codesign algorithm is readily

achievable for most practical systems.

In networked control systems (NCSs), the sharing of limited

network bandwidth often causes network-induced delays, and

data packet dropouts and disorder, which can deteriorate the

performance and even destabilize the systems [5]–[11]. In the

past decade, many methods have been developed to deal with

these network-induced challenging issues, for example, the fil-

tering, identification, and estimation problem in [12]–[15] and

the output feedback problem in [16]–[18]. However, most are

based on a time-triggered scheme, which can be inefficient in

terms of reducing the utilization of limited network bandwidth.

Furthermore, quantization problems inherent in sampled-

data systems have been investigated in recent years [19]–[24].

It was shown in [25] that the coarsest quantizer is logarithmic,

and the sector bound method is applicable for stabilizing lin-

ear single-input–single-output systems with state quantization.

The sector bound method in [25] was extended to multiple-

input–multiple-output systems in [26] and to guaranteed cost

control of continuous systems over networks with state and

input quantizations in [27]. In addition, the networked H∞
control for continuous-time linear systems with state quantiza-

tion was discussed in [28], and the problem of H∞ estimation

was studied in [29]. The reset quantized state control problem

was studied in [30] and [31]. Meanwhile, singular systems are

frequently encountered in electronic and economic systems,

aerospace, and chemical industries [32]–[36]. Hence, there will

be a profound meaning applying quantized control to singular

systems. Indeed, the problem of a networked H∞ filter for sin-

gular systems with state quantization was investigated in [6] by

the similar method used in [29]. However, when using the sector

bound method, the quantization errors have been regarded as

a class of uncertainties, which present difficulties in controller

design. To the best of the authors’ knowledge, although discrete

event-triggered control for linear systems has been discussed

in [3] and [4], there is no result reported on event-triggered

control for networked singular systems that are subject to quan-

tizations. This motivates the research presented in this paper.

The works most pertinent to this paper are [37] and [38].

In fact, this paper stems from the following motivations. First,

the quantized control under event-triggered networked systems

investigated in [37] is novel but only for regular systems. On
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the other hand, the new sector bound approach used in [38] is

under a time-triggered scheme, which has its useful properties,

but may lead to the unnecessary usage of limited communica-

tion resources. Our aim here is to find a more effective and

efficient discrete event-triggered scheme, which only detects

the difference between the states sampled in discrete instants

regardless of what happens in between updates, and to codesign

the event-triggered H∞ controller for networked singular sys-

tems taking into account both communication delays and signal

quantizations.

In this paper, the problem of event-trigged H∞ control for

networked singular systems with both state and control input

quantizations is investigated. Our contributions are as follows:

1) A new sector bound approach, by which no transformation is

needed from system models to uncertain systems, is presented;

2) a discrete event-triggered scheme that only needs supervi-

sion of the system state in discrete instants is presented for

networked singular systems; and 3) a unified framework, which

takes network-induced delays, state and input quantizations,

and event triggers into account, is given for codesigning the

event detector and the state feedback controller.

The remainder of this paper is organized as follows.

Section II formulates the problem. H∞ performance analysis

and quantized state feedback controller design are presented

in Section III. Illustrative examples are given in Section IV to

demonstrate the effectiveness of the presented method. Finally,

this paper is concluded in Section V.

Notations: Throughout this paper, the superscripts “T ” and

“−1” stand for the transpose of a matrix and the inverse of a

matrix; Rn denotes n-dimensional Euclidean space; Rn×m is

the set of all real matrices with n rows and m columns; P > 0
means that P is positive definite; I is the identity matrix with

appropriate dimensions; the space of square-integrable vector

functions over [0,∞) is denoted by L2[0,∞), and for w(t) ∈
L2[0,∞), its norm is given by ‖w(t)‖2 =

√∫∞
0 |w(t)|2dt; for

a symmetric matrix, ∗ denotes the matrix entries implied by

symmetry.

II. PROBLEM FORMULATION

A. Plant Description

The networked singular system, as shown in Fig. 1, com-

prises a continuous-time-controlled singular system, a set of

sensors to provide the state signals, an event detector, two

quantizers f(·) and g(·), a zero-order hold (ZOH), actuators,

and a data network.

The networked singular system is described as follows:

{
Eẋ(t) = Ax(t) +Bu(t) +Gw(t)

z(t) = Cx(t) +Du(t) + Fw(t)
(1)

where x(t) ∈ R
n is the state vector, u(t) ∈ R

m is the control

input vector, w(t) ∈ R
p is the disturbance input, and z(t) ∈ R

q

is the controlled output of the plant. The matrices A, B, C, D,

E, F , and G are constant matrices with appropriate dimensions,

where E may be singular, and we assume that rank E = r ≤

Fig. 1. Block diagram of an event-triggered controlled singular system.

n. For the networked singular system shown in Fig. 1, the

following conditions are assumed in this paper.

1) The sensors are time triggered with a constant sampling

period h. The sampled x(kh) is transmitted to the event

detector and is transmitted (or released) at instant tkh by

the event detector, which is located between the sensors

and the controller. All state variables of the singular NCS

are measurable.

2) The signal in the network is transmitted with a single

packet, and the data packet loss does not occur during

transmission.

B. Event-Triggered Scheme

To reduce the utilization of the limited network bandwidth,

a discrete event-triggered scheme is proposed in this paper to

replace the conventional time-triggered mechanism [3], [4].

The event detector uses the following condition to decide

on whether the current signal should be transmitted to the

controller:

tk+1h= tkh+min
l

{
lh|eT(ikh)Φe(ikh)≥σxT(tkh)Φx(tkh)

}

(2)

where 0 ≤ σ < 1 is a given scalar parameter, Φ > 0 is a posi-

tive matrix to be determined, and e(ikh) is the error between

the two states at the latest transmitted sampling instant and

the current sampling instant, i.e., e(ikh) = x(tkh)− x(ikh),
where ikh = tkh+ lh, l ∈ N.

When the data released at tk by the event monitor are

transmitted to the controller, it incurs a communication delay

called the sensor-to-controller delay τsc(tk). Similarly, the con-

troller forwarding the actuation signals at tk to the actuator

incurs another communication delay called the controller-to-

actuator delay τca(tk). These two network-induced delays can

be lumped together as the time-varying delay τtk , and

τtk = τsc(tk) + τca(tk), 0 ≤ τm ≤ τtk ≤ τM (3)

where τm and τM denote the lower and upper delay bounds,

respectively.
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C. Event-Triggered Quantized H∞ Control Problem

The problem of event-triggered H∞ control with quantiza-

tions to be addressed in this paper is to design a state feedback

controller, i.e.,

u(t) = Kx(t) (4)

where K is the controller gain, such that:

1) the resultant closed-loop system with w(t) = 0 is regular,

impulse free, and stable; and

2) under zero initial conditions, for any nonzero w(t) ∈
L2[0,∞), the controlled output z(t) satisfies ‖z(t)‖2 ≤
γ‖w(t)‖2, where γ is a prescribed performance index.

Considering the behavior of the ZOH, the input signal is

u(t) = g (Kf (x(tkh))) , t ∈
[
tkh+ τtk , tk+1h+ τtk+1

)
.
(5)

Refer to Fig. 1. We now denote the quantized measurement of

x(tkh) as x̃(tkh), the control signal as ũ(t), and the control

input signal as u(t). Then, at the release instant tkh, the

following equations can be deduced:





x̃(tkh) = f (x(tkh))

ũ (tkh+ τsc(tk)) = Kx̃(tkh)

u (tkh+ τtk) = g (ũ (tkh+ τsc(tk))) .

(6)

The quantizers f(·) = [f1(·), f2(·), . . . , fn(·)]T and g(·) =
[g1(·), g2(·), . . . , gp(·)]T are assumed to be symmetric,

that is, fj(−v) = −fj(v)(j = 1, 2, . . . , n) and gm(−v) =
−gm(v)(m = 1, 2, . . . , p). Similar to [27], [29], and [37], the

quantizers considered in this paper are logarithmic static and

time invariant. For each f(·), the set of quantized levels is

described as in [26] and [37] by

U =
{
±u

(j)
i , u

(j)
i = αi

ju
(j)
0 , i = ±1,±2, . . .

}
∪
{
±u

(j)
0

}

∪ {0}, 0 < αj < 1, u
(j)
0 > 0. (7)

The associated quantizer fj(·) is defined as

fj(v) =





u
(j)
i , if 1

1+σj
u
(j)
i < v ≤ 1

1−σj
u
(j)
i , v > 0

0, if v = 0

−fj(−v), if v < 0

where σj = (1 − αj)/(1 + αj), and αj is also called the quan-

tization density of quantizer fj(·). Similarly, the quantizer

gj(·)(j = 1, 2, . . . , p) is of quantization densities ρj and de-

note πj = (1 − ρj)/(1 + ρj). For a given logarithmic quantizer

fj(·), a sector bound condition was proposed as follows:

fj(v) = (I +∆f )v (8)

where ∆f = diag{∆f1 ,∆f2 , . . . ,∆fn}, and ∆fn ∈ [−σj , σj ].
For the quantizer on the controller side, the same definition can

be applied. It follows that

gj(v) = (I +∆g)v (9)

where ∆g = diag{∆g1 ,∆g2 , . . . ,∆gp}, and ∆gp ∈ [−πj , πj ].
Combining with (6)–(9), we have

u (tkh+ τtk) = (I +∆g)K(I +∆f )x(tkh)

t ∈
[
tkh+ τtk , tk+1h+ τtk+1

)
. (10)

Then, the system can be transferred to linear systems with

norm-bounded uncertainty, which was employed in [29] and

[37]. However, due to the uncertainties on both sides of con-

troller gain matrix K , the controller is difficult to design.

In the following, two new sector bound conditions of quan-

tizers are proposed. We first denote

Λ = diag{σ1, σ2, . . . , σn}, Λ0 = I − Λ,Λ1 = I + Λ

Π = diag{π1, π2, . . . , πp}, Π0 = I −Π,Π1 = I +Π.

Then, for any diagonal matrices S > 0 and H > 0, the follow-

ing inequalities hold:

[f(x(tkh))−Λ0x(tkh)]
T S [f(x(tkh))−Λ1x(tkh)]≤0 (11)

[g (Kf (x(tkh)))−Π0Kf (x(tkh))]
T H

× [g (Kf (x(tkh)))−Π1Kf (x(tkh))] ≤ 0. (12)

Remark 1: It should be mentioned that the sector bound

conditions are much simpler and more applicable. Unlike some

existing works (for example, [27], [29], and [37]), the difficulty

associated with stability analysis and H∞ controller design can

be effectively overcome by using these conditions.

Substituting (5) into (1) yields the following closed-loop

system:

{
Eẋ(t) = Ax(t) +Bg (Kf (x(tkh))) +Gw(t)

z(t) = Cx(t) +Dg (Kf (x(tkh))) + Fw(t).
(13)

D. Time-Delay Modeling

Next, using the same technique as in [37], we convert the

event-triggered NCSs (13) into a new time-delay system, which

can be analyzed by the well-developed theory on time-delay

systems. First, suppose there exists a finite positive integer

m such that tk+1 = tk +m+ 1. Then, the interval [tkh+
τtk , tk+1h+ τtk+1

) can be decomposed into the following

subintervals:

[
tkh+ τtk , tk+1h+ τtk+1

)
=

m⋃

l=0

Tl (14)

where Tl = [ikh+ τik , ikh+ h+ τik+1), ikh = tkh+ lh, l =
0, 1, . . . ,m. Moreover, x(tkh) and x(tkh+ lh) satisfy the

event-triggered sampling scheme (2).

For convenience, we denote

τ(t) = t− ikh (15)

where t ∈ Tl, and we have

0 < τm ≤ τ(t) ≤ τM + h ≡ τ̄ . (16)
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Based on the above analysis, the closed-loop system (13) can

be rewritten as





Eẋ(t)=Ax(t)+Bg (Kf (x (t−τ(t))+e(ikh)))+Gw(t)

z(t) = Cx(t) +Dg (Kf (x (t− τ(t)) + e(ikh)))

+Fw(t), t ∈
[
tkh+ τtk , tk+1h+ τtk+1

)

x(t) = φ(t), t ∈ [−τ̄ , 0)
(17)

where φ(t) is the initial function of x(t).
Remark 2: The problem formulated above differs from

some existing works concerned with quantized feedback con-

trol, for example, [6] and [38], in which only the effect of

quantization was considered. In this work, we consider not

only the effect of quantization but also the event-triggered

scheme, which is used to save the limited communication

resources, for networked singular systems. Moreover, the event-

triggered condition (2) only supervises the difference be-

tween the states sampled in discrete instants, and it needs

no extra hardware to continuously monitor the state of the

plant.

We end this section by recalling the following lemma, which

will be used in the sequel.

Lemma 1: [39] For any vectors X,Y ∈ Rn and positive-

definite matrix Q ∈ Rn×n, the following inequality holds:

2XTY ≤ XTQX + Y TQ−1Y.

III. MAIN RESULTS

Here, we consider the quantized H∞ control of the net-

worked singular system (17) under the event-triggered scheme

based on (2). We first give sufficient conditions for the closed-

loop system (17) to be regular, impulse free, and stable with an

H∞ performance index γ. Then, we propose a design method

for the quantized state feedback controller.

A. H∞ Performance Analysis

Based on the new sector bound conditions (11) and (12), we

present the following H∞ performance analysis result.

Theorem 1: Given scalars γ > 0, 0 ≤ σ < 1, τm, τ̄ , and

the controller gain matrix K , the closed-loop system (17) is

regular, impulse free, and stable with H∞ performance index

γ under the event-triggering scheme (2), if there exist matri-

ces Q1 = QT
1 > 0, Q2 = QT

2 > 0, Zi = ZT
i > 0 (i = 1, 2, 3),

Φ > 0, P,N,M , and any diagonal matrices S > 0 and H > 0
with appropriate dimensions such that

ETP = PTE ≥ 0 (18)

[
Ψ1 Ψ2

∗ Ψ3

]
< 0 (19)

where

Ψ1 =



ϕ+ Γ+ ΓT

√
τ̄N

√
τ̄M

∗ −Z3 0
∗ ∗ −Z3




Ψ2 =



T2 T1 A Z
0 0 0
0 0 0


 , Ψ3 =



−γ2I FT GTZ
∗ −I 0
∗ ∗ −Z




T1 =
[
C 0 0 0 0 0 D

]T

T2 =
[
GTP 0 0 0 0 0 0

]T

A =
[
A 0 0 0 0 0 B

]T

Z = τmZ1 + (τ̄ − τm)Z2 + 2τ̄Z3

Γ =
[
N −N +M 0 M 0 0 0

]
E

ϕ =




ϕ11 0 ϕ13 0 0 0 PTB
∗ ϕ22 0 0 ϕ25 2S 0
∗ ∗ ϕ33 ϕ34 0 0 0
∗ ∗ ∗ ϕ44 0 0 0
∗ ∗ ∗ ∗ ϕ55 2S 0
∗ ∗ ∗ ∗ ∗ ϕ66 ϕ67

∗ ∗ ∗ ∗ ∗ ∗ −2H




ϕ11 = PTA+ATP +Q1 +Q2 − (1/τm)ET (Z1 + Z3)E

ϕ13 = (1/τm)ET (Z1 + Z3)E

ϕ22 = σΦ− 2Λ1SΛ0, ϕ25 = −2Λ1SΛ0

ϕ33 = −Q1 − [1/τm + 1/(τ̄ − τm)]ET (Z1 + Z3)E

ϕ34 = [1/(τ − τm)]ET (Z2 + Z3)E

ϕ44 = −Q2 − [1/(τ − τm)]ET (Z2 + Z3)E

ϕ55 = −Φ− 2Λ1SΛ0

ϕ66 = −2S − 2KTΠ0HΠ1K,ϕ67 = 2KTH.

Proof: We first show that the networked singular system

(17) is regular and impulse free. Since rank E = r ≤ n, there

must exist two invertible matrices G̃ and H̃ ∈ R
n×n such that

Ẽ = G̃EH̃ =

[
Ir 0
0 0

]
, G̃AH̃ =

[
A1,11 A1,12

A1,21 A1,22

]
.

Similar to the method used in [35], we know that A1,22 is

nonsingular, which implies that the pair of (E,A) is regular and

impulse free, it follows that the networked singular system (17)

is regular and impulse free. In the following, we will show that

the networked singular system (17) is stable under the event-

triggering scheme (2).

Consider when the system is free from external disturbances,

with w(t) = 0. We define the following functional:

V (t) = V1(t) + V2(t) + V3(t) (20)
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where

V1(t) =xT (t)ETPx(t)

V2(t) =

t∫

t−τm

xT (s)Q1x(s)ds +

t∫

t−τ̄

xT (s)Q2x(s)ds

V3(t) =

0∫

−τm

t∫

t+θ

ẋT (s)ETZ1Eẋ(s)dθds

+

−τm∫

−τ̄

t∫

t+θ

ẋT (s)ETZ2Eẋ(s)dθds

+ 2

0∫

−τ̄

t∫

t+θ

ẋT (s)ETZ3Eẋ(s)dθds.

Taking the derivative of V (t) for t ∈ [tkh+ τtk , tk+1h+
τtk+1

), we introduce the free weighting matrices, i.e.,

ℓ1 = 2ξT(t)N


Ex(t)− Ex (t− τ(t)) −

t∫

t−τ(t)

Eẋ(s)ds


= 0

ℓ2 = 2ξT(t)M


Ex(t−τ(t))−Ex(t− τ̄)−

t−τ(t)∫

t−τ̄

Eẋ(s)ds


=0

(21)

where ξT (t) = [ηT (t) eT (ikh)], with

ηT (t) =
[
xT (t) xT (t− τ(t)) xT (t− τm) xT (t− τ̄)

]

and N and M are matrices with appropriate dimensions. Ac-

cording to Lemma 1 and combining the sector bound conditions

(11) and (12) with the event-triggered scheme (2), we have

V̇ (t) ≤ ξT (t)Ξξ(t) (22)

where Ξ=ϕ+Γ+ΓT+ τ̄NZ−1
3 NT + τ̄MZ−1

3 MT + A ZA T ,

with Z = τmZ1 + (τ̄ − τm)Z2 + 2τ̄Z3. According to Schur

complement, from (19), we have


ϕ+ Γ+ ΓT
√
τ̄N

√
τ̄M A Z

∗ −Z3 0 0
∗ ∗ −Z3 0
∗ ∗ ∗ −Z


 < 0 (23)

which means V̇ (t) < 0. Therefore, system (17) is stable.

Now, we address the H∞ performance of the networked

singular system (17). Consider when the system is subject to

external disturbances, with w(t) 
= 0. We use the following

performance index:

℘(t) =

∞∫

0

[
zT (t)z(t)− γ2wT (t)w(t)

]
dt.

Under zero initial conditions, we have

℘(t) =

∞∫

0

[
zT (t)z(t)− γ2wT (t)w(t) + V̇ (t)

]
dt− V (∞)

≤ ςT (t)

[
Ξ + T1 + T T

1 T2

∗ −γ2I + FTF +GTZG

]
ς(t)

with ςT (t) = [ξT (t) wT (t)]. By Schur complement, from (19),

we have

[
Ξ+ T1 + T T

1 T2

∗ −γ2I + FTF +GTZG

]
< 0

which means ℘(t) < 0. That is, under zero initial conditions,

for any nonzero w(t) ∈ L2[0,∞), the control output z(t) satis-

fies ‖z(t)‖2 ≤ γ‖w(t)‖2. This completes the proof. �

B. Quantized State Feedback Controller Design

Based on Theorem 1, we present the codesign algorithm for

the networked singular system (17) as follows.

Theorem 2: For given scalars γ > 0, 0 ≤ σ < 1, τm, τ̄ , and

ρi (i = 1, 2, . . . , 5), the singular NCS (17) is regular, impulse

free, and stable with an H∞ performance index γ under the

event-triggering scheme (2), if there exist matrices Q̃1 = Q̃T
1 >

0, Q̃2 = Q̃T
2 > 0, Z̃i = Z̃T

i > 0 (i = 1, 2, 3), Φ̃ > 0, Ñ , M̃ , Y ,

nonsingular P̃ and any diagonal matrices S̃ > 0, S > 0, H > 0
with appropriate dimensions such that

P̃TET = EP̃ ≥ 0 (24)[
Ψ̃1 Ψ̃2

∗ Ψ̃3

]
< 0 (25)

where

Ψ̃1 =




ϕ̃+ Γ̃ + Γ̃T
√
τ̄ Ñ

√
τ̄ M̃ T̃2 T̃1

∗ −Z̃3 0 0 0

∗ ∗ −Z̃3 0 0
∗ ∗ ∗ −γ2I FT

∗ ∗ ∗ ∗ −I




Ψ̃2 =




Ã Ã Ã T̃3 T̃4

0 0 0 0 0
0 0 0 0 0
GT GT GT 0 0
0 0 0 0 0




Ψ̃3 = diag{˜̺1, ˜̺2, ˜̺3, ˜̺4, ˜̺5}
˜̺1 =

1

τmρ21
(Z̃1−2ρ1EP̃ ), ˜̺2=

1

(τ̄−τm)ρ22
(Z̃2−2ρ2EP̃ )

˜̺3 =
1

2τ̄ρ23
(Z̃3 − 2ρ3EP̃ ), ˜̺4 =

1

2
(ρ24S − 2ρ4I)

˜̺5 =
1

2

(
ρ25H − 2ρ5I

)

T̃1 =
[
CP̃ DY 0 0 DY DY D

]T

T̃2 =
[
GT 0 0 0 0 0 0

]T

T̃3 =
[
0 ΛP̃T 0 0 ΛP̃T 0 0

]T

T̃4 =
[
0 ΠY 0 0 ΠY ΠY 0

]T

Ã =
[
AP̃ BY 0 0 BY BY B

]T

Γ̃ =
[
Ñ −Ñ + M̃ 0 M̃ 0 0 0

]
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Fig. 2. Networked inverted pendulum. (a) Inverted pendulum in the
laboratory at The University of Adelaide. (b) Schematic of the inverted
pendulum.

ϕ̃ =




ϕ̃11 BY ϕ̃13 0 BY BY B

∗ σΦ̃ 0 0 0 0 0
∗ ∗ ϕ̃33 ϕ̃34 0 0 0
∗ ∗ ∗ ϕ̃44 0 0 0

∗ ∗ ∗ ∗ −Φ̃ 0 0

∗ ∗ ∗ ∗ ∗ −2S̃ 0
∗ ∗ ∗ ∗ ∗ ∗ −2H




ϕ̃11 = AP̃ + P̃AT + Q̃1 + Q̃2 − (1/τm)(Z̃1 + Z̃3)

ϕ̃13 = (1/τm)(Z̃1 + Z̃3),

ϕ̃33 = −Q̃1 − (1/τm), (Z̃1 + Z̃3)− [1/(τ̄ − τm)] (Z̃2 + Z̃3)

ϕ̃34 = [1/(τ̄ − τm)] (Z̃2 + Z̃3),

ϕ̃44 = −Q̃2 − [1/(τ̄ − τm)] (Z̃2 + Z̃3).

Furthermore, a desired state feedback controller gain is

K = Y P̃−1. (26)

Proof: Similar to the method used in [4, Th. 2],

Theorem 2 can be proved.

IV. EXAMPLES

We use two examples to demonstrate the effectiveness of

the proposed method. The first example is a networked regular

system to show less conservatism of our results, whereas the

second example is a networked singular system to show the

effectiveness in reducing the network usage of the proposed

method.

Example 1: Consider an inverted pendulum on a cart con-

trolled over a network. The schematic of an inverted pendulum

is shown in Fig. 2, and the linearized plant model (1) is

characterized by the following parameters [3] and [37]:

E = I, A =




0 1 0 0
0 0 −mg/M 0
0 0 0 1
0 0 g

l
0


 , B =




0
1
M

0
1
Ml




where M = 10 kg is the cart mass, m = 1 kg is the mass of the

pendulum bob, l = 3 m is the length of the pendulum arm, and

g = 10 m/s2 is the gravitational acceleration.

Since the eigenvalues of A are {0, 0, 1.8257,−1.8257}, the

system is unstable without a controller. The state variables

xi (i = 1, 2, 3, 4) are the cart position, the cart velocity, the

pendulum bob angle, and the pendulum bob angular velocity.

The initial state vector is set as x0(t) = [1.5 − 0.5 0.8 − 1]T .

We consider two cases with different parameters.

Case 1—H∞ Control Without Quantizations:

C =GT = FT = [1 1 1 1], D = 0.1, Λ = Π = 0

w(t) =

{
sgn (sin(t)) , if t ∈ [0, 10]

0, others.

Case 2—H∞ Control With Quantizations:

C = GT = FT =
[
1 1 1 1

]
, D = 0.1

w(t) =

{
sgn (sin(t)) , if t ∈ [0, 10]

0, others

and the parameters for the quantizer f(·) are assumed to be

α1 = α3 = 0.9 and α2 = α4 = 0.8, that is

Λ =




0.0526 0 0 0
0 0.1111 0 0
0 0 0.0526 0
0 0 0 0.1111




whereas the quantized density of g(·) is assumed to be α1=0.9,

that is, Π = 0.0526.

In Case 1, under the conditions of h = 0.01, σ = 0.1,

τ̄= 0.16, ρ1 = ρ2 = ρ3 = 0.46, and ρ4 = ρ5 = 0.23, the H∞
performance index in [3] is γ = 200. In our scheme, according

to Theorem 2 and setting τm = 0.01, the minimum of H∞
performance index γmin = 85. The correspondent feedback

gain K2 and the event-triggering matrix Φ5 are

K2 =
[
5.8955 16.2858 334.4121 186.8863

]

Φ5 =




4.2235 −4.6241 −18.8239 33.11503
−4.6241 12.5586 44.1248 −78.4754
−18.8239 44.1248 170.8534 −302.9154
33.1150 −78.4754 −302.9154 537.1290


 .

The state responses x(t) and release instants are shown in

Fig. 3 for this setting. The number of triggers is 86 times.

In Case 2, the effect of two quantizers is considered. We set

τ̄=0.24, τm=0.01, ρ1=ρ2 = ρ3=0.44, and ρ4=ρ5=0.21,

and Table I gives the different results for different triggered

parameter values of σ. It shows that the larger the parameter
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Fig. 3. State response x(t) and release instants under K2 and Φ5.
(a) State response x(t). (b) Release instants.

TABLE I
γmin , K3 , AND Φ6 FOR DIFFERENT σ VALUES

σ, the larger the minimum value of γ. Other parameters and

values in Table I are

K3,1 =
[
4.9257 13.6401 283.3992 158.1448

]

K3,2 =
[
5.3323 14.8106 302.2490 168.8918

]

K3,3 =
[
5.0948 14.5901 304.2014 169.9699

]

K3,4 =
[
4.7482 14.0801 301.9530 168.6491

]

Φ6,1 = 102 ×




2.5368 −0.0000 −0.0000 0.0000
−0.0000 2.5368 0.0000 −0.0000
−0.0000 0.0000 2.5368 −0.0000
0.0000 −0.0000 −0.0000 2.5368




Φ6,2 =




17.0000 −8.8000 −36.6000 63.7000
−8.8000 35.9000 117.1000 −209.4000
−36.6000 117.1000 522.9000 −927.5000
63.7000 −209.4000 −927.5000 1645.3000




Φ6,3 =




7.8968 −4.4337 −21.8893 38.1572
−4.4337 16.3175 54.8386 −97.9276
−21.8893 54.8386 253.9125 −449.5681
38.1572 −97.9276 −449.5681 796.1969




Φ6,4 =




4.7845 −2.7674 −14.0746 24.5370
−2.7674 10.0585 33.4759 −59.7880
−14.0746 33.4759 155.5644 −275.2709
24.5370 −59.7880 −275.2709 487.2295


 .

Fig. 4 shows the state responses x(t) and release instants. Over

the simulation period, there are 82 triggers. We remark that if a

time-triggered scheme is used instead, the number of triggers

will be 3000 times. The result is a clear indication that our

Fig. 4. State response x(t) and release instants under K3,4. (a) State
response x(t). (b) Release instants.

event-triggered approach is efficient in terms of utilizing the

network bandwidth resource.

Example 2: This example illustrates the quantized H∞
control on a singular NCS. Consider the singular NCS (1). The

associated parameters are

E =




1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1


, A=




0 1 0 0
0 0 −1 0
0 0 0 1
0 0 0.3 0


, B=




0
0.1
0

0.033




C = GT = FT =
[
1 1 1 1

]
, D = 0.1

w(t) =

{
sgn (sin(t)) , if t ∈ [0, 10]

0, others.

The parameters for the quantizer f(·) are taken as α1=α3=0.9
and α2 = α4 = 0.8. We set τ̄ = 0.24, τm = 0.01, ρ1 = ρ2 =
ρ3 = 0.44, ρ4 = ρ5 = 0.21, and σ = 0.02, and according to

Theorem 2, the minimum H∞ performance index γmin=51.36.

The corresponding feedback gain and the event-triggered

matrix are

K5 =
[
2.5480 9.3207 237.6465 161.8992

]

Φ8 =




2.0941 −0.0477 −0.0049 −0.2502
−0.0477 1.7747 −0.2384 −0.1521
−0.0049 −0.2384 0.0713 −0.0431
−0.2502 −0.1521 −0.0431 0.1580


 .

Furthermore, the initial state is x0(t) = [1.5 − 0.5 0.8 − 1]T ,

and the state responses for x(t) and the release instants are

shown in Fig. 5. We observe that the number of triggers is 627,

which is much lower than 15 000 triggers when using the time-

triggered scheme. The result again demonstrates the capability

of the event-triggered approach in reducing the network band-

width usage.

V. CONCLUSION

Aiming to reduce the load of network communication, the

problem of event-triggered H∞ control for networked singular
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Fig. 5. State response x(t) and release instants under K5. (a) State
response x(t). (b) Release instants.

systems with quantizations in both the measured states and

the generated control inputs has been studied in this paper.

By considering the characteristics of event-triggered schemes

and taking the quantizations into account, we presented a new

time-delay model. Based on this model, we derived a new

H∞ performance criterion that guarantees that the closed-loop

system of the singular networked system is regular, impulse

free, and stable with a prescribedH∞ performance index γ. The

codesign of the event-triggered condition and the state feedback

controller has also been derived based on a free-weighting-

matrix approach. Two examples have been given to show the

effectiveness of the theoretical results obtained.
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Network-Based Event-Triggered Control for
Singular Systems With Quantizations

Peng Shi, Fellow, IEEE , Huijiao Wang, and Cheng-Chew Lim, Senior Member, IEEE

Abstract—This paper investigates the problem of event-
triggered H∞ control for a networked singular system
with both state and input subject to quantizations. First,
a discrete event-triggered scheme, which activates only at
each sampling instance, is presented. Next, two new sector
bound conditions of quantizers are proposed to provide
a more intuitive stability analysis and controller design.
Then, network conditions, quantizations, and the event-
triggered scheme are modeled as a time-delay system. With
this model, the criteria are derived for H∞ performance
analysis, and codesigning methods are developed for the
event trigger and the quantized state feedback controller.
An inverted pendulum controlled through the network is
given to demonstrate the effectiveness and potential of the
new design techniques.

Index Terms—Event-triggered control, networked singu-
lar system, quantization, sector bound condition.

I. INTRODUCTION

E
VENT-TRIGGERED schemes, where the sampled signal

is transmitted according to an event-triggered condition

other than a fixed time interval, have received increasing atten-

tion due to its capacity for reducing communication load. Many

results have been reported on the problem of event-triggered

control or event-based control, such as [1]–[4] and the reference

therein. Among them are two types of event-triggered scheme:

one with a continuous event-triggered condition [1], [2], and

the other with is a discrete event-triggered condition [3], [4].

The continuous event trigger relies on additional hardware to

continuously supervise the system state to detect whether the
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current state exceeds a trigger threshold. Moreover, the con-

tinuous event-triggered scheme can only be effective under a

given controller, and the controller and the triggered parameters

cannot easily be codesigned. In the discrete event-triggered

scheme, the triggered condition is detected in discrete sampled

instants, and incorporating a codesign algorithm is readily

achievable for most practical systems.

In networked control systems (NCSs), the sharing of limited

network bandwidth often causes network-induced delays, and

data packet dropouts and disorder, which can deteriorate the

performance and even destabilize the systems [5]–[11]. In the

past decade, many methods have been developed to deal with

these network-induced challenging issues, for example, the fil-

tering, identification, and estimation problem in [12]–[15] and

the output feedback problem in [16]–[18]. However, most are

based on a time-triggered scheme, which can be inefficient in

terms of reducing the utilization of limited network bandwidth.

Furthermore, quantization problems inherent in sampled-

data systems have been investigated in recent years [19]–[24].

It was shown in [25] that the coarsest quantizer is logarithmic,

and the sector bound method is applicable for stabilizing lin-

ear single-input–single-output systems with state quantization.

The sector bound method in [25] was extended to multiple-

input–multiple-output systems in [26] and to guaranteed cost

control of continuous systems over networks with state and

input quantizations in [27]. In addition, the networked H∞
control for continuous-time linear systems with state quantiza-

tion was discussed in [28], and the problem of H∞ estimation

was studied in [29]. The reset quantized state control problem

was studied in [30] and [31]. Meanwhile, singular systems are

frequently encountered in electronic and economic systems,

aerospace, and chemical industries [32]–[36]. Hence, there will

be a profound meaning applying quantized control to singular

systems. Indeed, the problem of a networked H∞ filter for sin-

gular systems with state quantization was investigated in [6] by

the similar method used in [29]. However, when using the sector

bound method, the quantization errors have been regarded as

a class of uncertainties, which present difficulties in controller

design. To the best of the authors’ knowledge, although discrete

event-triggered control for linear systems has been discussed

in [3] and [4], there is no result reported on event-triggered

control for networked singular systems that are subject to quan-

tizations. This motivates the research presented in this paper.

The works most pertinent to this paper are [37] and [38].

In fact, this paper stems from the following motivations. First,

the quantized control under event-triggered networked systems

investigated in [37] is novel but only for regular systems. On

0278-0046 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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the other hand, the new sector bound approach used in [38] is

under a time-triggered scheme, which has its useful properties,

but may lead to the unnecessary usage of limited communica-

tion resources. Our aim here is to find a more effective and

efficient discrete event-triggered scheme, which only detects

the difference between the states sampled in discrete instants

regardless of what happens in between updates, and to codesign

the event-triggered H∞ controller for networked singular sys-

tems taking into account both communication delays and signal

quantizations.

In this paper, the problem of event-trigged H∞ control for

networked singular systems with both state and control input

quantizations is investigated. Our contributions are as follows:

1) A new sector bound approach, by which no transformation is

needed from system models to uncertain systems, is presented;

2) a discrete event-triggered scheme that only needs supervi-

sion of the system state in discrete instants is presented for

networked singular systems; and 3) a unified framework, which

takes network-induced delays, state and input quantizations,

and event triggers into account, is given for codesigning the

event detector and the state feedback controller.

The remainder of this paper is organized as follows.

Section II formulates the problem. H∞ performance analysis

and quantized state feedback controller design are presented

in Section III. Illustrative examples are given in Section IV to

demonstrate the effectiveness of the presented method. Finally,

this paper is concluded in Section V.

Notations: Throughout this paper, the superscripts “T ” and

“−1” stand for the transpose of a matrix and the inverse of a

matrix; Rn denotes n-dimensional Euclidean space; Rn×m is

the set of all real matrices with n rows and m columns; P > 0
means that P is positive definite; I is the identity matrix with

appropriate dimensions; the space of square-integrable vector

functions over [0,∞) is denoted by L2[0,∞), and for w(t) ∈
L2[0,∞), its norm is given by ‖w(t)‖2 =

√∫∞
0 |w(t)|2dt; for

a symmetric matrix, ∗ denotes the matrix entries implied by

symmetry.

II. PROBLEM FORMULATION

A. Plant Description

The networked singular system, as shown in Fig. 1, com-

prises a continuous-time-controlled singular system, a set of

sensors to provide the state signals, an event detector, two

quantizers f(·) and g(·), a zero-order hold (ZOH), actuators,

and a data network.

The networked singular system is described as follows:

{
Eẋ(t) = Ax(t) +Bu(t) +Gw(t)

z(t) = Cx(t) +Du(t) + Fw(t)
(1)

where x(t) ∈ R
n is the state vector, u(t) ∈ R

m is the control

input vector, w(t) ∈ R
p is the disturbance input, and z(t) ∈ R

q

is the controlled output of the plant. The matrices A, B, C, D,

E, F , andG are constant matrices with appropriate dimensions,

where E may be singular, and we assume that rank E = r ≤

Fig. 1. Block diagram of an event-triggered controlled singular system.

n. For the networked singular system shown in Fig. 1, the

following conditions are assumed in this paper.

1) The sensors are time triggered with a constant sampling

period h. The sampled x(kh) is transmitted to the event

detector and is transmitted (or released) at instant tkh by

the event detector, which is located between the sensors

and the controller. All state variables of the singular NCS

are measurable.

2) The signal in the network is transmitted with a single

packet, and the data packet loss does not occur during

transmission.

B. Event-Triggered Scheme

To reduce the utilization of the limited network bandwidth,

a discrete event-triggered scheme is proposed in this paper to

replace the conventional time-triggered mechanism [3], [4].

The event detector uses the following condition to decide

on whether the current signal should be transmitted to the

controller:

tk+1h= tkh+min
l

{
lh|eT(ikh)Φe(ikh)≥σxT(tkh)Φx(tkh)

}

(2)

where 0 ≤ σ < 1 is a given scalar parameter, Φ > 0 is a posi-

tive matrix to be determined, and e(ikh) is the error between

the two states at the latest transmitted sampling instant and

the current sampling instant, i.e., e(ikh) = x(tkh)− x(ikh),
where ikh = tkh+ lh, l ∈ N.

When the data released at tk by the event monitor are

transmitted to the controller, it incurs a communication delay

called the sensor-to-controller delay τsc(tk). Similarly, the con-

troller forwarding the actuation signals at tk to the actuator

incurs another communication delay called the controller-to-

actuator delay τca(tk). These two network-induced delays can

be lumped together as the time-varying delay τtk , and

τtk = τsc(tk) + τca(tk), 0 ≤ τm ≤ τtk ≤ τM (3)

where τm and τM denote the lower and upper delay bounds,

respectively.
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C. Event-Triggered Quantized H∞ Control Problem

The problem of event-triggered H∞ control with quantiza-

tions to be addressed in this paper is to design a state feedback

controller, i.e.,

u(t) = Kx(t) (4)

where K is the controller gain, such that:

1) the resultant closed-loop system with w(t) = 0 is regular,

impulse free, and stable; and

2) under zero initial conditions, for any nonzero w(t) ∈
L2[0,∞), the controlled output z(t) satisfies ‖z(t)‖2 ≤
γ‖w(t)‖2, where γ is a prescribed performance index.

Considering the behavior of the ZOH, the input signal is

u(t) = g (Kf (x(tkh))) , t ∈
[
tkh+ τtk , tk+1h+ τtk+1

)
.
(5)

Refer to Fig. 1. We now denote the quantized measurement of

x(tkh) as x̃(tkh), the control signal as ũ(t), and the control

input signal as u(t). Then, at the release instant tkh, the

following equations can be deduced:





x̃(tkh) = f (x(tkh))

ũ (tkh+ τsc(tk)) = Kx̃(tkh)

u (tkh+ τtk) = g (ũ (tkh+ τsc(tk))) .

(6)

The quantizers f(·) = [f1(·), f2(·), . . . , fn(·)]T and g(·) =
[g1(·), g2(·), . . . , gp(·)]T are assumed to be symmetric,

that is, fj(−v) = −fj(v)(j = 1, 2, . . . , n) and gm(−v) =
−gm(v)(m = 1, 2, . . . , p). Similar to [27], [29], and [37], the

quantizers considered in this paper are logarithmic static and

time invariant. For each f(·), the set of quantized levels is

described as in [26] and [37] by

U =
{
±u

(j)
i , u

(j)
i = αi

ju
(j)
0 , i = ±1,±2, . . .

}
∪
{
±u

(j)
0

}

∪ {0}, 0 < αj < 1, u
(j)
0 > 0. (7)

The associated quantizer fj(·) is defined as

fj(v) =





u
(j)
i , if 1

1+σj
u
(j)
i < v ≤ 1

1−σj
u
(j)
i , v > 0

0, if v = 0

−fj(−v), if v < 0

where σj = (1− αj)/(1 + αj), and αj is also called the quan-

tization density of quantizer fj(·). Similarly, the quantizer

gj(·)(j = 1, 2, . . . , p) is of quantization densities ρj and de-

note πj = (1− ρj)/(1 + ρj). For a given logarithmic quantizer

fj(·), a sector bound condition was proposed as follows:

fj(v) = (I +∆f )v (8)

where ∆f = diag{∆f1 ,∆f2 , . . . ,∆fn}, and ∆fn ∈ [−σj , σj ].
For the quantizer on the controller side, the same definition can

be applied. It follows that

gj(v) = (I +∆g)v (9)

where ∆g = diag{∆g1 ,∆g2 , . . . ,∆gp}, and ∆gp ∈ [−πj , πj ].
Combining with (6)–(9), we have

u (tkh+ τtk) = (I +∆g)K(I +∆f )x(tkh)

t ∈
[
tkh+ τtk , tk+1h+ τtk+1

)
. (10)

Then, the system can be transferred to linear systems with

norm-bounded uncertainty, which was employed in [29] and

[37]. However, due to the uncertainties on both sides of con-

troller gain matrix K , the controller is difficult to design.

In the following, two new sector bound conditions of quan-

tizers are proposed. We first denote

Λ = diag{σ1, σ2, . . . , σn}, Λ0 = I − Λ,Λ1 = I + Λ

Π = diag{π1, π2, . . . , πp}, Π0 = I −Π,Π1 = I +Π.

Then, for any diagonal matrices S > 0 and H > 0, the follow-

ing inequalities hold:

[f(x(tkh))−Λ0x(tkh)]
T S [f(x(tkh))−Λ1x(tkh)]≤0 (11)

[g (Kf (x(tkh)))−Π0Kf (x(tkh))]
T H

× [g (Kf (x(tkh)))−Π1Kf (x(tkh))] ≤ 0. (12)

Remark 1: It should be mentioned that the sector bound

conditions are much simpler and more applicable. Unlike some

existing works (for example, [27], [29], and [37]), the difficulty

associated with stability analysis and H∞ controller design can

be effectively overcome by using these conditions.

Substituting (5) into (1) yields the following closed-loop

system:

{
Eẋ(t) = Ax(t) +Bg (Kf (x(tkh))) +Gw(t)

z(t) = Cx(t) +Dg (Kf (x(tkh))) + Fw(t).
(13)

D. Time-Delay Modeling

Next, using the same technique as in [37], we convert the

event-triggered NCSs (13) into a new time-delay system, which

can be analyzed by the well-developed theory on time-delay

systems. First, suppose there exists a finite positive integer

m such that tk+1 = tk +m+ 1. Then, the interval [tkh+
τtk , tk+1h+ τtk+1

) can be decomposed into the following

subintervals:

[
tkh+ τtk , tk+1h+ τtk+1

)
=

m⋃

l=0

Tl (14)

where Tl = [ikh+ τik , ikh+ h+ τik+1), ikh = tkh+ lh, l =
0, 1, . . . ,m. Moreover, x(tkh) and x(tkh+ lh) satisfy the

event-triggered sampling scheme (2).

For convenience, we denote

τ(t) = t− ikh (15)

where t ∈ Tl, and we have

0 < τm ≤ τ(t) ≤ τM + h ≡ τ̄ . (16)
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Based on the above analysis, the closed-loop system (13) can

be rewritten as





Eẋ(t)=Ax(t)+Bg (Kf (x (t−τ(t))+e(ikh)))+Gw(t)

z(t) = Cx(t) +Dg (Kf (x (t− τ(t)) + e(ikh)))

+Fw(t), t ∈
[
tkh+ τtk , tk+1h+ τtk+1

)

x(t) = φ(t), t ∈ [−τ̄ , 0)
(17)

where φ(t) is the initial function of x(t).
Remark 2: The problem formulated above differs from

some existing works concerned with quantized feedback con-

trol, for example, [6] and [38], in which only the effect of

quantization was considered. In this work, we consider not

only the effect of quantization but also the event-triggered

scheme, which is used to save the limited communication

resources, for networked singular systems. Moreover, the event-

triggered condition (2) only supervises the difference be-

tween the states sampled in discrete instants, and it needs

no extra hardware to continuously monitor the state of the

plant.

We end this section by recalling the following lemma, which

will be used in the sequel.

Lemma 1: [39] For any vectors X,Y ∈ Rn and positive-

definite matrix Q ∈ Rn×n, the following inequality holds:

2XTY ≤ XTQX + Y TQ−1Y.

III. MAIN RESULTS

Here, we consider the quantized H∞ control of the net-

worked singular system (17) under the event-triggered scheme

based on (2). We first give sufficient conditions for the closed-

loop system (17) to be regular, impulse free, and stable with an

H∞ performance index γ. Then, we propose a design method

for the quantized state feedback controller.

A. H∞ Performance Analysis

Based on the new sector bound conditions (11) and (12), we

present the following H∞ performance analysis result.

Theorem 1: Given scalars γ > 0, 0 ≤ σ < 1, τm, τ̄ , and

the controller gain matrix K , the closed-loop system (17) is

regular, impulse free, and stable with H∞ performance index

γ under the event-triggering scheme (2), if there exist matri-

ces Q1 = QT
1 > 0, Q2 = QT

2 > 0, Zi = ZT
i > 0 (i = 1, 2, 3),

Φ > 0, P,N,M , and any diagonal matrices S > 0 and H > 0
with appropriate dimensions such that

ETP = PTE ≥ 0 (18)

[
Ψ1 Ψ2

∗ Ψ3

]
< 0 (19)

where

Ψ1 =



ϕ+ Γ + ΓT

√
τ̄N

√
τ̄M

∗ −Z3 0
∗ ∗ −Z3




Ψ2 =



T2 T1 A Z
0 0 0
0 0 0


 , Ψ3 =



−γ2I FT GTZ
∗ −I 0
∗ ∗ −Z




T1 =
[
C 0 0 0 0 0 D

]T

T2 =
[
GTP 0 0 0 0 0 0

]T

A =
[
A 0 0 0 0 0 B

]T

Z = τmZ1 + (τ̄ − τm)Z2 + 2τ̄Z3

Γ =
[
N −N +M 0 M 0 0 0

]
E

ϕ =




ϕ11 0 ϕ13 0 0 0 PTB
∗ ϕ22 0 0 ϕ25 2S 0
∗ ∗ ϕ33 ϕ34 0 0 0
∗ ∗ ∗ ϕ44 0 0 0
∗ ∗ ∗ ∗ ϕ55 2S 0
∗ ∗ ∗ ∗ ∗ ϕ66 ϕ67

∗ ∗ ∗ ∗ ∗ ∗ −2H




ϕ11 = PTA+ATP +Q1 +Q2 − (1/τm)ET (Z1 + Z3)E

ϕ13 = (1/τm)ET (Z1 + Z3)E

ϕ22 = σΦ− 2Λ1SΛ0, ϕ25 = −2Λ1SΛ0

ϕ33 = −Q1 − [1/τm + 1/(τ̄ − τm)]ET (Z1 + Z3)E

ϕ34 = [1/(τ − τm)]ET (Z2 + Z3)E

ϕ44 = −Q2 − [1/(τ − τm)]ET (Z2 + Z3)E

ϕ55 = −Φ− 2Λ1SΛ0

ϕ66 = −2S − 2KTΠ0HΠ1K,ϕ67 = 2KTH.

Proof: We first show that the networked singular system

(17) is regular and impulse free. Since rank E = r ≤ n, there

must exist two invertible matrices G̃ and H̃ ∈ R
n×n such that

Ẽ = G̃EH̃ =

[
Ir 0
0 0

]
, G̃AH̃ =

[
A1,11 A1,12

A1,21 A1,22

]
.

Similar to the method used in [35], we know that A1,22 is

nonsingular, which implies that the pair of (E,A) is regular and

impulse free, it follows that the networked singular system (17)

is regular and impulse free. In the following, we will show that

the networked singular system (17) is stable under the event-

triggering scheme (2).

Consider when the system is free from external disturbances,

with w(t) = 0. We define the following functional:

V (t) = V1(t) + V2(t) + V3(t) (20)
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where

V1(t) =xT (t)ETPx(t)

V2(t) =

t∫

t−τm

xT (s)Q1x(s)ds+

t∫

t−τ̄

xT (s)Q2x(s)ds

V3(t) =

0∫

−τm

t∫

t+θ

ẋT (s)ETZ1Eẋ(s)dθds

+

−τm∫

−τ̄

t∫

t+θ

ẋT (s)ETZ2Eẋ(s)dθds

+ 2

0∫

−τ̄

t∫

t+θ

ẋT (s)ETZ3Eẋ(s)dθds.

Taking the derivative of V (t) for t ∈ [tkh+ τtk , tk+1h+
τtk+1

), we introduce the free weighting matrices, i.e.,

ℓ1 = 2ξT(t)N


Ex(t)− Ex (t− τ(t)) −

t∫

t−τ(t)

Eẋ(s)ds


= 0

ℓ2 = 2ξT(t)M


Ex(t−τ(t))−Ex(t− τ̄)−

t−τ(t)∫

t−τ̄

Eẋ(s)ds


=0

(21)

where ξT (t) = [ηT (t) eT (ikh)], with

ηT (t) =
[
xT (t) xT (t− τ(t)) xT (t− τm) xT (t− τ̄ )

]

and N and M are matrices with appropriate dimensions. Ac-

cording to Lemma 1 and combining the sector bound conditions

(11) and (12) with the event-triggered scheme (2), we have

V̇ (t) ≤ ξT (t)Ξξ(t) (22)

where Ξ=ϕ+Γ+ΓT+ τ̄NZ−1
3 NT + τ̄MZ−1

3 MT + A ZA T ,

with Z = τmZ1 + (τ̄ − τm)Z2 + 2τ̄Z3. According to Schur

complement, from (19), we have


ϕ+ Γ + ΓT
√
τ̄N

√
τ̄M A Z

∗ −Z3 0 0
∗ ∗ −Z3 0
∗ ∗ ∗ −Z


 < 0 (23)

which means V̇ (t) < 0. Therefore, system (17) is stable.

Now, we address the H∞ performance of the networked

singular system (17). Consider when the system is subject to

external disturbances, with w(t) 
= 0. We use the following

performance index:

℘(t) =

∞∫

0

[
zT (t)z(t)− γ2wT (t)w(t)

]
dt.

Under zero initial conditions, we have

℘(t) =

∞∫

0

[
zT (t)z(t)− γ2wT (t)w(t) + V̇ (t)

]
dt− V (∞)

≤ ςT (t)

[
Ξ+ T1 + T T

1 T2

∗ −γ2I + FTF +GTZG

]
ς(t)

with ςT (t) = [ξT (t) wT (t)]. By Schur complement, from (19),

we have

[
Ξ + T1 + T T

1 T2

∗ −γ2I + FTF +GTZG

]
< 0

which means ℘(t) < 0. That is, under zero initial conditions,

for any nonzero w(t) ∈ L2[0,∞), the control output z(t) satis-

fies ‖z(t)‖2 ≤ γ‖w(t)‖2. This completes the proof. �

B. Quantized State Feedback Controller Design

Based on Theorem 1, we present the codesign algorithm for

the networked singular system (17) as follows.

Theorem 2: For given scalars γ > 0, 0 ≤ σ < 1, τm, τ̄ , and

ρi (i = 1, 2, . . . , 5), the singular NCS (17) is regular, impulse

free, and stable with an H∞ performance index γ under the

event-triggering scheme (2), if there exist matrices Q̃1 = Q̃T
1 >

0, Q̃2 = Q̃T
2 > 0, Z̃i = Z̃T

i > 0 (i = 1, 2, 3), Φ̃ > 0, Ñ , M̃, Y ,

nonsingular P̃ and any diagonal matrices S̃ > 0, S > 0, H > 0
with appropriate dimensions such that

P̃TET = EP̃ ≥ 0 (24)[
Ψ̃1 Ψ̃2

∗ Ψ̃3

]
< 0 (25)

where

Ψ̃1 =




ϕ̃+ Γ̃ + Γ̃T
√
τ̄ Ñ

√
τ̄ M̃ T̃2 T̃1

∗ −Z̃3 0 0 0

∗ ∗ −Z̃3 0 0
∗ ∗ ∗ −γ2I FT

∗ ∗ ∗ ∗ −I




Ψ̃2 =




Ã Ã Ã T̃3 T̃4

0 0 0 0 0
0 0 0 0 0
GT GT GT 0 0
0 0 0 0 0




Ψ̃3 = diag{˜̺1, ˜̺2, ˜̺3, ˜̺4, ˜̺5}
˜̺1 =

1

τmρ21
(Z̃1−2ρ1EP̃ ), ˜̺2=

1

(τ̄−τm)ρ22
(Z̃2−2ρ2EP̃ )

˜̺3 =
1

2τ̄ρ23
(Z̃3 − 2ρ3EP̃ ), ˜̺4 =

1

2
(ρ24S − 2ρ4I)

˜̺5 =
1

2

(
ρ25H − 2ρ5I

)

T̃1 =
[
CP̃ DY 0 0 DY DY D

]T

T̃2 =
[
GT 0 0 0 0 0 0

]T

T̃3 =
[
0 ΛP̃T 0 0 ΛP̃T 0 0

]T

T̃4 =
[
0 ΠY 0 0 ΠY ΠY 0

]T

Ã =
[
AP̃ BY 0 0 BY BY B

]T

Γ̃ =
[
Ñ −Ñ + M̃ 0 M̃ 0 0 0

]
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Fig. 2. Networked inverted pendulum. (a) Inverted pendulum in the
laboratory at The University of Adelaide. (b) Schematic of the inverted
pendulum.

ϕ̃ =




ϕ̃11 BY ϕ̃13 0 BY BY B

∗ σΦ̃ 0 0 0 0 0
∗ ∗ ϕ̃33 ϕ̃34 0 0 0
∗ ∗ ∗ ϕ̃44 0 0 0

∗ ∗ ∗ ∗ −Φ̃ 0 0

∗ ∗ ∗ ∗ ∗ −2S̃ 0
∗ ∗ ∗ ∗ ∗ ∗ −2H




ϕ̃11 = AP̃ + P̃AT + Q̃1 + Q̃2 − (1/τm)(Z̃1 + Z̃3)

ϕ̃13 = (1/τm)(Z̃1 + Z̃3),

ϕ̃33 = −Q̃1 − (1/τm), (Z̃1 + Z̃3)− [1/(τ̄ − τm)] (Z̃2 + Z̃3)

ϕ̃34 = [1/(τ̄ − τm)] (Z̃2 + Z̃3),

ϕ̃44 = −Q̃2 − [1/(τ̄ − τm)] (Z̃2 + Z̃3).

Furthermore, a desired state feedback controller gain is

K = Y P̃−1. (26)

Proof: Similar to the method used in [4, Th. 2],

Theorem 2 can be proved.

IV. EXAMPLES

We use two examples to demonstrate the effectiveness of

the proposed method. The first example is a networked regular

system to show less conservatism of our results, whereas the

second example is a networked singular system to show the

effectiveness in reducing the network usage of the proposed

method.

Example 1: Consider an inverted pendulum on a cart con-

trolled over a network. The schematic of an inverted pendulum

is shown in Fig. 2, and the linearized plant model (1) is

characterized by the following parameters [3] and [37]:

E = I, A =




0 1 0 0
0 0 −mg/M 0
0 0 0 1
0 0 g

l
0


 , B =




0
1
M

0
1
Ml




where M = 10 kg is the cart mass, m = 1 kg is the mass of the

pendulum bob, l = 3 m is the length of the pendulum arm, and

g = 10 m/s2 is the gravitational acceleration.

Since the eigenvalues of A are {0, 0, 1.8257,−1.8257}, the

system is unstable without a controller. The state variables

xi (i = 1, 2, 3, 4) are the cart position, the cart velocity, the

pendulum bob angle, and the pendulum bob angular velocity.

The initial state vector is set as x0(t) = [1.5 − 0.5 0.8 − 1]T .

We consider two cases with different parameters.

Case 1—H∞ Control Without Quantizations:

C =GT = FT = [1 1 1 1], D = 0.1, Λ = Π = 0

w(t) =

{
sgn (sin(t)) , if t ∈ [0, 10]

0, others.

Case 2—H∞ Control With Quantizations:

C = GT = FT =
[
1 1 1 1

]
, D = 0.1

w(t) =

{
sgn (sin(t)) , if t ∈ [0, 10]

0, others

and the parameters for the quantizer f(·) are assumed to be

α1 = α3 = 0.9 and α2 = α4 = 0.8, that is

Λ =




0.0526 0 0 0
0 0.1111 0 0
0 0 0.0526 0
0 0 0 0.1111




whereas the quantized density of g(·) is assumed to be α1=0.9,

that is, Π = 0.0526.

In Case 1, under the conditions of h = 0.01, σ = 0.1,

τ̄= 0.16, ρ1 = ρ2 = ρ3 = 0.46, and ρ4 = ρ5 = 0.23, the H∞
performance index in [3] is γ = 200. In our scheme, according

to Theorem 2 and setting τm = 0.01, the minimum of H∞
performance index γmin = 85. The correspondent feedback

gain K2 and the event-triggering matrix Φ5 are

K2 =
[
5.8955 16.2858 334.4121 186.8863

]

Φ5 =




4.2235 −4.6241 −18.8239 33.11503
−4.6241 12.5586 44.1248 −78.4754
−18.8239 44.1248 170.8534 −302.9154
33.1150 −78.4754 −302.9154 537.1290


 .

The state responses x(t) and release instants are shown in

Fig. 3 for this setting. The number of triggers is 86 times.

In Case 2, the effect of two quantizers is considered. We set

τ̄=0.24, τm=0.01, ρ1=ρ2 = ρ3=0.44, and ρ4=ρ5=0.21,

and Table I gives the different results for different triggered

parameter values of σ. It shows that the larger the parameter
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Fig. 3. State response x(t) and release instants under K2 and Φ5.
(a) State response x(t). (b) Release instants.

TABLE I
γmin, K3 , AND Φ6 FOR DIFFERENT σ VALUES

σ, the larger the minimum value of γ. Other parameters and

values in Table I are

K3,1 =
[
4.9257 13.6401 283.3992 158.1448

]

K3,2 =
[
5.3323 14.8106 302.2490 168.8918

]

K3,3 =
[
5.0948 14.5901 304.2014 169.9699

]

K3,4 =
[
4.7482 14.0801 301.9530 168.6491

]

Φ6,1 = 102 ×




2.5368 −0.0000 −0.0000 0.0000
−0.0000 2.5368 0.0000 −0.0000
−0.0000 0.0000 2.5368 −0.0000
0.0000 −0.0000 −0.0000 2.5368




Φ6,2 =




17.0000 −8.8000 −36.6000 63.7000
−8.8000 35.9000 117.1000 −209.4000
−36.6000 117.1000 522.9000 −927.5000
63.7000 −209.4000 −927.5000 1645.3000




Φ6,3 =




7.8968 −4.4337 −21.8893 38.1572
−4.4337 16.3175 54.8386 −97.9276
−21.8893 54.8386 253.9125 −449.5681
38.1572 −97.9276 −449.5681 796.1969




Φ6,4 =




4.7845 −2.7674 −14.0746 24.5370
−2.7674 10.0585 33.4759 −59.7880
−14.0746 33.4759 155.5644 −275.2709
24.5370 −59.7880 −275.2709 487.2295


 .

Fig. 4 shows the state responses x(t) and release instants. Over

the simulation period, there are 82 triggers. We remark that if a

time-triggered scheme is used instead, the number of triggers

will be 3000 times. The result is a clear indication that our

Fig. 4. State response x(t) and release instants under K3,4. (a) State
response x(t). (b) Release instants.

event-triggered approach is efficient in terms of utilizing the

network bandwidth resource.

Example 2: This example illustrates the quantized H∞
control on a singular NCS. Consider the singular NCS (1). The

associated parameters are

E =




1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1


, A=




0 1 0 0
0 0 −1 0
0 0 0 1
0 0 0.3 0


, B=




0
0.1
0

0.033




C = GT = FT =
[
1 1 1 1

]
, D = 0.1

w(t) =

{
sgn (sin(t)) , if t ∈ [0, 10]

0, others.

The parameters for the quantizer f(·) are taken as α1=α3=0.9
and α2 = α4 = 0.8. We set τ̄ = 0.24, τm = 0.01, ρ1 = ρ2 =
ρ3 = 0.44, ρ4 = ρ5 = 0.21, and σ = 0.02, and according to

Theorem 2, the minimumH∞ performance index γmin=51.36.

The corresponding feedback gain and the event-triggered

matrix are

K5 =
[
2.5480 9.3207 237.6465 161.8992

]

Φ8 =




2.0941 −0.0477 −0.0049 −0.2502
−0.0477 1.7747 −0.2384 −0.1521
−0.0049 −0.2384 0.0713 −0.0431
−0.2502 −0.1521 −0.0431 0.1580


 .

Furthermore, the initial state is x0(t) = [1.5 − 0.5 0.8 − 1]T ,

and the state responses for x(t) and the release instants are

shown in Fig. 5. We observe that the number of triggers is 627,

which is much lower than 15 000 triggers when using the time-

triggered scheme. The result again demonstrates the capability

of the event-triggered approach in reducing the network band-

width usage.

V. CONCLUSION

Aiming to reduce the load of network communication, the

problem of event-triggered H∞ control for networked singular
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Fig. 5. State response x(t) and release instants under K5. (a) State
response x(t). (b) Release instants.

systems with quantizations in both the measured states and

the generated control inputs has been studied in this paper.

By considering the characteristics of event-triggered schemes

and taking the quantizations into account, we presented a new

time-delay model. Based on this model, we derived a new

H∞ performance criterion that guarantees that the closed-loop

system of the singular networked system is regular, impulse

free, and stable with a prescribedH∞ performance index γ. The

codesign of the event-triggered condition and the state feedback

controller has also been derived based on a free-weighting-

matrix approach. Two examples have been given to show the

effectiveness of the theoretical results obtained.
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