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Abstract

The problem of designing near optimal strategies for multiple unicast traffic in wireline networks is wide-open; however,
channel symmetry or traffic symmetry can be leveraged to show that routing can achieve with a poly-logarithmic approximation
factor of the edge-cut bound. For the same problem, the edge-cut bound is known to only upper bound rates of routing flows
and unlike the information theoretic cut-set bound, it does not upper bound (capacity-achieving) information rates with general
strategies. In this paper, we demonstrate that under channel or traffic symmetry, the edge-cut bound upper-bounds general
information rates, thus providing a capacity approximation result. The key technique is a combinatorial result relating edge-
cut bounds to generalized network sharing bounds.

Finally, we generalize the results to wireless networks via an intermediary class of combinatorial graphs known as polymatroidal
networks – our main result is that a natural architecture separating the physical and networking layers is near optimal when the
traffic is symmetric among source-destination pairs, even when the channel is asymmetric (due to asymmetric power constraints,
or prior frequency allocation like frequency division duplexing). This result is complementary to our earlier work proving a similar
result under channel symmetry [1].

I. INTRODUCTION

The central problem of network information theory is to characterize the capacity region of a general network. Wireline

networks are a special class of such networks where the edges between vertices are unidirectional, orthogonal and noise-free.

In this class of networks, network coding has the potential to provide significant advantages in comparison to flow (i.e. routing

strategies) for multicast problems [2] as well as for multiple unicast problems [3]. Recent results due to Dougherty, Freiling,

Zeger and Chan, Grant suggest that characterizing the capacity region of a multiple unicast network is a hard problem [4], [5],

[6]. In particular, even coding strategies such as linear codes do not achieve capacity in general [5].

On the other hand, the literature on hardness of cut problems typically deal with edge-cut bounds which are conventional

outer bounds on flow. But these bounds are not fundamental bounds on the capacity region [7], i.e. they can often be beaten

if network coding is allowed. Although edge-cut bounds in directed networks are not fundamental, they are combinatorially

well-represented. They are however, hard to approximate in general [8], [9].

One class of networks for which edge-cut bounds can be approximated well are undirected networks. Leighton and Rao show

that for the problem of k-unicast in undirected networks, flow solutions approach the edge-cut bounds up to a factor of Θ(log k)
[10], [11]. There has also been discovered a semi-definite programming relaxation approach that allows an approximation of

edge-cut bounds up to a factor of Θ(
√
log k) [12]. Interestingly, for undirected networks, edge-cut bounds can be derived

from the vertex bipartition cutset bound and are hence, fundamental outer bounds on the capacity region. Thus, [10], [11] also

characterize up to a factor of Θ(log k) the capacity region of k-unicast in undirected networks. It has been conjectured that

flow solutions in fact, achieve capacity [13], [14].

Another setting in which edge-cut bounds can be approximated well is the problem of multiple unicast in directed wireline

networks with symmetric demands, i.e. for each source communicating to its destination at a certain rate, there is an independent

message to be communicated from the destination back to the source at the same rate. Klein, Plotkin, Rao, Tardos [15] show

under this model that flow solutions achieve within κ log3(k + 1) of the edge-cut bounds. We ask the question: “Are these

edge-cut bounds fundamental outer bounds on the capacity region?” Surprisingly, the answer turns out to be yes and the proof

of this result is one of the main contributions of this paper. The key tool we use in the proof is the Generalized Network

Sharing (GNS) bound that was first developed in [16] for directed wireline networks and was used subsequently also for

two-unicast linear deterministic networks [17]. This completes an approximate characterization of the capacity region for this

class of problems.

Additionally, consider the groupcast problem in directed wireline networks. There is a group of nodes and each node in

the group has an independent message to be relayed to every other node in the group. [18] shows that the maximum sum-

rate achievable by routing flow for groupcast is at least half the multicut, a simple edge-cut based outer bound. We ask the

question: “Is the multicut a fundamental outer bound on the sum-rate?”. We show that the answer is no but that twice the
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multicut is indeed a fundamental outer bound. This shows that routing flow is approximately optimal for maximizing sum-rate

in groupcast.

When there is some kind of symmetry in the network, either in the underlying graph (undirected or bidirected networks) or

in the traffic (directed network with symmetric demands, sum-rate in groupcast), the following picture seems to emerge.

• (Achievability) Algorithmic Meta-Theorem: Edge-cut bounds can be well-approximated either by flows [10], [11], [15],

[19], [18] or by other means [12].

• (Converse) Information-Theoretic Meta-Theorem: Edge-cut bounds are fundamental or close to fundamental outer bounds

on the capacity region.

• Combined Meta-Theorem: Flows approximately achieve capacity.

In the second half of this paper, we extend these results to the wireless setting. The capacity region of multiple unicast in

general wireless networks is an open problem in the general case. Recent work [20] [21] [1] has made progress in this direction

by giving an approximate characterization of this capacity region by using the reciprocity in wireless channels, building on

flow-cut gaps in undirected wireline networks. It has been shown that simple layered architectures involving local physical-layer

schemes combined with global routing can achieve approximately optimal performance in wireless networks.

In many practical scenarios, the channel reciprocity may not hold due to asymmetric power constraints, directional antennas

or frequency-duplexing. The question we address in this paper is: “do layered architectures continue to be near-optimal even

in this case?” We answer this question in the affirmative under the symmetric demands model: there are k specially-marked

source-sink pairs of nodes (si, ti), i = 1, 2, ..., k with si wanting to communicate an independent message to ti at rate Ri and

ti wanting to communicate an independent message to si at rate Ri. This traffic model is relevant in several practical scenarios

including voice calls, video calls, and interactive gaming.

Building on our results from wireline networks with symmetric demands, we show an analogous result for wireless networks

with symmetric demands if it composed of channels, for which good schemes are known at a local physical layer level. Our

results for wireless networks with symmetric demands include

1) Capacity approximations for networks comprised of Gaussian MAC and broadcast channels,

2) Degrees-of-freedom approximation for fixed Gaussian networks, and

3) Capacity approximations for fading Gaussian networks.

4) Capacity approximations for broadcast erasure networks with feedback.

At the heart of our achievable scheme is a connection to “polymatroidal networks” for which the symmetric demands

problem was recently addressed, and it was shown that flow is within an inverse poly-logarithmic factor of the cut-set bound

in [19]. The techniques for proving our achievable scheme closely mirror [1]. We need to derive our outer bound carefully; it

is derived based on a suitable extension of the generalized network sharing bound [16] for wireless networks having a certain

form. These results demonstrate the power of having the symmetry assumption in solving network capacity problems, which

has been hitherto unexplored to the knowledge of the authors.

The rest of this paper is organized as follows. We set up notation and preliminaries in Section II. We then discuss

• k-unicast undirected networks in Section III,

• k-unicast directed symmetric-demand networks in Section IV,

• k-groupcast directed networks in Section V.

We then study a special class of Gaussian networks that we call MAC+BC networks in Section VI. We consider results for

general Gaussian networks in Section VII. We study broadcast erasure networks with feedback in Section VIII. Finally, we

conclude in Section IX.

II. PRELIMINARIES

In this section, we will setup the wireline multiple-unicast problem with symmetric demands, along with the necessary

notation.

Definition. A k-unicast wireline network N for source-destination pairs {(si; di)}i∈I with |I| = k (for instance, I :=
{1, 2, . . . , k}) is a tuple (G,C) where

• G = (V, E) is the underlying directed or undirected graph with vertex set V and edge set E , with si, di ∈ V(G) for i ∈ I,
• C = (Ce : e ∈ E(G)) is the edge-capacity vector, with Ce ∈ R≥0 ∪ {∞} ∀e ∈ E(G).

For each i ∈ I, si has independent information to be communicated to di at rate Ri.

Notation. For directed graphs with v ∈ V(G), let In(v) and Out(v) denote the edges entering into and leaving v respectively.

For undirected graphs with v ∈ V(G), we denote the set of edges incident on to v as Inc(v).

Definition. Given a k-unicast network N = (G,C) for source-destination pairs {(si; di)}i∈I , we say that the non-negative

rate tuple (Ri : i ∈ I) is achievable if for any ǫ > 0, there exist positive integers N and T (called block length and number of

epochs respectively), a finite alphabet A with |A| ≥ 2 and using notation Hv := Πi∈I:v=siA⌈NTRi⌉ (with an empty product

being the singleton set),
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• for the case of directed graphs,

– encoding functions for 1 ≤ t ≤ T, e = (u, v) ∈ E ,
fe,t : Hu ×Πe′∈In(u)

(

A⌊NCe′⌋
)(t−1) 	→ A⌊NCe⌋,

– decoding functions at destinations di for i ∈ I,
fdi

: Hdi
×Πe′∈In(di)

(

A⌊NCe′⌋
)T 	→ A⌈NTRi⌉

• and for the case of undirected graphs,

– a subdivision of capacity for each edge e = (u, v) ∈ E and each epoch t, 1 ≤ t ≤ T, Cu
e,t, C

v
e,t ≥ 0 such that

Cu
e,t + Cv

e,t ≤ Ce, where Cu
e,t is the capacity for outgoing data from u on edge e,

– for 1 ≤ t ≤ T, e = (u, v) ∈ E , two encoding functions fu
e,t, f

v
e,t as

fu
e,t : Hu ×Πe′=(u,w)∈Inc(u)Π

t−1
l=1A⌊NCw

e′,l
⌋ 	→ A⌊NCu

e,t⌋,

fv
e,t : Hv ×Πe′=(v,w)∈Inc(v)Π

t−1
l=1A⌊NCw

e′,l
⌋ 	→ A⌊NCv

e,t⌋,

– decoding functions at destinations di for i ∈ I,
fdi

: Hdi
×Πe′=(di,w)∈Inc(di)Π

T
l=1A⌊NCw

e′,l
⌋ 	→ A⌈NTRi⌉

with the property that under the uniform probability distribution on Πi∈IA⌈NTRi⌉,

Pr (g(m1,m2, . . . ,mk) �= (m1,m2, . . . ,mk)) ≤ ǫ,

where g : Πi∈IA⌈NTRi⌉ 	→ Πi∈IA⌈NTRi⌉ is the global decoding function induced inductively by

• {fe,t : e ∈ E(G), 1 ≤ t ≤ T} and {fdi
: i ∈ I} in the directed graph case and

• {fu
e,t, f

v
e,t : e = (u, v) ∈ E(G), 1 ≤ t ≤ T} and {fdi

: i ∈ I} in the undirected graph case.

The closure of the set of achievable rate tuples is called the capacity region and is denoted by C. Define the sum-rate-capacity

by Csum−rate := sup(Ri:i∈I)∈C

∑

i∈I Ri.

Definition. Given a k-unicast network N = (G,C) for source-destination pairs {(si; di)}i∈I , we say that the non-negative

rate tuple (Ri : i ∈ I) is achievable by routing flow if there exist for each i ∈ I and each e = (u, v) ∈ E(G), real numbers

fi,e ≥ 0 in the directed graph case and fu
i,e, f

v
i,e ≥ 0 in the undirected graph case such that

•
∑

i∈I fi,e ≤ Ce ∀ e ∈ E(G), and for each i ∈ I and each v ∈ V(G),

∑

e∈Out(v)

fi,e −
∑

e∈In(v)

fi,e =

⎧

⎪

⎨

⎪

⎩

0 if v �= si, di,

Ri if v = si,

−Ri if v = di.

in the directed graph case and

•
∑

i∈I fu
i,e + fv

i,e ≤ Ce ∀ e = (u, v) ∈ E(G), and for each i ∈ I and each v ∈ V(G),

∑

e=(v,w)∈Inc(v)

fv
i,e − fw

i,e =

⎧

⎪

⎨

⎪

⎩

0 if v �= si, di,

Ri if v = si,

−Ri if v = di.

in the undirected graph case.

The closure of the set of rate tuples achievable by routing flow is called the flow region and is denoted by F . Define the

sum-rate-max-flow by Fsum−rate := sup(Ri:i∈I)∈F

∑

i∈I Ri.

Definition. Given a k unicast network N = (G,C) for source-destination pairs {(si; di)}i∈I , we define the edge-cut outer

bound denoted by Redge−cut, to be the set of all non-negative tuples (Ri : i ∈ I) that satisfy for every E ⊆ E(G), the

inequality
∑

i∈J Ri ≤ ∑

e∈E Ce where index i ∈ J ⊆ I if and only if G \ E has no paths from si to di. (The paths are

directed paths in the directed graph case and undirected paths in the undirected graph case.) We define the multicut denoted

by Rmulticut, to be the minimum value of
∑

e∈E Ce over all E ⊆ E(G) with the property that G \E has no paths from si to

di for each i ∈ I.
While it is clear that F ⊆ Redge−cut and F ⊆ C, the connection between C and Redge−cut is unclear. It is easy to show

examples where C �⊆ Redge−cut. Thus, simple edge-cut based outer bounds are not in general, fundamental, i.e. they are not

outer bounds on the capacity region. Likewise it is clear that Fsum−rate ≤ Rmulticut and Fsum−rate ≤ Csum−rate but Csum−rate

and Rmulticut have no apparent connection. Indeed, [3] provides a series of k-unicast networks, one for each k with k = 2n

with Fsum−rate = Rmulticut =
1
k
Csum−rate and C �⊆ (k − ǫ)Redge−cut for any ǫ > 0.

Remark 1. Note that Rmulticut may in general be strictly larger than the tighter bound on Fsum−rate given by sup(Ri:i∈I)∈Redge−cut

∑

i∈I Ri
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III. k-UNICAST UNDIRECTED NETWORKS

Theorems 1, 2 and Corollary 3 will refer to k-unicast undirected networks.

Theorem 1. (Leighton-Rao [10], Linial-London-Rabinovich [11])

Redge−cut

Θ(log k)
⊆ F ⊆ Redge−cut (1)

Theorem 2.

C ⊆ Redge−cut (2)

Theorems 1 and 2 together imply that routing flow is approximately capacity-achieving:

Corollary 3.
Redge−cut

Θ(log k)
⊆ F ⊆ C ⊆ Redge−cut (3)

Although Theorem 2 is easy to show, it is not very well-known. So, we provide a proof here:

Proof: Consider a k-unicast undirected network N for source-destination pairs {(si; di)}i∈I . Consider a coding scheme

that achieves rates (Ri : i ∈ I) in T epochs of block length N with overall error probability at most ǫ. Let E ⊆ E(G) be any

subset of edges and let J ⊆ I denote the set of all indices i ∈ I which have si, di disconnected from each other in G \ E.

Let (V1,V2, . . . ,Vr) denote the partition of V obtained as the connected components of G \E and let E′ ⊆ E denote the set

of edges that connect a vertex in Vs to a vertex in Vs′ , for 1 ≤ s, s′ ≤ r, s �= s′.

For 1 ≤ q ≤ r, let Jq denote the set of all indices i ∈ I which have si ∈ Vq and di �∈ Vq. (J1, J2, . . . , Jr) is a partition of

J. For 1 ≤ q ≤ r, let Xq denote the vector of all symbols transmitted on edges going out of Vq and in to Vs for some s �= q.

For i ∈ I, let Wi be the source message at si that is required to be decoded at di. By the cutset bound written for vertex

bipartition (Vq,V \ Vq), we have
∑

i∈Jq

H(Wi) ≤ H(Xq) (4)

Adding up these inequalities over 1 ≤ q ≤ r, we get
∑

i∈J H(Wi) ≤
∑r

q=1 H(Xq) which yields
∑

i∈J Ri ≤
∑

e∈E′ Ce ≤
∑

e∈E Ce. This establishes C ⊆ Redge−cut.

Remark 2. Theorems analogous to 1 and 2 can be similarly proved for k-unicast in bidirected networks, i.e. directed networks

in which for every edge from node u to node v, there is another edge from node v to node u with the same capacity.

IV. k-PAIR UNICAST DIRECTED SYMMETRIC-DEMAND NETWORKS

Definition. A k-pair unicast directed symmetric-demand network is a 2k-unicast directed network N with 2k distinct dis-

tinguished nodes (source-destination nodes) u1, u2, . . . , uk, v1, v2, . . . , vk with source-destination pairs {si; di}i∈I where I =
{1, 2, . . . , k} ∪ {−1,−2, . . . ,−k} and for i > 0, si = ui, di = vi, while for i < 0, si = v−i, di = u−i. The rate tuple

(Ri : 1 ≤ i ≤ k) is defined to be in the capacity region C, flow region F , edge-cut outer bound Redge−cut for the k-pair

unicast directed symmetric-demand network if the rate tuple (R′
i : i ∈ I), given by R′

i = R|i| for i ∈ I, lies in the capacity

region, flow region, edge-cut outer bound respectively of the 2k-unicast directed network.

Remark 3. There is no loss of generality in assuming u1, u2, . . . , uk, v1, v2, . . . , vk distinct since if they aren’t, we can add

more nodes and infinite capacity edges to make them distinct while obtaining a network with identical capacity region.

Definition. Given a directed network N = (G,C) with a set of 2r distinct distinguished vertices w1, w2, . . . , wr, w
′
1, w

′
2, . . . , w

′
r,

with wi communicating to w′
i at rate Ri, and possibly other sources and destinations with their independent messages. If a set

of edges E ⊆ E(G) has the property that G \ E has no directed paths from wi to w′
j whenever π(i) ≥ π(j), 1 ≤ i, j ≤ r, for

some permutation π : {1, 2, . . . , r} 	→ {1, 2, . . . , r}, then we say that E is a GNS-cut for {w1, w2, . . . , wr;w
′
1, w

′
2, . . . , w

′
r}

with permutation π.

Definition. Given a k-pair unicast directed symmetric-demand network N = (G,C) with source-destination nodes u1, u2, . . . , uk, v1, v2, . . . ,

we define the GNS-cut outer bound denoted by RGNS−cut, to be the set of all non-negative tuples (Ri : 1 ≤ i ≤ k) that satisfy

for every E ⊆ E(G), the inequality
∑

i∈J Ri ≤ ∑

e∈E Ce whenever E is a GNS-cut for {w1, w2, . . . , wr;w
′
1, w

′
2, . . . , w

′
r}

with some permutation π where

• J ⊆ {1, 2, . . . , k}, |J | = r,

• w1, w2, . . . , wr, w
′
1, w

′
2, . . . , w

′
r are distinct,

• for 1 ≤ j ≤ r, (wj , w
′
j) = (ui, vi) or (vi, ui) for some i ∈ J.

We define a weak edge-cut outer bound for this class of networks.
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Definition. Given a k-pair unicast directed symmetric-demand network N = (G,C) with source-destination nodes u1, u2, . . . , uk, v1, v2, . . . ,

we define the weak edge-cut outer bound denoted by Rw.e.c., to be the set of all non-negative tuples (Ri : 1 ≤ i ≤ k) that

satisfy for every E ⊆ E(G), the inequality
∑

i∈J Ri ≤
∑

e∈E Ce where index i ∈ J ⊆ {1, 2, . . . , k} if and only if G \ E has

no directed paths from either ui to vi or vi to ui or both.

Remark 4. For E ⊆ E(G), if J1 is the set of indices i, 1 ≤ i ≤ k for which G \ E has no directed paths from either ui to

vi or from vi to ui but not both and J2 is the set of indices i, 1 ≤ i ≤ k for which G \ E has no directed paths from ui to

vi and from vi to ui, then the edge-cut outer bound has the inequality
∑

i∈J1
Ri + 2

∑

j∈J2
Rj ≤ ∑

e∈E Ce while the weak

edge-cut outer bound has the inequality
∑

i∈J1
Ri +

∑

j∈J2
Rj ≤

∑

e∈E Ce. It is therefore, clear that

Redge−cut ⊆ Rw.e.c. ⊆ 2Redge−cut.

Theorems 4, 5 and 6 and Corollary 7 will refer to k-pair unicast directed symmetric-demand networks.

Theorem 4. (Klein-Plotkin-Rao-Tardos [15])

Rw.e.c.

κ(log3(k + 1))
⊆ F ⊆ Rw.e.c., (5)

for a universal constant κ.

Theorem 5.

C ⊆ RGNS−cut (6)

Theorem 6.

Rw.e.c. = RGNS−cut (7)

Theorems 4, 5 and 6 together imply that routing flow is approximately capacity-achieving:

Corollary 7.
Rw.e.c.

κ(log3(k + 1))
⊆ F ⊆ C ⊆ Rw.e.c. = RGNS−cut, (8)

for a universal constant κ.

Remark 5. The GNS bound is to the capacity region what the edge-cut bound is to the flow region, namely an intuitive

outer bound that arises from simple connectivity properties of the underlying graph of the network. While more sophisticated

bounds [7], [3], [22] include the GNS bound as a special case, it is the simplicity of the GNS bound that becomes useful for

Theorem 6, which is proved by showing that weak edge-cuts and GNS-cuts are identical for k-pair directed symmetric-demand

networks. We also note that the outer bound RGNS−cut is in general, strictly tighter than the cutset outer bound and that in

general, the capacity region C is not contained in Redge−cut although it is always contained in Rw.e.c..

Conjecture 8. (Analog of Li and Li conjecture [13], [14]) For k-pair unicast directed symmetric-demand networks,

F ⊆ C ⊆ 2F ,

i.e. network coding can improve rates beyond routing flow by at most a factor 2.

This conjecture can be considered a stronger version of the Li and Li conjecture inasmuch as the capacity region of an

arbitrary k-unicast bidirected or undirected network can be characterized up to a factor 2, if the capacity region of a k-unicast

directed symmetric-demand network can be characterized.

We first present the proof of Theorem 5. The essential idea is contained in [16] but we provide a proof here for completeness.

Proof: Consider a communication scheme over alphabet A with block length N and number of epochs T that achieves for

1 ≤ i ≤ r, rate Ri for the message from wi to w′
i with error probability at most ǫ. Let E be a GNS-cut for {w1, w2, . . . , wr;w

′
1, w

′
2, . . . , w

′
r}

which may assumed to be with the identity permutation without loss of generality. For 1 ≤ i ≤ r, let Wi be the source

message at wi that is required to be delivered to w′
i. Let W0 denote the vector of all other source messages in the network.

W0,W1, . . . ,Wr are mutually independent and each Wi, 0 ≤ i ≤ r has the uniform distribution. Let XE denote the vector of

all symbols transmitted on the edges of E over the duration of the complete scheme. For 1 ≤ i ≤ r, let Ŵi denote the estimate

at w′
i of the source message Wi upon completion of the coding scheme. Assume |A| = 2; the proof for larger alphabet size
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is identical. Note that

H(W1,W2, . . . ,Wr|XE ,W0) (9)

=
r

∑

i=1

H (Wi|XE ,W0, {Wj : 1 ≤ j < i}) (10)

=

r
∑

i=1

H
(

Wi|XE ,W0, {Wj : 1 ≤ j < i}, Ŵi

)

(11)

[since Ŵi is a function of XE ,W0, {Wj : 1 ≤ j < i}
from the connectivity properties of G \ E]

≤
r

∑

i=1

H
(

Wi|Ŵi

)

(12)

≤
r

∑

i=1

h(ǫ) + ǫ⌈NTRi⌉ ≤ rh(ǫ) + ǫ

r
∑

i=1

⌈NTRi⌉, (13)

where h(·) is the binary entropy function. Thus, we have

r
∑

i=1

⌈NTRi⌉ = H(W1,W2, . . . ,Wr) (14)

= I(W1,W2, . . . ,Wr;XE ,W0)

+H(W1,W2, . . . ,Wr|XE ,W0) (15)

≤ I(W1,W2, . . . ,Wr;XE |W0) + rh(ǫ) + ǫ

r
∑

i=1

⌈NTRi⌉ (16)

≤ H(XE) + rh(ǫ) + ǫ

r
∑

i=1

⌈NTRi⌉ (17)

≤
∑

e∈E

T ⌊NCe⌋+ rh(ǫ) + ǫ

r
∑

i=1

⌈NTRi⌉ (18)

This establishes that
∑r

i=1 Ri ≤
∑

e∈E Ce. Hence, we have C ⊆ RGNS−cut.

Now, we prove the equivalence between weak edge-cuts and GNS-cuts for k-pair unicast directed symmetric-demand

networks, thus proving Theorem 6.

Proof: It is easy to see that the inequality obtained from a GNS-cut can always be obtained from a weak edge-cut

since a GNS-cut requires stronger disconnections as compared to a weak edge-cut. This gives Rw.e.c. ⊆ RGNS−cut. To show

RGNS−cut ⊆ Rw.e.c., we now consider E ⊆ E(G), and say i ∈ J ⊆ {1, 2, . . . , k} if and only if G \ E has no directed paths

from either ui to vi or from vi to ui or both. We show that E is a GNS-cut for {w1, w2, . . . , wr;w
′
1, w

′
2, . . . , w

′
r} with some

permutation π where the 2r vertices w1, w2, . . . , wr, w
′
1, w

′
2, . . . , w

′
r are all distinct and for 1 ≤ j ≤ r, (wj , w

′
j) = (ui, vi) or

(vi, ui) for some i ∈ J with |J | = r. We will prove this for the case J = {1, 2, . . . , k}. The proof for other choices of J is

similar.

Define the connectivity graph Gc as a directed graph over 2k vertices u1, u2, . . . , uk, v1, v2, . . . , vk as follows. For every

pair of distinct vertices w and z, there is a directed edge from w to z in Gc if and only if w has a directed path to z in G \E.

See Fig. 1(a) for an example. Gc is transitively closed, i.e. for three distinct vertices w, z, x, if w has an edge to z and z has an

edge to x, then w has an edge to x. Define two distinct vertices u and v in Gc as associated, if u has an edge to v and v has an

edge to u. If we define every vertex to be associated with itself, this relation is reflexive and symmetric. As Gc is transitively

closed, this relation is also transitive and so, association is an equivalence relation. Further, for each i = 1, 2, . . . , k, we have

that ui and vi are not associated since there are no paths in G \ S from either ui to vi or from vi to ui.

Now, define the reduced connectivity graph Gr as a directed graph with vertices represented by the equivalence classes

defined from being associated in Gc. See Fig. 1(b) for an example. There is a directed edge from equivalence class E1 to E2
in Gr if there is a directed edge in Gc from each vertex in E1 to each vertex in E2. By transitive closure of Gc, this happens

if and only if there is a directed edge in Gc from some vertex in E1 to some vertex in E2. Gr has at least two vertices since

u1 and v1 cannot belong to the same equivalence class.

Now, note that Gr is a directed acyclic graph. Suppose not, i.e. suppose the equivalence classes E1, E2, E3, . . . , Er, E1 in that

order describe a directed cycle. Then, in the graph Gc, for vertex wj chosen from equivalence class Ej for j = 1, 2, . . . , r, we

have wj has a directed edge to wj+1 for j = 1, 2, . . . , r−1 and wr has a directed edge to w1. Transitive closure of Gc implies
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(a) Connectivity graph Gc

u1

u2 u3u4

u5

v1

v2v3

v4

v5

(b) Reduced connectivity graph Gr

Fig. 1. Connectivity graph and reduced connectivity graph for an instance of a 5-pair unicast directed symmetric-demand network

that there must be a directed edge from wj to wk for j, k = 1, 2, . . . , r, j �= k, leading to a collapse of the r ≥ 2 equivalence

classes into one equivalence class, a contradiction.

We now describe an algorithm P that fills the cells of a k × 2 table with vertex names from u1, u2, . . . , uk, v1, v2, . . . , vk
such that the following properties hold:

(α) Each vertex shows up exactly once in the table.

(β) Each row of the table is made up of vertices ui and vi for some i.

(γ) In graph Gc, vertex u obtained from the first column of row i does not have an edge to vertex v obtained from the second

column of row j whenever i ≥ j.

A directed acyclic graph has at least one sink vertex, i.e. a vertex with no outgoing edges. This is the proposed algorithm

P.

(1) Pick any sink vertex in directed acyclic graph Gr.

(2) List the vertices of Gc in the equivalence class represented by the chosen sink vertex.

(a) Pick a vertex w from the list.

(b) If vertex w has been entered previously in the table, do nothing. Else, add vertex w in the first column of the lowest

row in the table not yet filled. Add the destination of vertex w in the second column of the same row, i.e. if v3 was

entered in the first column of the lowest available row, then fill u3 in the second column.

(c) Remove w from the list and go back to (a) if the list is still non-empty, else proceed to (3)

(3) Modify graph Gr by deleting the chosen sink vertex. The modified graph continues to be a directed acyclic graph. If this

graph has non-zero number of vertices, go to step (1), else quit.

u1

u2

u3

u4

u5

v1

v2

v3

v4

v5

Fig. 2. One of the several 5× 2 tables generated by running algorithm P on the Gc,Gr shown in Fig. 1. The order of choosing sinks was v4, u5, u2v3u4,

u3v2, v1, u1v5. The arrows show connectivity from the vertices on the left to the vertices on the right in Gc. Note that no arrows go ‘horizontally’ or go
‘upward’. They always go ‘downward’ which is the desired GNS-cut property.

Let us verify the claimed properties. By step (b), it is clear that each non-empty row of the table is filled with a vertex
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and its destination, i.e. the vertices ui and vi for some i. As the algorithm terminates only when all vertices have been listed

and checked for their presence in the table, and as the vertices are added only when they have not been added previously,

it follows that each vertex shows up exactly once and the table is completely filled upon termination of the algorithm. This

verifies claimed properties (α) and (β). Now, we verify property (γ).

• Consider vertices in row j of the table, say w and w′ with w in the first column. These are source-destination pairs ui, vi
for some i. We claim that w has no edge to w′ in Gc. Suppose it did. Then, there would be an edge in Gr from the

equivalence class E containing w to the equivalence class E ′ containing w′. These equivalence classes must be distinct

as w and w′ are source-destination pairs. This means that the algorithm P must pick the equivalence class containing

w′ before picking the equivalence class containing w. When w′ is probed in the list of vertices, w must not have been

entered in to the table as yet, and thus w′ would then be entered in the first column of some row and w in the second

column of the same row. This contradicts the assumed structure of the table. Thus, we have no edge from w to w′ in Gc.

• Now, consider rows i and j with i > j. Let the vertices in row i be w and w′ with w in the first column and the vertices

in row j be z and z′ with z in the first column. We claim that there is no edge from w to z′ in Gc. Suppose there is.

Then, either w and z′ are in the same equivalence class in Gc or they are not. If they are not, then the equivalence class

containing z′ has an incoming edge from the equivalence class containing w and thus, the former ought to have been

picked by the algorithm before the latter. This is inconsistent with the table which was filled with w in the first column

of a row while z′ had not yet been filled. Now, if w and z′ are in the same equivalence class, then clearly z does not fall

in that equivalence class. Moreover, the equivalence class containing z is picked after the equivalence class containing w

and z′. The algorithm P, when exhausting the list of vertices in the equivalence class containing w and z′ is supposed

to have accepted w and added it to the first column of a row and rejected z′. But when z′ was probed, we are still in the

same equivalence class as w, so z had not been probed yet. Then z′ must have been added to the first column of some

row, which contradicts the structure of the table. Thus, there is no edge from w to z′ in Gc.

Now, if the jth row of the table consists of ui, vi, we set π(j) = i and (wi, w
′
i) = (ui, vi) or (vi, ui) depending on whether

the first entry in the row is ui or vi. This shows that S is a GNS-cut for {w1, w2, . . . , wk;w
′
1, w

′
2, . . . , w

′
k} with permutation

π. This gives Rw.e.c. ⊇ RGNS−cut and completes the proof.

V. k-GROUPCAST DIRECTED NETWORKS: SUM-RATE

Definition. A k-groupcast directed network is a k(k − 1)-unicast directed network N with k distinct distinguished nodes

(group-nodes) v1, v2, . . . , vk with source-destination pairs {s(i,j); d(i,j)}(i,j)∈I where I = {(i, j) : 1 ≤ i, j ≤ k, i �= j} and

s(i,j) = vi, d(i,j) = vj .

Theorems 9 and 10 and Corollary 11 will refer to k-groupcast directed networks.

Theorem 9. (Naor-Zosin [18])
1

2
Rmulticut ≤ Fsum−rate ≤ Rmulticut (19)

Theorem 10.

Csum−rate ≤ 2Rmulticut (20)

Theorems 9 and 10 together imply that routing flow is approximately capacity-achieving for sum-rate:

Corollary 11.
1

2
Rmulticut ≤ Fsum−rate ≤ Csum−rate ≤ 2Rmulticut (21)

We give the proof of Theorem 10. We give the proof of Theorem 10.

Proof:

Consider a k-groupcast directed network N with group-nodes v1, v2, . . . , vk. Let E be a set of edges such that G \ E

has no directed paths from vi to vj for each (i, j) ∈ I. Let (R(i,j) : (i, j) ∈ I) ∈ C. Observe that E is a GNS-cut for

source-destination pairs {s(i,j); d(i,j)}(i,j)∈I:i>j . Theorem 5 gives
∑

(i,j)∈I:i>j R(i,j) ≤ ∑

e∈E Ce. Similarly, we can get
∑

(i,j)∈I:i<j R(i,j) ≤
∑

e∈E Ce. Adding, we obtain
∑

(i,j)∈I R(i,j) ≤ 2
∑

e∈E Ce, which completes the proof.

Remark 6. For the groupcast network in Fig. 3 with all edges having unit capacity, a simple XOR coding scheme achieves

the rate tuple given by

R(i,j) =

{

1 if (i, j) = (1, 2) or (2, 1)

0 otherwise,
(22)

is achievable, while the multicut Rmulticut = 1. This shows that the factor 2 in the right most inequality of Theorem 10 cannot

be improved upon.
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v1 v2 v3 vk

u

w

e

Fig. 3. Special groupcast network

VI. GAUSSIAN NETWORKS COMPOSED OF BROADCAST AND MULTIPLE ACCESS CHANNELS

A simplest model for a wireless network is a network that is comprised only of non-interacting multiple access channels

and broadcast channels connected together through common nodes. This model is particularly interesting to study because the

component channels are fully understood whereas a network composed of such channels is not well understood. We abbreviate

networks composed only of multiple access channels and broadcast channels as MAC+BC networks. The communication

network is represented by a directed graph G = (V, E), and an edge coloring ψ : E → C, where C is the set of colors.

Each node v has a set of colors C(v) ⊆ C on which it operates. Each color can be thought of as an orthogonal resource, so

that the broadcast and interference constraints for the wireless channel apply only within a given color. The set of edges Ac

corresponding to color c interact with each other and can be said to constitute a channel.

The channel model can therefore be written as,

yci (t) =
∑

j∈Inc(i)

hc
jix

c
j(t) + zci (t) ∀c ∈ C(i), (23)

where xc
i (t), y

c
i (t), z

c
i (t) are the transmitted vector, received vector, and noise vector on color c at time instant t, hc

ji is the

(fixed) channel coefficient between node i and node j on color c and Inc(i) represents the set of in-neighbors of node i who

are operating on color c. We denote by yi the vector comprised of {yci } for all c ∈ C(i). We do not assume any symmetry in

the channels, so that, in general hc
ij may be different from hc

ji.

We say that a given c ∈ C corresponds to a multiple access channel (MAC) of degree d, if the set of edges Ac is of the

form Ac = {i1j, i2j, ..., idj}, i.e., all edges are directed towards a particular node j. Similarly a channel c is said to correspond

to a broadcast channel (BC) of degree d if Ac = {ij1, ij2, ..., ijd} for some node i. If Ac is a singleton set, we say that the

channel c corresponds to an orthogonal link. A network is said to be a MAC+BC network if the set C can be decomposed

as C = M ∪ B, where M is the set of MAC channels and B is the set of broadcast channels or orthogonal links. Stated

alternately, a network is composed of broadcast and multiple access channels if and only if no edge is involved simultaneously

in a broadcast and interference constraint inside the same color. We will call such a network a “Gaussian MAC+BC network”.

An example of such a network is shown in Fig. 4.

Each node i has an average power constraint P to transmit for each color that it transmits in. If there are distinct power

constraints for different nodes, they can be absorbed into the channel co-efficient without loss of generality. We assume that

the channel hc
ij is fixed (time-invariant) and is known at all the nodes.

A. Multiple Unicast in Gaussian MAC+BC Networks

A k-unicast Gaussian network has k pairs of nodes si, di, i = 1, 2, ..., k, where node si has a message to send to di and

di has an independent message to send to si, both at rate Ri. We would like to characterize the closure of the set of all

achievable rate tuples, called the capacity region C. We will use Rach to denote rates achievable by a simple scheme that we

will propose. Also, for clarity, we will use Xv,Yv to denote the input and output alphabets at node v, implicitly understanding

that in the Gaussian network, Xv = R
a,Yv = R

b, for suitable integers a and b. Formally, a (⌈2TR1⌉, ⌈2TR2⌉, . . . , ⌈2TRk⌉, T )
coding scheme for this network which communicates over T time instants is comprised of the following.

1) Independent random variables Wi which are distributed uniformly on Wi := {1, . . . , ⌈2TRi⌉} for i = 1, . . . , k respec-

tively. Wi denotes the message intended from source si to destination di.

2) The source mapping at source si for time t,

fsi,t : (Wi,Yt−1
si

) → X t
si
. (24)

3) The relay mappings for each v ∈ V\{s1, d1, s2, d2, . . . , sk, dk} and time t,

fv,t : Yt−1
v → X t

v . (25)
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Fig. 4. Example of a MAC+BC Gaussian network

4) The decoding map at destination di,

gdi
: YT

di
→ Wi. (26)

If Ŵi is the decoded symbol at di, then the probability of error for destination di under this coding scheme is given by

P i
e := Pr{Ŵi �= Wi}. (27)

A rate tuple (R1, R2, . . . , Rk), where Ri is the rate of communication in bits per unit time from source si to destination di,

is said to be achievable if for any ǫ > 0, there exists a (⌈2TR1⌉, ⌈2TR2⌉, . . . , ⌈2TRk⌉, T ) scheme that achieves a probability of

error lesser than ǫ for all nodes, i.e., maxi P
i
e ≤ ǫ. The capacity region C is the closure of the set of all achievable rate tuples.

The capacity region can similarly be defined for the k-unicast problem with symmetric demands: For each i = 1, 2, . . . , k,
si has a message to be communicated to di at rate Ri and di has an independent message to be communicated to si at the

same rate Ri.

1) Weak edge-cut bound: Similar to the wireline network case, we define a weak edge-cut bound region for the wireless

network with demand symmetry. The weak edge-cut bound region for the Gaussian MAC+BC network is defined by the

following: consider any set of edges F ⊆ E , and let K(F ) denote the set of i ∈ {1, 2, ..., k} such that either there is no path

from si to di or there is no path from di to si in G \ F . The value of the cut F is defined by ν(F ) :=
∑

c ν(F
c), where

F = ∪cF
c with F c being the set of edges that participate in color c and ν(F c) is the capacity under complete coordination

of source nodes in channel c. More formally, if c is a broadcast channel, ν(F c) is equal to the sum-capacity of the broadcast

channel specified only by edges in F c, under complete coordination of destination terminals in F c. Similarly, if c is a MAC

channel, ν(F c) is equal to the sum-capacity of the MAC channel specified by edges in F c, under complete coordination of

source terminals in F c.

The weak edge-cut bound region is now given as

Rw.e.c. = {(R1, ..., Rk) :
∑

i∈K(F )

Ri ≤ ν(F ) ∀F ⊆ E}.

As in the wireline network case, it is not clear if Rw.e.c. is an outer bound to the capacity region C.

Our main result is the following:
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Theorem 12. For the k-unicast problem with symmetric demands in a Gaussian MAC+BC network, the weak edge-cut bound

is a fundamental outer bound on the capacity region and a simple separation strategy can achieve Rach(P ) which satisfies,

Rw.e.c.(
P

dmax
)

κ log3(k + 1)
⊆ Rach(P ) ⊆ C(P ) ⊆ Rw.e.c.(P ), (28)

where κ is a universal constant independent of problem parameters and dmax is the maximum degree of any broadcast or

MAC component channel c.

Thus, the edge-cut bound is a fundamental upper bound on the capacity region and furthermore the edge-cut bound, scaled

down in power by a factor dmax and scaled down in rate by a factor 1
κ log3(k+1)

, can be achieved by the proposed scheme.

B. Outer bound

We first establish that the weak edge-cut bound is fundamental, i.e., every communication scheme must have rate pairs that

lie inside this region: C ⊆ Rw.e.c.. We will prove this result using a GNS bound for Gaussian networks.

Given an ℓ-unicast MAC+BC Gaussian network with source destination pairs {si, di}ℓi=1, we define a set of edges F ⊆ E
to be a GNS-cut if there exists a permutation π : {1, 2, . . . , ℓ} → {1, 2, . . . , ℓ} such that there are no paths from si to di in

G \ F, whenever π(i) ≥ π(j).

Lemma 13. (GNS bound for MAC+BC Gaussian networks) For an ℓ-unicast Gaussian MAC+BC network, every GNS cut F

is fundamental, i.e.,
∑

i∈K(F ) Ri ≤ ν(F ) for any communication scheme achieving (R1, ..., Rℓ). Alternately C ⊆ RGNS−cut,

where

RGNS−cut = ∩F⊆E{(R1, .., Rℓ) :
∑

i∈K(F )

Ri ≤ ν(F )}. (29)

An instance of Lemma 13 can be found in Fig. 5.

s1 s2

t1 t2

e1
e2

e3

e4
e5

e6

e7

e8 e9

e10e11

e12
e13

e14
e15

e16 e17
e18

e19

e5

e6

e8

e12
e13

t2

e19

+CR1 +R2 ≤ C

+C +C

( ) ( )
( ) ( )

(a) (b)

Fig. 5. GNS bound for MAC+BC Gaussian networks. The set of edges {e5, e6, e8, e12, e13, e19} forms a GNS-cut in the two-unicast network of (a). The
outer bound on the capacity region of the two-unicast network, that can be derived from the GNS-cut is shown in (b).

Proof: Let F be a GNS-cut disconnecting si from di for i = 1, 2, . . . , ℓ with say, the identity permutation πid. Thus,

K(F ) = {1, 2, . . . , ℓ}. A similar proof holds in the case when K(F ) ⊂ {1, 2, . . . , ℓ}. We first provide a proof of the GNS

bound when the network has an acyclic underlying graph G.

Recall that the set of colors C = M ∪ B where M consists of the colors of edges involved in MAC components and B
consists of colors of edges involved in broadcast components or orthogonal links. For μ ∈ C, let Aμ denote the set of edges

involved in μ. Now, construct a directed graph G′ as follows: for each μ ∈ C, there is a node in G′ and add a directed edge
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from node μ to node ν in G′ if there exists an edge in Aμ that is upstream to some edge in Aν in the original DAG G. Since

the set of all edges with a given color constitute either a MAC or a BC, we have that G′ is a directed acyclic graph. Thus, we

can have a total order on the vertices of G′ consistent with the partial order of ancestry in G′. This gives a total order on C

and therefore also a total order on the subset D := {μ ∈ C : F ∩ Aμ �= ∅}, which we will denote by μ1 < μ2 < . . . < μr,

where μ1 is the most “upstream”.

• For μ ∈ M, we denote transmissions along edge e in Aμ by Xe and we denote the reception by Yμ so that Yμ =
∑

e∈Aµ
Xe +Zμ where Zμ is Gaussian noise. Further, define Uμ := {Xe : e ∈ F ∩Aμ}, and Vμ :=

∑

e∈F∩Aµ
Xe +Zμ.

Intuitively, Uμ (Vμ) is the transmission (reception) on channel μ if only edges in F were present in the channel.

• For μ ∈ B, we denote the transmission on the broadcast component or orthogonal link by Xμ and the receptions at heads

of e ∈ Aμ by Ye so that Ye = Xμ + Ze where {Ze, e ∈ Aμ} are independent Gaussian noise random variables. Further

define Uμ := Xμ, and Vμ := {Ye : e ∈ F ∩Aμ}.
Define Ỹdi

= {Y n
μ : head(e) = di, e ∈ Aμ, μ ∈ M} ∪ {Y n

e : head(e) = di, e ∈ Aμ, μ ∈ B}.

n[

ℓ
∑

i=1

Ri − ǫn] ≤
ℓ

∑

i=1

I(Wi; Ỹdi
)

≤
ℓ

∑

i=1

I(Wi; {V n
μ : μ ∈ D}, {Wj : j < i})

[since Wi − {V n
μ : μ ∈ D}, {Wj : j < i} − Ỹdi

as F is a GNS cut with identity permutation]

=
ℓ

∑

i=1

I(Wi; {V n
μ : μ ∈ D}|{Wj : j < i})

[since Wi is independent of {Wj : j < i}]
= I({Wi : 1 ≤ i ≤ ℓ}; {V n

μ : μ ∈ D})
= h({V n

μ : μ ∈ D})
− h({V n

μ : μ ∈ D}|{Wi : 1 ≤ i ≤ ℓ})
≤

∑

μ∈D

h(V n
μ )− h({V n

μ : μ ∈ D}|{Wi : 1 ≤ i ≤ ℓ})

=:
∑

μ∈D

h(V n
μ )−A.

Now, we consider the negative term A above.

A = h({V n
μ : μ ∈ D}|{Wi : 1 ≤ i ≤ ℓ})

= h(V n
μ1
, V n

μ2
, . . . , V n

μr
|{Wi : 1 ≤ i ≤ ℓ})

≥ h(V n
μ1
, V n

μ2
, . . . , V n

μr
|{Wi : 1 ≤ i ≤ k}, Un

μ1
)

= h(V n
μ1
|{Wi : 1 ≤ i ≤ ℓ}, Un

μ1
)

+ h(V n
μ2
, . . . , V n

μr
|{Wi : 1 ≤ i ≤ ℓ}, Un

μ1
, V n

μ1
)

= h(V n
μ1
|Un

μ1
)

+ h(V n
μ2
, . . . , V n

μr
|{Wi : 1 ≤ i ≤ ℓ}, Un

μ1
, V n

μ1
)

[since {Wi : 1 ≤ i ≤ ℓ} − Un
μ1

− V n
μ1

as μ1 is the most upstream channel]

≥ h(V n
μ1
|Un

μ1
)

+ h(V n
μ2
, . . . , V n

μr
|{Wi : 1 ≤ i ≤ ℓ}, Un

μ1
, V n

μ1
, Un

μ2
)

= h(V n
μ1
|Un

μ1
) + h(V n

μ2
|{Wi : 1 ≤ i ≤ ℓ}, Un

μ1
, V n

μ1
, Un

μ2
)

+ h(V n
μ3
, . . . , V n

μr
|{Wi : 1 ≤ i ≤ ℓ}, Un

μ1
, V n

μ1
, Un

μ2
, V n

μ2
)

= h(V n
μ1
|Un

μ1
) + h(V n

μ2
|Un

μ2
)

+ h(V n
μ3
, . . . , V n

μr
|{Wi : 1 ≤ i ≤ ℓ}, Un

μ1
, V n

μ1
, Un

μ2
, V n

μ2
)
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[since {Wi : 1 ≤ i ≤ ℓ}, Un
μ1
, V n

μ1
− Un

μ2
− V n

μ2

as only μ1 could be more upstream than μ2]

≥
∑

μ∈D

h(V n
μ |Un

μ ),

from repeating these steps. Thus, we obtain

n[
ℓ

∑

i=1

Ri − ǫn] ≤
∑

μ∈D

I(Un
μ ;V

n
μ ) (30)

≤ n
∑

μ∈D

ν(Fμ) (31)

= nν(F ), (32)

and therefore it follows that the GNS bound is a fundamental upper bound on the capacity region for acyclic networks.

For a general cyclic network, we can employ a standard time-layering argument in order to complete the proof. While the

details of our method and the use of time-layering to deal with cyclic networks are fairly standard, see [2], [23], one key

difference is that here we are using time-layering in order to prove an outer-bound, whereas the earlier works utilized time

layering to show achievability. We will provide a brief sketch of the method here. Given a cyclic network G and a coding

scheme over n time instants, we construct a time-layered graph Gn as follows. The nodes in the graph Gn are arranged in

n+ 1 layers 0, 1, ..., n. For each i, layer i has a copy of all the nodes V in the original graph, we call this V [i] and the copy

of node v in layer i is called v[i]. Add directed edges in the graph in the following manner.

• For each (u, v) ∈ E in the original graph with channel coefficient hc
vu on color c, we add edges (u[i], v[i + 1]) for

i = 0, 1, ..., n− 1 with channel coefficient hci
vu on color ci.

• Create an edge from v[i] to v[i+1] for each v of infinite capacity in an independent channel (in order to model memory

of the link).

Thus the time-layered graph Gn is created. This graph defines an instance of a Gaussian MAC+BC network, which is acyclic.

For this new graph, we define a communication problem by specifying that sources s1[0], ..., sℓ[0] wish to communicate

independent information to destinations d1[n], d2[n], ..., dℓ[n]. Observe that any scheme on the original network utilizing n

time instants gives a valid scheme on this graph Gn. Thus upper bounds on the communication rates in this graph serve as

upper bounds to n(R1, R2, ..., Rℓ) whenever (R1, R2, . . . , Rℓ) lies in the capacity region of the original network. Now given

a GNS cut on the original graph with the identity permutation, defined by a set of edges F , we can define a cut on this graph

Gn by Fn := ∪i∈[n]F [i], where F [i] = {(u[i− 1], v[i), ∀(u, v) ∈ F}. If F disconnected source sa from destination db in the

original graph, this cut Fn disconnects sa[0] from db[n] in the time-layered graph because any remaining path from sa[0] to

db[n] would imply a path in the original graph from sa to db. This implies that any GNS cut on the original graph can produce

a GNS cut on Gn with n times the value, as each edge occurs n times in Fn. Since the rate is also scaled by n times in this

time layered graph, this proves that the GNS bound is a valid upper bound on the rate of an arbitrary (cyclic) graph.

Now that we know that GNS-cut is a valid upper bound on the Gaussian network for any ℓ unicast problem, we will define

the GNS-cut for a symmetric demands problem (in exactly the same way as it was defined for wireline networks).

Definition. Given a k-pair unicast directed symmetric-demand MAC + BC Gaussian network with source-destination nodes

u1, u2, . . . , uk, v1, v2, . . . , vk, we define the GNS-cut outer bound denoted by RGNS−cut, to be the set of all non-negative

tuples (Ri : 1 ≤ i ≤ k) that satisfy for every F ⊆ E(G), the inequality
∑

i∈J Ri ≤ ν(F ) whenever F is a GNS-cut for

{w1, w2, . . . , wr;w
′
1, w

′
2, . . . , w

′
r} with some permutation π where

• J ⊆ {1, 2, . . . , k}, |J | = r,

• w1, w2, . . . , wr, w
′
1, w

′
2, . . . , w

′
r are distinct,

• for 1 ≤ j ≤ r, (wj , w
′
j) = (ui, vi) or (vi, ui) for some i ∈ J.

By Theorem 6, we have that Rw.e.c. = RGNS−cut. Using this result in conjunction with Lemma 13, gives us the desired

result,

C ⊆ Rw.e.c.. (33)

We parametrize both C and Rw.e.c. by power constraint P in order to emphasize its dependence.

C. Coding Scheme

The coding scheme we propose is a separation-based strategy: each component broadcast or multiple access channel is

coded for independently creating bit-pipes on which information is routed globally. In order to evaluate the rate region of this
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scheme, we use polymatroidal networks as an interface for which we can show that the flow region corresponding to routing

and the bounding region defined by edge-cuts are close to each other. This coding scheme and the calculation of its achievable

rate closely parallel the scheme proposed for networks composed of symmetric MAC and BC channels in [1].

For simplicity of notation, we will assume that all MAC and broadcast channels have degree d = dmax. It will be clear

from the details that this assumption is not necessary. For a finite set V, a set function f : 2V 	→ R is said to satisfy the

polymatroidal axioms if

• f(∅) = 0,
• A ⊆ B =⇒ f(A) ≤ f(B),
• The function f is submodular, i.e. for any two sets A,B ⊆ V, f(A) + f(B) ≥ f(A ∩B) + f(A ∪B).

A bounding region B defined over R|V| is said to be a polymatroidal region if it is of the form B = {(Rv : v ∈ V ) : Rv ≥
0 and for any A ⊆ V,

∑

v∈A Rv ≤ f(A)} for some functin f that satisfies the polymatroidal axioms.

Let us first consider the coding for the multiple access channel with channel coefficients h1, ..., hd and power constraint P

at each of the d nodes. Let the rate region achievable on this multiple access channel be denoted by

RMAC
ach (P ) = {R :

∑

i∈A

Ri ≤ log

(

1 +
∑

i∈A

|hi|2P
)

∀A}. (34)

This region is known to be polymatroidal. The outer bound for the MAC under arbitrary source cooperation is given by

RMAC
cut (P ) = {R :

∑

i∈A

Ri ≤ log

⎛

⎝1 +

(

∑

i∈A

|hi|
)2

P

⎞

⎠ ∀A}. (35)

The capacity region of a broadcast channel with channel coefficients h1, ..., hk and power constraint P is not a polymatroidal

region. However, it can be approximated by a polymatroidal region [20]. In particular, the achievable region includes the

following polymatroidal region, and we will restrict our broadcast channel scheme to operate inside the following polymatroidal

region, as we will show that this is not too far from the cutset outer bound:

RBC
ach(P ) = {R :

∑

i∈A

Ri ≤ log

(

1 +
∑

i∈A

|hi|2
P

d

)

∀A}, (36)

The cutset bound on the broadcast channel under arbitrary destination cooperation is

RBC
cut (P ) = {R :

∑

i∈A

Ri ≤ log

(

1 +
∑

i∈A

|hi|2P
)

∀A}. (37)

It can be easily verified that RMAC
cut (P ) ⊆ RMAC

ach (dP ) and RBC
cut (P ) ⊆ RBC

ach(dP ). Now, each multiple access or broadcast

channel can be replaced by a set of d bit-pipes whose rates are jointly constrained by the corresponding capacity constraints.

It turns out that this falls inside a class of networks called polymatroidal networks, that have been already studied [19]. We

will now give a short description of polymatroidal networks and some results for these networks.

D. Polymatroidal Networks

Consider a directed graph G = (V, E). We have considered networks in the previous chapter with capacity constraints on the

edges. A polymatroidal network has more general capacity constraints coupling edges that meet at a node. In the polymatroidal

network, for each node v there are two associated submodular functions: ρInv and ρOut
v which impose joint capacity constraints

on the edges in In(v) and Out(v) respectively. That is, for any set of edges S ⊆ In(v), the total capacity available on the edges

in S is constrained to be at most ρInv (S). Similarly, ρOut
v constrains edges in Out(v).

For any subset of edges F ⊆ E , we define the disconnection set K(F ) as the set of indices i for which source si has no

paths to destination di in G \ F. In standard networks, the value of the cut F is simply
∑

e∈F c(e) where c(e) is the capacity

constraint on edge e. The value of a cut F in polymatroidal networks is defined as follows: each edge (u, v) in F is first

assigned to either u or v; we say that an assignment of edges to nodes g : F → V is valid if it satisfies this restriction. Once

this assignment is made, we can compute the value of the cut according to this assignment by evaluating the submodular

functions corresponding to the set of edges grouped together. The value of the cut ν(F ) is the minimum over all assignments,

that is,

ν(F ) := min
g:F→V,g valid

∑

v

{

ρInv (In(v) ∩ g−1(v)) + ρOut

v (Out(v) ∩ g−1(v))
}

. (38)

A max-flow min-cut theorem for the single unicast problem in directed polymatroidal networks is known in the literature

[24], [25]. For the k-unicast problem in a directed polymatroidal network with symmetric demands, the following theorem is
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proved in [19], which generalizes the result of [15] from edge capacity constraints to polymatroidal capacity constraints. The

weak edge-cut bound for symmetric-demand polymatroidal networks is defined similarly as for standard networks.

Theorem 14. (from [19]) For a symmetric-demand directed polymatroidal network with k source-destination pairs, any rate

tuple in the weak edge-cut rate region divided by a factor κ(log3(k + 1)) is achievable by routing, where κ is a universal

constant.

If Rpoly
w.e.c. stands for the weak edge-cut region in the polymatroidal network and Rpoly

ach stands for the region achievable by

flow in the polymatroidal network, then Theorem 14 can be rewritten as:

Rpoly
w.e.c.

κ log3(k + 1)
⊆ Rpoly

ach . (39)

E. Analysis of Achievable Rates in Gaussian MAC+BC Network

The proposed separation strategy converts the Gaussian MAC+BC network into a directed polymatroidal network with

symmetric demands. Using the achievable rates for the corresponding MAC and BC channels from (34) and (36), we can see

that this polymatroidal network has the following submodular functions at any given node v,

ρInv (S) =
∑

c

log

⎛

⎝1 +
∑

(uv)∈S

|hc
vu|2P

⎞

⎠ , (40)

ρOut

v (S) =
∑

c

log

⎛

⎝1 +
∑

(vu)∈S

|hc
vu|2

P

d

⎞

⎠ . (41)

This fully defines the polymatroidal network. Now any rate tuple achievable on this polymatroidal network is achievable in

the Gaussian MAC+BC network using the proposed separation architecture.

Now we can use Theorem 14 to show that the achieved rate tuple in the Gaussian network is within a poly-logarithmic

factor of the weak edge-cut bound in the polymatroidal network, i.e.

Rpoly
w.e.c.(P )

κ log3(k + 1)
⊆ Rpoly

flow(P ) = Rg
ach(P ). (42)

Here we have parametrized all the rate regions by the power constraint in order to make this dependence explicit. In order to

prove our main result, we still need to connect the weak edge-cut bound in the polymatroidal network to the weak edge-cut

bound in the Gaussian network.

We will connect the value of the cut in the polymatroidal network to the value of the cut in the Gaussian network. Let

us take a cut derived from a set of edges F in the polymatroidal network and a valid assignment g of F , which yields the

minimum among all possible valid assignments. In this assignment, each edge (u, v) of F is assigned either to u or to v. Thus

for any node, some incoming edges are assigned together and some outgoing edges are assigned together and the value of the

cut is given by

ν(F ) =
∑

v

{ρInv (In(v) ∩ g−1(v)) + ρOut

v (Out(v) ∩ g−1(v))}.

Note that each of these functions ρInv and ρOut
v corresponds to the constraints in the achievable region of the original MAC

and broadcast channels. If we take the cut corresponding to F in the original network, then these functions will be replaced

by the functions corresponding to the cut in the MAC and broadcast channels, whose equations are given in (35) and (37). It

has been observed earlier that,

RMAC
cut (P ) ⊆ RMAC

ach (dP ) (43)

RBC
cut (P ) ⊆ RBC

ach(dP ). (44)

Note that the value of any cut in the polymatroidal network is a function of the power constraint implicitly, since ρIn and

ρOut are functions of the power constraint. Let us call this function v(P ). Now if we look at the same cut in the Gaussian

network then the value of this cut here is at most v(dP ) because of (43) and (44). Thus the weak edge-cut region in the

polymatroidal network and the weak edge-cut region in the Gaussian network can be related to each other as follows,

Rg
w.e.c.(P ) ⊆ Rpoly

w.e.c.(dP ), (45)

or alternately Rg
w.e.c.(

P
d
) ⊆ Rpoly

w.e.c.(P ). This result, when combined with (42) and (33), yields the following relationship,

Rg
w.e.c.(

P
d
)

κ log3(k + 1)
⊆ Rg

ach(P ) ⊆ C ⊆ Rg
w.e.c.(P ), (46)

which completes the proof of Theorem 12.
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VII. GENERAL GAUSSIAN NETWORKS

In this section, we consider general Gaussian networks, i.e., networks where broadcast and MAC can occur simultaneously.

Our basic idea will remain similar to what we did in the case of the Gaussian MAC+BC network, where we employed a

separation strategy. A good physical layer scheme that approximately achieved the cut-set bound converted the MAC+BC

Gaussian network into a polymatroidal network on which routing was shown to be approximately optimal.

In order to provide guarantees on the performance of our layered architecture in general Gaussian networks, we need physical

layer schemes that achieve close to the cut-set bound on the component channels. This class of networks includes as a special

case the interference channel and the X-channel (where every transmitter has a message to transmit to every receiver). In a

general Gaussian network, it is not clear what a component channel is. In [1], it was identified that the X-channel can be

viewed as a basic component channel of a general Gaussian network. Good communication schemes are known for the X-

channel under the following scenarios:

1) Degrees-of-freedom in fixed Gaussian channels

2) Capacity approximation in ergodic Gaussian channels.

As such, our network-level results also apply under these two settings.

A. Fixed Gaussian channels

The communication network is represented by a directed graph G = (V, E). The edges (j, i) that are present have fading

coefficients hij on them, each of which are chosen independently from a continuous fading distribution. Note that in a general

Gaussian network, the presence of edge (j, i) does not necessarily imply the presence of edge (i, j). There are k pairs of

specially designated nodes si, di such that si has a message to send to di at rate Ri and di has an independent message to

send to si at the same rate Ri. The channel model can be written as

yi(t) =
∑

j∈In(i)

hijxj(t) + zi(t) ∀t = 1, 2, ..., T, (47)

where xi(t), yi(t), zi(t) are the transmitted vector, received vector, and noise vector at time t, and In(i) represents the set of

neighbors of node i who have an incoming edge to i. The noise vector is assumed to have unit variance and is independent

at each node. There is an average power constraint of P per node. The degrees-of-freedom (DOF) tuple (d1, ..., dk) is said to

be achievable if, for each P , there is a scheme achieving rate tuple (R1(P ), ..., Rk(P )) such that di = limP→∞
Ri

logP
. The

closure of the set of all achievable DOF tuples is called the DOF region D. Let Dach denote the DOF tuples achievable by our

specific strategy and let Dw.e.c. correspond to the weak edge-cut bound (which is defined formally below).

1) Weak Edge-Cut Bound:: In order to define the weak edge-cut bound in the general Gaussian network case, we will utilize

the weak edge-cut bound region in the Gaussian MAC+BC network case. We will observe that there are several ways to upper

bound the capacity of a given general Gaussian network by a related network of Gaussian MAC+BC channels. This can be done

by “deactivation” of some of the MAC and BC constraints. Formally, consider a coloring on the set of edges such that the channel

corresponding to each color is a MAC or broadcast channel. This coloring produces a Gaussian MAC+BC network whose DOF

region contains the DOF region of the original network, as we shall show. For a MAC+BC network, each orthogonal MAC or

BC component contributes a DOF of 1. Thus, the DOF value of the cut in the colored network is the total number of MAC

or BC channels involved in the cut. Now, we define d(F ) as the tightest bound obtainable on the DOF by bounding it based

on any suitable coloring giving a MAC+BC network. Finally, define Dw.e.c. = {(d1, ..., dk) :
∑

i:i∈K(F ) di ≤ d(F ) ∀F ⊆ E}.

It is not clear, as earlier, that Dw.e.c. is a fundamental upper bound on any achievable DOF tuple under symmetric demands.

Our main result is the following.

Theorem 15. For a directed wireless network with symmetric demands, if the fixed channel coefficients are drawn from a

continuous distribution, the DOF region given by Dach satisfying

Dw.e.c.

κ log3(k + 1)
⊆ Dach ⊆ D ⊆ Dw.e.c., (48)

is achievable, with probability 1.

2) Coding Scheme: Our coding scheme involves a conversion of the Gaussian network into a bit-pipe network (more

specifically, a polymatroidal network) and then routing on this induced polymatroidal network. This coding scheme and the

analysis of the achievable rate closely parallel the scheme proposed for general wireless networks in [1]. However, the outer

bound is a little more interesting because we do not currently have a GNS bound for general wireless networks, and have

written it only for MAC+BC networks. We use the bound for MAC+BC networks to obtain a bound for general wireless

networks.

First, consider an interference channel with l sources s1, s2, . . . , sk, wishing to communicate to their respective destinations

d1, d2, . . . , dk. Suppose that the connectivity between sources and destinations is described by a suitable bipartite graph and
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that for each i, there is an edge from si to di. Then, it is well-known that the real interference alignment scheme [26] achieves

half DOF per transmitter-receiver pair simultaneously, almost surely over the randomness in the channel co-efficients.

In our Gaussian network, we choose two subsets of nodes of equal size. We choose one set to be a set of “transmitter” nodes

and the other set to be a set of “receiver” nodes. This creates for us an interference channel. We choose a suitable matching

in the connectivity from the transmitters to the receivers to give us the transmitter-receiver pairs. This creates bit pipes that

offer half DOF for each transmitter-receiver pair. We then time-share between all possible choices of subset pairs and over all

possible matchings.

It has been shown in [1] that such a choice in fact leads to a simple polymatroidal network with the same set of of edges

as the original Gaussian network, and with the following sub modular functions at each node, almost surely

ρInv (S) =
1

2
∀S �= ∅ ⊆ In(v), ∀v ∈ V, (49)

ρOut

v (T ) =
1

2
∀T �= ∅ ⊆ Out(v), ∀v ∈ V. (50)

Now, on this polymatroidal network, information is routed from the source nodes to the destination nodes. Since the traffic

demand is symmetric between si and di, the result of Theorem 14 shows that the rate achieved on the polymatroidal network

is within a poly-logarithmic factor of the edge-cut bound in the polymatroidal network, i.e.,

Rpoly
w.e.c.

κ log3(k + 1)
⊆ Rpoly

ach . (51)

Observe that if (R1, ..., Rk) ∈ Rpoly
ach is achievable in the polymatroidal network, a degrees of freedom tuple (D1, ..., Dk) =

(R1, ..., Rk) is achievable almost surely in the Gaussian network using the strategy described above. Thus Dg
ach = Rpoly

ach . So,

(51) gives

Rpoly
w.e.c.

κ log3(k + 1)
⊆ Rpoly

ach = Dg
ach. (52)

Now, we need to connect Rpoly
w.e.c. to Dg

w.e.c. in order to obtain the desired result. For this, we want to find the DOF value of

a cut in the Gaussian network. We upper bound the DOF in the original Gaussian network by creating a modified network. We

will color the edges in a certain way such that broadcast and superposition constraints are active only inside a color (similar

to the coloring defined for MAC+BC networks (see Sec. VI).

We need the following lemma, which relates the rates achieved in the two networks.

Lemma 16. (from [1]) If we color the edges in the Gaussian network to obtain a “colored network”, then the capacity regions

of the two networks are related by the following:

Rg

ach(P ) ⊆ Rg(P ) ⊆ Rcol(dP ), (53)

where the superscript g is used for the original Gaussian network and the superscript col is used to denote the colored Gaussian

network and d is the maximum degree of any node in the network, that is, Rg

ach(P ) is the set of rate tuples achieved by our

scheme, Rg(P ) is the capacity region and Rcol(dP ) is the capacity region of the colored Gaussian network at power constraint

dP.

Now, if the coloring yields a MAC+BC network, Lemma 13 informs us that the GNS bound is a fundamental outer bound

on the capacity region. Also, from Theorem 6 for the symmetric demands problem, the weak edge cut bound is identical to

the GNS bound, that is,

Rcol(P ) ⊆ Rcol
w.e.c.(P ). (54)

(53) and (54) imply

Rg
ach(P ) ⊆ Rg(P ) ⊆ Rcol(dP ) ⊆ Rcol

w.e.c.(dP ). (55)

Since degrees of freedom do not change by constant factor power scaling, we get

Dg
ach ⊆ Dg ⊆ Dcol ⊆ Dcol

w.e.c.. (56)

This justifies that Dcol
w.e.c. is indeed an upper bound on the DOF of the original network. From the definition of Dg

w.e.c., we

have Dg
w.e.c. = ∩col∈ZDcol

w.e.c., where Z denotes the set of all possible colorings that yield MAC+BC Gaussian networks. Using

this and (56) we have

Dg
ach ⊆ Dg ⊆ Dg

w.e.c.. (57)

Now, consider a subset of edges F ⊆ E in the polymatroidal network. Let the value of this cut in the polymatroidal network

be ν(F ). By the definition of cuts in polymatroidal network, ν(F ) is achieved by an optimal assignment g of each edge
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(u, v) ∈ F to either node u or v and the summing up the sub-modular functions in the polymatroidal network. Recall that the

value of the cut ν(F ) is given by,

ν(F ) :=
∑

v

{ρInv (In(v) ∩ g−1(v)) + ρOut

v (Out(v) ∩ g−1(v))}.

Each sub-modular function has the same value ( 12 ) for a non-empty subset. Hence the total value of the edge-cut in the

polymatroidal network is equal to one half of the number of nodes that are assigned at least one incoming edge by the

assignment plus one half of the number of nodes that are assigned at least one outgoing edges. From this optimal assignment

g, we describe a specific coloring from a partition of F into equivalence classes using the following equivalence relation ∼,

where

e1 ∼ e2 ⇐⇒ g(e1) = g(e2) = head(e1) = head(e2) or

g(e1) = g(e2) = tail(e1) = tail(e2),

i.e., e1 ∼ e2 if they are assigned by g to the same node and share the head or tail. We assign distinct color to equivalence

classes and each edge in the equivalence class is assigned the same color. The edges not in F are all assigned distinct colors,

which are disjoint from the colors already assigned. This defines a colored network, whose DOF upper bounds the DOF of

the original network.

The DOF value of this GNS cut is simply the sum of the number of broadcast or MAC channels involved in the cut. This

is exactly equal to the number of colors in the cut, which is the same as the number of distinct equivalence classes, which is

equal to 2ν(F ). Thus the degrees of freedom of the cut F , d(F ) is upper bounded by 2ν(F ), and therefore,

Dg
w.e.c. ⊆ Dcol

w.e.c. ⊆ 2Rpoly
w.e.c.. (58)

From (52), (57) and (58), we get

Dg
w.e.c.

κ log3(k + 1)
⊆ Dg

ach ⊆ Dg ⊆ Dg
w.e.c., (59)

which proves our claim.

B. Ergodic Gaussian Channels

In an ergodic wireless network, the channel model is similar to the fixed Gaussian network, except that instead of assuming

constant channel coefficients hij(t) = hij , we assume that for each (j, i) ∈ E , the channel coefficient hij(t) is varying as a

function of time. In particular, we assume that hij(t) is i.i.d. according to a fading distribution p(h) across i, j, t, i.e., identical

and independent across all the edges and time. We make another assumption, that the fading distribution p(h) is symmetric,

i.e., p(h) = p(−h) with Eh|h|2 = 1 and also that it satisfies the following weak tail assumption,

a := e−E(log |h|2) < ∞. (60)

Many common fading distributions satisfy this assumption. One particularly useful example of such a fading distribution is

the i.i.d. complex Gaussian distribution, for which a ≈ 1.78 [27].

Our main result in this setting is the following.

Theorem 17. For directed Gaussian network with symmetric demands, with a symmetric weak-tailed ergodic fading distribution,

the rate region given by Rach(P ) satisfying

Rw.e.c.(
P
ad3 )

κ log3(k + 1)
⊆ Rach(P ) ⊆ C(P ) ⊆ Rw.e.c.(P ), (61)

is achievable, where κ is a universal constant, d is the maximum degree of any node and a = e−E(log |h|2).

The proof of this result is similar to the case of general static networks in Subsection VII-A and has been carried out for

bidirected wireless networks in [1]. We only sketch the basic differences in the proof here.

The wireless network is converted into a polymatroidal network using the following physical layer scheme: At any given

instant, we choose a subset of nodes as transmitter and another subset of nodes of the same size as receiver, and pair them

up as into transmitter-receiver pairs. This creates an interference channel between the set of transmitting nodes and receiving

nodes, in this interference channel, ergodic interference alignment [28] can achieve the following rate,

r :=
1

2
Eh log

(

1 + |h|2P
)

, (62)
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for every transmitter receiver pair which is connected. When we time-share between all such possible transmitter subset,

receiver subset and matching choices, we get a polymatroidal network specified by the same set of edges as the original

wireless network with submodular functions on the nodes given by,

ρInv (S) = r ∀S �= ∅ ⊆ In(v) ∀v ∈ V, (63)

ρOut

v (T ) = r ∀T �= ∅ ⊆ Out(v) ∀v ∈ V. (64)

We define the weak edge-cut for the ergodic wireless network similar to the definition of the weak edge-cut for fixed wireless

network, using the sharpest upper bound given by the coloring of the edges that induces a MAC+BC network, i.e.,

Rg
w.e.c.(P ) = ∩col∈ZRcol

w.e.c.(dP ), (65)

where the superscript ‘col’ here denotes a particular instance of a colored network and Z is the set of all possible colorings

of the network that lead to a MAC+BC network. By Lemma 16 and Lemma 13, we know that C(P ) ⊆ Rg
w.e.c.(P ), i.e., the

region Rg
w.e.c.(P ) is a fundamental upper bound for the capacity region.

We then perform routing on this polymatroidal network from the sources to the sinks in the given traffic model. By

Theorem 14, routing can achieve rate tuples close to the cut-set bound in the polymatroidal network to within a poly-logarithmic

factor,

Rg
ach(P ) = Rpoly

ach (P ) ⊇ Rpoly
w.e.c.(P )

κ log3(k + 1)
. (66)

In order to connect the cuts of the Gaussian network to the polymatroidal network, we take any edge-cut F and the optimizing

assignment g of the cut, and color the edges of the Gaussian network using equivalence classes of F , in exactly the same

way as in the fixed Gaussian network case. The cuts in the colored network can be related to the cuts in the polymatroidal

network, along the lines of [1] as follows:

Rcol
w.e.c.(P ) ⊆ Rpoly

w.e.c.(ad
2P ). (67)

Therefore, we get,

Rg
w.e.c.(P ) ⊆ Rpoly

w.e.c.(ad
3P ), (68)

which completes the sketch of proof of Theorem 17.

VIII. BROADCAST ERASURE NETWORKS WITH FEEDBACK

In this section, we consider broadcast erasure networks in the presence of local one-bit-per-packet feedback. Unicast in

broadcast erasure networks is well understood, for which it has been shown [29] that min-cut is achievable using a global

linear network coding scheme (in [30], it is shown that knowledge of erasure locations is not necessary at the destination).

First we define a broadcast erasure channel as a packet transmission channel where a transmitter can transmit packets and

there are d receivers connected to the transmitter, each of which either receives the packet or the packet gets erased. In this

channel, the source node has independent messages W1, ...,Wd to communicate to each of the destinations T1, .., Td at rate

R1, .., Rd.

Formally, for a broadcast erasure channel with d receivers, the channel model can be written as,

yi(t) = ei(t)x(t), ∀i = 1, 2, ..., d, ∀t, (69)

where ei is a binary random variable which when 0 represents that at receiver i, the packet got erased (we can think of x ∈ X ,

where X = {1, 2, ...,M}. If ei are all independent, then the broadcast erasure channel is said to be an independent erasure

broadcast channel. Such a channel is specified by erasure probabilities ǫi, i = 1, 2, ..., d, where

ǫi = Pr{ei = 0}. (70)

For the purpose of simplicity in this paper we will consider only broadcast erasure channels that are independent and symmetric,

which implies that there is only one parameter ǫ and ǫi = ǫ ∀i. For this channel, the cut region is specified as follows,

Rcut := {(R1, .., Rd) :
∑

i∈S

Ri ≤ 1− ǫ|S| ∀S ⊆ [d]}. (71)

The capacity region is given by

Rach := {(R1, .., Rd) :
∑

i∈[d]

Ri ≤ 1− ǫ}. (72)

The sum capacity is given by 1− ǫ, whereas the sharpest sum-rate bound implied by the cut is 1− ǫd. Thus the sum capacity

is off by a factor 1−ǫd

1−ǫ
→ d as ǫ → 1 and the cut is a very bad approximation of the capacity region.
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A broadcast erasure channel is said to have feedback if the transmitter gets to know the realization of ei(t−1) ∀i = 1, 2, ..., d
at time t. For a broadcast erasure channel with feedback, the following result connects Rach,fb, the achievable rate in the presence

of feedback to the value of the cut (which continues to bound the information rate even in the presence of feedback).

Lemma 18. [31]–[33]

Rach,fb = {(R1, ..., RD)|
∑

i=1,2,..,d

Rπ(i)

1− ǫi
≤ 1 ∀π}. (73)

Rach,fb ⊇ Rcut

ψ(ǫ, d)
, (74)

where

1

ψ(ǫ, d)
:=

d
∑

i=1

ǫi−1 − ǫi

1− ǫi
≥ 1

log2(d+ 1)
. (75)

A. Broadcast erasure network with feedback

Consider a network comprised of broadcast erasure channels with feedback. The network is described by a directed graph

G = (V,E). Let there be C such channels in the network. Let xc
v denote the input to the broadcast erasure channel c at node

v (if node v does not possess that channel c, then xc
v = ∅) and similarly let ycv denote the output from broadcast channel c at

node v. There is a symmetric demands model: there are k pairs of nodes si, ti, i = 1, 2, ..., k, where si wants to communicate

with ti at rate Ri and similarly, ti wants to communicate with ti at the same rate Ri.

We use Rer
ach to denote the achievable rate region, where er is the superscript used to denote ‘erasure’. For this network, the

main result we can show is the following,

Theorem 19. For a broadcast erasure network with feedback and symmetric demands, a separation strategy can achieve a

rate given by Rach, where,

Rer
w.e.c.

κψ(ǫ, d) log3(k + 1)
⊆ Rer

ach ⊆ Rw.e.c., (76)

with κ a universal constant and d the maximum degree of any broadcast channel in the network and ψ(ǫ, d) ≤ log2(d+ 1).

The proof of this result is simiar to that of the MAC+BC networks, and therefore the proof is only briefly sketched here.

• On each broadcast erasure channel, use the scheme of Lemma 18 to achieve a rate region close to the cut. We use the

reduced region for the achievable scheme given by
Rch

cut

log2(d+1) , where Rch
cut is the cut bound of the particular channel ch.

The reason for doing this is that this region is a polymatroidal region, whereas the original achievable region in equation

(73) is not.

• This implies that the broadcast erasure network can be replaced by a bit-pipe network, where the capacity of the bit-pipes

are jointly constrained.

• This network is not directly a polymatroidal network, on which routing achieves within a poly-logarithmic factor of the

cut-set bound in the polymatroidal network.

• Now, any cut in the polymatroidal network has a corresponding cut in the broadcast erasure network. First, we note that the

corresponding cut in the broadcast erasure network is fundamental by a simple generalization of Lemma 13 to networks

comprised of arbitrary broadcast channels. The value of the cut in the broadcast network and the polymatroidal network

are within a factor ψ(ǫ, d) (since the achievable region and the cut of each broadcast erasure channel with feedback are

within that factor by Lemma 18).

• Thus the gap between the achievable region and the cut is comprised of two parts, the ψ(ǫ, d) loss due the local channels

and the factor κ log3(k + 1) routing loss in polymatroidal networks with symmetric demands.

IX. CONCLUSION

It is intriguing that the kind of symmetry that allows results suggesting the closeness of flow and edge-cuts also leads to the

near-fundamentality of such edge-cuts. It would be interesting to see whether there is a deeper explanation of this phenomenon.
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