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Abstract

Motivation: Pathway enrichment analysis has become a key tool for biomedical researchers to

gain insight into the underlying biology of differentially expressed genes, proteins and metabolites.

It reduces complexity and provides a system-level view of changes in cellular activity in response

to treatments and/or in disease states. Methods that use existing pathway network information

have been shown to outperform simpler methods that only take into account pathway member-

ship. However, despite significant progress in understanding the association amongst members of

biological pathways, and expansion of data bases containing information about interactions of bio-

molecules, the existing network information may be incomplete or inaccurate and is not cell-type

or disease condition-specific.

Results: We propose a constrained network estimation framework that combines network estima-

tion based on cell- and condition-specific high-dimensional Omics data with interaction informa-

tion from existing data bases. The resulting pathway topology information is subsequently used to

provide a framework for simultaneous testing of differences in expression levels of pathway mem-

bers, as well as their interactions. We study the asymptotic properties of the proposed network esti-

mator and the test for pathway enrichment, and investigate its small sample performance in simu-

lated and real data settings.

Availability and Implementation: The proposed method has been implemented in the R-package

netgsa available on CRAN.

Contact: jinma@upenn.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Recent advances in high-throughput technologies have transformed

biomedical research by enabling comprehensive monitoring of com-

plex biological systems. By profiling the activity of different molecu-

lar compartments (genomic, proteomic, metabolomic), one can

delineate complex mechanisms that play key roles in biological

processes or the development of distinct phenotypes. These techno-

logical advances have thus motivated new methodological develop-

ments, most notably the adaptation of systems perspectives to

analyze biological systems. Pathway analysis represents a key

component in the analysis process and has been used successfully in

generating new biological hypotheses, as well as in determining

whether specific pathways are associated with particular pheno-

types. Examples include analysis of pathways involved in initiation

and progression of cancer and other complex diseases (Wilson et al.,

2010), discovering novel transcriptional effects and co-regulated

genes (Green et al., 2011), and understanding the basic biological

processes in model organisms (Gottwein et al., 2007; Houstis et al.,

2006). See Huang et al. (2008) for additional examples of

applications.
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Pathway analysis methods have evolved since the seminal work

by Subramanian et al. (2005). As pointed out in the review article by

Khatri et al. (2012), earlier techniques such as over-representation

analysis (Al-Shahrour et al., 2005), and gene set analysis (GSA)

(Efron and Tibshirani, 2007; Subramanian et al., 2005) treat each

pathway as a set of biomolecules. These methods assess whether

members of a given pathway have higher than expected levels of ac-

tivity, either by counting the number of differentially active mem-

bers, or by also accounting for the relative rankings of pathway

members and/or the magnitude of their associations with the pheno-

type. On the other hand, more recent and statistically powerful

methods also account for interactions between biomolecules. These

interactions are increasingly available from carefully curated biolo-

gical databases, such as Kyoto Encyclopedia of Genes and Genomes

(KEGG, Kanehisa and Goto, 2000), Reactome (Joshi-Tope et al.,

2003), RegulonDB (Huerta et al., 1998) and BioCarta (Nishimura,

2001).

A network topology-based method that exhibits superior statis-

tical power in identifying differential activity of pathways was pro-

posed in Shojaie and Michailidis (2009, 2010). The Network-based

Gene Set Analysis (NetGSA) method also allows testing for potential

changes in the network structure under different experimental or

disease conditions. However, it requires a priori knowledge of inter-

actions among pathway members, which, despite rapid progress, re-

mains highly incomplete and occasionally unreliable (see e.g. Zaki

et al., 2013 and references therein). Moreover, existing network in-

formation often determine molecular interactions in the normal

state of the cell, and do not provide any insight into condition/

disease-specific alterations in interactions amongst components of

biological systems.

The increased availability of large sets of high-dimensional

Omics data [e.g. from The Cancer Genome Atlas (TCGA), http://can

cergenome.nih.gov/], coupled with the development of network esti-

mation techniques based on graphical models (Lauritzen, 1996)

offers the possibility to validate and complement existing network

information, and to obtain condition-specific estimates of molecular

interactions. Such an approach for leveraging existing knowledge to

enhance the analysis of low signal-to-noise biological datasets was

advocated in Ideker et al. (2011).

The first contribution of this article is the development of a

method for constrained network estimation from high-dimensional

data, together with establishing the consistency of the resulting esti-

mate. Estimation of high-dimensional networks subject to hard (or

soft) constraints on conditional dependence relationships amongst

random variables represents a canonical problem in the context of

graphical models, and the proposed method for addressing this

problem is of independent interest. By incorporating the condition-

specific network estimates from the proposed method into the

NetGSA framework, we also provide a rigorous statistical frame-

work for assessing alterations in biological pathways, referred to as

differential network biology (Ideker and Krogan, 2012).

The proposed framework accounts for two sources of uncer-

tainty: the first concerns the reliability of the external information

used for constructing the network estimate from data. The second is

the variability of the network estimate, which can impact the path-

way enrichment testing procedure. We establish that, under certain

regularity conditions, consistent estimates of the network can be ob-

tained, leading, in turn, to an asymptotically most power unbiased

test for pathway enrichment analysis. Our theoretical analysis also

sheds light into the potential improvements in accuracy and power

by directly accounting for the amount of reliable external network

information.

A second objective of this study is to scale up the NetGSA esti-

mation algorithm to very large size networks. The main bottleneck

in applying the NetGSA methodology arises from the estimation of

mixed effects linear parameters—specifically the variance compo-

nents—for thousands of variables. We develop efficient and stable

computational methods for estimation of these parameters based on

a profile likelihood approach. In particular, we employ a Cholesky

factorization of the covariance matrices to speed up matrix inver-

sions, and use it to develop a stable algorithm based on Newton’s

method with backtracking line search (Boyd and Vandenberghe,

2004: 487) for step size selection. To supply reliable starting points

for this algorithm, we further develop an approximate method-of-

moment-type estimator.

The proposed methods are illustrated on both metabolomics and

gene expression data. For mass spectrometry metabolomics profiling

one can obtain good quality measurements for a few hundred me-

tabolites that do not provide complete coverage of the underlying

biochemical pathways. The small number of metabolites in each

pathway and the incomplete coverage of the metabolites particularly

hinder the application of over-representation and GSA methods in

this setting. In our experience, only topology-based pathway enrich-

ment analysis methods, such as NetGSA, are capable of reliably

delineating pathway activity, as illustrated in Section 4. Further, our

investigation of previously analyzed gene expression data set on

lung and breast cancer provides new useful insights.

The remainder of the article is organized as follows. Section 2.1

presents the new method for network estimation under external in-

formation constraints and establishes its consistency. Section 2.2

outlines the new computational algorithm for scaling up NetGSA,

as well as the inference procedure for both pathway enrichment and

differential network analysis. The performance of the developed

methodology is evaluated in Section 3 and is examined on real data

sets in Section 4.

2 Methods

Gaussian graphical models (Lauritzen, 1996, Chapter 5) are widely

used in biological applications to model the interactions among

components of biological systems (Dehmer and Emmert-Streib,

2008, Chapter 6). Specifically, partial correlation networks are com-

monly used to model interactions in molecular networks; these net-

works are represented by an undirected graph G¼ (V,E) with node

set V and edge set E corresponding to biomolecules interactions

among them, respectively. The edge set E corresponds to the p�p

precision, or inverse covariance, matrix X, whose nonzero elements

xii0 refer to edges between nodes i and i0, and indicate that i and i0

are conditionally dependent given all other nodes in the network.

The magnitude of the partial correlation Aii0 ¼ �xii0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xiixi0 i0
p

deter-

mines the strength (positive or negative) of the conditional associ-

ation between the respective nodes. In the sequel, the matrix A will

also be called the weighted adjacency matrix, with Aii0 being the as-

sociation weight between i and i0.

2.1 Network estimation under external information

constraints
As discussed in Section 1, the availability of large collections of sam-

ples for different disease states and biological processes together

with carefully curated information of biomolecular interactions en-

ables the estimation of network structures within the setting of

Gaussian graphical models. However, the availability of external

network information provides a novel and unexplored modification
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of the corresponding network estimation problem. Denote by Ec the

set of node pairs not connected in the network, i.e. xii0 ¼ 0. Then,

the external information can be represented by the following two

subsets

E1 ¼ fði; i0Þ 2 E : i 6¼ i0;xii0 6¼ 0g;

E0 ¼ fði; i0Þ 2 Ec : i 6¼ i0;xii0 ¼ 0g:

In words, E1 contains known edges, while E0 contains node pairs

where it is known that no interaction exists between them. Note

that E1 � E and E0 � Ec. The external information available in E1

does not imply exact knowledge of the magnitude of xii0 nor Aii0 .

Suppose we observe an m�p data matrix Z ¼ ðZ1; . . . ;ZpÞ,
where each row represents one sample from a p-variate Gaussian

distribution Nð0;X�1Þ for a given biological condition (e.g. cancer

or normal). Our goal is then to estimate the network structure, or

equivalently the precision matrix X, subject to external information

encoded in E1 and E0. Let D ¼ diagðXÞ represent the diagonal ma-

trix whose diagonal entries are the same as X and Ip be the p-identity

matrix. Then, A ¼ Ip �D�1=2XD�1=2 is the partial correlation ma-

trix. When E1¼E and E0 ¼ Ec, the problem becomes that of covari-

ance selection (Dempster, 1972), which has been studied extensively

in the literature. However, to the best of our knowledge, the prob-

lem of estimating X (and the partial correlation matrix A) when

E1 and E0 only contain partial information (E1ˆE and E0ˆEc) has

not been investigated before.

In this section, we assume that the m observations used for esti-

mating condition-specific networks are separate from those used for

pathway enrichment analysis (highlighted by the use of Zi’s and m

to denote the random variables and sample size, respectively). The

framework introduced in this section reduces the potential bias in

small sample settings, and takes advantage of the additional publicly

available samples, in lieu of reliable network information. With

large enough samples, network estimation and pathway enrichment

can be performed using the same set of samples by incorporating

sample splitting strategies. Although the problem considered in this

section is seemingly similar to matrix completion (Candes and

Recht, 2009), the two problems are fundamentally different in na-

ture. In particular, in this setting, matrix completion corresponds to

completing the remaining entries from the partially observed p � p

matrix A, under some structural assumptions on A, such as low-

rankness. On the other hand, in the setting of graphical models, the

entries of the weighted adjacency matrix are estimated based on

data on the nodes of the graph.

In biological settings, both the structure of the network, as well as

strengths of associations may be condition-specific. Therefore, we

need to accurately estimate the nonzero entries in X to recover both

the structure of the network and the strength of associations between

nodes. In the absence of any external information, the ‘1-penalized

negative log-likelihood estimate of X is obtained by solving

argmin
X�0

traceðXbRÞ � logdetXþ kjjXjj1
n o

; (1)

wherein bR ¼ ZTZ=m is the empirical covariance matrix of the data,

jjXjj1 ¼
P

i 6¼i0 jxii0 j denotes the ‘1 norm of the parameters, and k is

the regularization parameter. In the presence of external informa-

tion, the problem can be cast as the following constrained optimiza-

tion one

min
X�0

traceðXbRÞ � logdetX
n o

; (2)

subject to xii0 ¼ 0 for ði; i0Þ 2 E0; xii0 6¼ 0 for ði; i0Þ 2 E1, andP
i6¼i0 ; ði;i0 Þ62E0[E1

xii0 j � t:

In the following, we present a two-step procedure to solve the

constrained optimization problem (2). The proposed approach

combines the neighborhood selection technique (Meinshausen and

Bühlmann, 2006) with constrained maximum likelihood estima-

tion. It exploits the fact that the estimated neighbors of each node

using neighborhood selection coincide with the nonzero entries of

the inverse covariance matrix (Friedman et al., 2008). Specifically,

in neighborhood selection the network structure is estimated by

finding the optimal set of predictors when regressing the random

variable Zi corresponding to node i 2 V on all other variables,

using an l1-penalized linear regression. The coefficients for this op-

timal prediction hi are closely related to the entries of the inverse

covariance matrix: for all i0 6¼ i; hi
i0 ¼ �xii0=xii. The set of nonzero

coefficients of hi is thus the same as the set of nonzero entries in

the row vector of xii0 ði0 6¼ iÞ, which defines the set of neighbors of

node i.

Let Ji
1 and Ji

0 denote the subsets Vni for which external information

is available: Ji
1 is the set of nodes which are known to be in the neigh-

borhood of i, and Ji
0 is the set of nodes which are known to be not con-

nected to i. Let Z�i denote the submatrix obtained by removing the ith

column of Z. Assume all columns of Z are centered and scaled to have

norm 1. Denote by Sp
þ the set of all p� p positive definite matrices and

Sp
E ¼ fX 2 R

p�p : xii0 ¼ 0; for all ði; i0Þ 62 E where i 6¼ i0g. The pro-

posed algorithm proceeds in two steps.

i. Estimate the network structure bE. For every node i, find bhi
via

the following steps.

a. For i0 2 Ji
0, set bh i

i0 ¼ 0.

b. For i0 2 Ji
1, find bh i

i0 using linear regression

bhi

Ji
1
¼ argmin

h2RjJ
i
1
j

1

m
jjZi � ZJi

1
hjj22: (3)

c. For i0 2 ~J � VnfJi
1 [ Ji

0 [ figg, find bh i

i0 using lasso

bhi
~J ¼ argmin

h2Rj~Jj

1

m
jjWi � Z~Jhjj22 þ 2k

X
i02~J

jhi0 j; (4)

where Wi ¼ Zi � ZJi
1

bhi

Ji
1

is the residual vector after regressing

Zi on the known connections.

The edge set bE is estimated to be fði; i0Þ : bh i

i0 6¼ 0 OR bh i0
i 6¼ 0g.

ii. Given the structure bE, estimate the inverse covariance matrix bX
by bX ¼ argmin

X2Sp
þ\S

p

Ê

traceðbRXÞ � logdetX
n o

: (5)

Remark 1. In step (i-b) of the algorithm, the coefficients hi for

known edges have not been penalized in (3). In settings where the

external information may be unreliable, we can augment (3) with a

lasso penalty k
P

i02Ji
1
ti0 jhi0 j, where the penalty weights ti0 ði0 2 Ji

1Þ
allow for different penalization depending on the reliability of exist-

ing information.

The second step focuses on estimation of the magnitude of non-

zero entries in the precision matrix X, given the estimated network

topology bE. The optimization problems in both steps are convex

and can be solved efficiently using existing software (e.g. glmnet and

glasso in R).

The proposed estimator enjoys nice theoretical properties under

certain regularity conditions. Before presenting the main result,

we introduce some additional notations. Let R0 be the true co-

variance matrix and X0 ¼ R�1
0 . For i ¼ 1; . . . ; p, denote by jjhijj0 ¼ #

fi0 : hi
i0 6¼ 0g the l0 norm of hi. Write s ¼ maxi¼1;...;p jjhijj0 and
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S0 ¼
Pp

i¼1 jjh
ijj0. For a subset J � f1; . . . ;pg, let ZJ be the submatrix

obtained by removing the columns whose indices are not in J. We

make the following assumptions.

Assumption 1. There exist /1;/2 > 0 such that the eigenvalues of

R0 are bounded, i.e. 0 < /2 � /minðR0Þ � /maxðR0Þ � 1=/1 < 1:

Assumption 2. There exists jðsÞ > 0 such that

min
jJj � s

min
d2Rp

jjdJc jj1 � 3jjdJjj1

1ffiffiffiffi
m
p jjZdjj2

jjdJjj2
	 jðsÞ: (6)

Assumption 1 is standard in high-dimensional settings.

Assumption 2 corresponds to the restricted eigenvalue assumption

introduced in Bickel et al. (2009), which is presented here for

completeness.

Denote by jEj the cardinality of the edge set E. Let r � ðjE0j þ j
E1jÞ=fpðp� 1Þ=2g represent the percentage of external network in-

formation available. Clearly, 0 � r < 1. We are now ready to state

our first result.

Theorem 1. Suppose Assumption 1 holds and Assumption 2 is sat-

isfied with jð2sÞ. For constants c1 > 4 and 0 < k1 < 1, assume

also that the sample size satisfies

m 	 16c1

k1/1j2ð2sÞ

� �2

ð1� rÞS0logðp� rpÞ; (7)

where S0 is the total number of nonzero parameters excluding the di-

agonal. Consider bX defined in (5). Then, with probability at least

1� 2p2�c2
1
=8, under appropriately chosen k, we have

jjbX � X0jj2 � jjbX � X0jjF ¼ O

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S0logðp� rpÞ

m

r !
: (8)

Remark 2. In addition to the improved sample complexity (7), the

convergence rate in (8) indicates an improvement of the order offfiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S0logð1� rÞ�1=m

q
in the presence of external information. This

improvement is particularly important for our analysis of power

properties of NetGSA in Section 2.2.2, which requires norm consist-

ency of adjacency matrix estimation. Although consistency can be

established using a theoretical analysis similar to graphical lasso

(Rothman et al., 2008), our proofs in the Supplementary Materials

Section A utilize the techniques from Bickel et al. (2009) and Zhou

et al. (2011) to characterize the improvement in rates resulting from

the external information.

Let A0 be the true partial correlation matrix, i.e.

A0 ¼ Ip �D
�1=2
0 X0D

�1=2
0 , where D0 ¼ diagðX0Þ. The following cor-

ollary is an immediate result of Theorem 1.

Corollary 1. Let assumptions in Theorem 1 be satisfied. Assume

further that S0 ¼ oðm=logðp� rpÞÞ. For bX defined in (5), let bA be

the corresponding partial correlation matrix. Then, with probability

at least 1� 2p2�c2
1
=8, under appropriately chosen k, we have

jjbA � A0jj2 ¼ oð1Þ:

Remark 3. Corollary 1 implies that, under certain regularity con-

ditions, the error in the condition-specific network estimate bA is

negligible. This proves essential for establishing power properties of

NetGSA with estimated network information, as shown in the next

section. The proof of Corollary 1 is available in the Supplementary

Materials Section A.

The tuning parameter k in the first step of the proposed algo-

rithm is important for selecting the correct structure of the network,

which further affects the magnitude of the network interactions in

the second step. Accurate estimation of these magnitudes is crucial

for topology-based pathway enrichment methods. We propose to se-

lect k using the Bayesian Information Criterion (BIC). Specifically,

for a given k, we define

BICðkÞ ¼ traceðbRbXkÞ � logdetðbXkÞ þ
logðmÞ

m
jbEkj; (9)

where bXk is the estimated precision matrix from the data and bEk is

the estimated edge set. The optimal tuning parameter is thus

k
 ¼ argminkBICðkÞ.

2.2 NetGSA with estimated network information
Next, we discuss how (condition-specific) estimates of bimolecular

interactions from Section 2.1 can be incorporated into the NetGSA

framework to obtain a rigorous inference procedure for both path-

way enrichment and differential network analysis. To this end, we

formally define the NetGSA methodology based on undirected

Gaussian graphical models in Section 2.2.1. In Section 2.2.2, we dis-

cuss how the constrained-network estimation procedure of Section

2.1 can be combined with NetGSA to rigorously infer differential

activities of biological pathways, as well as changes in their network

structures.

2.2.1 The latent variable model

Consider p genes (proteins/metabolites) whose activity levels across

n samples are organized in a p�n matrix D. In the framework of

NetGSA, the effect of genes (proteins/metabolites) in the network is

captured using a latent variable model (Shojaie and Michailidis,

2009, 2010). Denote by Y an arbitrary column of the data matrix

D. Suppose the observed data can be decomposed into signal, X,

plus noise e � N pð0; r2
e IpÞ, i.e. Y ¼ Xþ e. The latent variable model

assumes that the signal X follows a multivariate normal distribution

with partial correlation matrix A. Based on the connection between

linear recursive equations and covariance selection proposed in

Wermuth (1980), there exists a lower triangular matrix K such that

K�1X ¼ c, where c � N pðl; r2
c IpÞ and KKT ¼ ðIp � AÞ�1. Note that

the current version of the NetGSA model differs from the original

model in Shojaie and Michailidis (2009, 2010). This difference is

primarily manifested through the definition of K in the two models:

K is defined here based on the undirected partial correlation net-

work A, whereas it was previously defined based on directed (phys-

ical) interactions among genes (proteins/metabolites) in Shojaie and

Michailidis (2009, 2010).

Assuming that c and e are independent, the NetGSA model can

then be summarized as

Y ¼ Kcþ e: (10)

The NetGSA methodology allows for more complex models,

including time course observations. For expositional clarity, we pre-

sent the methodology in the setting of two experimental conditions

and consider the general case where Að1Þ 6¼ Að2Þ. Details of NetGSA

under multiple conditions can be found in Shojaie and Michailidis

(2010) and are applicable for the undirected networks presented in

this work. Let Y
ðkÞ
j ðj ¼ 1; . . . ;n; k ¼ 1;2Þ be the j-th sample in the

expression data under condition k (jth column of data matrix D),

with the first n1 columns of D corresponding to condition 1 (control)

and the remaining n2 ¼ n� n1 columns to condition 2 (treatment).
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Denote by KðkÞ the influence matrix and lðkÞ the mean vector under

condition k. The NetGSA framework considers a latent variable

model of the form

Y
ð1Þ
j ¼ Kð1Þlð1Þ þ Kð1Þcj þ ej; ðj ¼ 1; . . . ; n1Þ;

Y
ð2Þ
j ¼ Kð2Þlð2Þ þ Kð2Þcj þ ej; ðj ¼ n1 þ 1; . . . ;nÞ:

Here, cj is the vector of (unknown) random effects, and ej is the

vector of random errors. They are independent and normally distrib-

uted with mean 0 and variances r2
c Ip and r2

e Ip, respectively.

Inference in NetGSA requires estimation of the mean parameters

lð1Þ and lð2Þ and variance components r2
c and r2

e . The variance com-

ponents can be estimated via maximum likelihood or restricted max-

imum likelihood, which can be computationally demanding for

large networks. To extend the applicability of the NetGSA, we con-

sider using Newton’s method for estimating the variance parameters

based on the profile log-likelihood to improve the computational

stability. See Supplementary Materials Section B for more details.

2.2.2 Joint pathway enrichment and differential network analysis

using NetGSA

To test for enrichment of a pre-specified pathway P, Shojaie and

Michailidis (2009) propose the contrast vector (Searle, 1971)

‘ ¼ ð�bKð1Þ � b; bKð2Þ � bÞ, where b is a row binary vector deter-

mining the membership of genes in a pre-specified pathway P and �
denotes the Hadamard product. The advantage of this contrast vec-

tor is that it isolates influences from nodes outside the pathways of

interest. Let b ¼ ðlð1ÞT ; lð2ÞTÞT be the concatenated vector of means.

The null hypothesis of no pathway activity vs the alternative of

pathway activation then becomes

H0 : ‘b ¼ 0; H1 : ‘b 6¼ 0: (11)

The significance of individual contrast vectors in (11) can be

tested using the following Wald test statistic

TS ¼ ‘bb
SEð‘bbÞ ; (12)

where SEð‘bbÞ represents the standard error of ‘bb and bb is the esti-

mate of b. Both ‘ and SEð‘bbÞ depend on the underlying networks,

which are estimated using data from the two experimental condi-

tions. Under the null hypothesis, TS follows approximately a t-dis-

tribution whose degrees of freedom can be estimated using the

Satterthwaite approximation method (Shojaie and Michailidis,

2010).

The above general framework allows for test of pathway enrich-

ment in arbitrary subnetworks, while automatically adjusting for

overlap among pathways. In addition, the above choice of contrast

vector ‘ accommodates changes in the network structure. Such

changes have been found to play a significant role in development

and initiation of complex diseases (Chuang et al., 2012), and

NetGSA is currently the only method that systematically combines

the changes in expression levels and network structures, when test-

ing for pathway enrichment. However, the applicability of the exist-

ing NetGSA framework (Shojaie and Michailidis, 2009, 2010) is

limited by the assumption of known network structure (namely

KðkÞ; k ¼ 1;2). In the current framework, we estimate KðkÞ ðk ¼ 1;2Þ
from data as discussed in Section 2.1. We next show that NetGSA

with estimated network information provides valid inference for

pathway enrichment and differential network analysis.

For k¼1, 2, let ZðkÞ of dimension mk � p be the data matrix

used to separately estimate the partial correlation matrix under

condition k. Denote by Sk the number of nonzero off-diagonal

entries in the true partial correlation matrix A
ðkÞ
0 and by rk the per-

centage of available external information. We obtain the following

result.

Theorem 2. Let assumptions in Theorem 1 be satisfied and Sk ¼ o

ðmk=logðp� rkpÞÞ under each condition k ðk ¼ 1; 2Þ. Consider the

inverse covariance matrices bXðkÞ estimated from (5) of Section 2.1.

Then the test statistic in (12) based on the corresponding networksbAðkÞ is an asymptotically most powerful unbiased test for (11).

Remark 4. Theorem 2.1 of Shojaie and Michailidis (2010) says

that NetGSA is robust to uncertainty in network information.

Specifically, Shojaie and Michailidis (2010) show that if the error in

network information D
A
ðkÞ
0

¼ bAðkÞ � A
ðkÞ
0 satisfies jjD

A
ðkÞ
0

jj2 ¼ oPð1Þ,
then NetGSA is an asymptotically most powerful unbiased test for

(11). The result in Theorem 2 establishes this property for (partially)

estimated networks using the consistency of our proposed network

estimation procedure in Theorem 1 and Corollary 1. A detailed

proof can be found in the Supplementary Materials Section A.

3 Simulation results

We present two simulation studies to assess the performance of the

proposed network estimation procedure, as well as its impact on

NetGSA. We refer readers to the Supplementary Materials Section C

for additional simulation scenarios—including validation of Type I

errors and settings with a large number of variables p—and subse-

quent discussion.

Our first experiment is based on an undirected network of size

p¼100. The network structure is extracted from the DREAM3

challenge (Prill et al., 2010) corresponding to the Ecoli network

(labeled Ecoli 1). The pathways of interest are determined through a

community detection algorithm based on the leading nonnegative

eigenvector of the modularity matrix of the network (Csardi and

Nepusz, 2006). Under the null hypothesis, all nodes have the same

mean expression values of 1. Under the alternative hypothesis, the

mean expression levels of 0%, 30%, 40% and 60% of nodes in sub-

networks 1, 3, 5 and 7 are increased by 0.5, respectively.

Our second experiment considers a network of size p¼160 with

8 subnetworks of equal sizes, all of which are generated from the

same scale-free graph of size 20. To allow for interactions across

subnetworks, there is 20% chance for the hub node in each subnet-

work to connect to the hub node in another subnetwork. Mean ex-

pression values for all nodes are the same under the null hypothesis.

Under the alternative hypothesis, we allow, respectively, 0, 40, 60

and 80% of the nodes to have positive mean changes of magnitude

0.5 for subnetworks 1–4. Subnetworks 5–8 follow the same pattern.

In both experiments, we also allow the structures in four subnet-

works under the alternative hypothesis to differ from their null

equivalent by a small amount, in order to simultaneously test path-

way enrichment and differential networks. Figure 1 shows the net-

work topologies as well as the structural changes for the chosen

subnetworks from the null to the alternative hypothesis in the two

experiments. Further, we study the robustness of NetGSA to model

misspecification by including scenarios where a proportion (50%

for r¼0.2 and 20% for r¼0.8 in experiment 1, and 60% in experi-

ment 2) of the supplied structural information is incorrectly speci-

fied, i.e. they are not present in the true model.

To illustrate how external network information affects the esti-

mation accuracy, we vary the percentage of information r from 0 to

1. When r is less than 1, we estimate the adjacency matrices using
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the proposed two-step procedure and fill in the non-zero edges with

the estimated weights. When full knowledge of the network top-

ology is given (r¼1), we only apply the second step to estimate the

edge weights. When there exist misspecified edges in the external in-

formation, we use two tuning parameters for network estimation,

one for controlling the overall sparsity of the network and the other

for correcting the misspecified edges. The optimal tuning parameters

are selected over a grid of values using BIC defined in (9).

Table 1 compares the estimated networks with the true model

under several deviance measures based on 100 simulation replica-

tions; in both experiments, the sample size for both null and alterna-

tive hypotheses is m¼100. The Matthews correlation coefficients

improve significantly as the percentage of external information r in-

creases from 20 to 80%, and the Frobenius norm loss shows a clear

decreasing trend, both indicating the improvement in estimation ac-

curacy when more external information is available. In cases where

the information is misspecified [denoted by 0.2(m) and 0.8(m)], one

can see that the performance of network estimation is not compro-

mised by much after properly selecting the tuning parameters.

Next, we examine the performance of NetGSA in detecting path-

way enrichment by comparing it with GSA (Efron and Tibshirani,

2007). GSA tests a competitive null hypothesis and compares the set

of genes in the pathway with its complement in terms of association

with the phenotype. The underlying model consists of both random-

ization of the genes and permutation of the samples, which are com-

bined into the idea of ‘restandardization’. This method is later

denoted by GSA-c. In addition, we consider GSA with permutation

of the samples only, later denoted by GSA-s, since this version of

GSA compares the set of genes in the pathway with itself.

Tables 2 and 3 present the estimated powers for each subnet-

work in the two experiments from 100 simulation replicates, re-

spectively. Here we use n1 ¼ n2 ¼ 25 samples for each condition in

experiment 1 and n1 ¼ n2 ¼ 40 in experiment 2, which are different

from the datasets used for network estimation. The powers are cal-

culated as the proportion of replicates that show differential

changes, based on the false discovery rate (FDR) controlling proced-

ure of Benjamini and Hochberg (1995). To facilitate comparison,

different FDR cutoffs are used for GSA and NetGSA to ensure con-

sistent type I error for the first pathway in both experiments. For

NetGSA, we look at scenarios when there is 20 and 80% external

structural information (with and without misspecification) and use

the estimated networks to test enrichment for each subnetwork. We

also include the scenario where the exact networks with correct edge

weights are provided, in which case only the variance components

and mean expression values are estimated from the mixed linear

model. True powers for each subnetwork are calculated by replacing

all unknown parameters with their corresponding known values.

For p¼100, the results from NetGSA with the exact networks

agree with the true powers, indicating low powers for subnetworks

1, 2 and 4, slightly higher powers for 3, 6 and 8, high powers for 5

and 7 due to significant changes in mean expression levels and struc-

tures. When the exact networks are unknown, we see clear improve-

ment in the estimated powers for subnetworks 4, 7 and 8 as the

percentage of external information increases from 20 to 80%. GSA-

s does reasonably well with overestimated powers for subnetwork 8.

The last two columns in Table 2 show the estimated powers from

NetGSA when the external information is misspecified. For both

Fig. 1. The network and subnetwork topology in experiment 1 under the null

(top left) and alternative (top right), and experiment 2 under the null (bottom

left) and alternative (bottom right). Dashed lines represent edges that are pre-

sent in only one condition. Nodes in square are associated with mean

changes (Color version of this figure is available at Bioinformatics online.)

Table 1. False positive rate (FPR in percentage), false negative rate

(FNR in percentage), Matthews correlation coefficient (MCC) and

Frobenius norm loss (Fnorm) for network estimation in experi-

ments 1 and 2

P ¼ 100 P ¼ 160

r FPR

(%)

FNR

(%)

MCC Fnorm FPR

(%)

FNR

(%)

MCC Fnorm

Null 0.0 9.46 2.78 0.43 0.48 2.94 0.84 0.54 0.36

0.2 7.64 5.83 0.45 0.46 2.77 1.03 0.55 0.34

0.8 1.81 1.22 0.75 0.28 1.18 0.02 0.72 0.24

0.2 (m) 7.91 4.85 0.45 0.46 2.76 0.95 0.55 0.34

0.8 (m) 2.29 3.82 0.70 0.31 1.22 0.02 0.71 0.25

Alt 0.0 8.71 1.52 0.44 0.45 2.90 0.88 0.54 0.36

0.2 7.09 3.82 0.47 0.42 2.73 0.88 0.55 0.35

0.8 1.80 1.19 0.75 0.25 1.19 1.89 0.71 0.26

0.2 (m) 7.29 2.62 0.47 0.42 2.72 0.78 0.55 0.34

0.8 (m) 2.17 5.50 0.69 0.29 1.22 1.93 0.70 0.27

Table 2. Powers in experiment 1

P ¼ 100

Pathway 0.2 0.8 E T GSA-s GSA-c 0.2 (m) 0.8 (m)

1 0.03 0.03 0.08 0.06 0.15 0.04 0.03 0.02

2 0.08 0.08 0.08 0.06 0.09 0.00 0.09 0.09

3 0.36 0.33 0.43 0.46 0.24 0.00 0.40 0.38

4 0.38 0.26 0.09 0.07 0.26 0.05 0.37 0.24

5 0.91 0.91 0.95 0.97 0.95 0.00 0.92 0.89

6 0.27 0.24 0.24 0.26 0.37 0.00 0.26 0.25

7 0.72 0.80 0.99 0.99 0.98 0.14 0.69 0.86

8 0.45 0.61 0.63 0.57 0.87 0.00 0.51 0.58

FDR cutoffs are q*¼0.01 for 0.2, 0.8, 0.2(m) and 0.8(m), 0.05 for GSA-s

and 0.10 for E and GSA-c. 0.2/0.8 refer to NetGSA with 20/80% external in-

formation; E refers to NetGSA with the exact networks; T refers to the true

power; GSA-c/GSA-s refer to Gene Set Analysis with/without randomization

of the genes based on 1000 permutations; 0.2/0.8(m) refer to NetGSA with

20/80% misspecified external information.
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cases (r¼0.2 and r¼0.8), the results bear high similarity to those in

the first two columns, which suggests that the proposed framework

is robust to inaccuracy in network information.

For p¼160, the NetGSA estimated powers when 20% external

information is available match the true powers reasonably well,

with a small underestimation of powers for subnetworks 3, 7 and 8.

We note marked improvement in the three corresponding values

when the external information increases to 80%. Moreover,

NetGSA is able to distinguish subnetworks 5–8 that have both

changes in mean values and subnetwork topology from their corres-

ponding counterparts 1–4. When the external information is misspe-

cified, the last two columns indicate that NetGSA still returns valid

powers that are comparable to those obtained with correctly speci-

fied structural information. GSA-s yields a small overestimation of

powers for subnetwork 7.

In both experiments, GSA with randomization of the genes

(GSA-c) fails to identify any of the differential subnetworks.

4 Applications to metabolomics and
genomics data

We apply NetGSA to three Omics data sets to demonstrate its po-

tential in revealing biological insights. In all three studies, the P-val-

ues were corrected for multiple comparisons using the FDR control

procedure proposed in Benjamini and Yekutieli (2001) to account

for the dependency among KEGG pathways.

Our first application is based on the metabolomics data set from

(Putluri et al., 2011) to examine changes in metabolic profiles asso-

ciated with bladder cancer using untargeted mass spectrometry data

acquisition strategy. The data consists of 31 cancer and 27 benign

tissue samples and 63 detected metabolites. Here we focused on esti-

mating the network of metabolic interactions, enhanced by informa-

tion gleaned from KEGG (Kanehisa and Goto, 2000). For each

condition, we used the BIC criterion to select the tuning parameter

k. At the optimal k, we applied the proposed network estimation

procedure to identify the metabolic network; see Figure 2 for an il-

lustration of the estimated networks for the cancer and benign

classes, respectively. It can be seen that there are numerous inter-

actions between pathways that describe energy metabolism in the

cancer state, due to the greater need of cancer cells for energy.

We tested for differential activity of biochemical pathways

extracted from KEGG using the same set of data. Shown in Table 4

are estimated P-values after FDR correction with a q-value of 0.01

for the significant pathways selected from NetGSA. These identified

pathways include those that describe altered utilization of amino

acids and their aromatic counterparts, as well as metabolism of fatty

acids and intermediates of tricarboxylic acid cycle which were fol-

lowed up for biological insights in the original study by Putluri et al.

(2011). Among the selected pathways, fatty acid biosynthesis is not

identified by GSA-s. Interestingly, GSA-c fails to report any pathway

as being significantly enriched. This again confirms our hypothesis

that incorporating pathway topology information allows sophisti-

cated enrichment methods in detecting important regulatory

pathways.

The second data set (Subramanian et al., 2005) consists of gene

expression profiles of 5217 genes for 62 normal and 24 lung cancer

patients. We considered 47 KEGG pathways of size at least 5 that

describe signaling and biochemical mechanisms and excluded genes

that eitrher are not present in the 47 pathways, or without recorded

network information. The number of genes that remain for pathway

enrichment analysis is 303. Based on the external topology informa-

tion from the BioGRID database, we applied the proposed network

estimation procedure coupled with BIC to estimate the underlying

interaction networks for both normal and cancer conditions. We

then explored whether GSA and NetGSA with the estimated net-

works are able to detect enriched pathways using the same data set.

After correcting for multiple comparisons, using a FDR of

q
 ¼ 0:01, none of the three methods identifies any pathway as

being significantly differential enriched. The lack of statistical power

in obtaining differential pathways was also noted in the original art-

icle of (Subramanian et al., 2005); see Supplementary Table S9 for

Table 3. Powers in experiment 2

P ¼ 160

Pathway 0.2 0.8 E T GSA-s GSA-c 0.2(m) 0.8(m)

1 0.04 0.06 0.02 0.05 0.06 0.02 0.04 0.06

2 0.37 0.36 0.30 0.36 0.41 0.00 0.36 0.36

3 0.88 0.94 0.96 0.99 0.99 0.00 0.89 0.94

4 0.97 0.99 1.00 1.00 1.00 0.23 0.97 0.99

5 0.36 0.25 0.11 0.11 0.13 0.15 0.35 0.25

6 0.38 0.27 0.03 0.07 0.26 0.01 0.35 0.27

7 0.66 0.72 0.92 0.92 1.00 0.00 0.67 0.72

8 0.90 0.95 1.00 1.00 1.00 0.13 0.91 0.94

FDR cutoffs are q*¼0.01 for 0.2, 0.8, 0.2(m) and 0.8(m), 0.05 for GSA-s

and 0.10 for E and GSA-c. 0.2/0.8 refer to NetGSA with 20%/80% external

information; E refers to NetGSA with the exact networks; T refers to the true

power; GSA-c/GSA-s refer to Gene Set Analysis with/without randomization

of the genes based on 1000 permutations; 0.2/0.8(m) refer to NetGSA with

20/80% misspecified external information.

Fig. 2. The estimated network topology and enriched pathways in the metab-

olomics study for the benign class (left) and cancer class (right). Dashed lines

represent edges that are present in only one class. Nodes in multiple colors

are present in multiple pathways (Color version of this figure is available at

Bioinformatics online.)

Table 4. P-values for the pathways in the metabolomics study,

with FDR correction at q*¼ 0.01

Pathway NetGSA GSA-s GSA-c

Tryptophan metabolism 3e–5 0.00 1.00

beta-Alanine metabolism 3e–5 0.00 1.00

Aminoacyl-tRNA biosynthesis 2e–4 0.00 1.00

ABC transporters 4e–4 0.00 1.00

Fatty acid biosynthesis 2e–3 1.00 1.00

Pyrimidine metabolism 2e–3 0.00 1.00

Phenylalanine metabolism 4e–3 0.00 1.00

Here 0.00 represents a zero P-value produced out of finite permutations.

GSA-c/GSA-s refer to Gene Set Analysis with/without randomization of the

genes based on 3000 permutations.
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the complete list of FDR adjusted P-values. Nevertheless, using

NetGSA and a relaxed FDR cutoff threshold of 0.30 (similar to the

strategy adopted in Subramanian et al., 2005), we obtain the follow-

ing top three ranked signaling pathways: Jak-STAT, p53 and Wnt.

All three are implicated in lung cancer, although the latter two are

also implicated in multiple other types of human malignancies.

However, the Jak/STAT pathway has been recently shown to play a

key role in non small cell lung cancer cells (Song et al., 2011).

Our third and final application is based on a data set from

TCGA (2012). The data set contains RNA-seq measurements for

17 296 genes from 1033 breast cancer specimens, including ER posi-

tive, ER negative and other unevaluated cases. As in the previous

gene microarray study, the external network information is ex-

tracted from the BioGRID database. We focused on a subset of the

genes that have recorded network information and are present in

KEGG pathways with at least 5 members. This leaves for further

consideration 800 genes with 403 samples from the ER positive and

117 from the ER negative classes, spanning over 45 KEGG path-

ways. We then applied the constrained network estimation proced-

ure with the tuning parameter selected via BIC in (9) to obtain the

partial correlation networks for the ER positive and ER negative

classes, respectively. Due to the large number of variables, visualiza-

tion of the estimated networks at the individual gene level is

challenging. Instead, we examine the interactions among pathways

in Figure 3 to gain insight into their co-regulation behavior. The

weighted pathway level network is defined as follows. Let each node

in the network represent one pathway, with size proportional to the

size of the corresponding pathway. A weighted edge between two

pathways P1 and P2 is defined as the number of nonzero partial cor-

relations between genes in P1 and those in P2 (normalized by the

sizes of the two pathways). Links visualized in Figure 3 are the top

5% of the weighted edges, where ranking is based on edge weights.

Table 5 presents the FDR corrected P-values for the selected dif-

ferential pathways using NetGSA based on the estimated partial cor-

relation networks, as well as GSA-c and GSA-s. The complete table

is presented in the Supplementary Materials Section D. At q*¼0.

01, NetGSA reports 25 out of the 45 KEGG pathways as signifi-

cantly enriched, whereas GSA either rejects the null for all pathways

(GSA-c) or fails to reject any pathway (GSA-s). Selected differential

pathways identified by NetGSA are also highlighted in Figure 3. Of

particular interest is the set of connected, enriched pathways cen-

tered around the ErbB pathway in Figure 3(b). This pathway con-

tains receptors that signal through various pathways to regulate cell

proliferation, migration, differentiation, apoptosis, and cell motility

and play a key role in breast cancer (Howe and Brown, 2011), al-

though its role in breast carcinogenesis not very well understood.

Note that the Jak-STAT pathway is downstream of the ErbB one

and can be activated by key epidermal growth factor receptors in

the former to create signaling cascades (Henson and Gibson, 2006).

Further, the GnRH signaling pathway has been reported to interact

with the ErbB pathway receptors (Morgan et al., 2011). All these

A

B

Fig. 3. The estimated pathway topology in the TCGA cancer study: (A) the

complete pathway topology and (B) the subnetwork surrounding the ErbB

pathway. Edges in black are present in both classes, whereas red and green

edges are only present in ER positive and ER negative class, respectively.

Node size is proportional to the size (number of genes) of the corresponding

pathway (Color version of this figure is available at Bioinformatics online.)

Table 5. P-values for the differential pathways in the TCGA data,

with FDR correction at q*¼ 0.01

Pathway NetGSA GSA-s GSA-c

Epithelial cell signaling in Helicobacter

pylori infection

5e–95 0.00 1.00

Cell cycle 2e–47 0.00 1.00

Galactose metabolism 3e–31 0.00 1.00

Glutathione metabolism 1e–27 0.00 1.00

NOD-like receptor signaling pathway 1e–24 0.00 1.00

Pyrimidine metabolism 4e–23 0.00 1.00

Cysteine and methionine metabolism 1e–22 0.00 1.00

Starch and sucrose metabolism 1e–18 0.00 1.00

Toll-like receptor signaling pathway 1e–18 0.00 1.00

Glycolysis/Gluconeogenesis 3e–17 0.00 1.00

Jak-STAT signaling pathway 9e–15 0.00 1.00

Chemokine signaling pathway 3e–14 0.00 1.00

ErbB signaling pathway 7e–13 0.00 1.00

p53 signaling pathway 7e–12 0.00 1.00

Hedgehog signaling pathway 5e–10 0.00 1.00

beta-Alanine metabolism 1e–7 0.00 1.00

Fc epsilon RI signaling pathway 5e–7 0.00 1.00

Fructose and mannose metabolism 2e–6 0.00 1.00

Pentose phosphate pathway 2e–6 0.00 1.00

PPAR signaling pathway 5e– 6 0.00 1.00

Adipocytokine signaling pathway 4e–5 0.00 1.00

Purine metabolism 6e–5 0.00 1.00

Valine, leucine and isoleucine degradation 5e–4 1e–3 1.00

GnRH signaling pathway 2e–3 0.00 1.00

TGF-beta signaling pathway 3e–3 0.00 1.00

Here 0.00 represents a zero p-value produced out of finite permutations.

GSA-c/GSA-s refer to Gene Set Analysis with/without randomization of the

genes based on 3000 permutations.
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interconnected pathways are related to receptors that have been

implicated in various studies with over-expression in the ER nega-

tive class and hence faster tumor growth and poorer clinical

outcomes.

5 Discussion

This article introduces a constrained partial correlation network es-

timation method that seamlessly incorporates externally available

interaction information for genes and other biomolecules. The end

product is a reliable condition-specific estimate of the underlying

networks. The resulting estimated network structures are then used

for network-based pathway enrichment analysis. For the purpose of

constrained network estimation, one might also try the one-step

constrained maximum likelihood estimation (a functionality offered

in the R-package glasso) to recover the underlying partial correl-

ation network. However, this one-step approach requires sophisti-

cated specification of the tuning parameters at positions for which

structural information is available, and can be challenging to imple-

ment in practice.

Two sources of uncertainty can be identified in the proposed

framework: one from the reliability of the external database infor-

mation in the network estimation procedure and the other from the

uncertainty regarding the estimated network itself, as well as how it

propagates into the NetGSA testing procedure. As discussed in

Remark 1, the proposed method can conveniently accommodate the

first source of uncertainty by incorporating a non-zero penalty on

parameters that are uncertain. Further, as shown in Theorem 2, the

proposed test via the extended NetGSA framework is asymptotically

unbiased and most powerful, given the consistency of the estimated

network, and hence accounts for the second source of uncertainty.

Nevertheless, in finite samples as the numerical work in the

Supplementary Materials Section C illustrates, Type I errors may be

slightly off in the presence of numerous errors in the estimated net-

work (either due to misspecification of the external information or

lack of samples for accurate estimation). The topic of dealing with

network estimation errors and possible ways to address it is dis-

cussed in Narayan and Allen (2016).

Finally, the current framework of NetGSA uses the Cholesky de-

composition of the covariance matrix of the underlying network. It

is natural to ask whether the order of the variables affects the result

of enrichment analysis. In simulations and the real data analyses, we

find that the estimated powers/P-values from NetGSA are compar-

able after permutation of the variables.
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