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ABSTRACT

Motivation: Proteomics presents the opportunity to provide novel in-

sights about the global biochemical state of a tissue. However, a sig-

nificant problem with current methods is that shotgun proteomics has

limited success at detecting many low abundance proteins, such as

transcription factors from complex mixtures of cells and tissues. The

ability to assay for these proteins in the context of the entire proteome

would be useful in many areas of experimental biology.

Results: We used network-based inference in an approach named

SNIPE (Software for Network Inference of Proteomics Experiments)

that selectively highlights proteins that are more likely to be active

but are otherwise undetectable in a shotgun proteomic sample.

SNIPE integrates spectral counts from paired case–control samples

over a network neighbourhood and assesses the statistical likelihood

of enrichment by a permutation test. As an initial application, SNIPE

was able to select several proteins required for early murine tooth

development. Multiple lines of additional experimental evidence con-

firm that SNIPE can uncover previously unreported transcription fac-

tors in this system. We conclude that SNIPE can enhance the utility of

shotgun proteomics data to facilitate the study of poorly detected

proteins in complex mixtures.

Availability and Implementation: An implementation for the R statis-

tical computing environment named snipeR has been made freely

available at http://genetics.bwh.harvard.edu/snipe/.

Contact: ssunyaev@rics.bwh.harvard.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

The proteins expressed in a tissue are critical to determining its

identity and proper function. Characterizing these proteins is the

goal of proteomics; however, current mass spectrometer technol-

ogy is largely incapable of detecting many of the low-abundance

proteins in complex mixtures, such as mammalian whole tissue

lysates (Bantscheff et al., 2007; Gerber et al., 2003; Malmstrm

et al., 2007). The common approaches to deal with this problem

include enrichment assays or selective on-line monitoring of

specific ions or reactions. The primary issue with these methods

is that by design, they only capture a fraction of the proteome.

As a result, comprehensive proteome analysis remains a difficult

task (de Godoy et al., 2008; Nagaraj et al., 2011), and an as-yet

unsolved problem for multi-cellular eukaryotes. Because of this,

the biochemical state of a tissue must often be inferred from

gene expression data and a few select trusted antibodies, leaving

the vast majority of the proteome invisible and essentially

unapproachable.

The ability to assay the complete proteome would be desirable

for fields such as developmental biology. However, in addition to

technical challenges discussed previously, developmental biolo-

gists often study highly complex tissues available in limited

amounts. Also, many of the key proteins of interest, including

transcription factors and signalling molecules, are present only at

low abundance and are not well detected by whole proteome

analysis. Gene expression microarrays or RNA-Seq are used as

a stand-in for an effective whole-proteome assay, but it has been

repeatedly established that quantitative proteomic measurements

correlate poorly to gene expression levels (Greenbaum et al.,

2003; Gygi et al., 1999; Schrimpf et al., 2009; Vogel and

Marcotte, 2012), rendering this approach problematic for assay-

ing the proteome. Thus, although a clear need exists for effective

proteomics approaches, current technology does not meet the

needs of researchers when tissue quantity or machine time is

constrained.

A common goal in developmental biology is to define the

mechanisms that determine the states of cells and tissues in

time and space. These mechanisms are carried out by the

coordinated tissue-specific action of a large number of pro-

teins. The activity of these proteins can be differentially regu-

lated in several ways. First, the proteins themselves can be

expressed at different levels. Alternately, although being ex-

pressed at the same level, they can change their localization

or function because of modifications. These proteins do not

act individually but are members of genetic pathways, in

which the regulation of one member will have an impact on

other pathway members. Thus, the expression and function of

other pathway members is indicative of the activity of a given

protein. For example, the role of a transcription factor in

specific tissue or developmental time point can be evident

from the differential regulation of its transcriptional targets.

Similarly, the role of a secreted signalling molecule can be

inferred from the changes in protein levels or localization of

other canonical pathway members.*To whom correspondence should be addressed.
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We hypothesized that the coordinated expression of associated
proteins can be used to infer the identity of proteins involved in

development. This approach can be applied to proteomic data,
where the protein of interest cannot be readily identified or quan-

tified. To test this hypothesis, we have developed a wholly com-
putational method named SNIPE (Software for Network

Inference of Proteomics Experiments). SNIPE integrates previ-
ous biological knowledge encoded in a pre-existing network with

the simple spectral counts obtained from any mass spectrometry
experiment to select proteins whose network neighbourhoods are

enriched between samples. Proteins that are involved in develop-
ment, but otherwise undetected in the sample, would be expected

to have enriched surrounding subnetwork and may be thus

detectable by SNIPE.
As part of an effort to use systems biology approaches for

mammalian organ engineering, we focused on a mouse model

for the development of SNIPE. The developing mouse tooth is a
premier model for organogenesis through epithelial–mesenchy-

mal interactions, which comprise a fundamental principle for the

development of numerous mammalian organs. These inter-
actions are characterized in all tissues, including the tooth, by

the exchange of signalling molecules leading to the induction of
transcription factors and other signalling molecules that are

responsible for the development of the organ (Bei, 2009). As
these low-abundancy proteins form the core of the developmen-

tal mechanism driving the formation of many organs, it is im-
portant to be able to assay them. Applying SNIPE to the study

of the developing tooth would, therefore, be an optimal test-case
for the method, as its performance could be judged by its ability

to assay these critical, but challenging to detect, proteins. Here,

we report the SNIPE algorithm and software implementation
and its ability to correctly infer the presence of proteins known

to be expressed in and functionally important in tooth develop-
ment, as well as its ability to infer the presence of transcription

factors previously undescribed in the developing tooth.

2 ALGORITHM

2.1 The SNIPE algorithm

The key feature of SNIPE is its ability to assay the entire prote-

ome despite the challenges of current mass spectrometry technol-
ogy to detect many proteins in complex samples. SNIPE uses

simple spectral counts from mass spectrometry data paired
with a known existing network based on available knowledge

to increase statistical power and to make inferences (Fig. 1).
For each protein in the network, SNIPE sums the number of

spectral counts corresponding to that protein and all of that
protein’s immediate neighbours in the network. This is done

for two sample sets that act as a case–control design (such as
tooth germ and non-tooth oral tissue), and then these sums are

normalized and compared by a scoring function (see Algorithm).
To calculate a P-value for differential enrichment, the individual

spectral counts of the two samples are randomly permuted at

each node without disturbing the network architecture, effect-
ively simulating the null hypothesis. Each node is given a score

under each permutation, and the P-value is assigned given the
position of the observed score in the distribution of simulated

scores. To control for multiple testing, the best score in the entire

network for each permutation is stored, and the position of each

observed score is compared with this distribution of extreme

value scores, providing a P-value that is corrected while explicitly

taking into account both network architecture and simulated null

hypothesis data rather than fully theoretical distributions. The

case–control set-up eliminates several potential problems with

this application, including differential peptide ionization efficien-

cies and protein lengths, as these are assumed to be constant

between the case and control samples. It also removes the bias

because of network architecture, as this feature remains constant

between samples and during permutations.
The fundamental feature of SNIPE is that it is not limited to

assaying only the proteins that are observed in the dataset. As in

Figure 1, SNIPE can also act on ‘empty nodes’ that have

observed spectral counts of 0. These empty nodes may have

neighbours that are observed at high levels in a dataset, which

then serve to inform the presence of the empty node protein. This

guilt-by-association idea has been used effectively in many other

areas (Deo et al., 2010; di Bernardo et al., 2005; Lee et al., 2010;

Nibbe et al., 2010; Vanunu et al., 2010; Wolfe et al., 2005), but to

the best of our knowledge, this is the first time it has been applied

in this manner. A somewhat related method named as

clique-enrichment approach was recently used to attempt to

rescue low-confidence proteins identified in a search and uncover

Gene Ontology (GO) categories known to be involved in a given

phenotype (Li et al., 2009). Clique-enrichment approach at-

tempts to find cliques in the network architecture, whereas

SNIPE relies on network neighbourhood and uses semi-

quantitative data (in the form of spectral counts) in a case–

control experimental design. As a result, the main benefit of

SNIPE is its design as an enrichment test between the case

and control sample to bias towards functionally relevant pro-

teins, as described previously.
SNIPE relies on having a network of protein–protein associ-

ations available. The current SNIPE implementation uses the

STRING (Search Tool for the Retrieval of Interacting Genes/

Proteins) network for this purpose. For this work, the STRING

version 8.2 protein links file was downloaded from http://string.

embl.de/. Links between proteins in STRING are determined

Fig. 1. Diagram of the SNIPE method. Spectral counts for each protein

are matched to their nodes in a given network. A score for the protein is

calculated by summing the node (blue) and its immediate neighbours

(grey). A P-value is assigned by permuting the counts in the network

and generating a distribution of scores for that node and comparing

the observed score to that distribution
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using a variety of sources, including protein–protein interaction,
high-throughput gene expression, protein co-evolution and litera-
ture text mining datasets (Jensen et al., 2009). As a result,

STRING gives a broad, but inexact, view of whether two proteins
associate in any way. Although SNIPE currently uses STRING,
any similar network could potentially be used.

SNIPE traverses each node in the STRING database, tallying
the total spectral counts for each node and its immediate neigh-
bours in the network for each of two samples given. A score

� ¼ ðx1� EÞ=
ffiffiffiffi

E
p

is calculated, where E ¼ ððx1þ x2Þ�
ðx1þ y1ÞÞ=ðx1þ x2þ y1þ y2Þ and x1 and x2 are the sums of
spectral counts for the neighbourhood of that protein in each

sample, whereas y1 and y2 are the sums of all observed spectral
counts in each sample. Thus, � is closely related to the �2 statistic
by design. In contrast to �2,� allows for one-sided tests. A single

� score is calculated for the comparison of the two groups, as in
the �2 test.
A P-value is calculated by permuting the spectral counts in the

network to generate a distribution of � scores under the null
hypothesis. For this work, we used 1 million permutations. At

each node, the sum of the counts in the neighbourhood for each
sample is randomly distributed across the two sample types ac-
cording to the binomial distribution using probability of success

0.5 because under the null hypothesis, we expect that the number
of spectral counts at each node will be equal in the two sample
types. Because the permutation uses the counts within the neigh-

bourhood and thus the counts stay with that neighbourhood,
this controls for different counts per node. Additionally, because
of the case–control design and the design of the � score, differing

numbers of counts between the samples are dealt with naturally.
The network structure is considered fixed and not permuted.
Multiple test correction is performed by storing the highest

score for each permutation to create a distribution of best
scores. A corrected P-value is calculated by comparing the
observed score with this distribution.

Ideally, network neighbourhood enrichment detected by
SNIPE implies the following: first, the protein is likely to be
present. Second, the protein is either differentially expressed

itself or expressed in equal amounts but is functionally involved
in the coordinated enrichment of the network neighbourhood

because of changes such as differential modification or localiza-
tion. A negative SNIPE result, however, does not rule out pro-
tein presence, differential expression or a functional change.

From a functional perspective, proteins highlighted by SNIPE
would either cause the coordinated change of the network neigh-
bourhood or would be downstream targets of an active pathway.

Both of these possibilities are of interest to developmental biolo-
gists. In the real world, the analysis can be complicated by stat-
istical noise, tissue- or time point-specific nature of protein

associations in the network, as well as gross network inaccura-
cies. Despite these issues, as seen from the results presented later,
SNIPE is able to correctly highlight proteins, such as transcrip-

tion factors, that are necessary for tooth development.

3 IMPLEMENTATION

SNIPE is currently implemented in software as a package
named snipeR for the R Statistical Computing Environment

(R Development Core Team, 2011). Because of its size,

STRING is not bundled with the package, but may be down-
loaded separately using a helper function included in the package
or manually by the user from the STRING website.

4 RESULTS

4.1 The application of SNIPE to mammalian

proteome data

We generated matched proteomic datasets for the developing
mouse lower molars and surrounding non-dental oral tissue at
embryonic day 13.5 (E13.5) (Table 1). The proteins identified

in these samples showed significant overlap (Supplementary
Fig. S1A), as was expected at this developmental stage.
Although several thousand proteins in these datasets were iden-
tified by mass spectrometry, only a handful were found to be

significantly enriched in the developing tooth compared with oral
tissue using a statistical test of simple spectral counts [Bonferroni
corrected P-value or false discovery rate (FDR)50:05, Table 2].
This result was expected, given the limitations already described
(Bantscheff et al., 2007). Furthermore, most of the proteins that
were known to play a role in tooth development were not

detected in these datasets (Supplementary Fig. S1B), and none
of them were found to be significantly enriched in the tooth
germ, even in the many cases where they were known to be.
This result was also expected, as these proteins are almost exclu-

sively signalling pathway components and transcription factors
and were thus likely to be found only at relatively low levels, if
at all. GO category analysis found no significant enrichment

of developmental pathways (Supplementary Table S1). These
results are reflective of the inherent difficulties in using current
proteomics technology to detect biologically important proteins

in a complex sample.

Table 2. Proteomics results with and without SNIPE

Multiple test

correction

Fisher’s test SNIPE

Uncorrected (nominal P50:05) 152 2588

Bonferroni corrected (P50:05) 13 443

FDR 50:05, permutation-based 23 1534/514

FDR, Benjamini-Hochberg. Permutation-based multiple test correction is the

SNIPE default (see Algorithm).

Table 1. Peptide and protein recovery from tooth and non-tooth control

sample

Dataset Total peptides Unique proteins

E13.5 tooth germ 27810 2961

E13.5 oral tissue 26 889 2822

‘Total peptides’ is the total number of identified non-unique peptides discovered

in each sample for two biological replicates. ‘Unique proteins’ is the total number

of unique proteins identified by at least one spectrum in the same samples.
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In contrast, SNIPE analysis of these datasets found a significant

enrichment of the network neighbourhood for410-foldmore pro-

teins out of the entire proteome (514 proteins with P-value of

50:05 after permutation-based multiple test correction and

1534 with FDR 50:05, Table 2). A greater fraction of the

proteins originally detected only in the tooth germ were selected

by SNIPE (4%) compared with those only in oral tissue or both

samples (2% and 3%, respectively). This is consistent with

expectations that SNIPE will highlight proteins uniquely

expressed in the tissue of interest. GO category analysis revealed

categories including transcription factor activity and embryonic

development to be statistically overrepresented in this set

(8:5� 10�7 and 6:4� 10�6 FDR, respectively, Supplementary

Table S2). None of these categories were represented in the ana-

lysis of the raw proteomics data. This result indicates that our GO

category enrichment through SNIPE was non-random, and that

SNIPE was able to select truly relevant proteins where the raw

proteomics results were unable to do so. To demonstrate this, we

chose to focus on the 45 transcription factors in this set because of

the importance of transcription factors to development and the

difficulty in detecting them from complex protein mixtures. Of

these factors, only two were detected in our original samples.

Nine of the transcription factors were found to be expressed in

the tooth during development by a literature search, and five of

those were also known to have some functional role in tooth de-

velopment. Importantly, among these five proteins were Pax9 and

Msx1, which are both known to be essential for tooth formation

(Bei, 2009) and which were not detected directly in our proteomic

datasets. Thus, SNIPE highlights proteins previously character-

ized in the developing tooth including some known to be critical

for organogenesis.

4.2 Bioinformatic validation of SNIPE

To estimate the rate of false-positive predictions made by

SNIPE, we used the Helsinki database of tooth development

(Kaski et al., 1996), which contains annotations for many

genes expressed at E13.5, including some genes that were

marked as absent and hence could be considered as true-negative

proteins. A particular challenge for this analysis is that most of

the genes that are not expressed at E13.5 are expressed at some

other stage of tooth development, and several of them are known

to cause tooth defects when mutated. We expected the proteins

coded by these genes to be associated with other tooth-related

proteins in STRING, making it difficult for SNIPE to discern

that they should not be present. However, contrary to this ex-

pectation, SNIPE was able to select far more true- than

false-positive proteins (Fig. 2A). In contrast, increasing the

FDR cut-off for the SEQUEST protein identifications in the

raw signal did not increase this signal at all, indicating that

these proteins were not identified at all in the original sample

even at low confidence, but were inferred by SNIPE.

Interestingly, the raw proteomics data detected a number of pro-

teins that were annotated as being definitively absent from this

particular developmental stage. This implies that our true nega-

tive dataset is flawed and that a base number of incorrectly

annotated false-positive proteins should be assumed when

using this database. Despite this, the Helsinki Tooth Database

is an expert hand-curated database, and much of its contents

Fig. 2. SNIPE performance. (A–D) Fractions of true- and false-positive

proteins recovered at various significance thresholds for (A) SNIPE

using permutation-based multiple test correction, (B) SNIPE using

FDR for multiple test correction and (C) microarray. (D) Fraction

of genes in the MGI database annotated for causing a tooth pheno-

type recovered at different FDR for SNIPE and Microarray. (E–G)

Numbers of proteins in the Helsinki database recovered by (E) SNIPE

using permutation-based multiple test correction, (F) SNIPE using FDR

compared with microarray. (G and H) Numbers of proteins known to

cause a phenotype in the MGI database recovered by (G) SNIPE using

permutation-based multiple test correction and (H) SNIPE using FDR

compared with microarray
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have been independently confirmed by authors of this article and
others.
We next used the Mouse Genome Informatics (MGI) database

(Bult et al., 2008) to determine which of the proteins that
SNIPE identified had some documented genetic effect on tooth
development when their coding gene is mutated. This is critically

important as a test of SNIPE’s ability to highlight proteins
that are not only present but are also functionally relevant.
SNIPE is designed as an enrichment test to bias towards bio-

logically relevant proteins. Thus, we would expect that SNIPE
is able to predict the presence of these proteins in the tooth

germ sample. These proteins were overwhelmingly selected by
SNIPE (Fig. 2D).

4.3 Technical interpretation of the SNIPE output

An incompletely solved problem in shotgun proteomics is the
process of assigning protein identities to peptides that are not

unique in the proteome. Because SNIPE deals entirely with pro-
tein identifications, the assignment of these peptides could have
significant effects on the output of the algorithm. To test this, we

took the non-unique peptides identified in the tooth germ and
oral tissue samples and determined the set of proteins they
matched across the entire proteome. We then generated 10 sets

of random protein identifications from the peptide matches in
our samples, and subsequently ran SNIPE on each random

set. We found that the random assignment of protein identities
did not have a major impact on SNIPE’s performance
(Supplementary Fig. S2A and B, compare with Fig. 2A and

B). We conclude that SNIPE is able to overcome problems
with non-unique peptide assignment, without significant effects
on its output.

Because of the large increase in fold-change caused by SNIPE,
proteins that show little evidence of enrichment in the original
sample will be overwhelmed by the signal from their network

neighbours, leading to loss from the list of proteins under con-
sideration. Although this is expected, as SNIPE is fundamentally

an enrichment test, it will cause proteins that are identified by
mass spectrometry to be given poor scores by SNIPE. The dis-
tribution of this effect for the pooled tooth germ samples is

shown in Supplementary Figure S2C and D. The histogram in
Supplementary Figure S2C shows the size of the effect of sum-
ming up the STRING network neighbourhood by SNIPE when

compared with the originally observed spectral counts by mass
spectrometry. This graphic does not include unobserved proteins.

The two peaks show a divergent effect. The first peak, to the left,
represents a ratio of 1, indicating that SNIPE provided no
increased power to make any inferences about these proteins.

The second peak, in the middle of the vaguely Gaussian distri-
bution, shows that when SNIPE is able to bring the network to
bear on the protein, the effect sizes tend to fall between 50- to

100-fold. Supplementary Figure S2D shows the distribution of
the calculated � score (see Algorithm) for all proteins in
STRING, graphed against the observed spectral counts in the

original mass spectrometry data. Proteins with low observed
spectral counts have a generally equal probability of being as-

signed a low or high score. As the number of observed counts for
a protein increases, however, the SNIPE score also begins to
increase, as shown by the trend line, which begins to increase

noticeably at a score of �25. Thus, in cases where there is a good

number of spectral counts for the protein already observed,
SNIPE will tend to agree with the observed data.

4.4 Effects of the STRING network

SNIPE treats the underlying STRING network as fixed to cap-
ture the underlying information encoded in its architecture. The
case–control design of the system also controls for a certain

amount of bias in the network architecture. However, it is pos-
sible that because of the large number of nodes and connections
in the network, a significant number of proteins were found

simply by chance, despite attempts to correct for multiple hy-
pothesis tests. To examine this, we randomly permuted the net-
work using a standard permutation matrix, thereby maintaining

the distribution of node degrees throughout the entire network.
Under these conditions, few proteins in the Helsinki Tooth
Database set passed the threshold of statistical significance,

using either the permutation-based multiple test correction or
FDR (Supplementary Fig. S3A and B). Additionally, there was
little overlap between the proteins chosen by the normal and

permuted networks. Accepting an equal number of proteins
from both the normal and permuted network experiments, the
number of those reaching statistical significance of corrected

P50:05 in the normal experiment and the same top number
from the permuted experiment, found an overlap of �5%, no
better than statistical noise (Supplementary Fig. S3C). From this

work, we can conclude that the specific architecture of the net-
work is critical to the function of SNIPE, and that SNIPE’s
performance is not because of general features of STRING,

such as distribution of node degree.
A distinctive feature of STRING is its use of multiple different

data sources to build the final network. An interesting question

was which of these data sources were contributing to the signal.
Running SNIPE using subsets of STRING composed of only
specific data sources (Supplementary Fig. S3E and F) revealed

that the signal was almost exclusively coming from the ‘text
mining’ and ‘database’ categories. Gene co-expression also pro-
vided a small amount of signal.

To further investigate the contributions to the observed signal,
we looked at the proteins in the network that were contributing
to the positive predictions for four transcription factors that are

necessary for tooth development, Pax9, Msx1, Dlx2 and Barx1
(Supplementary Fig. S4). Although all of these proteins are crit-
ical for tooth development, none were directly observed in our

proteomic data. In all four cases, the majority of the contributing
spectral counts came from proteins not previously described in
tooth development at all (Supplementary Fig. S4). Further, the

known genes were unable to provide a significant P-value for
enrichment by Fisher’s exact test, whereas the unknown genes
were. As in the global analysis, the signal for all four of these

proteins came almost exclusively from the ‘text mining’ and
‘database’ STRING categories. Among the proteins contributing
the signal from these four network neighbourhoods, only one

(Msx1) could be considered a clique (Supplementary Fig. S5),
demonstrating that clique finding approaches would be funda-
mentally unable to recover many of these necessary proteins

from these data. Critically, these results demonstrate that
SNIPE is not simply rediscovering previous findings from the
tooth biology literature, but is instead using latent knowledge

to make novel inferences about tooth development.
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A feature of STRING is that each network edge includes a
composite score of the confidence of the validity of that edge.
Running SNIPE using versions of STRING filtered at specific

cut-off values resulted in the true-positive recovery rate falling
faster than the false-positive recovery rate as stringency
is increased (Supplementary Fig. S3D). Once scores 50.5 are

filtered out, the majority of the gain in the signal is lost. This
indicates that the signal found in STRING is not primarily in

the network edges with high scores, but in the composite of the
lower-scoring edges.

4.5 Comparison of SNIPE to gene expression

microarray analysis

The most common genome-scale method for evaluating tran-

scription factors is differential gene expression analysis. To com-
pare SNIPE with this standard, we generated microarray

datasets in the same manner as the proteomic samples and
looked at the set of genes enriched in the developing tooth
(Fig. 2C–H). We compared these against the set of genes in the

Helsinki tooth database. For microarray analysis, we chose to
look for significant enrichment in the tooth germ sample com-
pared with the non-tooth oral tissue rather than a simple detec-

tion above background level. The rationale for this is, as
described previously, looking for signals enriched in the tissue

of interest biases to search towards functionally relevant pro-
teins. The microarray analysis predicts 677 proteins as signifi-
cantly enriched in the tooth germ tissue, in comparison with

SNIPE’s 514. Using its normal multiple test correction, SNIPE
selected far fewer proteins annotated as present in the tooth in

the Helsinki database than microarray analysis (Fig. 2A and C).
Suprisingly, the sets of proteins recovered by each analysis were
relatively distinct (Fig. 2E). Correcting SNIPE’s output using a

standard FDR correction as in the microarray analysis (Fig. 2B
and F) creates an alternative comparison of interest. In this case,
SNIPE selected many more true-positive proteins, at the cost of

many more false-positive proteins (Fig. 2B). A similar pattern
held for the transcription factors alone as well as for the MGI

mutant database set (Fig. 2D), indicating that developmentally
important proteins are being highlighted. Again, SNIPE was able
to select a distinct set of these proteins compared with micro-

array analysis (Fig. 2G and H). These results indicate that
SNIPE can highlight relevant proteins and that these proteins

are distinct and complementary to those found through micro-
array analysis.

4.6 Experimental validation of SNIPE predictions

A challenge with these findings is that it was possible that

SNIPE was only selecting proteins already known to be
involved in tooth development, whereas the remainder were

false-positive proteins. Therefore, it was critical to determine
whether SNIPE can correctly select novel proteins whose ex-
pression during organ development could be confirmed by

an independent experimental method. Examining the set of
transcription factors given P-values of 50.05 by SNIPE for

which antibodies were available revealed a subset of these
that had never been investigated or described in the tooth at
all, and thus, presented an opportunity for new discovery

through SNIPE. We tested 22 of these proteins by

immunohistochemistry and found that 7 showed staining that
was specifically localized to the developing tooth bud. These
seven were chosen as candidates for further analysis. The pro-

teins we did not select at this stage might have had antibodies
that were not appropriate for immunohistochemistry or repre-
sent SNIPE false-positive proteins. Additionally, proteins with

non–tooth-specific expression were eliminated at this stage.
Of the seven, five showed nuclear localization, as typically
observed for transcription factors (Fig. 3). Microarray data

also showed RNA expression for all five of the nuclear-
localized proteins save Steroidogenic factor 1 (SF1). These re-
sults were confirmed by PCR, with faint expression for SF1

mRNA detected by two primer pairs, potentially explaining
the absent call in the microarray data (Supplementary

Fig. S6). The two proteins that showed tissue specific
non-nuclear staining were not confirmed by PCR, indicating
that they were false-positive proteins. To the best of our know-

ledge, none of these proteins had been previously shown to be
expressed in the developing tooth [Six1 was subsequently shown
to be expressed transcriptionally (Nonomura et al., 2010)] nor

have they been described functionally as of yet in this system.
These results provide evidence that SNIPE can correctly infer
the presence of novel proteins expressed in a developing organ.

5 DISCUSSION

SNIPE correctly highlights several proteins, including transcrip-
tion factors, that are not normally detected by shotgun mass
spectrometry of complex protein samples from whole tissues.

Assaying these proteins has been a critical requirement
for fields like developmental biology, and SNIPE broadens the
applicability of proteomics for these areas.

SNIPE relies on the assumptions that associated proteins tend
to be co-expressed and that these associations are not always
tissue or time point specific. Current understanding of molecular

pathway function is that coordinated activity among pathway
members generally requires their co-expression, and that many
of these pathways are used reiteratively across tissues and time

points. The combinations of pathway activities serve to provide
tissue and time point specificity from non-specific components.
Recent analysis of protein–protein interactions in the human

proteome provides further evidence that this is indeed the case
globally, rather than just for well-studied pathways (Bossi and
Lehner, 2009). SNIPE’s explicit design around network neigh-

bourhoods along with a semi-quantitative case–control experi-
mental set-up allowed SNIPE to succeed where approaches

relying only on network architecture would fail on this dataset
(Supplementary Fig. S5). Despite this, the SNIPE model is not
insensitive to the network inaccuracies, as we demonstrate in our

analysis. Thus, we recommend that experimenters tailor their use
of the P-values reported by SNIPE to their experimental needs,
allowing more or less stringent cut-offs depending on their

tolerance for error and willingness to subsequently validate the
SNIPE inferences. Using SNIPE’s permutation-based multiple
test correction effectively suppresses false-positive proteins

(Fig. 2A) and should be used when the experimenter has low
tolerance for errors, whereas using a more traditional FDR cal-
culation increases the error rate but also captures far more

true-positive proteins (Fig. 2B).
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A limitation of SNIPE is that it relies on integers rather than

continuous variables. This dramatically simplifies the statistics,

making simple permutations reasonable for generating P-values.

However, there is significant general interest in using other

non-integer measures of protein abundance besides spectral

counts, such as spectral peak intensity. SNIPE cannot currently

handle this form of data, as well as many types of non-proteomic

data, such as microarray results. Given the broad move in the

field towards quantitative mass spectrometry using methods such

as isobaric tagging that generate continuous data, SNIPE will

need to be adapted to be more applicable to these types of experi-

ments. However, these quantitative methods do not solve the

problem of dealing with low abundance proteins, and they can

indeed exacerbate the problem by relying on methods such as

triple-stage mass spectrometry (MS3), which decreases overall

throughput (Ting et al., 2011), thereby limiting the number of

spectra assayed. Improved mass spectrometers will likely be the

most important advance to address this problem, but it is unclear

at what point they will be sufficient to detect and quantify a

nearly complete proteome from restricted amounts of tissue.

Even the most current mass spectrometers are challenged by

the task of uncovering low abundance proteins in favourable

conditions, such as large quantities of protein and high-quality

enrichment procedures (Kim et al., 2011; Nagaraj et al., 2011).

Because of these reasons, potential applications for SNIPE will

exist for the foreseeable future, and will be enhanced if it is made

to work with continuous data. This will likely be the subject of

subsequent work on the method.
An important finding that was repeated throughout this work is

that SNIPE not only highlights undetected proteins that are

present in a given tissue sample, but that it focuses attention on

proteins that are important for the developmental process.

Although the number of proteins identified by the raw proteomic

data was much higher than that selected by SNIPE, SNIPE was

able to select dramatically more factors that were critical for the

process of interest, including transcription factors that were

known to be necessary by mutational analysis. This was reflected

in the results from two different databases (Helsinki andMGI) as

well as GO category analysis, demonstrating that this is a
non-random effect. Our finding that the signal for known tran-

scription factors comes from associations with proteins that were

not studied in the tooth development field indicates that SNIPE is

effectively able to bring evidence from other fields to bear on

making tissue-specific predictions. Because of SNIPE’s reliance

on non–tissue-specific previous knowledge, it is unclear how

powerful it will be in making novel discoveries across different

tissues and experimental systems. However, our experimental val-

idation of the expression of several predicted transcription factors

never before described in the tooth indicates that SNIPE can be

used to make novel discoveries (Fig. 3). Unfortunately, our ex-

perimental validation does not extend to functional studies of the

found proteins, making it currently impossible to say that SNIPE

is capable of biasing towards biologically relevant novel proteins.

However, our finding that it can recover previously known func-

tionally important proteins (Fig. 2D) and that the signal from

these proteins comes from proteins not known to be related to

tooth development (Supplementary Fig. S4) provides evidence

that it will do so as designed. Additionally, our comparison with

differential gene expression analysis suggests that gene expression

analysis and SNIPE are complementary approaches, detecting

Fig. 3. Immunofluorescence of E13.5 tooth bud. (A) Diagram of the E13.5 murine first molar tooth bud. The tooth at this stage is composed of

invaginating dental epithelium (DE, blue) and surrounding condensed dental mesenchyme (DM, orange). The condensed cells indicate differential

cellular fate of the condensed dental mesenchyme from the surrounding non-dental mesenchyme (M). The non-dental oral epithelium (OE) is a cellular

bilayer divided by the oral cavity (grey line). (B) Etv5 immunostain shows uniform ubiquitous nuclear expression in the tooth and non-tooth regions. (C)

Six1 immunostain shows similarly ubiquitous nuclear expression in the tooth and non-tooth regions with a slight visible enrichment in the dental

mesenchyme matching the region previously reported for its gene expression pattern (Nonomura et al., 2010). (D) SF1 (Nr5a1) and (E) Sox11

immunostains show specific expression in the dental mesenchyme and all epithelial tissue. (F) Zeb1 immunostain shows a nuclear localized stain

specifically in the mesenchymal tissue with slight upregulation in the dental mesenchyme. Scale bars: 88�m
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distinct, although partially overlapping, sets of genes/proteins
(Fig. 2E–H). This indicates that researchers interested in a more
complete global picture stand to gain by using both methods in
concert.
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