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Network-Based H.264/AVC Whole-Frame Loss
Visibility Model and Frame Dropping Methods

Yueh-Lun Chang, Ting-Lan Lin, Member, IEEE, and Pamela C. Cosman, Fellow, IEEE

Abstract— We examine the visual effect of whole-frame loss
by different decoders. Whole-frame losses are introduced in
H.264/AVC compressed videos which are then decoded by two
different decoders with different common concealment effects:
frame copy and frame interpolation. The videos are seen by
human observers who respond to each glitch they spot. We
found that about 39% of whole-frame losses of B frames are
not observed by any of the subjects, and over 58% of the B
frame losses are observed by 20% or fewer of the subjects.
Using simple predictive features that can be calculated inside
a network node with no access to the original video and no pixel
level reconstruction of the frame, we develop models that can
predict the visibility of whole B frame losses. The models are
then used in a router to predict the visual impact of a frame
loss and perform intelligent frame dropping to relieve network
congestion. Dropping frames based on their visual scores proves
superior to random dropping of B frames.

Index Terms— Packet dropping policy, packet loss, perceptual
video quality, visibility model.

I. INTRODUCTION

PACKET losses of compressed video during transmission
in networks degrade the decoded video quality observed

by the end users. Losses occur for different reasons. An
intermediate router can drop packets because the incoming
data rate is so high that the buffer overflows. With internet
protocol television, a subscriber may want to watch a video
in high resolution, but his access bandwidth may be less than
required. In this situation, a router should drop a sufficient
percentage of data to meet the access capabilities of the
subscriber. The packet dropping rates required at the router
can vary by a large amount. The packet dropping policy in
the router should be intelligent enough to minimize the video
quality damage observed by the end user.

Video quality monitoring in networks is an active research
area. Some approaches predict the video quality using objec-
tive measures such as mean-squared error (MSE) or peak-to-
signal noise ratio [1]–[4]. However, MSE is not well correlated
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with human perception [5]. Therefore, subjective tests col-
lecting direct responses from individuals who watch impaired
videos are necessary to understand how different packet losses
are perceived by people. The work in [6] and [7] focused on
modeling the average quality of videos as a function of average
packet loss rate (PLR). In [8], the authors developed a model
utilizing mismatched blocks to predict the subjective video
quality. The scene complexity and level of motion are used to
predict perceptual quality in [9].

These methods give an overall quality score for the
sequence, but do not tell us how best to drop packets in the
router to minimize video quality degradation during network
congestion. In our previous work [10], packet dropping meth-
ods based on perceptual video quality were discussed. The
visual importance of each packet is evaluated in the encoder by
an encoder-based packet loss visibility model. All information
available to the encoder can be used. Before the packet is sent
to the network, a single bit of priority score is added to the
header based on the estimated packet loss visibility. The router
can then drop packets of lower priority during congestion.
In [10], we showed that the dropping policy that uses visibility-
based packet prioritization performs well compared to the
common DropTail policy, and compared to a prioritization
method based on the induced MSE if that packet is lost [11].

One limitation of [10] is that the priority score needs to be
determined at the encoder and added as one bit to the packet
header. In [12], we do not assume that packets coming into the
router are embedded with a visual priority bit, for each packet,
the visual importance is obtained by the network-based model
described in [13], which only requires information extractable
within one packet and no reference frame information. This
is desired because, in a router, the incoming packets may be
out of coding order or may be multiplexed with other video
streams, so the router may not be able to identify which the
reference packet of the current packet is. Also, we want the
complexity of the factor extraction process to be low to be
used in the network. Therefore, we do not consider factors
such as initial MSE or scene-cut detection that require pixel
domain reconstruction by full decoding as used in [10].

Also in [12], we devised a packet dropping method for
widely varying PLRs including high rates. The packet loss
visibility model in our prior work was designed for packets
that contain individual slices (defined to be one horizontal row
of macroblocks) of a frame. For these slice losses, after error
concealment, spatial misalignment relative to the intact portion
of the frame stands out. Spatial misalignment artifacts can be
more distracting than temporal frame freeze [14]. Therefore

1057–7149/$31.00 © 2012 IEEE
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TABLE I

SUMMARY OF THE SUBJECTIVE EXPERIMENT SETUP.

H IS THE HEIGHT OF THE VIDEO

SDTV
Resolution 720 × 480

Bitrate 2.1 Mb/s
H.264
profile

Main profile
Level 3

Viewing
distance 6H

Frame
rate 30 ft/s

GOP
IBBPBBPBBPBBPBB

15/3

in [12], the algorithm drops the least visible frames, incurring
fewer blocky artifacts compared to dropping on a slice basis.
We showed that the frame-level temporal interpolation artifact
is better than the slice-level spatial misalignment artifact
using the video quality metric (VQM) [15]. VQM is a full-
reference metric that considers jerky motion, blocking, and
blurring [16], and has been shown to correlate well with human
perception [17].

Nevertheless, the whole frame that is to be dropped in [12]
was estimated by the network-based visibility model for
single-slice packets described in [13]. That is, the visibility
score for the frame was taken to be the sum of the visibility
scores for the slices that compose the frame. And those
visibility scores for slices came from a model designed using
a human observer experiment on slice loss data, which do
not directly reflect the frame loss visibility. This paper aims
at obtaining and exploiting more meaningful scores for frame
losses. We conduct a subjective experiment on whole-frame
loss, and build a direct model for the loss. Two common con-
cealment methods are used for whole-frame losses: frame copy
and temporal frame interpolation. We analyze the experimental
data, and model the whole-frame packet loss visibility based
on information associated with the lost frames. We use the
model to intelligently drop frames, and compare performance
with [12] and [18].

Perceptual quality of frame losses is also discussed in the lit-
erature; [19] concludes that viewers preferred a single but long
freeze event to frequent short freezes. In [20], different whole-
frame loss types were studied as a function of frame-loss burst
length and distribution. The authors conclude that the visibility
of frame dropping is dependent on the content, loss duration,
and motion. Later, in [21], they built an assessment model
for subjective video quality as a function of frame-loss burst
length and distribution. However, the quantities are computed
in the pixel domain and require the original video, and the
model aims to evaluate the quality of an entire lossy video but
does not indicate the visual importance of a specific frame.

This paper is structured as follows. In Section II, the setup
of the subjective experiment is introduced. Section III covers
the analysis of data, and Section IV introduces the whole-
frame loss modeling process and feature selection. Section V
proposes frame dropping algorithms using the whole-frame
loss visibility model and the frame size, and gives the perfor-
mance of various methods. Section VI concludes this paper.

II. SUBJECTIVE EXPERIMENT ON WHOLE-FRAME LOSSES

In this section, we introduce the subjective experiment
setup, including the encoding configuration, decoder con-
cealment, and experimental design. The video encoder is
H.264/AVC JM 9.3. Encoder settings (Table I) adhere to ITU
and DSL forum recommendations [22], [23]. Each network
abstraction layer (NAL) packet contains a horizontal row of
macroblocks (16×16 pixels) in a frame. Our tested resolution
is standard-definition television (720 × 480), so we have 30
packets per frame. Nine videos with widely varying motion
and texture characteristics are concatenated into a 20-min
sequence, and their descriptions are listed in Table II.

The decoders we considered are the JM 9.3 standard
decoder [24] which produces frame copy artifacts, and
FFMPEG [25] which conceals whole-frame losses using tem-
poral frame interpolation. For the JM decoder, the lost frame
is concealed by copying the pixels from the previous reference
frame. For the FFMPEG decoder, a lost P frame is concealed
by copying the pixels from the previous reference frame, and
a lost B frame is concealed by temporal interpolation between
the frame pixels of the previous and the future reference
frames. These two decoders are widely used in academia and
industry.

In this experiment, we concentrate on B frames. We intro-
duce whole-frame loss events once every 4 s to allow observers
enough time to respond to each individual loss event. There
are two types of whole-frame loss events: single whole-frame
loss and dual whole-frame loss, every loss event occurs in
the first 3 s of each 4-s interval. Among these intervals, we
uniformly inject single or dual whole-frame losses in a group
of pictures (GOP) (in the dual cases, the distance between the
two lost frames in one GOP could range from 1 to 13).

We create six different realizations of whole-frame loss
events of the 20-min video, producing 900 distinct single
whole-frame loss events and 900 dual whole-frame loss events.
All the six lossy videos are decoded by FFMPEG and JM
decoders. A subject watches two different loss realizations of
whole-frame loss events from the same decoder, so a session
involves 40 min of actual watching time per subject. The
experiment takes 1 h or less, including an introductory session
and a break. When viewers see a glitch, they respond to it by
pressing the space bar. If the response is within 2 s of the loss,
the loss event is regarded as visible. Each of the 40-min lossy
videos is watched by 10 people.

The ground truth loss visibility score for a specific loss
event is calculated as the number of people who see the loss
artifact divided by 10. Since there are six different realizations
of the lossy videos and each is watched by 10 subjects, we
have a total of 60 people participating in the experiments,
out of which 30 watch JM-decoded videos and the rest watch
FFMPEG-decoded videos. For each type of loss event, 1800
ground truth visibility scores are obtained (900 for the JM
decoder and 900 for the FFMPEG decoder).

III. DATA ANALYSIS

In this section, we analyze the two types of whole-
frame loss events: single frame losses and dual frame losses.
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TABLE II

DESCRIPTION OF VIDEO CLIPS USED FOR THE SUBJECTIVE TEST

1 Earth Nature documentary of wildlife in slow motion

2 Indianapolis Crowds moving in an arena with some car racing scenes

3 Formula Racing cars on a racetrack

4 New York Introduction to a city with bird-eye and street views

5 Air show Aair show scene with planes flying over the sky, and some audience on the ground

6 Golf Broadcast golf game

7 Hawaiian Hawaiian tourism of various scenes in shops and streets with panning camera

8 Soccer High-motion beach soccer game with crowded people in the background

9 Stories Daily life such as friends talking and family reunion

(a)

(b)

Fig. 1. Different visual effects by frame copy concealment. (a) Freeze effect.
(b) Jump effect.

We examine the artifacts caused by the different concealment
methods of the JM and FFMPEG decoders, and then compare
the performance of the decoders.

A. Concealment Methods of the Decoders

JM uses frame copy and FFMPEG uses temporal interpo-
lation for whole-frame loss concealment. For all B frames,
JM conceals them by copying the previous intact reference
frame, causing two types of temporal concealment artifacts:
freeze and jump. For example, in Fig. 1(a), Frame 2, if lost,
is concealed by copying Frame 1, the visual artifact is a short
freeze because Frame 1 is displayed twice, in two consecutive
frame time slots. In contrast, in Fig. 1(b), if Frame 3 is
lost, it is also concealed by copying Frame 1. The displayed
frames are 1 then 2 then 1, which causes jerkiness or jumping
visually. The FFMPEG decoder conceals B frames by temporal
interpolation most of the time, except for B frames after an
IDR frame which are concealed by copying the IDR frame.
For temporal interpolation, ghosting artifacts may appear when
there is enough motion. The above three types of artifacts are
called “freeze,” “jump,” and “interpolation” effects. A visual
example is demonstrated in Fig. 2. Frame 35 of the video
sequence Stefan is lost and concealed by JM with frame copy
in Fig. 2(a) and by FFMPEG with temporal frame interpolation
in Fig. 2(b).

Table III shows the mean visibility for the three types of
effects, calculated from the single whole-frame loss events.

TABLE III

THREE TYPES OF ARTIFICIAL EFFECTS AND THEIR

CORRESPONDING MEAN VISIBILITY, CALCULATED FROM

THE SINGLE WHOLE-FRAME LOSS EVENTS

Effects Mean visibility

Freeze 0.07

Jump 0.29

Interpolation 0.19

The freeze effect has the lowest mean visibility of 0.07, the
jump effect has the highest of 0.29, and the visibility of
interpolation is intermediate at 0.19.

Table IV summarizes all the possible artifacts of dual whole-
frame loss concealment for each decoder, as well as the
corresponding mean visibility for each. Fig. 3 shows the visi-
bility versus different concealment artifacts. What is plotted
in each case is the mean visibility together with the 95%
confidence interval. The cross markers are for single frame
losses, the circle markers are for JM dual frame losses, and the
triangle markers are for FFMPEG dual frame losses. The 95%
confidence intervals for the single frame loss concealments are
nonoverlapping, meaning that the three effects (freeze, jump,
and interpolation) have significantly different visibility. On the
other hand, some of the 95% confidence intervals for the dual
frame loss concealments are overlapping because the artifacts
are the combination of two effects. The artifacts with jump
effect have relatively high mean visibility, while the artifact
with mere freeze effect has the lowest visibility. The loss
events with interpolation effect give an intermediate result.
About 30% of events are not seen by any observers, and on
average 2.4 out of 10 observers see a dual frame loss event.

We also look at the dual frame loss visibility versus frame
distance, as plotted in Fig. 4. In our experiment, the frame
distance for the two nearby whole-frame losses in one GOP
ranges from 1 to 13. The mean visibility is periodically higher
for frame distance equal to 4, 7, 10, and 13. In the dual
frame loss events, for a certain frame distance there are several
possible frame loss combinations, which result in different
artifacts since the concealments are not the same. For instance,
when frame distance equals 1, the visual artifacts are either two
freeze effects or two interpolation effects. The mean visibility
of each frame distance is a weighted average of the visibility
for the various dual frame loss concealments which can occur



3356 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 21, NO. 8, AUGUST 2012

(a) (b)

Fig. 2. Frame 35 of the video sequence “Stefan” is lost and concealed by the (a) JM decoder with frame copy and (b) FFMPEG decoder with temporal
frame interpolation.

TABLE IV

POSSIBLE ARTIFACTS FOR CONCEALED DUAL WHOLE-FRAME LOSSES

AND THE CORRESPONDING MEAN VISIBILITY FOR BOTH JM AND

FFMPEG DECODERS

Decoders Possible artifacts Mean
visibilty

JM

A freeze effect of three frames 0.22

A jump effect and then a freeze effect 0.28

A freeze effect and then a jump effect 0.25

Two freeze effects 0.08

Two jump effects 0.38

FFMPEG

A freeze effect of three frames 0.26

An interpolation effect and then a freeze
effect

0.21

A freeze effect and then an interpolation
effect

0.24

Two interpolation effects 0.26

A jump effect and then an interpolation
effect

0.37

at that spacing. Statistically, when frame distance equals 4, 7,
10, and 13, their frame loss combinations result in a larger
percentage of jump effect compared to other frame distance
cases, and it makes these four frame distance cases to have
higher mean visibility.

Another way to analyze the visibility is to group events into
adjacent dual frame losses and separate dual frame losses. The
two lost frames are adjacent if the frame distance equals 1,
while they are separate if the frame distance is greater than 1.
Fig. 5 shows the dual frame visibility for the adjacent and
separate cases. It is apparent that adjacent dual frame losses
have lower visibility than separate dual frame losses since the
adjacent cases lead only to the two less visible effects (freeze
and interpolation) while the separate cases can lead to the jump
effect.

B. Comparison of the Decoders

In this section, we compare the performance of the JM
and FFMPEG decoders only for single frame losses since we

F:freeze J:jump I:interpolation
0

0.1

0.2

0.3

0.4

0.5

0.6

F J I Fx3 J+F F+J F+F J+J Fx3 I+F F+I I+I J+I

Concealment Method

V
is

ib
lit

y

Confidence Interval 95%

single frame losses
dual frame losses for JM
dual frame losses for FFMPEG

Fig. 3. Whole-frame loss visibility showing the mean and 95% confidence
intervals for different concealment artifacts.
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Fig. 4. Dual whole-frame loss visibility showing means and 95% confidence
intervals, for every frame distance.

would like to build models that predict visibility for an isolated
frame loss. Fig. 6 shows the histograms of the single whole-
frame loss visibility of the JM and FFMPEG decoders. For
the JM decoder, 40.8% of the losses are not observed by any
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adjacent separate
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Fig. 5. Dual whole-frame loss visibility showing means and 95% confidence
intervals for the adjacent and separate cases.

subjects (visibility is zero), and 62.4% of losses are seen by 2
or fewer out of 10 people (i.e., have visibility less than or equal
to 0.2). For the FFMPEG decoder, 38.9% of the losses are not
observed by any subjects, and 58.3% have visibility less than
or equal to 0.2. One implication is that, if we can identify the
frames that are less visible to viewers when lost, in the case
of network congestion, we can choose to drop unimportant
frames to relieve network congestion and not many end users
will observe the losses.

In the design of our experiment, because there is a loss
event in every 4-s interval, it could be a concern that viewers
would begin to anticipate the next loss event. However, we do
not believe that viewers noticed the loss pattern because there
was such a high percentage of loss events that were invisible,
so viewers were not perceiving losses in each time slot.

Fig. 7 is the 3-D histogram of the single whole-frame loss
visibility with respect to the JM and FFMPEG decoders. This
figure shows that the invisible whole-frame losses decoded
by JM usually are also invisible by FFMPEG and vice versa.
The JM decoder has a better score than FFMPEG on 33.2% of
cases, and FFMPEG has a better score 29.6% of the time. The
remaining 37.2% of the whole-frame losses are observed by
exactly the same number of observers for JM and FFMPEG.
Among the tie cases, 79% represent losses with zero visibility
for both decoders. The average whole-frame loss visibility
over all the data is 0.1716 for JM and 0.1879 for FFMPEG,
indicating that, on average, whole-frame losses concealed by
JM are slightly less visible than by FFMPEG.

For a significance test between the visibility scores of
FFMPEG and JM, we cannot perform a hypothesis test that
assumes the data to be normal (e.g., t-test) since from Fig. 6
their distribution is far from normal. Therefore, we resort to
nonparametric hypothesis testing. The Wilcoxon signed rank
test (paired comparison) [26] compares paired data x and
y in a two-sided test, where the null hypothesis H0 is that
the median of x − y is zero, against the alternative that the
distribution does not have zero median. Let xi and yi be the
visibility for FFMPEG and JM in the i th comparison set.
Define w = ∑n

i=1 ri zi , where ri is the rank of |xi − yi | among

all |x j − y j |, and zi = 1 if xi − yi > 0 and zi = 0 otherwise.
Here, n = 900, which is the number of losses. The statistic
for the test

Z = w − [n(n + 1)]/4√[n(n + 1)(2n + 1)]/24
(1)

distributes approximately as normal (0, 1) when n > 12. The
p-value is 0.176 (>5%), meaning that we cannot reject the
null hypothesis at the 95% confidence level that the visibility
scores of FFMPEG minus JM come from a distribution of zero
median. From the previous section, we know that the freeze
and jump effects by JM cause the best and the worst visibility,
whereas the interpolation by FFMPEG gives an intermediate
result. This evens out the overall performance of the two
decoders, so there is no significant difference between the
visibility of JM and FFMPEG. This motivates us to develop
one model to predict the whole-frame packet loss visibility for
both decoders. We discuss this in the next section.

IV. WHOLE-FRAME PACKET LOSS VISIBILITY MODEL

In this section, we construct a prediction model for whole-
frame loss visibility using the data from the single whole-
frame loss events. To predict the loss visibility, we consider
network-extractable factors associated with a particular frame
computed from a bit stream. The process of model building
and feature selection will be discussed.

A. Factors Extractable from Bit Stream for Predicting Frame
Loss Visibility

From a frame, we want to obtain factors that can be
extracted without the need for other frames. Therefore, we
do not consider initial MSE and other metrics involving
operations related to pixel domain reconstruction (as pixel
reconstruction would require access to the reference frame).
By this, the frame loss visibility can be determined even if we
do not have access to other frames.

Several factors are shown to be important to the prediction
of slice loss visibility in our prior study [10], [13]. For each
MB in a frame, there are seven features that we extract or
compute from the bits tream. These are RSENGY (the residual
energy after motion compensation, obtained from the DCT
coefficients), QP, Interparts (the number of partitions of the
MB), and four motion-related parameters: motion in x and y
directions, magnitude of motion (motM), and angle of motion
(motA). For each of these seven quantities, we include the
mean, maximum, and variance of the values (computed over
all MBs in the frame) as predictive features in our model. To
compute motA, we only consider MBs with nonzero motion,
for which the phase is well defined. We also include the mean,
maximum, and variance of the slice sizes as predictive factors.
For residual energy, as in [10], we found that this factor
after logarithm was more correlated with frame loss visibility
(where we add 10−7 before taking the log to avoid a log of
zero problem). Therefore we use this transformation.

In addition, MB modes might affect the frame loss visibility,
therefore we include the number of MBs that are coded as
INTRA (NumIntraMB), INTER (NumInterMB), DIRECT
(NumDirectMB) and SKIP (NumSkipMB) as model factors.
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(a) (b)

Fig. 6. Histogram of single whole-frame loss visibility. (a) By JM Decoder. (b) By FFMPEG decoder.

Fig. 7. 3-D histogram of single whole-frame loss visibility by JM and
FFMPEG decoders.

To include in a simple way the effects of concealment, we
defined Boolean factors IsFreezeByJM, IsJumpByJM, IsIn-
terpolation, IsFreezeByFFMPEG, and IsJumpByFFMPEG,
which are set when a certain effect is possibly present for
a frame. These five concealment-related factors could be
obtained by knowing the temporal location of a frame.

The motion information mentioned above is estimated by
the network node where reference frames are assumed to
be unavailable, in some cases, the “true” values for those
quantities require the reference frames. For example, the
“direct” mode of coding a macroblock assumes that an object
is moving with constant speed, so the motion vector for the
current MB is copied either from the spatial neighborhood or
from the previous colocated MB. Within a frame, we do not
have any information on the previous colocated macroblock.
We, instead, copy the motion vector from a spatial neighbor.
This way, the model is fully self-contained at the frame level,
and can be implemented at a network node.

B. Modeling Process

In the experiment and data analysis, we assume that each
viewer’s response is an independent observation of the average
viewer (for whom we are developing the model). Therefore,
each viewer response can be considered i.i.d. with probability
p for seeing a particular packet loss. Generalized linear models
(GLMs) are an extension of classical linear models [27],
[28]. The probability of visibility is modeled using logistic
regression, which is a type of GLM that is a natural model
to predict the parameter p of a binomial distribution [27].
Let y1, y2, . . . , yN be a realization of independent random
variables Y1, Y2, . . . , YN , where Yi has binomial distribution
with parameter pi . Let y, Y, and p denote the N-dimensional
vectors represented by yi , Yi , and pi , respectively. The para-
meter pi is modeled as a function of P factors. Let X represent
a N × P matrix, where each row i contains the P factors
influencing the corresponding parameter pi . Let xi j be the
elements in X. A GLM can be represented as

g(pi) = α +
P∑

j=1

xi j β j (2)

where g(.) is called the link function, which is typically non-
linear, and β1, β2, . . . , βP are the coefficients of the factors.
Coefficients β j and the constant term α are usually unknown
and need to be estimated from the data. For logistic regression,
the link function is the logit function, which is the canonical
link function for the binomial distribution. The logit function
is defined as

g(p) = log

(
p

1 − p

)

. (3)

The simplest model is a null model which has only one
parameter: the constant term α. At the other extreme, the full
model contains as many factors as there are data points. The
goodness of fit for a GLM can be determined by its deviance,
a generalization of variance. By definition, the deviance is
zero for the full model, while the deviance is positive for all
the other models. A smaller deviance means a better model
fit. To obtain the model coefficients for the candidate factors,
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TABLE V

TABLE OF FACTORS IN THE ORDER OF IMPORTANCE FOR

AVG_JM_FFMPEG MODEL

Order Factors Coefficients

α 1 −3.8051

1 IsJumpByJM × MeanMotM −2.7522e-2

2 log(VarRSENGY +10−7) 1.6276e-1

3 IsJumpByJM × MaxMotA 4.4779e-1

4 MeanMotM 1.0879e-1

5 VarMotY −2.9205e-3

6 MeanSliceSize × IsJumpByFFMPEG 7.6570e-05

7 VarMotX −2.1337e-3

8 VarMotM 2.2820e-3

9 IsInterpolation × MaxMotY −8.3836e-3

10 IsFreezeByJM × MeanMotY −2.5011e-2

an iterative feature selection technique is implemented by
MATLAB.

To prevent overfitting, a fourfold cross validation is applied.
The data is randomly segmented into four groups, and we
use three out of the four sets as the training set and the
remaining as the test set. The procedure is repeated four times,
each time choosing a different set for testing. We perform
the feature selection process on the responses collected from
the subjective experiment and the factor set described in
Section IV-A, plus the interaction terms between any two
factors in the set by multiplication between two factors.

If we have information about the user and know the exact
decoder to be deployed, we could build models based on
different decoders: JM_Model and FFMPEG_Model. Fig. 8(a)
and (b) shows the plots of deviance versus the number of
factors included in the model. The concealment-related factors
greatly improve the deviance. Because most of the losses in the
FFMPEG_Model are concealed by temporal interpolation with
interpolation effect, the concealment-related factors benefit
the JM_Model more because they correctly depict the visual
effects of freeze or jump, which are both caused by frame
copy but with very different influence on the visibility.

In case one does not know at an intermediate router which
decoder will be used ultimately at the receiver side, it is
desirable to develop one model to predict the whole-frame
packet loss visibility for both decoders. The data is combined
in two ways: taking the average of the JM and FFMPEG
visibility scores associated with the same whole-frame loss,
and taking the maximum of the JM and FFMPEG visibility
scores. The latter aims to predict the worst case visibility.
The factors in order of importance and the corresponding
coefficients of the final models of Avg_JM_FFMPEG and
Max_JM_FFMPEG are listed in Tables V and VI, respectively.
Their plots of deviance versus the number of factors included
are shown in Fig. 8(c) and (d).

The first seven important factors are almost the same for
both models, but with a slightly different order. More than 70%
of factors in the model involve motion vector computations.
This indicates the amount of motion in the lost frame dom-
inates the visual performance. Fig. 9 shows the scatter plots
of visibility score versus three of the top important factors

TABLE VI

TABLE OF FACTORS IN THE ORDER OF IMPORTANCE FOR

MAX_JM_FFMPEG MODEL

Order Factors Coefficients

α 1 −3.7488

1 MeanMotM 9.4095e-2

2 IsJumpByJM × MaxMotA 5.6668e-1

3 VarMotY −1.5806e-3

4 MeanSliceSize × IsJumpByFFMPEG 9.6291e-05

5 IsInterpolation × MeanMotA -9.1844e-2

6 log(VarRSENGY +10−7) 7.9889e-2

7 VarMotX −7.1111e-4

8 MaxMotM 9.4269e-3

9 MaxMotY −2.7974e-3

10 IsJumpByFFMPEG × MeanMotM −3.7718e-2

MeanMotM, VarMotX, and VarMotY. Since the visibility
scores take on only 11 discrete values (0, 0.1, 0.2, . . . 1) which
cause the dots to overlap in the scatter plot, we add random
values between 0 and 0.095 to each visibility score for plotting.
So the points with visibility score of 0 are shown with y values
randomly between 0 and 0.095, those with values of 0.1 are
shown with y values in the range of 0.1–0.195, etc. This makes
it easier to see the distinct dots. The trend in the plots shows
that the visibility tends to be larger when the three factors have
higher value, the dots tend to be more tightly clustered at the
low-visibility side when the factor values are small. As in the
separate model, the concealment-related factors are important.
Without these concealment-related factors, the best deviance
for the Avg_JM_FFMPEG and Max_JM_FFMPEG models are
only 171 and 229, which are considerably higher than when
concealment-related factors are included. The nine video clips
used in the subjective experiment included both high and low
motion, we found that the model accuracy was slightly higher
for slow-motion clips than for high-motion clips.

V. WHOLE-FRAME DROPPING

In this section, we discuss an application of the whole-
frame visibility model. We consider a situation in a network,
where the incoming video rate at a router is higher than the
outgoing rate. The router should perform video data dropping
to maintain the video quality as much as possible. If the router
can accurately measure the visual importance of each piece of
data, it can decide what to discard.

In our experiment, bit reduction rate (BRR) is defined as the
percentage of bits that need to be dropped from the buffered
data to alleviate the congestion. We use the whole-frame
loss visibility models from the previous section to determine
the visual importance of the frames and design a dropping
protocol. To achieve better video quality under the constraint
of a target dropping rate, the size of the frame should be
considered along with estimated visual scores.

A. Dropping Algorithms Under Comparison

We use the proposed models in Tables V and VI that
directly predict the whole-frame visibility to perform the frame
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Fig. 8. Deviance reduction as additional factors are included in the (a) JM_Model, (b) FFMPEG_Model, (c) Avg_JM_FFMPEG, and (d) Max_JM_FFMPEG
model.
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Fig. 9. Scatter plots of visibility score versus three of the top important factors. (a) MeanMotM. (b) VarMotX. (c) VarMotY.

importance estimation. The model in Table V is used to predict
the frame importance and drop frames until the target BRR
is achieved. This method is denoted FrameMean. When the
model in Table VI is used, we denote it FrameMax.

If there are two frames of the same size, to minimize the
visual impact of frame-dropping, it is intuitive to drop the
one with lower visual score. However, if there are two frames
of different sizes but with the same visual scores, it is better
to drop the frame with the larger size. To include the size
consideration, we drop frames with least ratio of visual score
to size. For the methods of FrameMean and FrameMax, these

versions are denoted FrameMeanBit and FrameMaxBit. The
experimental results show that this concept improves the video
quality.

As a baseline for comparison, [18] discusses a dropping
method that is implemented in a video-aware digital sub-
scriber line access multiplexer. It inspects the nal_ref_idc
bit in every NAL unit header. Packets that do not serve as
reference pictures can be dropped during network congestion.
That corresponds to B frames in our case. We simulate this
method by randomly dropping B frames until the BRR is
achieved. We denote this method by RandomBFrame and
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Fig. 10. Average VQM score over GOPs versus BRR for the six packet dropping policies for (a) FFMPEG for Golf, (b) JM for Soccer, (c) JM for Table
tennis, (d) FFMPEG for Mother Daughter, (e) FFMPEG for Opening, and (f) FFMPEG for Whale. Lower VQM scores correspond to higher quality.

define its performance by the results averaged over 50 random
realizations. A variation that considers size drops B frames in
descending order of size. This dropping method is denoted
LargestBFrame.

B. Experimental Results

In this section, we compare the six methods for different
videos and different levels of BRR. The lossy bit streams that
result from each dropping method and network condition are
decoded by the FFMPEG and JM decoders.

The video encoder is H.264/AVC JM9.3. The resolution is
SDTV. The tested videos are encoded at 2.5 Mb/s, 30 ft/s using
main profile level 3. The GOP structure is IBBP (18 frames).
We perform each dropping algorithm in a GOP, and the BRR
is the percentage of bits to be dropped for this GOP. After
the dropping policy is performed for a GOP, the FFMPEG
and JM decoding, and their corresponding error concealment
are run, and then the VQM [15] is calculated to obtain the
video quality score for this lossy GOP. VQM is a full-reference
metric that ranges from 0 (excellent quality) to 1 (poorest
possible quality).
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Eight videos are tested in the simulation, they contain a
wide variety of scenes with different types of camera motion,
object motion, and spatial texture. Golf has slow movement,
and Soccer has fast motion, these two videos are among the
sequences used in the subjective experiment in Section II.
Other clips are News, Mother Daughter, and Opening, which
have low motion, and Stefan, Table Tennis, and Whale with
high motion, these standard test videos were not used in the
subjective experiments.

The simulated BRRs are 0.5%, 5%, 7.5%, 10%, 15%, and
20%. Note that BRR can be very different from PLR. For
example, 20% BRR can result in 50% PLR if the dropping
algorithm drops B packets, which have much smaller sizes
than I or P packets on average. Therefore, BRR ranging from
0.5% to 20% considers a very wide range of packet dropping
levels. The BRR of 0.5% causes only one frame loss most
of the time. In this condition, RandomBFrame by averaging
over 50 random realizations could perform better than Largest-
BFrame because deterministically selecting the largest B frame
to drop will generally exceed the 0.5% dropping target and
not correspond to the lowest visbility. Based on this, when
BRR equals 0.5%, we do not use LargestBFrame and other
visbility-per-bit methods.

Fig. 10(a) shows the VQM score averaged over GOPs versus
BRR for the six dropping methods for the video Golf, where
the lossy bitstream is decoded by FFMPEG. We see that, as
the BRR goes up, the video quality deteriorates (the VQM
scores go up).

First we compare the non-visibility-based methods Ran-
domBFrame and LargestBFrame. LargestBFrame beats Ran-
domBFrame most of the time, so we could get a good
improvement on VQM score by knowing the size of each
frame. Especially for the network nodes with low computation
ability, this primitive method could provide some benefit.

We then compare the visibility-based methods. FrameMean
and FrameMax perform better than our previous method
in [12], which means the models directly built from whole-
frame losses provide a better prediction of frame importance
than estimating frame importance by summing the visibility
of slices in a frame using the slice loss visibility model.
In addition, the visibility-per-bit methods provide further
improvement. FrameMeanBit and FrameMaxBit are better
than FrameMean and FrameMax, respectively. These trends
can be observed in Fig. 10(a).

For all other videos shown from Fig. 10(b)–(f), there are
similar trends. For the comparison between the visibility and
the visibility-per-bit methods, it is not consistent that one of
them is superior; however, in more than half of the cases, the
visibility-per-bit method outperforms the visibility method.

Comparing the low-motion clips (Golf, News, Mother
Daughter, and Opening) and the high motion ones (Soccer,
Stefan, Table Tennis, and Whale), the slow-movement clips
have lower VQM scores than the fast-movement clips for a
given BRR. In the simulation, the highest VQM scores for
the fast clips are more than 0.3, while the highest scores
for the slow ones are less than 0.25. This indicates that the
losses are more concealable for Golf, News, Mother Daughter,
and Opening. Comparing the best dropping approach with

the worst one, the fast-motion videos have larger gains. In
Fig. 10(b), (c), and (f), the improvement for high-motion
videos increases more, up to 0.05−0.08 VQM score, whereas
the slower videos have less than 0.04 VQM score gain as in
Fig. 10(a), (d), and (e).

VI. CONCLUSION

In this paper, we presented the results of a subjective test on
whole-frame loss and concealment, the construction of models
predicting the loss visibility, and a packet dropping experiment
based on these models. The contributions of this paper can be
summarized as follows.

1) When isolated B frames were lost and concealed by
either the JM standard decoder or the FFMPEG decoder,
about 40% of such losses were not seen by any of the 10
observers, and about 60% of such losses were seen by 2
or fewer out of 10 observers. This suggests that whole-
frame loss of isolated B frames is highly concealable.

2) Although the JM and FFMPEG decoders had very sim-
ilar overall performance, this result hides the fact that,
depending on frame position, JM concealment produces
freeze or jump artifacts, whereas FFMPEG concealment
produces mostly interpolation artifacts (and only rarely
a freeze or jump artifact if a B frame after an IDR is
lost). These concealment approaches do not have similar
performance, as freeze is the least noticeable and jump
is the most visible.

3) When two B frames are lost within the same GOP, about
30% of such events are not seen by any observers. On
average, 2.4 out of 10 observers see a dual frame loss
event. The least visible type of dual frame loss event
consists of two isolated freeze artifacts. So if a router
needs to drop two frames within a GOP, the best choice
would be to have two separate pairs of B frames in a
GOP each suffering the loss of the first B frame in the
pair. This leads to the least visible type of loss for the
JM decoder, and among the least visible for FFMPEG.

4) Visibility models that are specific for the JM and FFM-
PEG decoders are more successful at predicting the
frame loss visibility than are models which attempt to
predict the average or the worst case of the two decoders.
Nonetheless, a model designed to predict the average
visibility score can provide improved frame dropping
decisions compared to random B frame dropping, and
compared to slice-based visibility dropping decisions
from [12].

5) In the condition, where an intermediate router is con-
gested and is forced to drop frames (needing to achieve
some target BRR), if for complexity reasons one does
not wish to drop frames using the visibility model, there
are still ways to improve over random B frame dropping.
One way is to drop the largest B frames until the target is
met, this offers improvement especially for larger BRRs
because one achieves the target with a smaller number of
total frames dropped. A second simple way to improve
over random B frame dropping is to avoid dropping the
second B frame in any pair of two consecutive B frames
(this avoids the jump concealment artifact).
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