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Summary

Penalized regression approaches are attractive in dealing with high-dimensional data such as

arising in high-throughput genomic studies. New methods have been introduced to utilize the

network structure of predictors, e.g. gene networks, to improve parameter estimation and variable

selection. All the existing network-based penalized methods are based on an assumption that

parameters, e.g. regression coefficients, of neighboring nodes in a network are close in magnitude,

which however may not hold. Here we propose a novel penalized regression method based on a

weaker prior assumption that the parameters of neighboring nodes in a network are likely to be

zero (or non-zero) at the same time, regardless of their specific magnitudes. We propose a novel

non-convex penalty function to incorporate this prior, and an algorithm based on difference

convex programming. We use simulated data and two breast cancer gene expression datasets to

demonstrate the advantages of the proposed method over some existing methods. Our proposed

methods can be applied to more general problems for group variable selection.
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1. Introduction

With large amounts of high-dimensional data accumulating from high-throughput genomic

studies, penalized regression methods equipped with simultaneous variable selection and

parameter estimation have been increasingly used in practice. Most popular generic methods

exploiting sparsity of high-dimensional data include the Lasso (Tibshirani 1996), SCAD

(Fan and Li 2001), elastic net (Enet) (Zou and Hastie 2005) and LARS (Efron et al. 2004),

among others. In addition to sparsity, other structures may be present in a given high-

dimensional problem. For example, in genomics, various types of gene networks describe

gene-gene interactions and their coordinated functioning: protein-protein interaction (PPI)

networks as available from the Biomolecular Interaction Network Database (BIND)
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(Alfarano et al. 2005) and the Human Protein Reference Database (HPRD) (Peri et al.

2004), biological pathways in the Kyoto Encyclopedia of Genes and Genomes (KEGG)

(Kanehisa and Goto 2000), and gene functional annotations in the Gene Ontology

(Ashburner et al. 2000). Regardless of the network type, often it is reasonable to assume that

two neighboring genes in a network are more likely to participate together in the same

biological process than two genes far away in the network. Hence, incorporating prior

biological knowledge by exploiting the network structure in a frequentist or Bayesian

method is expected to improve its performance (Li and Zhang 2010, Monni and Li 2010, Tai

et al. 2010, Huang and Wang 2012). In particular, as demonstrated in cancer marker

discovery (Chuang et al. 2007), changes in expression of some causal genes governing

metastatic potential (e.g. ERBB2 and MYC) may be only subtle and non-significant while

some of their neighbors have much stronger alterations; incorporation of gene networks can

improve the chance of identifying these cancer-causing genes.

A natural way to utilize gene network information is to smooth parameters of neighboring

genes over a network: given any two neighboring genes in a network, denoted as j ∼ j′, and

their parameters βj and βj′, it may be reasonable to assume that βj/wj ≈ βj′/wj′ with some

known or chosen weights wj and wj′ (Li and Li 2008). More generally, since the effect

directions could be different, e.g. regulation of gene expression could be either stimulatory

or inhibitory, we can assume |βj|/wj ≈ |βj′|/wj′ (Li and Li 2010, Pan et al. 2010). Although

the aforementioned assumptions are reasonable, they may be too strong in some cases: in

general, it is valid to assume two neighboring genes in a network to be co-functioning, but

their effect sizes may or may not be equal. Hence, rather than smoothing the (weighted)

parameters over a network, we only assume that two neighboring genes are more likely to

participate together in the same biological process than two non-neighboring genes. This

latter prior knowledge was recently used by Percival et al. (2011) in a modified forward

stepwise variable selection scheme. In this paper, we propose a novel penalty to incorporate

this prior in a general framework of penalized regression. Simply speaking, we propose a

penalty to encourage I(|βj| ≠ 0) = I(|βj′| ≠ 0) for j ∼ j′. Since the indicator function (or the

L0-loss) is not even continuous, it is not computationally feasible to use it directly in an

objective function to be minimized. Our major contributions include proposing a novel

penalty as its approximation (or surrogate) and a corresponding non-convex minimization

method.

This paper is organized as follows. Section 2 first briefly reviews some existing methods,

then describes two implementations of our new idea in detail. In section 3 simulation results

are presented to investigate the finite sample performance of the methods, demonstrating the

advantages of the proposed methods over several existing methods. Section 4 illustrates the

application of the methods to predict metastases of breast cancer patients with their gene

expression profiles and a PPI network. We end with a short summary and discussion

outlining a few future research topics.

2. Methods

2.1 Review: penalized regression

In a linear regression model,
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(1)

for i = 1,…, n, we often have a “large p, small n” problem, as arising in high-throughput

genomic studies. With a large p, e.g. p > n, the ordinary least squares estimate (OLSE) does

not perform well due to its over-fitting. As one remedy, penalized regression is proposed: a

penalty P(β) is added to the objective function

(2)

The penalty P(β) not only regularizes parameter estimation as desired, but also can realize

effective variable selection. The Lasso (Tibshirani 1996) with an L1-penalty is well-known:

, where λ is a tuning parameter to be determined. With a large λ, the Lasso

yields a sparse (i.e. few non-zero components of) estimate of β, effectively realizing variable

selection. However, the Lasso and many other generic penalized methods ignore network

structures in the predictors, hence may not be efficient. To take advantage of given

information embedded in a predictor network, Li and Li (2008), Li and Li (2010) and Pan et

al. (2010) introduced network-based penalized regression methods. We implicitly assume

that a network is given, and as before two directly connected nodes/genes (i.e. with an edge

connecting them) are represented as j ∼ j′. The first is a graph constrained estimation

(Grace) method (Li and Li 2008) with penalty

where dj is the degree of node j, i.e. the number of edges connected to j. The first term is an

L1-penalty for variable selection, while the second aims to smooth (weighted) βj's over the

network. As discussed before, since in some applications two neighboring genes might have

βj's with opposite signs, it is more desirable to shrink (weighted) |βj|'s towards each other in

a network: we'd like to encourage  for j ∼ j′. For this purpose, an

adaptive version (aGrace) was proposed (Li and Li 2010):

where βj̃ is an initial estimate based on OLSE for p < n, or an elastic net (Enet) estimate

(Zou and Hastie 2005) for p ≥ n. The main idea is to use sign(β̃j) to estimate sign(βj), which

however may not work well for high-dimensional data: since we do not even know which
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βj's are 0 for variable selection, it is more difficult to estimate their signs. As an alternative,

Pan et al. (2010) proposed a direct approach with a class of penalties

with a γ > 1 to be specified. This class of penalties are essentially a weighted Lγ-norm with

some attractive properties: for j ∼ j′, in addition to the grouping effect of shrinking weighted

|βj| and |βj′| towards each other, it also realizes group variable selection that encourages both

βj and βj′ to be zero simultaneously (Yuan and Lin 2006, Zhao et al. 2009). Pan et al.

(2010) demonstrated better performance of the method for variable selection than Lasso,

Enet and Grace, though the parameter estimates may be severely biased. Luo et al. (2012)

proposed a 2-step procedure similar to that of Li and Li (2010) for bias reduction; with a

new convex programming method, they also showed that the penalty with γ = ∞ performed

better than that with smaller γ=2 or 8. The penalty with γ = ∞ is linear:

closely related to a penalty proposed by (Bondell et al. 2008), though a separate L1-penalty

is added in the latter for variable selection. Hence, in the following we consider only γ = ∞,

and simply denote the method with an L∞-norm penalty as L∞, while the two-step

procedure as aL∞. Finally we note that in the above methods, we can replace  with a

more general weight wj, which for example can be simply 1.

Although these methods appear to be useful, their assumption on the smoothness of

(weighted) βj's or |βj|'s over a network may be questionable in some applications. Therefore,

next we propose a new network-based penalty with a much less stringent assumption.

2.2 New methods

Our new methods are based on the below “ideal” penalty:

(3)

where the first penalty is the L0-loss for sparsest variable selection and unbiased parameter

estimation (Shen et al. 2012), while the second one encourages simultaneous selection (or

elimination) of two neighboring nodes in a network. Since the indicator function I() is not

continuous, it is not computationally tractable. As a computational surrogate of I(|z| ≠ 0),

Kim et al. Page 4

Biometrics. Author manuscript; available in PMC 2014 September 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Shen et al. (2012) proposed a truncated Lasso penalty (TLP), , which

tends to I(|z| ≠ 0) as τ → 0+; the tuning parameter τ determines the degree of

approximation. Thus, applying the TLP to (3) leads to a new penalty with a TLP for variable

selection and a TLP-based penalty for grouping of indicators, shortened as TTLPI:

(4)

where a common τ is used in both terms for variable selection and grouping. Note that,

although the weights wj can be omitted in (3), they may play an important role in (4) (and

other penalties shown earlier), as to be shown later.

For any given (λ1, λ2, τ), we present a difference convex (DC) programming algorithm to

minimize S(β) with the new penalty. First, we decompose the non-convex function Jτ(|z|) in

(4) into a difference of two convex functions: .

Additionally, to deal with the absolute value function in the second term of (4), we construct

another DC decomposition: |f1 − f2| = 2max(f1, f2) − (f1 + f2) for two convex functions f1 and

f2. After applying these two DC decompositions to (4), we have

where  and  are defined to

simplify notation. Then, (4) can be rewritten as a difference of two convex functions P1 and

P2,

Linearizing P2 at a current estimate β(̂m−1) and ignoring terms independent of β, we obtain a

convex approximation of S(β):
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which is minimized to obtain an updated estimate β(̂m). Since S(m)(β) is convex, we use

Matlab package CVX (Grant and Boyd 2011) to minimize it. The DC algorithm to compute

the final estimate β̂ is as follows.

[A1] Start with an initial estimate β(̂0) and m = 1.

[A2] At iteration m, compute β(̂m) that minimizes S(m)(β).

[A3] Stop if S(β(̂m−1))-S(β̂(m)) ≤ ε with a small tolerance ε (e.g. 10−4 used throughout);

otherwise, return to [A2].

We have the following convergence result with its proof given in Web Appendix B.

Theorem 1—The sequence S(β̂(m)) decreases strictly in m unless β̂(m) = β̂(m−1). In addition,

the DC algorithm terminates in finite steps; that is, there exists m* < ∞ such that β̂(m) =

β̂(m*−1) for all m ≥ m*. Finally, β̂(m*) is a local minimizer of (2) with penalty (4).

We used the Lasso estimate β̂lasso as the initial value β̂(0) in step [A1]. The three tuning

parameters (δ1, δ2, τ) with δ1 ≡ λ1/τ and δ2 ≡ λ2/τ were searched over a set of 4, 4 and 5

equally spaced grid points respectively within the following ranges: let t denote the

maximum absolute value of the components of the lasso estimate β̂lasso, and g denote the

total number of the edges in the network, we used intervals  for δ1, [t, tg] for δ2, and

 for τ.

The TLP has been shown to perform well for accurate variable selection and almost

unbiased parameter estimation for sparse models (Shen et al. 2012). An intuition behind the

TLP is that, if a parameter βj is large with βj > τ, then no penalty is imposed on βj, which is

in contrast to universal penalization of Lasso on all βj's that leads to Lasso's biased

parameter estimation and over selection of too large models. However, with a non-sparse

true model, universal penalization imposed by Lasso may be beneficial to parameter

estimation and outcome prediction due to its better bias-variance trade-off. In our current

context, since the true model may not be too sparse, it might be interesting to contrast the
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performance of the TLP and Lasso. Furthermore, to save computing time, we have used a

common τ for both variable selection and grouping in (4), which might not be optimal.

Thus, rather than using the TLP for variable selection in (4), we can simply use the Lasso,

leading to a modification with a Lasso penalty for variable selection and a TLP-based

penalty for grouping indicators, called LTLPI:

(5)

The computational algorithm and its convergence properties are similar to that for TTLPI. In

particular, the intermediate objective function S(m)(β) is the same as before except that its

second term  is replaced by .

The tuning parameters (λ1, λ2, τ) were tuned in the same way as in TTLPI, except that the

searching range of λ1 was set as interval [λ̂
lasso/1.5, 1.5λ̂

lasso], where λ̂
lasso was the chosen

tuning parameter for the Lasso.

3. Simulations

3.1 Simulation set-ups

Our simulation set-ups are similar to those in Li and Li (2008) and Pan et al. (2010). Briefly,

the responses Y were generated from linear model (1) with iid error . A

gene regulatory network consisted of 10 independent subnetworks, each including one

transcription factor (TF) and its 10 target genes (and thus p = 110); each TF was connected

to each of its 10 target genes while there was no edge between any other two genes. All

predictors were marginally distributed as N(0, 1); conditional on the TF's expression level

XTF, a target gene's expression level Xtg was distributed as N(0.5XTF, 0.75); any two Xtgs

were conditionally independent given XTF. The expression levels of any two genes from two

different subnetworks were independent. Two types of the true regression coefficient vector

β were considered in two sets of simulations respectively: in simulation I, the (weighted)

magnitudes of the non-zero βj's were close to each other, while in simulation II they were

completely random. Specifically, in set-up 1 of simulation I, we had

the first 11 were for the TF and its 10 targets in subnetwork 1, followed by subnetworks 2 to

10. Note that there were p1 = 22 informative predictors with βj ≠ 0, and there was a strong

relationship among βj's:  for any j ∼ j′. The set-up 2 was similar to setup

1 except that the signs of the first three target genes' βj's in the first two subnetworks were
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flipped; that is, for j ∼ j′,  might not hold, though

 always held. Similarly set-up 3 was another type of perturbation to

set-up 1: the first 5 genes' βj's were set to 0 in the first two subnetworks;

 held for only some, but not all, gene pairs j ∼ j′.

In the first set-up of simulation II, we had

where we randomly drew β2, …, β11 ∼ Unif(0, 3), and β13, …, β22 ∼ Unif(-3, 3); then we

flipped the signs of β7, …, β11. Specifically the generated regression coefficient vector β
was:

In set-up 2, we used a true β similar to that of set-up 1 except that five target genes in each

of the first two subnetworks were randomly selected to have their corresponding βj = 0,

mimicking a setting with I(βj ≠ 0) = I(βj′ ≠ 0) for some, but not all, gene pairs j ∼ j′. A

sparser true model was used in set-up 3, in which only the TF and its five randomly selected

genes in the first subnetwork had non-zero βj's while all others were zero.

We generated 100 replicates for each set-up, where each replicate consisted of a training set,

a tuning set, both of size n=50, and a test set of size m=200. The training set was used to fit

the model to obtain parameter estimates β̂ for any given tuning parameter values. The tuning

set was used to select the tuning parameters as the ones with the smallest predictive residual

sum of squares (PRSS) for the response on the tuning data. To evaluate the performance, the

model error (ME) and the prediction error (PE) were calculated: ME=(β − β̂)′E(X′X)(β − β̂)
with E(X′X) as the population covariance matrix of X (since E(X) = 0), and

 (based on the test data). We also calculated the mean and median

numbers of the true positives (TPs) and false positives (FPs) for variable selection, where |

βĵ| > 10−3 was considered as non-zero (or a positive). We considered two types of weights,

wj = 1 and .

We also note that, following Li and Li (2010), unlike in Li and Li (2008) and Pan et al.

(2010), we did not rescale the estimates of Grace and Enet; we found that the un-scaled

versions here performed either better than or almost the same as the rescaled ones.
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3.2 Main results

Simulation results for simulation I are summarized in Table 1. The weights wj = 1 were mis-

specified in the sense of having |βj|/wj ≠ |βj′|/wj′ for any two non-null neighboring genes j ∼

j′ with non-zero βj and βj, whereas the weights  were correctly specified in the

above sense for set-ups 1 and 2, but only partially correctly specified for set-up 3, for the

methods depending on the assumptions on the magnitudes of the regression coefficients, i.e.

Grace, aGrace, L∞ and aL∞. For set-up 1, in which the true regression coefficients of all the

directly connected genes in a network had the same signs, with wj=1, Grace yielded the

lowest mean ME and PE, followed closely by LTLPI and aL∞. All the network-based

methods except L∞ performed better than the generic Lasso and Enet for parameter

estimation and outcome prediction. For variable selection, however, Grace performed poorly

with a too large mean number of FPs; L∞, aL∞, TTLPI and LTLPI had a comparable large

number of TPs but a much smaller number of FPs. With weights  the aL∞ had the

smallest mean ME and PE, closely followed by Grace, then by LTLPI. For variable

selection, perhaps due to the group selection, L∞ and aL∞ gave the most sparse models with

the highest number of TPs, then followed by TLPII and LTLPI.

In set-up 2 some neighboring genes had true regression coefficients with opposite signs. As

expected, Grace was no longer the winner, and aGrace slightly improved over Grace with a

smaller mean ME and PE. With the mis-specified weights wj = 1, LTLPI gave the smallest

mean ME and PE, then followed by aGrace and aL∞. For variable selection, TTLPI was the

winner, giving a similarly large number of TPs but fewer FPs than LTLPI; other methods all

yielded much smaller numbers of TPs. On the other hand, with the correctly specified

weights , aL∞ was the winner with the smallest ME and PE, followed by LTLPI

and then aGrace. For variable selection, aL∞ and L∞ seemed to be the winners, though

TTLPI was also quite competitive; again LTLPI gave less sparse models than TTLPI, both

performing better than Grace and aGrace.

For set-up 3, with the mis-specified weights wj = 1, LTLPI performed best with the smallest

mean ME and PE, while all other network-based methods gave larger MEs than the generic

Lasso and Enet, though TTLPI and Grace gave smaller mean PEs than those of Lasso and

Enet. On the other hand, with the weights  Grace had the smallest ME, closely

followed by LTLPI and aL∞.

With random regression coefficients in simulation II (Table 2), our new methods showed

more substantial advantages over other methods, in terms of both parameter estimation (and

outcome prediction) and variable selection. With a sparse true model in set-up 3, the TTLPI

method performed best.

In summary, in cases that the regression coefficients of neighboring nodes had the same

signs, i.e. effect directions, with correctly specified weights Grace performed well in

parameter estimation and outcome prediction, otherwise it did not perform well; in both

cases, however, it gave too large models. Its modification aGrace could slightly improve
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over Grace in the case that neighboring nodes had different association directions with the

outcome. As expected, L∞ and aL∞ were not sensitive to different association directions of

neighboring nodes, but they did not perform well if the weights were mis-specified;

otherwise they performed best in variable selection, possibly due to their mechanisms of

group variable selection. As discussed by (Luo et al. 2012), due to the over-shrinkage and

thus large biases of its parameter estimates (Table 3), L∞ did not perform well in parameter

estimation and prediction. On the other hand, our proposed methods, especially LTLPI,

seemed to perform reasonable well across all the scenarios; TTLPI seemed to have some

edge over LTLPI with a comparable number of TPs but fewer FPs, though the former lost its

edge to the latter in parameter estimation and outcome prediction, perhaps due to the larger

variability of the former's parameter estimates in the not-so-sparse true models considered

here (Table 3); for more sparse true models, we did observe that TTLPI performed better

than LTLPI for both parameter estimation and variable selection, as shown in set-up 3 in

Table 2. Overall, our methods gave less biased estimates than other network-based methods

(Table 3). We conclude that our proposed new methods were more robust to mis-specified

weights or mis-specified relationships among the true regression coefficients than other

network-based methods.

3.3 Other results

As shown in Web Appendix B, the DC algorithm typically converged in about 3 iterations

for simulated data, in agreement with Theorem 1. Since our penalties are not convex, the

local minimum the DC algirthm converges to depends on the starting values. In general,

better starting values give better results. For example, for set-up 1 of Simulation I as shown

in Web Appendix B, since the Enet estimates performed only slightly better than the Lasso

estimates with smaller MEs, the TTLPI and LTLPI estimates with the Enet estimates as the

starting values gave also slightly smaller MEs than those with the Lasso estimates as the

starting values; with weight , since the L∞ method performed much better than the

Lasso method, the TTLPI and LTLPI estimates with the former as their starting values

yielded much smaller MEs than those with the latter. More studies are warranted on this

topic.

4. Example

We applied the methods to two breast cancer gene expression datasets, named the Wang

data (Wang et al. 2005) and van de Vijver data (van de Vijver et al. 2002) respectively. The

two datasets contained 286 and 295 patients respectively, out of which 106 and 78

developed metastasis within a 5-year follow-up after surgery. In the analysis, we considered

three tumor suppressor genes, BRCA1, BRCA2, TP53, and their direct neighbors in a

protein-protein interaction (PPI) network (Chuang et al. 2007), which formed our prior gene

network with 294 genes (nodes) and 326 edges. Among the 294 genes 18 were breast cancer

(BC) genes from the 60-gene list given in (Chuang et al. 2007). Since all the methods were

developed for linear regression, we fitted linear models to the binary metastasis status as the

response. Each full model included all the 294 genes as its candidate predictors.
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We standardized the data in the following way: across the samples, the outcomes were

centered to have mean 0, and each gene's expression levels were standardized to have mean

0 and standard deviation 1. We first assessed marginal association between the binary

metastasis status and each gene' expression level by fitting marginal linear regression

models. For TP53 with the van de Vijver data, its regression coefficient estimate was

−0.0189, while those for its neighbors ranged from −0.1123 to 0.1488 with the three

quartiles as −0.0177, 0.0079 and 0.0377 respectively; similar results were obtained for the

three tumor suppressor genes and their neighboring genes on each dataset as shown in Web

Appendix C. These results suggest that the association strength of a hub gene like TP53

could be quite different from its direct neighbors. In particular, as pointed out by (Chuang et

al. 2007), the expression changes of some cancer-causing genes like TP53 might be much

weaker than some downstream ones.

Since the sample size was relatively small, we ran each method 20 times on each dataset. In

each of 20 runs, each dataset was randomly split into the training, tuning, and test sets with

almost equal sample sizes (i.e., with 95, 95, 96 observations for the Wang data, and 95, 95,

105 for the van de Vijver data). We compared the methods' performance in PE, selection of

the breast cancer (BC) genes and model size, all averaged over 20 runs. For each method,

we used 5-fold cross-validation to select the tuning parameter values by minimizing the

PRSS and then used the selected tuning parameters to fit a final model to the whole dataset.

As before, we explored the use of two weights, wj = 1 and ; since for this dataset, it

is known that some important cancer hub genes, like TP53, had only moderate to small

effect sizes, and it is desirable to select those hub genes (Chuang et al. 2007), we present the

results only for using weight  that favored the selection of hub genes, though

similar conclusions were reached with the other weight.

For the Wang data, as shown in Table 4, averaged over the 20 runs, our proposed TTLPI

selected most BC genes at 2.90, followed by the LTLPI and aGrace at 1.35 and 1.30

respectively, all much higher than those from other methods, though our two methods

tended to select slightly larger models with slightly larger PEs than those of the other

methods. It is interesting to note that our two new methods and aGrace selected the three

hub genes, BRCA1, BRCA2 and TP53, most frequently over the 20 runs. Furthermore, our

two new methods were the only ones selecting all three hub genes (and another BC gene) in

their final models.

For the van de Vijver data (Table 5), compared to the Wang data, although all the methods

tended to select slightly smaller models, we reached the same conclusion. As before, our

proposed TTLPI selected most BC genes, including the three hub genes, both across the 20

runs and in the final model, though LTLPI and aGrace also performed well. In particular, in

agreement with the biological knowledge and with the results from the Wang data, again our

two methods TTLPI and LTLPI along with aGrace selected the three tumor suppressor genes

more often than any other method. Also note that the fitted final models from our two new

methods selected almost the same set of the genes with almost equal regression coefficient

estimates for each dataset. Figure 1 shows the selected genes in the final models for TTLPI.

Kim et al. Page 11

Biometrics. Author manuscript; available in PMC 2014 September 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Since the Wang data also contained the time to metastasis, possibly right censored, we fitted

penalized linear regression models to approximate penalized proportional hazards models.

As shown in Web Appendix C, we reached similar conclusions: our proposed methods were

more likely to select the three tumor hub genes and other BC genes. We also applied the

methods to an RNA-seq gene expression dataset for breast cancer tumor and normal samples

as shown in Web Appendix C.

5. Discussion

In this study, we have proposed a network-based penalized regression approach with a novel

penalty TTLPI containing two penalty terms for two different goals: the first uses a TLP for

variable selection while the second (TLPI) smooths approximate indicators of the nodes'

being selected over a network. We have also considered one of its modifications by

replacing the TLP by the Lasso for variable selection for not-too-sparse models. Our main

contribution is that, in contrast to previously developed network-based methods aiming to

smooth the (weighted) regression coefficients or their absolute values over a network (Li

and Li 2008, Li and Li 2010, Pan et al. 2010), we adopt a less stringent assumption to

smooth the indicators of the regression coefficients' being non-zero. Specifically, for any

two neighboring nodes j ∼ j′ in a network, rather than assuming and thus encouraging βj/wj

≈ βj′/wj′ or |βj|/wj ≈ |βj′|/wj′, our method assumes and aims to smooth I(|βj|/wj ≠ 0) ≈ I(|

βj′|/wj′ ≠ 0). As shown in our simulation studies, if the former assumption holds, then some

existing methods, such as Grace and aL∞, which fully incorporate this former assumption,

may be more efficient; however, even in this situation, our proposed methods seem to be

robust with good performance. More generally, if this assumption does not hold, or even if

this assumption holds but the weights wj are mis-specified, then our proposed methods

perform much better. In particular, in our real data application, we have demonstrated the

effectiveness of the proposed methods in selecting biologically important hub genes with

only small to moderate effect sizes. We also note that our proposed methods have broad

applications beyond microarray gene expression data: since no assumption is imposed on the

distribution of the predictors, we can equally apply our methods (as other penalized

regression methods) to risk prediction and phenotype modeling with RNA-seq, DNA

sequence and other high-throughput genomic data, for example. In summary, we regard our

proposed methods as a useful tool complementary to existing methods.

We note that, although our methods encourage simultaneous selection (or elimination) of

any two nodes connected in a network, it is related but significantly different from group

variable selection. A main difference is that group variable selection only encourages

indirectly, through shrinkage and soft-thresholding, simultaneous elimination, but not

necessarily simultaneous selection. Consider a simple case with two orthogonal covariates

and β = (β1, β2)′: with a group Lasso penalty (i.e. the L2-norm), as shown in (Yuan and Lin

2006), the penalized estimate is , where β̃ is the OLSE. While the

simultaneous elimination effect of the group Lasso is clear with the soft-thresholding, the

shrinkage effect is also persistent: we always have |βĵ| ≤ |β̃j| for any component j. Hence, if

β1̃ = 0 (or close to 0), no matter how large is β̃2 ≠ 0, we will never have β1̂ ≠ 0 (or larger

than β̃1); in contrast, with our proposed penalty, it is possible to have β̂1 ≠ 0 (or larger than
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β1̃), in which sense we say that our methods can perform simultaneous selection (while the

group Lasso cannot). Furthermore, existing penalties for group variable selection, e.g. the

Lγ-norm for γ > 1, have strong shrinkage effects on parameter estimation, often leading to

severely biased parameter estimation, as demonstrated by the L∞ method compared here. In

addition, although we focus on network-based regression, our proposed penalty can be also

applied to more general grouping problems (Pan 2009, Shen and Huang 2010); for example,

with no given network, we can construct a complete graph with an edge connecting each

pair of nodes, or we can form a linear chain graph as used in the fused Lasso (Tibshirani et

al. 2005), before applying our methods. More studies are needed.

Computationally, we have developed a DC method to relax a non-convex minimization

problem into iterative convex programs to be solved. Currently we use the existing Matlab

package CVX for convex programming; a more efficient implementation for high-

dimensional data is desired. In particular, to save computing time, we used a common tuning

parameter τ for both variable selection and network smoothing; using two different τ1 and

τ2 might perform better. In addition, due to the presence of multiple tuning parameters, we

only searched a limited number of grid points (4 to 5) for each tuning parameter, which

might not be optimal. Developing more efficient computational algorithms and further

investigating the properties of our proposed methods are worthwhile for future study.

Matlab code will be posted at http://www.biostat.umn.edu/∼weip/prog.html.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
The genes selected in the final models by TTLPI with the Wang data and the van de Vijver data in the used PPI subnetwork: the

5 genes (in hexagons) appearing in both models, 25 genes (in triangles) only in the model with the Wang data, and 7 genes (in

large circiles) only in the model with the van de Vijver data; the 5 BC genes are BRCA1, BRCA2, TP53, TK1 and CHEK2.
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