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Mining potential drug-disease associations can speed updrug repositioning for pharmaceutical companies. Previous computational
strategies focused onprior biological information for association inference.However, such informationmaynot be comprehensively
available andmay contain errors. Di	erent fromprevious research, two inferencemethods,ProbS andHeatS, were introduced in this
paper to predict direct drug-disease associations based only on the basic network topologymeasure. Bipartite network topologywas
used to prioritize the potentially indicated diseases for a drug. Experimental results showed that both methods can receive reliable
prediction performance and achieve AUC values of 0.9192 and 0.9079, respectively. Case studies on real drugs indicated that some
of the strongly predicted associations were con�rmed by results in the Comparative Toxicogenomics Database (CTD). Finally, a
comprehensive prediction of drug-disease associations enables us to suggest many new drug indications for further studies.

1. Introduction

Drug discovery is a costly and time-consuming process.
Previous research reported that it takes around 15 years and
$800 million to $1 billion for pharmaceutical companies to
develop a new drug and bring it to market [1, 2]. Although
such huge amount of time and money has been put into this
industry, only a relatively small number (∼20) of new drugs
known as newmolecular entities (NMEs) are approved byUS
Food andDrugAdministration (FDA) each year (http://www
.fda.gov/Drugs/DevelopmentApprovalProcess/HowDrug-
sareDevelopedandApproved/DrugandBiologicApprovalRe-
ports/default.htm). Even so, there is a declining trend in
annual drug introductions and the most signi�cant cause of
this productivity decline has been the decrease in develop-
ment survival rates, especially the attrition rate in Phase II
trials [3]. It was estimated that Phase II survival in drug
development has dropped from near 50% to less than 30%
[4, 5].

As the concept of “one drug, multiple targets” [6] is
now widely recognized, drug repositioning or repurposing
(i.e., �nding a new use for an existing drug) [7] has been
proposed to provide a solution to the above problems faced

by pharmaceutical companies. For example, Rituxan was
originally indicated for non-Hodgkin’s Lymphoma and it
was later approved for chronic lymphocytic leukemia and
rheumatoid arthritis. Since drug repositioning can bene�t
not only pharmaceutical companies but also patients, various
e	orts, including traditionally blind screening methods of
chemical libraries against speci�c cell lines [8] or cellular
organisms [9, 10], and serial testing of animal models [11],
have been made to search new indications for existing drugs.
Meanwhile, to reduce cost and time of in vivo and in
vitro experiments, many computational methods have been
published for drug repositioning [12–22].�ese methods can
be classi�ed as “drug based” or “disease based” and they
mainly take similarity measures (chemical similarity, molec-
ular activity similarity, or side e	ect similarity), molecular
docking, or shared molecular pathology to reveal potential
repurposing opportunities [23]. New drug targets, mainly
proteins, genes, or pathways, are predicted by these methods
for further drug repositioning. Applications and limitations
coexist in these methods and comprehensive summaries of
recent advancement of computational drug repositioning are
available in the two reviews [23, 24].
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More recently, several computational strategies have been
proposed to predict direct drug-disease associations for drug
repositioning. �e Comparative Toxicogenomics Database
(CTD; http://ctdbase.org/) [25] is a comprehensive and
publicly available database which inferred chemical-disease
associations by integrating chemical-gene interactions and
gene-disease relationships received manually from published
literature. Chiang and Butte [26] implemented a network-
based, guilt-by-association method (GBA) for drug-disease
association prediction and novel drug use suggestions were
made based on shared treatment pro�le from disease pairs.
�is repositioning strategy is limited by the complex relation-
ships between drugs and diseases asmany drugs are indicated
as palliative treatments for diseases, like cancers [23]. Based
on the observation that similar drugs are indicated for
similar diseases, Gottlieb et al. [27] developed a novel algo-
rithm, PREDICT, to infer potential drug-disease associations
and predict new drug indications. Multiple drug-drug and
disease-disease similaritymeasures were integrated into their
method and excellent prediction accuracy can be obtained
on cross validation. However, negative samples were needed
in their model to implement the prediction procedure.
Experimentally veri�ed negative drug-disease associations
are not available due to lack of research value. A comodule
(important gene modules shared by both drugs and diseases)
method was proposed by Zhao and Li [28] to understand
how drugs and diseases are associated in the molecular
level. Applying the method to simulations and real data
demonstrated that it was able to identify new drug-disease
associations and highlight their molecular basis. Huang et al.
[29] designed a network propagation model and exploited
existing chemical, genomic, and disease phenotype data to
infer drug-protein/gene-disease phenotype relationships, in
which genes with similar functional modules were related to
not only drugs but also the disease phenotype.Daminelli et al.
[30] integrated structural and chemical data to build a drug-
target-disease network and mined the network for network
motifs of bi-cliques where every drug is linked to every target
and disease. Links from drugs to diseases were predicted by
completing the incomplete bicliques. Ye et al. [31] collected
known drug target information and disease pathway pro�le
to develop a method for evaluating the relationships between
drugs and a speci�c disease. Emig et al. [32] integrated disease
gene expression signatures, drug targets, disease information,
and molecular interaction network to prioritize drug targets
for drug repositioning.

Computational inference methods are important ways
to choose the most promising drug-disease associations for
further drug repositioning. Current computational methods
need biologically relevant information, including negative
association results, similarity measures, or gene expression
pro�les, to assist drug-disease association prediction. Such
additional information may not be easily available or may
contain errors [23]. Di	erent from previous research, in
this paper, two inference methods, ProbS and HeatS, were
introduced to predict direct drug-disease associations based
only on the basic network topology measure. We formulated
the problem as recommending preferable diseases for drugs.
Network topology was used to prioritize the potentially

targeted diseases for drugs. We tested the two methods on
an experimentally veri�ed dataset with leave-one-out cross
validation for performance evaluation. Experimental results
showed that both methods can receive reliable prediction
performance and achieve AUC values of 0.9192 and 0.9079,
respectively. �e method ProbS with a better performance
was selected for potential drug-disease association predic-
tion. Case studies demonstrated that some of the strongly
predicted associations are con�rmed by the publicly available
databaseCTD [25], which indicated the practical applications
of the method ProbS in a real environment. Finally, plenty of
predicted drug-disease associationswere publicly released for
future drug repositioning. It is expected that these methods
will provide help to facilitate further research on drug
repositioning.

2. Materials and Methods

2.1. Dataset. Experimentally con�rmed drug-disease associ-
ations were downloaded from the supplementary material
of [27]. At the time of the paper [27] was written, Got-
tlieb et al. collected 1933 associations between 593 drugs
taken from DrugBank [34] and 313 diseases listed in the
Online Mendelian Inheritance in Man (OMIM) database
[35]. �is set of known drug-disease associations is regarded
as the “gold standard” data and is used for evaluating the
performance of our introduced methods in the following
cross validation experiments as well as training data in the
comprehensive association prediction.

We denote the drug set as � = {�1, �2, . . . , ��} and the
disease set as � = {�1, �2, . . . , ��}. �e drug-disease associ-
ations can be described as a bipartite DP graph �(�, �, �),
where � = {	�� : �� ∈ �, �� ∈ �}. An edge is drawn between
the drug �� and the disease �� if there exists an association
between them. �e DP bipartite network can be presented
by an � × � adjacent matrix {
��}, where 
�� = 1 if �� and
�� is linked, while all other unknown drug-disease pairs are
labeled as 0 to indicate that their associations need to be
predicted.

2.2. Method Description. �e methods ProbS and HeatS we
applied in this paper are based on the recommendation
techniques developed by Zhou et al. [33, 36]. We formulated
our problem as recommending diseases for a given drug by
mining data on the drug-disease bipartite network properties.

Given the drug-disease bipartite network de�ned above,
ProbSworks by assigning diseases an initial resource denoted
by the vector �, and �(��) is the initial resource allocated to
the �th disease in the disease set �. �e initial resource of an
associated disease is set to be 1 in our study; otherwise it is set
to be 0. In the �rst step, all the resource in the disease set �
�ows to the drug set� according to

� (��) =
�
∑
�=1


��� (��)
� (��)
, (1)
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Figure 1: �e �owchart of the two methods ProbS (a) and HeatS (b). �e cylinder objects and the ellipse objects mean drugs and diseases,
respectively. �is �gure is inspired by [33].

Table 1: Statistics of the validated drug-disease association network.

Number of
drugs

Number of
diseases

Number of
drug-disease
associations

Average degree of
drugs

Average degree of
diseases

Sparsity

593 313 1933 3.26 6.18 0.0104

where �(��) is the degree of node ��. Subsequently, all the
resource in the drug set� returns similarly back to the disease
set �. �e �nal resource allocated to �� is calculated as

�� (��) =
�
∑
�=1


��� (��)
� (��)
=
�
∑
�=1


��
� (��)

�
∑
�=1


��� (��)
� (��)
. (2)

�e �nal recommendation list of candidate diseases is sorted
according to the results of (2) in a descending order. �e
disease(s) with the highest score(s) is chosen as the new
indication(s) for the corresponding drug.

While for the method HeatS [36], the �nal resource
allocated to �� is calculated as

�� (��) =
�
∑
�=1


��
� (��)

�
∑
�=1


��� (��)
� (��)
. (3)

Comparison of the main pipeline of the two methods is
illustrated in Figure 1.

3. Results

3.1. Construction and Characteristics of the Drug-Disease
Association Network. In this study, we �rst focused on the
veri�ed drug-disease associations. �ere were 1933 experi-
mentally con�rmed drug-disease associations, including 593
drugs and 313 diseases, on our benchmark dataset. We used
the 1933 associations to generate a bipartite graph (Figure 2).
In the bipartite graph, the heterogeneous nodes correspond to
either drugs or diseases, and edges correspond to associations
between them. An edge is placed between a drug node and a
disease node if the drug is known to have an association with
the disease. It can be observed that drugs tend to bind known
diseases, forming highly interconnected subnetworks.

Figure 3 gives the degree distributions of drugs and
diseases in the drug-disease network. We found that more

than 70% (422/593) of the drugs were associated with at least
two diseases, and approximately 66% (206/313) diseases were
associated with two or more drugs. �e average number of
associated diseases for each drug is 3.26 and the average
number of associated drugs for each disease is 6.18. More
details are available in Figure 3 and Table 1.

3.2. Leave-One-Out Cross Validation for Performance Eval-
uation. To assess the comparative performance of both
methods in predicting new indications for existing drugs,
we perform leave-one-out cross validation experiments on
the benchmark dataset. For a given drug �, each known
associated disease was le� out once in turn as test disease,
whose initial resource was set to be 0, and the candidate
disease set consisted of all the diseases which had no evidence
to show their associations with the drug �. �e entire
associations were prioritized according to the scores derived
from the two methods.

We calculated the sensitivity and speci�city for each
threshold. Sensitivity refers to the percentage of the asso-
ciations whose ranking is higher than a given threshold,
namely, the ratio of the successfully predicted experimentally
veri�ed drug-disease associations to the total experimentally
veri�ed drug-disease associations. Speci�city refers to the
percentage of associations that are below the threshold.
Receiver-operating characteristics (ROC) curveswere plotted
by varying the threshold, and the values of area under curves
(AUC) were calculated. When the two methods, ProbS and
HeatS, were tested on the 1933 experimentally veri�ed drug-
disease associations in the framework of leave-one-out cross
validation, reliable AUC values of 0.9192 and 0.9079 were
received, respectively. To be instructive, we also provided
AUC values for each drug received by leave-one-out cross
validation (see Supplementary Material S1 available online
at http://dx.doi.org/10.1155/2015/130620 for themethodProbS
and S2 for HeatS).
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Figure 2: Drug-disease association network. Red rectangles and yellow rectangles indicate drugs and diseases, respectively. �e bipartite
network is generated by using 1933 experimentally veri�ed associations between drugs and diseases. �is network is prepared by Cytoscape
(http://www.cytoscape.org/).

We also calculated the positions of preferably drug-
disease associations ranked on the recommendation list for
the two methods. For instance, if there are 100 candidate
diseases for a drug� and an associated disease� is ranked 5th
in the candidate diseases, we say the position of the disease�
is 5/100, denoted by ⟨�⟩ = 0.05. A good algorithm is expected
to give a small ⟨�⟩.�erefore, we used the average value of the
position ⟨�⟩ over all diseases in the candidate set to compare
the algorithmic accuracy. �e average values of the position
⟨�⟩ for ProbS andHeatSwere 0.0319 and 0.0434, respectively.

�e reliable performance suggested that both the two
methods can recover the con�rmeddrug-disease associations
and therefore has the potential to predict new drug-disease
associations for drug repositioning.

3.3. Comparison with Other Methods. Recently, several com-
putational models, which were based on di	erent data fea-
tures, have been proposed for drug-disease association pre-
diction. Some information, like protein-protein interactions
adopted in [29], has a high rate of false-positive and false-
negative results, which will in�uence experimental results.
�e most recent study related with our work is the computa-
tionalmodel proposed byGottlieb et al. [27], whichwas based
on the observation that similar drugs are indicated for similar
diseases. Excellent prediction performance can be received
by this method. However, one limitation of this model is that
negative samples were needed for association prediction. Our
method is based on the experimentally veri�ed drug-disease
associations and does not make use of any prior biological
knowledge.
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Figure 3: Degree distributions of drugs and diseases in the drug-disease network. (a) shows the histograms of the degree distributions of
drugs. (b) shows the histograms of the degree distributions of diseases.

Table 2: �e newly con�rmed drug-disease associations in the top 10 predicted results of the drug Felodipine.

Drug Disease Rank Status

Felodipine Hypoparathyroidism, sensorineural deafness, and renal disease 1 Con�rmed

Felodipine Hypertension, essential 2 Con�rmed

Felodipine Hydrops-ectopic calci�cation-moth-eaten skeletal dysplasia 3

Felodipine Enteropathy, familial, with villous edema and immunoglobulin G2 de�ciency 4

Felodipine Preeclampsia/eclampsia 1; Pee1 5

Felodipine Insensitivity to pain with hyperplastic myelinopathy 6

Felodipine Glaucoma 1, open angle, A; Glc1A 7

Felodipine Acanthosis nigricans with muscle cramps and acral enlargement 8

Felodipine Atrial �brillation, familial, 3; At	3 9 Con�rmed

Felodipine Prostatic hyperplasia, benign; Bph 10 Con�rmed

3.4. Case Studies. To further explain the inference power of
the method ProbS on drug-disease association prediction, we
conducted case studies on three drugs (Felodipine, Aspirin,
and Tamoxifen). �e whole candidate diseases were ranked
according to the method. We manually checked the top
10 predicted associations and con�rmed that 4, 6, and 6
associations (Tables 2–4) are now annotated in the CTD
(http://ctdbase.org/) [25] database. We take these as a strong
evidence to support the practical application of the method
ProbS. Note that the predicted associations that are not
yet reported may also exist in reality and they provide
opportunities for drug repositioning.

3.5. Comprehensive Prediction of Drug-Disease Associations.
A�er comprehensively con�rming the accuracy of both
methods, we chose ProbS, which showed a better perfor-
mance, to further predict novel drug-disease associations
for future drug repositioning. In this scenario, we trained

ProbS with all the known drug-disease associations on the
benchmark dataset. For all the 593 drugs, we ranked and
selected the top 10 predicted diseases for drug repositioning
(SupplementaryMaterial S3). We believe that these predicted
associations would bene�t drug research.

4. Discussion

Searching novel drug-disease associations is a critical step
in drug repositioning. Computational methods for drug-
disease association prediction have received numerous inter-
ests and current computational strategies depend on prior
biological information, including gene expression pro�les,
protein-protein interactions (PPI), or chemical structures.
Such information may not be widely available and some may
contain errors.

In this paper, two network topology-based inference
methods were introduced to predict potential drug-disease
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Table 3: �e newly con�rmed drug-disease associations in the top 10 predicted results of the drug Aspirin.

Drug Disease Rank Status

Aspirin Mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like 1 Con�rmed

Aspirin Exostoses with anetodermia and brachydactyly, Type E 2

Aspirin Atrial �brillation, familial, 1; At	1 3 Con�rmed

Aspirin Atrial �brillation, familial, 3; At	3 4 Con�rmed

Aspirin Neuropathy, hereditary sensory and autonomic, Type I, with cough and gastroesophageal re�ux 5

Aspirin Exostoses of heel 6

Aspirin Motor neuropathy, peripheral, with dysautonomia 7

Aspirin Migraine, familial typical, susceptibility to, 2 8 Con�rmed

Aspirin Myasthenia gravis;Mg 9 Con�rmed

Aspirin Coronary artery disease, autosomal dominant, 1; Adcad1 10 Con�rmed

Table 4: �e newly con�rmed drug-disease associations in the top 10 predicted results of the drug Tamoxifen.

Drug Disease Rank Status

Tamoxifen Mismatch repair cancer syndrome 1

Tamoxifen Chorioretinal dystrophy, spinocerebellar ataxia, and hypogonadotropic 2

Tamoxifen Prostate cancer 3 Con�rmed

Tamoxifen Acroosteolysis with osteoporosis and changes in skull and mandible 4

Tamoxifen Hypogonadism, male 5 Con�rmed

Tamoxifen Gastric cancer 6 Con�rmed

Tamoxifen Renal cell carcinoma, nonpapillary; Rcc 7 Con�rmed

Tamoxifen Kaposi sarcoma 8 Con�rmed

Tamoxifen Uterine anomalies 9

Tamoxifen Osteoporosis 10 Con�rmed

associations. �e essential di	erence between them is the
resource-allocation strategies they applied. Even though both
methods do not use any prior biological knowledge, experi-
mental results showed that reliable prediction performance
can be achieved by the two methods. Moreover both the two
methods are easy to be implemented and they have a low time

complexity of (o(�2�)).
Despite the encouraging results produced by the two

methods, some limitations should be noted. First, as only
network topology is applied, both the two methods cannot
work for drugs without any known drug-disease associations.
To predict drug-disease associations for novel drugs, reliable
similarity measure needs to be taken into consideration.
Meanwhile, the predicted results may be biased as our meth-
ods depend heavily on existing drug-disease associations for
predictions and our current knowledge about drug-disease
associations is far from complete.�erefore, the performance
of the methods could be improved by integrating more
veri�ed drug-disease associations.
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