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Network biology discovers pathogen contact points
in host protein-protein interactomes
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In all organisms, major biological processes are controlled by complex protein–protein

interactions networks (interactomes), yet their structural complexity presents major analy-

tical challenges. Here, we integrate a compendium of over 4300 phenotypes with Arabi-

dopsis interactome (AI-1MAIN). We show that nodes with high connectivity and betweenness

are enriched and depleted in conditional and essential phenotypes, respectively. Such nodes

are located in the innermost layers of AI-1MAIN and are preferential targets of pathogen

effectors. We extend these network-centric analyses to Cell Surface Interactome (CSILRR)

and predict its 35 most influential nodes. To determine their biological relevance, we show

that these proteins physically interact with pathogen effectors and modulate plant immunity.

Overall, our findings contrast with centrality-lethality rule, discover fast information spreading

nodes, and highlight the structural properties of pathogen targets in two different inter-

actomes. Finally, this theoretical framework could possibly be applicable to other inter-

species interactomes to reveal pathogen contact points.
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N
etworks consist of systems’ components, referred to as
nodes and interactions between them, termed ‘edges’1,2.
Network representation of a typical biological system

constitutes the direct and indirect interactions among diverse
molecular components. These molecular players, proteins in
particular, participate in a wide range of biological processes,
cellular pathways, and signaling cascades1,3,4. To achieve these
cellular functions, proteins operate in conjunction with other
partners, typically through direct physical protein–protein inter-
actions (PPIs)3,5. The overall proteome-scale of these cellular
interactions constitutes an “interactome”. Thus, elucidating the
physical characteristics and functional interaction properties of
an interactome could potentially reveal novel relationships
between host proteins, new community structures as well as
unique nodes with signaling cascades6,7. Such structural and
functional topological features provide a range of information on
individual nodes and edges, distinct modules, and the entire
network as a whole5,8,9. Considering that diverse networks share
similar organizational landscapes10–12, and the rate of informa-
tion flowing through a network is dependent on the connectivity
of its components4, several parameters of centrality measure-
ments may act as indicators of important nodes in an inter-
actome. For instance, network architectural properties can
determine the connectivity and the critical distribution of a
particular node within a network. These include degree, the
number of connections of a node; betweenness, the fraction of the
shortest paths that pass through a node; and eigenvector, a
measure of the influence of a node in a network (Fig. 1a). Scale-
free topology of a network follows a power law degree (a heavy-
tailed) distribution exhibiting a few nodes with increased con-
nectivity1,4,8,13. Recently, k-shell decomposition was shown to
identify influential spreaders of information in social platforms
and scientific publishing society14. Thus, deciphering the network
architecture and understanding these topological properties could
lead to the discovery of novel components in a complex system,
which then provide biological insights as well as testable
hypotheses.

Several proteome-scale interactomes have been generated in both
prokaryotes and eukaryotes including human6,15, and the reference
plant Arabidopsis thaliana (hereafter Arabidopsis)7,16–18. These not
only mapped the network and module organization of protein
interactions onto the overall cellular organization and function but
also allowed understanding of genotype-to-phenotype relationships
as well as evolution of biological networks and ancestral gene
function19. As such, several studies in yeast interactomes suggest
that high degree (hubs) and high betweenness (bottlenecks) are
likely to be encoded by essential genes, a phenomenon termed as
centrality-lethality rule5,20–22. In addition, PPI networks can also be
exploited to decipher the complex interplay between hosts and their
pathogens during the process of infection3,4,23. Analyses of inter-
species interactomes demonstrated that proteins corresponding to
hubs and bottlenecks are targets of pathogen attack1,24,25. Thus, a
conceptual challenge posed by the centrality-lethality rule in ana-
lyzing inter-species interactome dataset stems from diverse lifestyles
of pathogens on their hosts. Of particular interests are the patho-
gens that must keep their hosts alive (e.g. obligate biotrophs)
throughout their life cycle. Therefore, association of hubs and/or
bottlenecks (potential pathogens’ targets) with essentiality/lethality
would principally undermine the pathogens’ infectious process.
Thus, the phenotypic characteristics of nodes defined as hubs and/
or other network centrality measures are a requisite layer of
information to biologically understand inter-species interactome
datasets.

Previously, we generated an Arabidopsis binary PPI map using
~8000 open reading frames representing ~30% of its protein-
coding genes. Known as Arabidopsis Interactome version 1 “main

screen” (AI-1MAIN), this network encompasses 5664 binary
interactions between 2661 proteins7. We showed that AI-1MAIN

displays properties of a scale-free network that exhibits only 15
nodes with more than 50 interactions, i.e., ≥50 edges. These high-
degree nodes are referred as hubs50. In addition, we also con-
structed two inter-species Plant–Pathogen Interaction Networks
(PPIN-1 and PPIN-2)26,27 by systematically interrogating inter-
actions between Arabidopsis proteins and pathogen proteins that
are translocated inside the plant cells during infection (also
termed pathogen effectors). Specifically, these effectors were
derived from three distantly related pathogens7,26,27. Unexpect-
edly, however, we determined that these independently evolved
effectors interact with a limited repertoire of 201 Arabidopsis
proteins (hereafter host or effector targets). Subsequently, we
demonstrated that these effectors can modulate host targets to
establish effector-triggered susceptibility (ETS)28–31. We also
showed that these targets participate in various layers of plant
immunity including microbial-associated molecular patterns
(MAMPs)- and Effector-Triggered Immunity (MTI and ETI,
respectively)32,33. While most nodes corresponding to effector
targets in AI-1MAIN are highly connected (average degree), less
than 6.5% of these nodes were defined experimentally as proteins
belonging to the hub50 class. Thus, the predictive power of
computational methods relying solely on centrality measures,
particularly hubs, to determine if a given node in an interactome
is more inclined to be targeted by pathogen effectors is limited25.

Here, we devise a method to predict effector targets in two
unrelated experimental interactomes. To fully understand the
functional interaction properties of the central nodes within a
network, we curate a comprehensive dataset of ~4350 unique
phenotypes in Arabidopsis. Unexpectedly, however, we demon-
strate that hubs and bottlenecks are enriched in conditional
phenotypes and depleted in essential phenotypes contrasting the
centrality-lethality rule. We also discover that the nodes located
in close proximity of the AI-1MAIN core are targeted by effectors.
We next apply this network topology framework to the extra-
cellular LRR-based Cell Surface Interactome (CSILRR), an unre-
lated experimental network that includes >500 interactions
between membrane-localized leucine-rich repeat receptor kinases
(LRR-RKs). Following centrality measure analyses, we predict a
set of 35 LRR-RKs that are located near the core of CSILRR as the
most influential nodes. Using two independent methods, we
demonstrate that a subset of these predicted LRR-RKs can phy-
sically interact with bacterial effectors. Finally, we provide genetic
evidence for the requirement of these newly discovered LRR-RKs
modulating in plant immune system activities.

Results
Phenotypic properties of Arabidopsis hubs and bottlenecks. To
examine the system-level relationship between genotype-to-
phenotype in AI-1MAIN, we curated a comprehensive dataset of
phenotypes corresponding to loss-of-function mutations in 4344
unique genes in Arabidopsis. We then categorized these genes
into five functional groups: essential (ESN), morphological
(MRP), cellular-biochemical (CLB), conditional (CND), and no
phenotypes (NPH) as described by Lloyd and Meinke34 (Fig. 1b
and Supplementary Data 1). Subsequently, we mapped these
phenotypic groups onto the nodes of AI-1MAIN and investigated
their distribution in the network using enrichment assays for
degree, betweenness, and eigenvector7,26 (Supplementary Fig. 1a,
b). The definition of a high degree node (hub) in an interactome
is arbitrary and perhaps depends upon the size and the density of
a given network. For instance, we defined hubs with a degree
greater than or equal to 50 (hub50) in the largest Arabidopsis
interactome AI-1MAIN as well as in PPIN-1 and PPIN-27,26,27.
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However, the second largest Arabidopsis interactome, MIND1
(Arabidopsis Membrane-linked Interactome), described hub
proteins with degree >7017. To demonstrate the robustness of our
analysis, we implemented a second cut-off value for nodes dis-
playing greater than or equal to 25 interactions (hub25). Given
that high betweenness (bottlenecks) and high eigenvector cut-off
values were not defined in either of the two largest Arabidopsis
interactomes, AI-1MAIN and MIND1, we also included two cut-off
values each for high betweenness (bottleneck0.025 or bottle-
neck0.01) and high eigenvector (0.1 or 0.01) (Supplementary
Data 2). Our analysis revealed that CND phenotypes are enriched
in hub50 and hub25 (hypergeometric P < 0.05, Fig. 1c and Sup-
plementary Data 2) as well as in bottleneck0.01 (hypergeometric P
< 0.05, Fig. 1d and Supplementary Data 2) and bottleneck0.025

(hypergeometric P= 0.055, Supplementary Data 2). We also
discovered that ESN phenotypes are enriched, although not sta-
tistically significant, in non-hubs (nodes with less than 25 edges)
in AI-1MAIN (hypergeometric P= 0.11, Supplementary Data 2).
Finally, we did not observe a significant association of high
eigenvector nodes in any of the above-mentioned phenotypes
(Supplementary Fig. 2 and Supplementary Data 2). To control
that the enrichment of CND phenotypes in hubs and bottlenecks
is specific, we generated two random networks (“degree-preser-
ving” and “non-degree-preserving”) encompassing nodes and
edges similar to AI-1MAIN. Both random networks did not exhibit
enrichment in any of the five phenotypes (Supplementary Fig. 3
and Supplementary Data 2). Thus, based on these analyses, we
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concluded that high degree (hubs) and high betweenness (bot-
tlenecks) are enriched in CND but not in ESN phenotypes.

Enrichment of CND phenotypes with both hubs and bottle-
necks prompted us to test whether high degree and high
betweenness share significant fraction of the nodes with each
other. Undoubtedly, we observed a strong positive correlation
between degree and betweenness (Fig. 1e; r2= 0.87). An analogous
observation has been reported for Compound-Potential Target
Network in cardiovascular disease35 (r2= 0.77). However, the
overlap of nodes corresponding to hubs or bottlenecks with high
eigenvector did not yield any significant positive correlation
(Supplementary Fig. 4; r2= 0.55). Taken together, we showed that
most central nodes in the network have a high degree and a high
betweenness, and that most information perhaps flows through
those important nodes. To analyze phenotypic groups’ enrich-
ment assay on nodes that exhibit both hub and bottleneck
properties, we categorized the nodes as high degree/high
betweenness (HDHB), high degree/low betweenness (HDLB),
low degree/high betweenness (LDHB), and low degree/low
betweenness (LDLB). While HDHB nodes at two cut-off values
were enriched in the CND phenotypic group (hypergeometric P
< 0.05, Fig. 1f and Supplementary Data 2), no significant
association of LDLB, HDLB, or LDHB nodes with any phenotypic
functional groups was found. Finally, we did not observe
enrichment of CND phenotypes with HDHB nodes in the two
random networks (Supplementary Data 2). Thus, hubs and

bottlenecks are enriched in CND phenotypes in AI-1MAIN,
thereby contrasting the centrality-lethality rule. We also propose
that Arabidopsis cells utilize hub and bottleneck proteins to
regulate the flow and spread of information to a large number of
proteins under diverse physiological conditions.

Predictability of effector targets in plant interactome. Previous
studies have shown that specialized pathogens have evolved
sophisticated mechanisms to manipulate the key components of
their hosts’ intracellular networks to their advantage4,29. Thus, we
hypothesized that pathogens use effectors to target the most
influential nodes in their host network. To test this concept, we
determined if nodes corresponding to hubs, bottlenecks or high
eigenvectors were more prone to be effector targets. Our results
showed that high degree and high betweenness proteins (HDHB)
are likely to be direct physical contact points of pathogen effec-
tors, yet they only account for a small fraction of the range of
effector targets determined experimentally in PPIN-1 and PPIN-2
(i.e. 6.45% and 18.71% for two cut-off values applied in our
analyses, respectively) (Supplementary Fig. 5a and Supplementary
Data 2). In addition, the target discovery rate of high eigenvector,
HDLB, and LDHB with two cut-off values is lower than that of
HDHB nodes (Supplementary Data 2). Given that PPIN-1 and
PPIN-2 utilized effectors from three different pathogens, we also
investigated whether a particular node targeted with more than
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one effector from the same pathogen or different pathogens could
be used as a predictive indicator. However, we did not observe
any correlation between the number of unique effectors inter-
acting with a particular node and its degree in AI-1MAIN (Sup-
plementary Fig. 5b). In fact, the hub with the highest number of
connections in AI-1MAIN is targeted by only a single effector.
Taken together, we concluded that centrality measures such as
degree, betweenness, and eigenvector are thus of limited use to
comprehensively analyze inter-species interactome datasets.

Structural features of nodes in Arabidopsis interactome.
Recently, k-shell decomposition analysis was shown to outper-
form other known centrality measures including degree,
betweenness, and PageRank in network-based analyses and for
the identification of the most influential proteins in the net-
work14. While the unweighted k-shell decomposition analysis
considers all edges equally36, we used a weighted k-shell
decomposition method to understand the topological properties

of AI-1MAIN
37 (Fig. 2a). We defined the internal and peripheral

layers (shells) for AI-1MAIN nodes that reside within the one-third
and two-third layers, respectively (Supplementary Data 3). We
observed a power-law correlation between the average degree and
shell depth (r2= 0.67 and Mann–Whitney-Wilcoxon Test P <
2.2 × 10−16) (Fig. 2b and Supplementary Fig. 6). We also
demonstrated that the nodes located in the vicinity of the network
core (internal layers AI-1MAIN nodes) possess significantly higher
average degree and betweenness in comparison to the nodes
distributing in the periphery of the network (Fig. 2c, d, P=
1.57 × 10−14 and P= 4.27 × 10−12, respectively). These data
indicate that the nodes residing within the internal layers are
possibly better information spreaders. To substantiate this, we
measured the information centrality (IC), an index that focuses
on how information might flow through many different paths13.
While we observed a strong power-law correlation between IC
and shell depth (r2= 0.82 and Mann–Whitney–Wilcoxon Test P
< 2.2 × 10−16), we also showed that the average IC of nodes
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present in the internal layers of AI-1MAIN is significantly higher
than that of proteins in the remaining network (Fig. 2e and
Supplementary Fig. 7, P < 2.2 × 10−16). These data indicate that
the proteins closer to the network core are poised to be the most
active spreaders of information.

Effector targets in AI-1MAIN by k-shell analysis targets. Since
the internal layers of AI-1MAIN are enriched with nodes

corresponding to influential spreaders of information, we thus
predicted that effectors preferentially target nodes distributing in
the vicinity of network core. Towards this, we demonstrated that
nodes present in the internal layers of AI-1MAIN are significantly
enriched with effector targets compared to those located in the
periphery of network (Fig. 3a, b, hypergeometric P= 2.61 × 10
−48) with 33% discovery rate of effector targets (Supplementary
Data 2, P= 3.01 × 10−50). No enrichment of effector targets was

Weighted k-shell decomposition of CSI
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observed in randomly generated networks (Fig. 3c, d and Sup-
plementary Data 2). In concordance with these results, we next
showed that nodes that reside in the internal layers of AI-1MAIN

are enriched in CND phenotypes, and depleted in ESN pheno-
types (hypergeometric P= 0.05, Fig. 3e and Supplementary
Data 2) compared to the proteins in the periphery of the network.
However, we did not observe any enrichment of these phenotypic
groups in the internal layers of two independent random net-
works (Supplementary Fig. 8a and b and Supplementary Data 2).
These results indicate that the weighted k-shell decomposition
analysis surpasses other centrality measures for effector target
discovery.

Previously, we performed a phenotypic mapping experiment of
124 Arabidopsis mutants corresponding to effector targets. In
that study, we showed that 63 effector targets display disease-
related phenotypes27, suggesting an almost equal chance (51%) to
obtain immune-related phenotype or no phenotype for a mutant
corresponding to an effector target. Remarkably, we demon-
strated that the nodes located in the internal layers of AI-1MAIN

are enriched and depleted in immune-related phenotypes and no
immune-related phenotypes, respectively (Fig. 3f and Supple-
mentary Data 2, hypergeometric P= 2.552 × 10−6). This enrich-
ment of immune-related phenotypes was absent in the internal
layers of both random networks (Supplementary Fig. 9c and d
and Supplementary Data 2). Intriguingly, we did not observe any
correlation between the average effector degree (interacting
degree of an effector to host proteins) and the proximity of the
network core (Supplementary Fig. 9). Collectively, our data
suggest that nodes located closer to the core of the network are
targeted by effectors. Moreover, these nodes are enriched with
CND and immune-related phenotypes.

Discovery of the most influential nodes in CSILRR. LRR-RKs
control plant growth and immunity by detecting and responding
to ‘self’ and ‘non-self’ signals in the extracellular space. These
surface localized receptors can act as pattern recognition recep-
tors by sensing MAMPs, thereby controlling MTI38–40. Since a
small subset of LRR-RKs have been shown to be targeted directly
by pathogen effectors, we extended our weighted k-shell
decomposition and functional analyses to identify both effector
targets as well as the most influential spreaders of information in
CSILRR. Using our approach, we assigned 35 LRR-RKs to the one-
third internal shells (or the internal layers) of CSILRR (Fig. 4a and
Supplementary Data 3), and we postulated that these receptors are
likely to be the most influential spreaders of information. Towards
this, we performed additional network-centric analyses. We
observed strong power-law correlations between the shell depth
and the average degree (r2= 0.9) or the average IC (r2= 0.93) in

CSILRR (Fig. 4b, c and Supplementary Fig. 10a, P= 2.43 × 10−15,
P < 2.2 × 10−16, respectively). As in AI-1MAIN, the average degree
value of the nodes located in the internal layers of CSILRR was
significantly higher than that of their peripheral counterparts
(Supplementary Fig. 10b, P < 0.001). Similar to AI-1MAIN

7 and
Compound-Potential Target Network in cardiovascular disease35,
we discovered a significant overlap of nodes between high degree
and high betweenness in CSILRR network (Supplementary
Fig. 10c, r2= 0.71). Thus, although generated by independent
methods, CSILRR and AI-1MAIN share an overall similar network
architecture based on centrality measures and weighted k-shell
decomposition analyses.

Based on the network topological similarity concept between
CSILRR and AI-1MAIN, we predicted that the nodes present in the
internal layers of CSILRR should be associated with CND and
immune-related phenotypes including MTI. Our analysis was
limited by the dearth of LRR-RKs for which a clearly defined
function has been assigned in the literature. However, we found
that BRI1-associated receptor kinase 1 (BAK1), the most
interconnected node in CSILRR 16, is located in the core of
CSILRR. BAK1 acts as a major coreceptor for a range of ligand
binding receptors that regulate MTI and plant development, and
is, therefore, also a functional hub38. It is worth noting that none
of these LRR-RKs have been previously associated with ESN
phenotypes, further suggesting the roles of this set of LRR-RKs in
stress responses.

In addition to the roles of BAK138, the functions of 22 other
LRR-RKs including somatic embryogenesis receptor kinases
(SERKs)38, BAK1-interacting LRR-RKs (BIRs)39, Brassinosteroid
insensitive 1 (BRI1)-LIKE (BRLs)41, ERECTA (ER)40, ER-like
(ERL1s)40, flg22-induced receptor-like kinase 1 (FRK1)29,42,
Impaired Oomycete Susceptibility 1 (IOS1)43, Receptor Protein
Kinase 1 (RPK1)44, Senescence-Associated Receptor-Like Kinase
(SARK)45, Articulation Point Executive (APEX)16, Flagellin
Sensitive 2 (FLS2)46, HAESA Like (HSL2)47, Strubbelig Receptor
Family 3 (SRF3)48, and PSY1-receptor (PSY1R)49 have been
previously proposed in MTI as well as other biotic and abiotic
stresses (CND phenotypes). To further substantiate the potential
functions of these 35 LRR-RKs in CND as well as immune-related
phenotypes, we compared them with an MTI subnetwork16. This
immune-related module was derived through a community
analysis in CSILRR. We found that LRR-RKs located in the
internal layers of CSILRR constitute 66% of the MTI subnetwork
(Fig. 4a).

Given the overwhelming enrichment of LRR-RKs correspond-
ing to CSILRR internal layers with CND and immune-related
phenotypes, we further hypothesized that these sets of LRR-RKs
are potential targets of pathogen effectors. To test this, we

Fig. 4 Experimental validation of the key proteins in CSILRR. a CSILRR network is organized using Edge-weighted spring embedded layout (left) and weighted

k-shell decomposition analysis (right). Internal layers of CSILRR proteins are annotated to the right (red). Venn diagram shows the overlap of 23 out of 35

nodes belonging to internal layers of CSILRR with MTI subnetwork. b, c Distribution of average degree (r2= 0.9, Mann–Whitney–Wilcoxon test P= 2.43 ×

10−15) (b) and average information centrality (IC; c) (r2= 0.93, Mann–Whitney–Wilcoxon test P < 2.2 × 10−16) for each shell laid out from the core to the

periphery of CSILRR network. d Pairwise yeast two-hybrid (Y2H) experiment between kinase domains of 20 LRR-RKs and 31 effectors from Pseudomonas

syringae pv. tomato DC3000. An equal amount of mated diploid yeast is spotted on minimum synthetic medium dropouts SD-LT (leucine and tryptophan),

SD-LTH (leucine, tryptophan, and histidine), and SD-LH (leucine and histidine+ cycloheximide). SD-LTH ansd SD-LH media were supplemented with 1

mM 3-Amino-1,2,4-Triazol (3AT). Positive and negative interactions are determined based on growth and no growth on SD-LTH and SD-LH media,

respectively. The identity of an LRR-RK and a particular effector for an interacting pair is revealed. e Phenotypic enrichment analyses among the nodes of

effector targets (red) and non-targets (blue) among LRR-RKs belong to internal and peripheral layers CSILRR proteins are shown (hypergeometric P < 0.05).

f Split-YFP interaction assay in protoplasts derived from wild-type leaves. The percentage of positive cells was calculated by dividing the number of

fluorescing cells by the total number of cells within an image (indicated values=mean ± S.E.M.; six biological replications). N designates the number of

cells evaluated. Representative photos of the positive interactions are shown. The CD3−1089::ADF4 (Arabidopsis Actin Depolymerizing Factor 4) and

CD3−1096::MBP (maltose binding protein of E. coli) interaction was used as a positive control. Empty CD3−1089 and CD3−1096 vectors were used as a

negative control in each independent transformation
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performed a pairwise Yeast two-hybrid (Y2H) experiment and
tested cytoplasmic domains of 20 LRR-RKs against 31 effectors
from Pseudomonas syringae pv. tomato DC3000 (Pto DC3000).
We recapitulated the interaction of BAK1 with HopAB2,
originally discovered in split-ubiquitin system46. Moreover, we
also found seven additional LRR-RKs interacting with nine
effectors (Fig. 4d, e; 40% effector discovery rate, P < 2.2 × 10−16).
In contrast, a parallel experiment involving LRR-RKs that
distribute in the peripheral layers of CSILRR showed no
significant enrichment of effector target discovery rate (6.25%;
Fig. 4e). We further validated these inter-species interactions by
employing split-YFP system in Arabidopsis cells, an indepen-
dent confirmatory method (Fig. 4f). Thus, we expected the
internal layers CSILRR LRR-RKs to be the converging points of

effectors from diverse pathogens. Indeed, FLS2 was previously
demonstrated to associate with a bacterial effector, AvrPto in a
co-immunoprecipitation assay50. Moreover, three NSP-
Interacting Kinases, NIK1, NIK2, and NIK3, were previously
shown as virulence targets of the geminivirus nuclear shuttle
protein (NSP)51, further substantiating the discovery rate of
effector targets located within the internal layers of CSILRR.

Immune-related functions of newly identified LRR-RKs. In
addition to the known CND and immune phenotypes for 22
LRR-RKs, we aimed to characterize the roles of seven additional
LRR-RKs in plant immunity (MTI and ETS). We obtained loss-
of-function mutants corresponding to NIK1, NIK2, NIK3, SRF6,
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Fig. 5 Immune-related functions of novel LRR-RKs in CSILRR. Bacterial growth of Pseudomonas syringae pv. tomato DC3000 (Pto DC3000, red bars) and

effectorless mutant strain Pto DC3000 hrcC− (green bars) were quantified 3 days after syringe inoculation (OD600nm= 0.0002) on srf9 (a), apex (b),

srf6-2 (c), rpk1 (d), nik3 (e), and nik1 as well as nik2 (f). Wild-type Col-0 plants were used as controls. Each dot in the box and whisker plot represents

individual data points. n shows the number of leaf samples, and each sample contains four biological independent leaf discs. One-way ANOVA was

performed to estimate statistical significance for bacteria growth. n.s. stands for not significant. *P < 0.05, **P < 0.01 and ***P < 0.001
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SRF9, RPK1, and APEX and demonstrated the lack of transcript
accumulation in these mutants16 (Supplementary Fig. 11). We
hypothesized that mutants corresponding to these seven LRR-
RKs would manifest CND and immune-related phenotypes. To
test this, we subjected the mutants corresponding to these seven
LRR-RKs to infection with either the fully virulent bacterial
pathogen Pto DC3000 or with Pto DC3000 hrcC−, a mutant
strain that lacks a functional type-III secretion system required
for effector protein delivery into host cells. While we reproducibly
observed a significant increase in the virulence of Pto DC3000 on
the srf9, apex, srf6-2, rpk1, and nik3 mutants compared with wild-
type Col-0 plants (Fig. 5), no significant difference in bacterial
growth was observed when plants were infected with Pto
DC3000 hrcC− except for nik3 (Fig. 5). These results indicate
that SRF9, APEX, SRF6, and RPK1 LRR-RK receptors have an
MTI-independent function and negatively regulate the virulence
activities of one or more effectors. In comparison to wild-type
plants, we observed a significant reduction of Pto DC3000 hrcC−
growth in the nik1 and nik2 mutants, whereas Pto DC3000
growth was unaffected (Fig. 5f). Thus, NIK1 and NIK2 negatively
regulate the induction of MTI. Overall, we demonstrated the
positive and negative contributions of these seven LRR-RKs in
MTI as well as ETS under diverse physiological conditions. While
the molecular mechanisms by which these newly identified LRR-
RKs contribute to plant defense are focal points of future
research, here we discovered novel players of plant immunity in
CSILRR using network biology-based approaches.

Discussion
In the last 15 years, interactome mapping in diverse organisms
led to the development of several premises in network biol-
ogy4,5,15,25. Scale-free network architecture, nodes’ connectivity,
and the centrality-lethality rule are applied to discover novel
components in diverse systems. In this study, we performed an
in-depth network analyses on two unrelated experimental inter-
actomes and revealed their topological features. We determined
that high degree and high betweenness nodes are enriched and
depleted in conditional and essential phenotypes, respectively.
Additional noteworthy findings concern another widely known
network model implying that highly connected and central nodes
are targets of diverse pathogens. Instead, we demonstrated that
nodes with increased connectivity that are located closer to the
network core are the preferred targets of pathogen attack com-
pared to the proteins that reside in the network periphery. Finally,
we identified previously known as well as novel LRR-RKs
involved in MTI and ETS.

We showed that both AI-1MAIN and CSILRR displayed prop-
erties of a scale-free network7 (Fig. 4 and Supplementary Fig. 1).
Since the birth of this theory, however, several seminal studies
have outlined sentinel importance10–12 or presented contradicting
views of the scale-free property52–55. An important question,
however, is whether the power law distribution of nodes is a
consequence of a specific technology bias, for example, yeast two-
hybrid (Y2H)56 vs. affinity purification with mass spectrometry
(AP-MS)57. Irrespective to the choice of research methods, doz-
ens of large-scale interactomes in both prokaryotes and eukar-
yotes have been reported to exhibit scale-free properties4,5,15,25.
In Arabidopsis, AI-1MAIN was generated using GAL4-based Y2H
method by employing over 8000 ORFs7. While a systems-level
approach was used, it is still arguable that cloning bias to the
short fragment ORFs and network incompleteness could have
contributed to scale-free network topology. It is worth noting,
however, that a family-wide collection of LRR-RKs clones was
used to generate CSILRR by applying a fundamentally different
proteome technology16. Similarly, the Arabidopsis Membrane-

linked Interactome (MIND1) was constructed by employing split-
ubiquitin system and a comprehensive list of over 3200 signaling
and membrane-bound proteins17. Both CSILRR (r2= 0.82) and
MIND117 display properties of scale-freeness with a similar
confidence value compared to AI-1MAIN (r2= 0.86). Thus,
methodological biases, if any, in these Arabidopsis interactomes
have no influence on the scale-free property of network
architecture.

Our findings unequivocally demonstrate that essential pheno-
types are depleted in nodes corresponding to hubs and bottle-
necks in contrast to the concept of the centrality-lethality rule
(Figs. 1, 4, 5). According to this important premise of network
property, disabling highly connected nodes or hubs may entirely
dismantle the network. Having provided for the initial discovery
of hubs as essential nodes in the yeast interactome, this network
principle was further expanded on bottlenecks as well as inter-
actomes in both prokaryotes and eukaryotes5,20–22. In addition,
essentiality was also investigated on the size of the complexes58 as
well as different kinds of hubs including party and date hubs or
single- and multi-interfaced hubs59. However, controversy sur-
rounded this topic as soon as additional proteome-scale inter-
actomes were generated in yeast, fly, worm and human24,59,60. In
these unrelated studies, network analyses did not show any
positive correlation between degree and essentiality. Our dis-
covery indicating depletion of an essential category of phenotypes
in hubs and bottlenecks agrees with another study performed in
yeast and worm pertinent to network connectivity and evolution.
Kafri et al. (2008)61 showed that hubs are more frequently
associated with functionally redundant gene duplicates. It was
also suggested that this functional redundancy perhaps buffers
against mutations, and thus minimizes the lethality impact of
these “so called” vulnerable nodes61. Regardless of these dis-
crepancies, hubs and bottlenecks remained important with
respect to inter-species interactions such as host-microbe inter-
actomes (discussed below). While previous network analyses were
performed to investigate a correlation between essentiality and
hubs as well as bottlenecks, a question that remains to be
addressed is in what types of phenotypes are these highly con-
nected and central nodes enriched? By utilizing a compendium of
over 4300 phenotypes (Fig. 1), we showed that hubs and bottle-
necks are enriched in conditional phenotypes. Thus, our data take
a step towards highlighting the importance of these highly con-
nected and central nodes. Moreover, this discovery will pave the
path for future studies in conjunction with biotic and abiotic
stresses in plants and other eukaryotes.

The next question we addressed in this study was whether
diverse centrality measures can be used as the predictors of
pathogen attack (Figs. 1 and 2). Previously, network topology
analyses revealed that nodes encoding hubs and bottlenecks are
targeted by pathogen virulence factors as well as associated with
oncogenesis and other human diseases3,6,25,62–66. Similar to these
findings, we previously demonstrated that almost all of the hub50

nodes in AI-1MAIN are targeted by effectors from diverse patho-
gens. While hubs and bottlenecks are remarkable predictors of
pathogen targets, they only make up for a small fraction of nodes
in a scale-free network, i.e., 6.5% in AI-1MAIN. These data indicate
that hubs and bottlenecks can predict pathogen effectors in
Arabidopsis with high significance as shown for human–viral or
human–bacterial interactomes24,25,64,67, but the predictive power
of these centrality measures is very low. Given that infectious
organisms require the hosts to remain viable for their growth and
reproduction, a very recent report suggests that interactome
connectivity directly relates to pathogen fitness during infec-
tion24. According to this tenant, pathogens rearrange host
interactomes instead of dismantling network integrity to alter
cellular physiology for their benefits24. Thus, we expected that
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pathogens rewire their host’s interactome by interfering with the
most influential nodes. In our study, therefore, we expanded our
network centrality measures analyses to weighted k-shell
decomposition and determined the best information spreaders in
AI-1MAIN and CSILRR (Figs. 2, 4). Indeed, it was previously shown
that k-shell outperforms widely used centrality measures in
diverse social networks. Likewise, our k-shell analysis discovered
the occurrence of 33% of effector targets compared to a small
fraction of hubs/bottlenecks in AI-1MAIN. We also showed that
majority of the effector targets are located near to the interactome
core rather than periphery of the network. These nodes in the
vicinity of core exhibit increased average degree, betweenness,
and IC as well as enriched in immune-related and conditional
phenotypes. Remarkably, a recent report demonstrated that the
best information spreaders are located in the k-cores of a wide
range of networks including Twitter, Facebook, LiveJournal, and
scientific publishing society14. These results from social networks
further validate our data in a biological interactome context.

Another novel discovery of our study is the experimental
validation of our predictions in an unrelated experimental net-
work, CSILRR (Fig. 5). LRR-RKs have been implicated in diverse
physiological programs including developmental processes and
plant immune systems, in particular MTI38–40. These cell surface
receptors bind with extracellular signaling molecules, transduce
the information through a downstream signaling cascade, and
activate a fine-tuned cellular response. Generally, this is accom-
plished by dynamic association and dissociation of
receptor–coreceptor complexes as well as integration of syner-
gistic and antagonistic signaling outputs triggered by diverse
LRR-RKs38–40. Among the 35 most influential nodes discovered
using this analytical framework, we found BAK1, a functional
hub of plant immunity and developmental processes, in the core
of CSILRR. In addition, none of these internal layer nodes
exhibited essential phenotypes but rather immune-related and

conditional phenotypes, further suggesting the specificity and
wider applications of our analysis. While our experimental
approach unveiled new players in MTI and ETS, there are several
open questions that may form the basis for future studies. For
instance, how these LRR-RKs exert synergistic and antagonistic
actions to transduce fine-tuned immune, growth and develop-
mental signals and how pathogen effectors mechanistically
interfere with this balanced defense responses? Another question
concerns the dynamicity of the complexes involving LRR-RKs
under diverse physiological conditions. Likewise, an area of
research that needs to be explored is whether and if so, how
pathogens’ apoplastic effectors and other molecules target extra-
cellular interface of these LRR-RKs. Finally, it remains to be
determined whether effectors from diverged pathogens also target
LRR-RKs from internal layers of CSILRR.

Taken together, we convincingly demonstrated that con-
nectivity itself, but not hubs and bottlenecks per se, are the
indicators of pathogen virulence targets. We also determined that
network decomposition analysis, in conjunction with con-
nectivity, would allow researchers to identify most influential and
vulnerable points in the network (Fig. 6). This work elucidates the
topological and functional properties of effector targets, while
successfully predicting the most influential spreaders of infor-
mation and experimentally determining nodes that are excep-
tionally vulnerable to pathogen attack. The detailed curation of
our Arabidopsis phenotypic dataset can be useful to the scientific
community for additional genome-to-phenome studies. Our
network-centric approach has exciting potential applicability on
diverse intra- and inter-species interactomes including human
PPI networks in efforts to unravel host–pathogen contact points,
while fostering the design of targeted therapeutic strategies.

Methods
Network analyses. The centrality measures in both Arabidopsis Interactome
version 1 “main screen” (AI-1MAIN) and Cell Surface Interactome (CSILRR) were
analyzed using Networkx package and Python 2.7.10. Briefly, we calculated degree,
the n number of edges of a particular node, and degree distribution of a network is
defined as nk/n. Betweenness, the number of shortest paths that pass through a
node (v), is analyzed as

g vð Þ ¼
X

s≠v≠t

σstðvÞ

σst

;

where σst is the sum of shortest paths from node “s” to node “t”; t and σst(v) is the
number of paths that pass through (v). Eigenvector, a measure of the influence of a
node in a network, xi of node i, is calculated as xi=1/λ∑kak,ixk. For each node we
computed its degree, betweenness, and eigenvector as described above. Hence, we
selected two cut-offs for each case.

Degree: 50 and 25
Betweenness: 0.025 and 0.01
Eigenvector: 0.1 and 0.01
IC calculates the flow of information between two nodes in a connected

network. IC was computed as described previously13. Briefly, IC (i) for node i in a
graph G is calculated as

IC ið Þ ¼
1

n

X

j

1

Iij

" #�1

:

Here, n is the total count of nodes and Iij=(rii+rjj−rij)−1, rij is a component of R
matrix. D is a weighted degree diagonal matrix for each node, and J is a matrix
consisting 1 for all elements. Therefore, R=(rij)=[D−A+J]−1. Mathematically, Iii
is well-defined as infinite. Hence, 1

Iij
¼ 0:

Weighted k-shell decomposition is performed as described in Fig. 2 and Wei
et al.37. Briefly, the generation of shells process is defined by the weight of both
degree of a node and its edges and calculated as kWi ¼ αki þ 1� αð Þ

P

j2Γi Wij ,
where Γi are a set of neighboring nodes of i. wij is the weighted of the edge that is
defined as wij= Ki+ Kj. The value of α can be set on a spectrum of 0 through 1
with 0 and 1 determining high edge or high degree favorability in k-shell
decomposition calculation, respectively. We performed k-shell decomposition
using a range of α cut-off values, i.e., 0, 0.5, and 1.0.

While this method has been previously described, the code for weighted k-shell
decomposition was not available. We implemented the weighted k-shell algorithm
in Java language and can be accessed at goo.gl/c5ISSe. Average degree was
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calculated by summing the degree of each node in the shell and dividing by the
number of nodes presented in the shell using the following formula
Shell_avgDegreei= Σj∈S kj/N. Where S is the set of nodes in the shelli and N is the
number of nodes in the shelli. Similarly, average betweenness and average IC for
each shell were analyzed. CSILRR network is visualized using Cytoscape 3.468.

Statistical analyses. We calculated hypergeometric test, linear regression (r2),
Mann–Whitney–Wilcoxon test, and Welch’s t-test using R version 3.3.1 as well as
online Stat Trek tool. Briefly, hypergeometric test was performed to determine the
enrichment of five phenotypic groups: (1) (essential (ESN), (2) morphological
(MRP), (3) cellular-biochemical (CLB), (4) conditional (CND), and (5) no phe-
notypes (NPH), two immune phenotype classes: (1) immune-related phenotypes
and (2) no immune-related phenotypes as well as frequency of targets among
nodes with diverse centrality measures. The following centrality measures were
utilized: degree, betweenness, eigenvector, high degree/high betweenness (HDHB),
high degree/low betweenness (HDLB), low degree/high betweenness (LDHB), and low
degree/low betweenness (LDLB) with two different cut-off values, internal and per-
ipheral layers AI-1MAIN proteins. Linear regression and Mann–Whitney–Wilcoxon test
were performed on average degree and distance from the core, average IC and
distance from the core for both AI-1MAIN and CSILRR. Welch’s t-test was per-
formed to compare the degree and betweenness of internal and peripheral layers
AI-1MAIN proteins in the network.

Arabidopsis loss-of-function phenotypes database. We generated a database of
4344 unique Arabidopsis genes with loss-of-function mutant phenotypes. Briefly,
we categorized genes in five prioritized phenotypic groups: essential (ESN), mor-
phological (MRP), cellular-biochemical (CLB), conditional (CND), and no phe-
notypes (NPH) as described by Lloyd and Meinke34. Two thousand four hundred
genes with loss-of-function mutant phenotypes were included from Lloyd and
Meinke34. In addition, we downloaded genome-wide phenotypes from TAIR1069

and curated additional 1944 phenotypes making a comprehensive database of 4344
Arabidopsis genes with mutant phenotypes.

Plant cultivation and mutants. The wild-type used in all experiments was Ara-
bidopsis accession Columbia (Col-0). The following mutant plant genotypes were
used in this work: nik1 (SALK_017538C), nik2 (SALK_044363C), nik3
(SALK_092902), srf6-1 (SALK_054337C), srf6-2 (SALK_077702), srf9
(SALK_011495C), rpk1(SALK_005054), apex (SALK055240), and efr fls243. The
insertion sites for the T-DNA lines were located in the open reading frames of the
genes and were genotyped by PCR prior to use.

Characterization of mutant lines. T-DNA lines were genotyped by PCR using
DNA extracted from leaf tissue of mutant lines with Col-0 used as a control.
Presence of a T-DNA insertion was confirmed with a primer combination of
LBb1.3 with an RP primer specific for each T-DNA insertion line. An intact WT
locus was tested with an LP and RP primer combination. Used primer sequences
shown in Table 1, LBb1.3 (5′-ATTTTGCCGATTTCGGAAC-3′) was used as left
border primer for T-DNA insertion for all genotypes.

Quantification of mRNA with qPCR. For transcript levels accumulations in the
mutants corresponding to LRR-RKs, RNA was extracted from leaf tissue using a
GeneMATRIX Universal RNA Purification Kit (EURX). cDNA was synthesized
using High Capacity cDNA Reverse Transcription Kit (Applied Biosystems). qPCR
assays were performed with FastStart Essential DNA Green Master (Roche) using

2.5 µl of diluted cDNA in 10 µl total reaction. Specific primers were used at a final
concentration of 1 µM with following sequences: Actin 2/8 Fw qPCR (5′-
TCTTGTTCCAGCCCTCGTTT-3′), Actin 2/8 Rv qPCR (5′-TCTCGTGGATTC-
CAGCAGCT-3′) for normalization of gene of interest.

Real-time qPCR was operated with a Roche LightCycler96 and data analyzed
using the accompanying LightCycler96 Version 1.1 software. Relative gene
expression levels were calculated using the 2−ΔΔCT method.

Pathogen assays and chemicals. Pathogen infection was performed as described
in13. Briefly, four-week-old plants were syringe-infiltrated with Pseudomonas syr-
ingae pv. tomato DC3000 (Pto DC3000) or an effectorless mutant strain, Pto
DC3000 hrcC− with bacterial solution OD600 nm= 0.0002 in 10 mMMgCl2. Four
leaves per plant and five/six plants per genotype were used for pathogen quanti-
fication through serial dilution. Four independent biology replicates were com-
bined for data analysis.

Yeast two hybrid. The yeast two-hybrid (Y2H) experiment was performed similar
to Mukhtar et al. with some adjustments7,26,56. We used 20 of the 35 leucine-rich
repeat receptor protein kinases (LRR-RKs) that we predicted by our network
analysis to be effector targets and 31 effectors from Pseudomonas syringae pv.
tomato DC3000 in both bait and prey plasmids. The bait proteins were fused to the
DNA binding domain of GAL4 using a pDEST-DB vector with a leucine selection
marker, while the prey proteins were fused with the GAL4 activation domain in a
pDEST-AD-CYH vector with a tryptophan selection marker. Each interaction was
tested in both directions. Prey and bait plasmids were transformed into haploid
Saccharomyces cerevisiae strains Y8800 (MATa) and Y8930 (MATα), respectively,
and confirmed by selecting on their corresponding selective media.

Haploid bait and prey strains were mated in liquid YEPD (yeast extract 10 g/L,
peptone 20 g/L, dextrose 20 g/L, adenine 100 mg/L) media overnight at 30 °C. The
resulting cultures were transferred to SD-LT media for 48 h in order to select for
diploid yeast. The reconstitution of GAL4 transcription factor through the
interaction of the bait and prey leads to the initiation of a HIS3 reporter gene and
consequently biosynthesis of histidine. Since the pDEST-AD vector contains the
CYH2 (a cycloheximide sensitive gene), any growth on the yeast media containing
cycloheximide constitutes a false-positive interaction. Equal amounts of diploid
yeasts were transferred to solid SD-LTH (positive selection plates) and SD-LH+
cycloheximide (20 mg/L) media (de novo autoactivation plates). Additionally, the
histidine biosynthesis inhibitor, 3-amino-1,2,4-triazole (3-AT), was added to solid
media to increase the stringency of the experiment and reduce any
background7,26,56. Positive interactions were scored owing to yeast growth on
positive selection plates but no growth on de novo autoactivation plates.

Split-YFP assay. Protoplasts were isolated from four-week old Col-0 plants
according to Yoo et al.70. Briefly, leaves were cut into 1 mm wide strips and
incubated in an enzyme solution mix [10 mM MES (pH 5.7), 0.4 M Mannitol, 20
mM KCl, 10 mM CaCl2, 0.3 g Cellulase R-10 (GoldBio; C8001.0001), 0.1 g
Macerozyme R-10 (GoldBio; M8002.0001)] for 4 h at 25 °C. The resulting mixture
was filtered and washed in W5 solution. Finally, the protoplasts were suspended in
MMG solution [0.4 M Mannitol, 15 mM MgCl2, 4 mM MES (pH 5.7) at a final
concentration of 3.0 × 105 protoplasts per milliliter.

A split-YFP assay was used to determine PPIs by transforming 1 µg of
respective LRR-RK containing plasmid DNA(CD3-1089) and 1 µg of candidate
effector containing plasmid DNA (CD3-1096) into freshly isolated protoplast.
Transformed protoplasts were incubated at 22 °C for 16 h. The transformed
protoplasts were visualized using a Nikon Eclipse 80i microscope.

Data availability. All supporting data from this study are available from the article
and Supplementary Information files, or from the corresponding author upon
reasonable request. Moreover, the weighted k-shell algorithm implemented in Java
language and can be accessed at http://goo.gl/c5ISSe.
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