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Abstract

Background

Existing microarray studies of bone mineral density (BMD) have been critical for under-

standing the pathophysiology of osteoporosis, and have identified a number of candidate

genes. However, these studies were limited by their relatively small sample sizes and were

usually analyzed individually. Here, we propose a novel network-based meta-analysis

approach that combines data across six microarray studies to identify functional modules

from human protein-protein interaction (PPI) data, and highlight several differentially

expressed genes (DEGs) and a functional module that may play an important role in BMD

regulation in women.

Methods

Expression profiling studies were identified by searching PubMed, Gene Expression Omni-

bus (GEO) and ArrayExpress. Two meta-analysis methods were applied across different

gene expression profiling studies. The first, a nonparametric Fisher’s method, combined p-

values from individual experiments to identify genes with large effect sizes. The second

method combined effect sizes from individual datasets into a meta-effect size to gain a

higher precision of effect size estimation across all datasets. Genes with Q test’s p-values

< 0.05 or I2 values > 50% were assessed by a random effects model and the remainder by a

fixed effects model. Using Fisher’s combined p-values, functional modules were identified

through an integrated analysis of microarray data in the context of large protein–protein

interaction (PPI) networks. Two previously published meta-analysis studies of genome-

wide association (GWA) datasets were used to determine whether these module genes
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were genetically associated with BMD. Pathway enrichment analysis was performed with a

hypergeometric test.

Results

Six gene expression datasets were identified, which included a total of 249 (129 high BMD

and 120 low BMD) female subjects. Using a network-based meta-analysis, a consensus

module containing 58 genes (nodes) and 83 edges was detected. Pathway enrichment

analysis of the 58 module genes revealed that these genes were enriched in several impor-

tant KEGG pathways including Osteoclast differentiation, B cell receptor signaling pathway,

MAPK signaling pathway, Chemokine signaling pathway and Insulin signaling pathway.

The importance of module genes was replicated by demonstrating that most module genes

were genetically associated with BMD in the GWAS data sets. Meta-analyses were per-

formed at the individual gene level by combining p-values and effect sizes. Five candidate

genes (ESR1,MAP3K3, PYGM, RAC1 and SYK) were identified based on gene expression

meta-analysis, and their associations with BMD were also replicated by two BMDmeta-

analysis studies.

Conclusions

In summary, our network-based meta-analysis not only identified important differentially

expressed genes but also discovered biologically meaningful functional modules for BMD

determination. Our study may provide novel therapeutic targets for osteoporosis in women.

Introduction
Osteoporosis is a skeletal disease characterized by low bone mineral density (BMD) and micro-
architectural deterioration of bone which results in fragility and risk of osteoporotic fracture
[1]. Hip fracture, one common and serious consequence of osteoporosis, is associated with
high morbidity and mortality. It is estimated that there are 300,000 cases of hip fracture in the
U.S. annually, and one in five patients will die in the year following fracture [2]. Risk of bone
fracture is substantial among women with osteoporosis. Worldwide, 1 in 3 women over age 50
will experience osteoporotic fractures [3]. Most fractures occur in postmenopausal women,
largely due to decreased estrogen levels, which accelerate age-related bone loss [4].

Genetic factors play an important role in the pathogenesis of osteoporosis, as evidenced by
high heritability (h2) estimates of BMD ranging from 0.5–0.9 [5]. Although, many loci/genes
contributing to BMD have been identified by genome-wide association (GWA) studies in
recent years, those loci/genes explain only a small portion of genetic risks due to complex
genetic determination. In order to search for missing heritability and to enhance our under-
standing of biological mechanisms, attempts have been made to identify osteoporosis risk
genes as well as molecular networks that were perturbed by risk genes/loci.

Gene expression profiles across the whole genome in DNAmicroarrays have provided key
biomarkers of osteoporosis and improved our understanding of complex gene interactions and
networks during disease pathogenesis. Changes in gene profiles are associated with altered
gene functions and biochemical activities. Differential gene expression analysis has revealed a
number of differentially expressed genes (DEGs) in subjects with extremely discordant BMD
[6–8]. The expression profiles were generated mainly from peripheral blood monocytes
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(PBM), B cells and bone biopsies. They have served as important models for osteoporosis
research. PBM and B cells are important cell types in the immune system. Both may participate
in osteoclastogenesis. The biopsies contain bone marrow cells and their precursors.

In addition, recent transcriptional co-expression network analysis has identified modules
and genes that play crucial roles in the regulation of bone mass [9]. However, these studies are
usually analyzed in isolation and are limited to a small number of samples. Statistically, indi-
vidual gene expression profiling studies are limited by both biological (e.g., sampling of a par-
ticular population and gene expression profiles in one cell/tissue) and technical (e.g., only
using one expression analysis platform) biases, leading to inconsistent results among studies
and hindering the broad application of their findings and translation into clinical practice [10].
Meta-analysis approaches combining multiple gene expression datasets can increase statistical
power for detecting DEGs while allowing for an assessment of heterogeneity, while also provid-
ing more robust, reproducible and accurate predictions [11]. Such meta-analysis approaches
have been successfully applied to many cancers including breast cancer, lung cancer and osteo-
sarcoma [10, 12, 13].

However, the cellular function of an individual gene can be better understood in the context
of an interaction network rather than at the level of isolated components alone. Biological net-
works such as co-expression networks are inferred from the correlation structure of gene
expression data, which is highly dependent on the threshold chosen to infer co-expression net-
works. Biological and technical bias may make it difficult to infer and interpret co-expression
networks by combining multiple gene expression profiles [14]. However, for protein-protein
interaction (PPI) networks, the edges within them represent well-defined and experimentally
validated biological interactions. Recently, PPI networks have become a valuable resource for
deciphering disease mechanisms based on gene expression data, as PPIs are fundamental in
structuring and mediating essentially all biological processes [15]. One technique that has
emerged in systems genetics to integrate multiple microarray datasets in the context of biologi-
cal networks such as PPI networks is to identify functional modules (i.e., significantly differen-
tially expressed subnetworks) within large networks [16]. These modules mark regions of the
network showing striking changes in molecular that are associated with a given cellular
response.

In the present study, we proposed a network-based meta-analysis framework for combining
datasets from six BMD gene expression studies in women and integrating them with PPI net-
works. The novel part of our framework was that we not only performed meta-analysis by
combining multiple gene expression datasets to increase statistical power for detecting DEGs,
but also performed a computational integration of network and expression profiles to extract
functional modules based on meta-analysis results. It can overcome the limited statistical
power of each individual study, to resolve inconsistencies, and to lay a foundation for uncover-
ing molecular mechanisms of osteoporosis. The first step was to identify DEGs through a
meta-analysis across multiple gene expression datasets. The second was to identify functional
modules from large networks by applying a nonparametric Fisher's method of combining p-
values for each gene (node) in the network. Our study highlights genes that were consistently
expressed differentially with statistical significance, and identifies a functional module that
may play an important role in BMD regulation.

Materials and Methods

Dataset collection
Gene expression profiling studies were identified by searching PubMed (http://www.ncbi.nlm.
nih.gov/pubmed). The following key words and their combinations were used: “osteoporosis,”
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“BMD,” “gene expression,” and “microarray.” The Gene Expression Omnibus (GEO) database
(http://www.ncbi.nlm.nih.gov/geowebcite) and ArrayExpress (http://www.ebi.ac.uk/
arrayexpress/) were also used to identify and download relevant microarray datasets through
September 2014. Studies were included in the analysis if they met the following criteria: (1)
case-control studies for BMD or osteoporosis in human subjects, (2) gene expression raw data
available, and (3) phenotype of subjects available. We conducted this meta-analysis in accor-
dance with the guidelines provided in the Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) statement (http://www.prisma-statement.org/) (S1 PRISMA
Checklist) [17]. Raw data were downloaded from GEO and ArrayExpress websites. The follow-
ing information was extracted from each identified study: Accession number, subjects, plat-
form, number of cases and controls, tissue/cell type and raw gene expression data. Although
the quantile or z-score for each study’s inclusion criteria is different, according to WHO defini-
tion [18], the low BMD group in all six studies can be classified into osteopenia/osteoporosis,
while the high BMD group in all six studies can be classified into the normal.

Data preprocessing
First, raw CEL files from each dataset were preprocessed by using the Robust Multi-array Aver-
age (RMA) algorithm to normalize and generate probe-level expression data through the rma()
function in the R Bioconductor affy package [19].The RMA algorithm employs quantile nor-
malization and smooths technical variations across samples. Second, a hierarchical clustering
and principal component analysis (PCA) were performed to identify potential outliers in each
dataset by using hclust() and prcomp() functions in R.

Statistical analysis
To perform the meta-analysis, probe IDs from different platforms were annotated with their
corresponding official gene symbols. When multiple probe IDs were matched to the same gene
symbol, the probe ID with the largest interquartile range (IQR) of expression values among
these probe IDs was selected to represent that gene symbol. This IQR-based method is pre-
ferred because it is biologically more reasonable and robust than the mean-based method,
which takes the average value of expression values across multiple probe IDs [20].

Two meta-analysis methods were applied to all processed datasets. The first nonparametric
meta-analysis method combined p-values from individual experiments to identify those genes
with large effect sizes in all datasets. The significance analysis of microarray (SAM) method
was conducted by performing 1,000 random permutations using R samr() package to identify
DEGs between high and low BMD samples in each study [21]. Based on gene-specific t-statis-
tics, this method computed a “relative difference” score for each gene, which was defined based
on the ratio of change in gene expression to standard deviation in the data for that gene. SAM
performed a random permutation analysis between the subjects' expression profiles to deter-
mine a null distribution. The statistical significance of each gene was computed from 1,000 per-
mutaions. Fisher’s method was then used to combine p-values from individual experiments to

identify DEGs. The combined Fisher’s statistic w2 ¼ �2
Xk

i¼1

lnðpiÞ followed a χ2 distribution

with 2k degrees of freedom (k is the number of datasets) under the null hypothesis (i.e., assum-
ing null p-values are uniformly distributed). Note that smaller p-values contributed larger
scores to the Fisher’s χ2 statistic.

The second method combined effect sizes across all datasets into a meta-effect size to esti-
mate the magnitude of gene expression change. Cochran’s Q statistic and I2 were calculated as
measures of between-study heterogeneity for each gene. Genes with Q test’s p-value< 0.05 or
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I2 > 50% were assessed by a random effects model that allows heterogeneity in the effect sizes
between different datasets [22]; the remaining genes were assessed by a fixed effects model,
which assumed that the standardized effect sizes can be combined across different studies and
that the variations in observed effects were due only to random error [23]. Differences in each
gene’s expression between high and low BMD groups were expressed as the standardized mean
difference (SMD). The z-statistic for each gene was computed as a ratio of the pooled SMD to
its standard error, and the result was compared with 1000 permutaions to obtain a nominal p-
value by using RmetaDE package [24]. P-values were corrected for multiple hypothesis testing
using the Benjamini-Hochberg false discovery rate (FDR).

Protein-protein interaction (PPI) network
A comprehensive human PPI dataset was obtained from the supplementary material of Goh
et al’s study [25]. This dataset combined two high-quality systematic yeast two-hybrid experi-
ments with PPIs obtained from published literature by manual curations [26, 27]. The PPI net-
work constructed from this dataset included 10,174 nodes (genes) and 61,070 edges
(interactions) in humans.

Module detection
In order to identify functional modules (i.e., significantly differentially expressed subnetworks)
based on an integrated analytic approach of combining multiple microarray datasets in the
context of large biological PPI networks, Bioconductor BioNet package was applied to find an
exact solution for connected subgraphs using Fisher’s combined p-values [28]. First, existing
self-loops in the PPI network were removed and the largest connected component of the PPI
network was selected. A binomial uniform mixture (BUM) model was fitted to the distribution
of Fisher’s combined p-values, and scores were derived for these nodes at a restrictive FDR
level of 0.001 [28]. Finally, these scores reflecting genes’ functional relevance were used to find
the highest scoring module by using the exact Heinz (heaviest induced subgraph) method. The
Heinz algorithm used the integer linear programming optimization and calculated the maxi-
mum-scoring subnetwork [16].

In order to maximally capture the variances across six microarray datasets and give a robust
solution, a resampling procedure was employed to identify an optimal module containing max-
imally robust nodes and edges. For each iteration, we first resampled the case/control labels for
each microarray dataset and calculated p-values using SAM. Fisher’s combined p-values were
used in the BUMmodel to fit the distribution then calculate node scores at the same FDR level
as used before. The highest scoring module was identified by the exact Heinz method based on
the node scores. 100 iterations resulted in a total of 100 modules. These modules were used to
compute consensus scores for the network and to recalculate an optimal module called “con-
sensus module,” which contained maximally robust nodes and edges.

Functional enrichment analysis
In order to gain further insights into the functional significance of the identified consensus
module, functional enrichment analysis of KEGG pathways was performed using a hypergeo-
metric test implemented by the WebGestalt online program (http://bioinfo.vanderbilt.edu/
webgestalt/) [29]. The ‘Human Disease’ KEGG pathways category was not included in enrich-
ment analysis because of lack of its direct relevance to the present study.
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Important candidate gene selection and validation
In order to prioritize candidate genes from the consensus module, and to decipher their biolog-
ically meaningful functions, meta-analyses were applied by combining effect sizes and combin-
ing p-values at the individual gene level. Important candidate genes were selected based on the
following criteria: (1) p-value< 0.05 for meta-analysis of effect sizes, (2) p-value< 0.05 for
Fisher’s method of combining p-values, and (3) presence in the consensus module. To deter-
mine whether these selected candidate genes were genetically associated with BMD in larger
human populations, we used data from the two largest previously published meta-analyses of
GWA datasets. The first was the meta-analysis from the Genetic Factors for Osteoporosis
(GEFOS) Consortium (GEFOS-2). It is the largest meta-analysis to date in the field of bone
density, including 17 GWASs and 32,961 individuals of European and East Asian ancestry
[30]. The second was from an imputation-based meta-analysis (Meta7), including seven GWA
studies consisting of 11,140 subjects for BMDs at lumbar spine, hip, and femoral neck. Details
of the statistical analysis were provided previously [31]. The list of single-nucleotide polymor-
phisms (SNPs) and their meta-analysis p-values for various BMD traits in women were
obtained. The most significant SNP for a given gene was chosen as a gene level p-value. Associ-
ated genes were defined as those with nominal p-values� 0.05 for at least one of the BMD
traits.

Results

Studies included in the meta-analysis and data preprocessing
We proposed a network-based meta-analysis framework as outlined in Fig 1. The six gene
expression profiling studies were carefully identified and downloaded from GEO and ArrayEx-
press. Three datasets consisted of expression profiles generated from peripheral blood mono-
cytes (PBMs), and two generated from B cells, which were isolated and purified in subjects
with low versus high hip BMD values. Subjects of these five gene expression profiling studies
were all recruited for the same purpose of systemically searching for DEGs underlying BMD
variations. The sixth study was based on 84 bone biopsies from postmenopausal women, and
was aimed at identifying important genes associated with BMD variations. Of these, 45 had
high hip BMD and 39 had low hip BMD. Two gene expression platforms were used for expres-
sion profiling, the Affymetrix U-133 Plus 2.0 Gene Chips and the Affymetrix U-133A Gene
Chips (Affymetrix, Santa Clara, CA, USA). Overall, these six datasets included 249 (129 high
BMD and 120 low BMD) female subjects. The datasets were normalized individually using
RMA algorithm. The outliers in each dataset were then detected and then removed. Annota-
tion files for both microarray platforms were downloaded from the Affymetrix website and
used to map probe IDs to unique gene symbols in each dataset. When multiple probe IDs were
matched to an identical gene symbol in a dataset, the probe ID with the largest IQR of expres-
sion values among all multiple probe IDs was selected to represent the corresponding gene
symbol. After these data preprocessing steps, we were left with one gene per probe ID per data-
set. This led to a total of 13,341 common genes shared by both gene expression platforms. Each
gene was then subjected to meta-analysis across the datasets. The detailed characteristics of
study samples, type of gene chip and number of outliers are shown in Table 1.

Network-based meta-analysis
Two meta-analysis approaches were applied to analyze these six preprocessed microarray data-
sets. In brief, the first meta-analysis approach combined p-values across individual datasets
using Fisher’s method to identify DEGs in all datasets. P-values from individual microarray
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datasets were derived from the SAMmethod in R samr package with 1,000 random permuta-
tions. 2,244 out of 13,341 genes were identified by a FDR-adjusted p-value (q-value) of 0.05,
and 508 by a more stringent cutoff q-value 0.01 (S1 Table).

The second meta-analysis approach combined effect sizes from six studies implemented in
themetaDE package. It led to the identification of genes that were upregulated and downregu-
lated, and 22 significant DEGs were those displaying q-value< 0.05 (S2 Table). The most sig-
nificant gene was PYGM (nominal p-value = 2.25×10−7, q-value = 0.003).

Fig 1. The workflow of network-basedmeta-analysis.

doi:10.1371/journal.pone.0147475.g001
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The Bioconductor package BioNet was used for an exact solution to find connected sub-
graphs from the large PPI network, using Fisher’s combined p-values at a restrictive FDR of
0.001. After 100 iterations, a consensus module was detected containing 58 genes (nodes) and
83 edges, shown in Fig 2. The consensus module captured the characteristically differentially-
expressed interaction modules associated with BMD variations in women.

Through the candidate gene selection criteria, five genes, ESR1,MAP3K3, PYGM, RAC1and
SYK, were identified. The forest plots for each gene across six datasets are shown in Fig 3. As
these genes may play important roles in controlling module behavior and thus in BMD regula-
tion, two published meta-analysis GWAS were used to test whether these genes were geneti-
cally associated with BMD. Table 2 shows the results for two meta-analysis approaches and
gene-level p-values in both GEFOS2 and Meta7, represented by the most significant SNP/
marker in the gene. Genes in the consensus module with nominal p-value� 0.05 are shown in
S3 Table.

Functional enrichment analysis
Table 3 summarizes the results of enrichment analysis of 58 genes in the consensus module.
Even after Bonferroni correction, a number of KEGG pathways remained significantly
enriched. The most significant pathway was osteoclast differentiation (p-value = 3.82E-12).
Other top enriched pathways included the B cell receptor signaling pathway, MAPK signaling
pathway, Chemokine signaling pathway and Insulin signaling pathway.

To further understand those five candidate gene functions, we first characterized the broad
tissue-specific pattern of mRNA expression profiles using microarray data from 79 human tis-
sues and cell types (GeneAtlas U133A, at http://biogps.org/) [32]. Only PYGM andMAP3K3
were found to have tissue-specific pattern and were highly expressed in skeletal muscle and
monocyte, respectively. Then we checked the tissue-specific patterns in a microarray data from
96 mouse tissues and cell types (GeneAtlas MOE430), which contains more bone-related cells,
such as B-cells, T-cells, bone marrow, osteoclast, osteoblast and bone[33]. Specifically, ESR1
and PYGM genes were highly expressed in uterus and skeletal muscle, respectively.MAP3K3

Table 1. Characteristics of the individual studies.

Accession
number

Subject Race Sample size
(High:
LowBMD)

Outlier removed
(High: LowBMD)

Platform Tissue/cell Samplesource

GSE56815 Pre- and
postmenopausal
female

Caucasian 80(40:40) 3(2:1) GPL96 HG-U133A Peripheral blood
monocytes

in vivo

GSE7158 Premenopausal
female

Chinese 26(14:12) 2(2:0) GPL570
HG-U133_Plus_2

Peripheral blood
monocytes

in vivo

GSE2208 Pre- and
postmenopausal
female

Caucasian 19(10:9) 0(0:0) GPL96 HG-U133A Peripheral blood
monocytes

in vivo

E-MEXP-1618 Postmenopausal
female

Caucasian 84(45:39) 4(1:3) GPL570
HG-U133_Plus_2

Bone biopsies in vivo

GSE7429 Postmenopausal
female

Caucasian 20(10:10) 3(2:1) GPL96 HG-U133A Circulating B
cells

in vivo

GSE13850 Postmenopausal
female

Caucasian 20(10:10) 1(0:1) GPL96 HG-U133A Circulating B
cells

in vivo

Note: HG-U133_Plus_2: Affymetrix Human Genome U133 Plus 2.0 Array

HG-U133A: Affymetrix Human Genome U133A Array

doi:10.1371/journal.pone.0147475.t001
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and RAC1 genes were highly expressed in bone marrow and osteoclasts, respectively. SYK was
expressed in multiple tissues and cell types, including B cells, marcrophages and bone marrow
(S1 Fig).

Discussion
A comprehensive analysis of the mechanism underlying osteoporosis development is crucial
for developing rational treatment options. Many transcriptional studies for osteoporosis have
been conducted; however, most of them had limited sample sizes, making it challenging to
characterize the molecular and cellular events during the pathogenesis of osteoporosis. In addi-
tion, experimental confounders such as platform variability and cell/tissue-specific profiles

Fig 2. Consensusmodule.Differential expressed genes between high and low BMD are shown in red and green, where green color is indicative of a
positive pooled SMD, an upregulation in high BMD, and red color is indicative of a negative pooled SMD, an upregulation in low BMD.

doi:10.1371/journal.pone.0147475.g002
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were problematic in individual experiments. In this paper, we have contributed the largest
meta-analysis to date of gene expression in osteoporosis. We proposed a network-based meta-
analysis approach that combines meta-analyses across six microarray datasets, and functional
module identification from human PPI. The study highlights genes that were consistently
expressed differentially with statistical significance, and identifies a functional module that
may play an important role in BMD regulation.

Six gene expression datasets were identified and raw CEL files were downloaded from GEO
and ArrayExpress. All were based on the Affymetrix U-133 series platform; specifically, four
on Affymetrix U-133A Gene Chips and two on Affymetrix U-133 Plus 2.0 Gene Chips. 13,341
unique genes were shared by both platforms. In total there were 249 (129 high BMD and 120
low BMD) female subjects. Subjects in five datasets were all recruited for the same purpose of
systemically searching for DEGs underlying BMD variations. Three datasets were generated
from PBM and two from B cells. The sixth was generated from bone biopsies. As important
cell types in the immune system, PBM and B cells may both participate in osteoclastogenesis
and have served as important models for osteoporosis research [6, 7, 34]. First, PBMs are

Fig 3. Forest plots for five candidate genes across six gene expression profiling datasets.

doi:10.1371/journal.pone.0147475.g003

Table 2. Results for five candidate genes.

Genes SMD (SD) Z-statistic P-value Fisher’s statistic P-value Gene level p-value in GEFOS2 Gene level p-value in Meta7

ESR1 0.49 (0.24) 2.05 2.67E-02 31.81 1.48E-03 1.13E-11 2.52E-07

MAP3K3 -0.53 (0.28) -1.90 3.95E-02 46.93 4.79E-06 2.25E-02 2.65E-02

PYGM -0.70 (0.13) -5.17 2.25E-07 42.85 2.40E-05 2.67E-03 6.67E-04

RAC1 -0.45 (0.25) -1.76 5.50E-02 40.90 5.10E-05 2.74E-02 4.41E-02

SYK 0.52 (0.26) 1.99 3.13E-02 49.72 1.57E-06 2.51E-03 3.84E-02

Note: SMD, standardized mean difference; SD, standard deviation.

doi:10.1371/journal.pone.0147475.t002
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osteoclast progenitor cells and produce a wide variety of factors such as interleukin 1 (IL-1),
IL-6, tumor necrosis factor (TNF) and transforming growth factor beta (TGF-β) for osteoclas-
togenesis and bone resorption [35–37]. Second, B cell precursors can differentiate into osteo-
clasts in vitro, and estrogen deficiency may enhance osteoclastogenesis by increasing the
number of B cell precursors with the potential for osteoclastic differentiation [38–40]. Osteo-
protegerin (OPG), as a decoy receptor competing with RANK, can bind to the key osteoclasto-
genic cytokine RANKL and block its effect on osteoclastogenesis [41]. Human B cells secrete
OPG, and under certain physiological conditions B lineage cells are the dominant source of
OPG in mouse bone marrow [40, 42]. The gene expression study (E-MEXP-1618) performed
by Reppe and colleagues is the most extensive transcriptome analysis of bone biopsies to date
[8]. The biopsies contain bone marrow cells belonging to hematological, immunological, endo-
thelial and stromal cell lineages in addition to bone cells and their precursors [8].

Experimental confounders such as platform variability and tissue-specific profiles could
overwhelm expression measurements in individual experiments. It was hypothesized that irre-
spective of datasets analyzed, a set of genes that were significantly differentially expressed
would constitute a robust gene expression signature of disease across multiple independent
studies [10]. Therefore, by integrating six microarray datasets from different tissues/cell types
in 249 female subjects, we were able to increase sample size, avoid tissue/cell type-specific bias
through a novel network-based meta-analysis, and identify significantly expressed genes with
functional relevance to BMD, as well as a consensus functional module, which elucidated spe-
cific molecular processes underlying BMD variation.

Gene expression profiles are useful but insufficient for identifying DEGs. Proteins, the main
agents of biological function that usually operate in complexes and PPIs, are critical for healthy
and diseased states in organisms, which in turn can form a molecular basis for diagnosis, pre-
vention and treatment [43]. More and more molecular studies have benefited from combining
gene expression profiles and PPI data, which allows the detection of previously unknown dys-
regulated modules within the global PPI network [16]. These modules contain many DEGs
that may be missed by gene expression profile analysis based on restrictive significance thresh-
old. Further, they could provide researchers with an in-depth understanding of the regulatory
processes underlying the observed changes in gene expression [44]. Our network-based meta-
analysis approach used summary statistics across six gene expression profiles to identify func-
tional modules in a large human PPI [45]. A consensus module containing 58 genes was

Table 3. KEGG pathway enrichment results for genes in the consensus module.

KEGG Genes p-valuea Adjusted p-valueb

Osteoclast differentiation GRB2, IKBKG, AKT1, JUNB, RAC1, STAT1, SYK, MAPK3 3.82E-12 3.44E-11

B cell receptor signaling pathway GRB2, IKBKG, AKT1, PTPN6, SYK, RAC1, MAPK3 5.22E-12 3.76E-11

MAPK signaling pathway GRB2, MAP3K3, IKBKG, AKT1, RAC1, TP53, FLNA, EGFR, MAPK3 4.22E-11 2.53E-10

Chemokine signaling pathway GRB2, IKBKG, AKT1, RAC1, STAT1, GNAI3, GNB2, MAPK3 8.78E-11 3.51E-10

Insulin signaling pathway GRB2, PDPK1, LIPE, AKT1, PYGM, RHEB, MAPK3 4.02E-10 1.32E-09

GnRH signaling pathway GNAS, GRB2, MAP3K3, LHB, EGFR, MAPK3 2.98E-09 8.94E-09

mTOR signaling pathway PDPK1, STK11, AKT1, RHEB, MAPK3 5.74E-09 1.48E-08

Neurotrophin signaling pathway GRB2, MAP3K3, AKT1, RAC1, MAPK3, TP53 1.19E-08 2.86E-08

Adherens junction CREBBP, PTPN6, EGFR, RAC1, MAPK3 3.26E-08 5.87E-08

Jak-STAT signaling pathway GRB2, CREBBP, EPOR, AKT1, PTPN6, STAT1 3.90E-08 6.69E-08

a hypergeometric test p-value
b Bonferroni correction adjusted p-value

doi:10.1371/journal.pone.0147475.t003
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revealed across six datasets to contribute to BMD variations. This consensus module captured
the characteristically differentially-expressed interaction modules associated with BMD varia-
tions in women. KEGG pathway enrichment analysis was performed for these 58 genes to seek
evidence of their potential involvement in BMD regulation. The top enriched pathways
included Osteoclast differentiation, B cell receptor signaling pathway, MAPK signaling path-
way, Chemokine signaling pathway and Insulin signaling pathway. These top KEGG pathways,
especially Osteoclast differentiation, linked the consensus module to regulation of BMD. Eight
genes in the consensus module (GRB2, IKBKG, AKT1, JUNB, RAC1, STAT1, SYK andMAPK3)
were contained in the Osteoclast differentiation pathway. Interestingly, one candidate gene,
RAC1, was highly expressed in mouse osteoclasts.

With respect to these 58 module genes, meta-analyses were applied at the individual gene
level by combining effect sizes and p-values to prioritize candidate genes and provide biologi-
cally meaningful interpretations. According to the criteria, five candidate genes (ESR1,
MAP3K3, PYGM, RAC1 and SYK) were identified, and their associations with BMD were repli-
cated by both BMDmeta-analysis studies. ESR1 is a well-known candidate gene for osteoporo-
sis. It is the major receptor mediating estrogen action in bone tissue, and it has a prominent
effect on the regulation of bone turnover and the maintenance of bone mass [46]. The pooled
SMD across six gene expression profiling datasets showed that ESR1 was upregulated in the
high BMD group but not the low BMD group, which was consistent with previous findings
[34]. Both SYK and RAC1 were contained in the Osteoclast differentiation pathway. As an
important protein tyrosine kinase, SYK plays an indispensable role for osteoclast function by
regulating α-tubulin deacetylation [47]. A previous study demonstrated that RAC1 is critically
involved in osteoclast differentiation through TNF-related activation-induced cytokine
(TRANCE)-induced nuclear factor (NF)-kappaB activation [48].MAP3K3 was also found to
play a critical role in TNF-induced NF-kappaB activation [49]. The interaction ofMAP3K3
with PYGM (shown in Fig 2) was also reported by another study on the human TNF-alpha/
NF-kappaB signal transduction pathway [50]. As all five candidate genes were contained in the
consensus module and interacted with other module genes, their functional relevance in BMD
regulation not only supports the robustness of our current study, but also provides important
new information for understanding the pathogenesis of osteoporosis and identifying poten-
tially novel therapeutic targets.

The present study has some limitations. First, although all subjects in six datasets were
female, some confounding factors like age, height, weight and menopausal status were not con-
trolled in the meta-analysis. Second, only common genes shared by both gene expression plat-
forms were included into the meta-analysis. About 7000 genes which only exist in
HG-U133_Plus_2 array were discarded, which may result in missing novel findings in our
study. Third, our study lacked subsequent cellular and molecular experiments to validate the
biological functions of the five candidate genes and the consensus module. Despite these limita-
tions, our findings still have important implications for the molecular mechanisms of osteopo-
rosis, and further experimental research is still needed to confirm our study.

In summary, our network-based meta-analysis not only identified important DEGs by
increasing sample size and accounting for biases inherent in single gene expression studies, but
also discovered functional modules biologically related to osteoporosis pathology. Our study
may provide important potential therapeutic targets for osteoporosis. With the increasing
availability of public gene expression data, our approach could have broader applications to
many complex diseases and may accelerate translational research.
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