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Network-centered homeostasis through inhibition

maintains hippocampal spatial map and cortical circuit

function

Klara Kaleb, Victor Pedrosa, Claudia Clopath

Bioengineering Department, Imperial College London, London, United Kingdom

Abstract

Despite ongoing experiential change, neural activity maintains remarkable stability. Such sta-

bility is thought to be mediated by homeostatic plasticity and is deemed to be critical for normal

neural function. However, what aspect of neural activity does homeostatic plasticity conserve, and

how it still maintains the flexibility necessary for learning and memory, is not fully understood.

Homeostatic plasticity is often studied in the context of neuron-centered control, where the devi-

ations from the target activity for each individual neuron are suppressed. However, experimental

studies suggest that there are additional, network-centered mechanisms. These may act through

the inhibitory neurons, due to their dense network connectivity. Here we use a computational

framework to study a potential mechanism for such homeostasis, using experimentally inspired,

input-dependent inhibitory plasticity (IDIP). In a hippocampal CA1 spiking model, we show that

IDIP in combination with place tuned input can explain the formation of active and silent place

cells, as well as place cells remapping following optogenetic silencing of active place cells. Further-

more, we show that IDIP can also stabilise recurrent network dynamics, as well as preserve network

firing rate heterogeneity and stimulus representation. Interestingly, in an associative memory task,

IDIP facilitates persistent activity after memory encoding, in line with some experimental data.

Hence, the establishment of global network balance with IDIP has diverse functional implications

and may be able to explain experimental phenomena across different brain areas.
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Introduction

Although neural activity varies, presumably due to different demands of various cognitive func-

tions, it is usually constrained to a small operational range of only a few Hertz. This regime may

facilitate energy saving (Perrinet 2010), as well as optimal information processing (Laughlin 1981,

Stemmler & Koch 1999). Furthermore, deviations from this range are often associated with patho-

logical states, such as epilepsy, schizophrenia, and Fragile X syndrome (Dickman & Wondolowski

2013). Given that neural activity undergoes constant experiential change, there exists a require-

ment for active processes to maintain stability. Many such processes have been identified, such as

synaptic scaling (Turrigiano et al. 1998, Desai et al. 2002, Turrigiano & Nelson 2004, Goel & Lee

2007, Glazewski et al. 2017), intrinsic plasticity (Desai et al. 1999, Gainey et al. 2018, Lambo & Tur-

rigiano 2013, Maffei & Turrigiano 2008), meta-plasticity (Bienenstock et al. 1982, Kirkwood et al.

1996, Zenke et al. 2013, Frank et al. 2006), diffusive neuromodulation (Sweeney et al. 2015, Steinert

et al. 2008, 2011, Naumann & Sprekeler 2020), structural plasticity (Yin & Yuan 2015, Gallinaro &

Rotter 2018) and inhibitory plasticity (Woodin et al. 2003, Maffei et al. 2004, 2006, Chen et al. 2011,

Vogels et al. 2011, Keck et al. 2011, van Versendaal et al. 2012, D’amour & Froemke 2015, Udakis

et al. 2019, Clopath et al. 2016, Hennequin et al. 2017, Das et al. 2011, Haas et al. 2006). These

altogether make up the term homeostatic plasticity and, although vastly different, they all act as a

negative feedback mechanism that adjust the neural parameters to compensate for deviations from

some set-point. Homeostatic plasticity is often studied in the context of neuron-centered control,

as neurons return to their preferred level of activity after experimental manipulations that decrease

(Hengen et al. 2013) or increase activity (Pacheco et al. 2019). There is also experimental evidence

of network-centered homeostasis (Hirase et al. 2001, Slomowitz et al. 2015, Trouche et al. 2016),

where instead of the individual neurons, the mean activity of the whole network is homeostatically

maintained . However, computational studies of such mechanisms are few (Sweeney et al. 2015,

Naumann & Sprekeler 2020) and thus they remain less well understood.

To illustrate network-centered homeostasis, we turn to the hippocampus. Spatial environments

are known to be represented by a cognitive map, consisting of a subset of hippocampal pyramidal

cells. These are called place cells, as they fire action potentials when the animal is in a specific loca-

tion within the environment, their place fields (O’Keefe & Dostrovsky 1971, O’Keefe 1976, O’keefe

& Nadel 1978, Wilson & McNaughton 1993). Optogenetic silencing of the CA1 pyramidal neurons

encoding a place map of a familiar environment leads to rapid activation of previously silent CA1

pyramidal neurons (Trouche et al. 2016). This abrupt increase is followed by a slower, seconds-long
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activity change towards a stable level on par with that of the original place map (Trouche et al.

2016). Thus, an alternative place map transiently emerges while the original place cells are being

silenced, and the spatial representation is homeostatically maintained. Furthermore, with repeated

silencing, the alternative place map is consolidated over the original place map (Trouche et al. 2016).

As neurons presumably have access only to their own activity, it is unclear how such a pertubation

can be detected and compensated for at the network level.

One of the likely candidates to implement such network-centered homeostasis are the inhibitory

neurons. CA1 inhibitory neurons are strongly connected to a large number of heterogeneously

tuned CA1 pyramidal cells (Ali et al. 1998, Freund & Buzsaki 1996, Gulyás et al. 1999, Bezaire

& Soltesz 2013, Csicsvari, Czurko, Hirase & Buzsaki 1998, English et al. 2017, Csicsvari, Hirase,

Czurko & Buzsáki 1998), and exhibit broad spatial tuning (Grienberger et al. 2017). Thus, they can

facilitate lateral inhibition between the pyramidal cells (Geisler et al. 2007) and as such, both sense

and influence the activity of their local network. Hence, plasticity in the inhibitory circuitry could

offer a highly efficient network activity homeostasis, which has previously been shown with neuron-

centered plasticity (Vogels et al. 2011). However, there are indications that inhibitory plasticity can

also act more globally. For instance, inhibitory postsynaptic potentials (iPSPs) have been shown

to decrease when global, but not single neuron, spiking activity is suppressed (Hartman et al. 2006,

Peng et al. 2010). Moreover, in the highly recurrent pyramidal cell networks of the neocortex, where

inhibitory neurons are similarly interconnected with the rest of the network (Sohya et al. 2007, Niell

& Stryker 2008, Kerlin et al. 2010, Ma et al. 2010, Zariwala et al. 2011, Znamenskiy et al. 2018,

Wilson et al. 2017, Fino & Yuste 2011, Packer & Yuste 2011, Hofer et al. 2011, Bock et al. 2011,

Pfeffer et al. 2013), inhibitory scaling was shown to be Ca2+/calmodulin-dependent protein kinase

IV (CAMKIV) independent (Joseph & Turrigiano 2017), and thus may be decoupled from unique

postsynaptic neuron activity. Furthermore, sensory deprivation studies across the primary cortices

(Kuhlman et al. 2013, Barnes et al. 2015, Li et al. 2014, Gainey et al. 2018) have led to suggestions

that inhibition could be broadly adjusted as a function of the activity of the circuit (Gainey &

Feldman 2017). Inspired by all of these experimental findings, we hypothesize that the synaptic

input to the inhibitory neurons could act as a proxy for the local network activity, and as such be

used to adjust the level of inhibition appropriately.

In this work, we computationally study the properties and potential functionality of such novel

inhibitory plasticity, which we term input-dependent inhibitory plasticity (IDIP). First, we show
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that such plasticity provides a mechanistic explanation for the emergence of active and silent place

cells in a hippocampal CA1 network model. Our model also reproduces the previously unexplained

experimental data of fast and reversible remapping following acute optogenetic place map silencing

(Trouche et al. 2016), as well as the consolidation of the alternative place map following repeated

silencing (Trouche et al. 2016). Furthermore, we show that IDIP in a cortical recurrent network

model provides a form of rapid firing rate homeostasis while maintaining important network features,

such as firing rate heterogeneity and persistent activity. Thus, we show that IDIP allows for ac-

curate maintenance of neural representation while preserving flexibility important for neural coding.
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Results

Input-dependent inhibitory plasticity (IDIP) rule as a homeostatic mech-

anism

Experimental studies suggest an existence of network-centered homeostasis (Hirase et al. 2001,

Slomowitz et al. 2015, Trouche et al. 2016), where the mean firing rate of the network, rather than

that of the individual neurons, is homeostatically maintained. For example, rapid homeostasis of

place representation in the hippocampal CA1 region is observed after optogenetic silencing of a

familiar place map, through the emergence of an alternative place map (Trouche et al. 2016). The

likely candidates underlying such a mechanism are the inhibitory neurons, due to their dense inter-

connectivity with the surrounding pyramidal cells, both in the hippocampus (Ali et al. 1998, Freund

& Buzsaki 1996, Gulyás et al. 1999, Bezaire & Soltesz 2013, Csicsvari, Czurko, Hirase & Buzsaki

1998, English et al. 2017, Csicsvari, Hirase, Czurko & Buzsáki 1998) and in the neocortex (Sohya

et al. 2007, Niell & Stryker 2008, Kerlin et al. 2010, Ma et al. 2010, Zariwala et al. 2011, Znamenskiy

et al. 2018, Wilson et al. 2017, Fino & Yuste 2011, Packer & Yuste 2011, Hofer et al. 2011, Bock

et al. 2011, Pfeffer et al. 2013). Furthermore, rapid disinhibition has been shown to be the first

step in circuit reorganization after experimental deprivation across the sensory cortices (Kuhlman

et al. 2013, Barnes et al. 2015, Li et al. 2014, Gainey et al. 2018), leading to suggestions that in-

hibition could be broadly adjusted based on the activity of the circuit (Gainey & Feldman 2017).

Such global regulation of network activity could be achieved through the modulation of inhibition

as a function of the synaptic input the inhibitory neurons receive. To this end, we hypothesize a

plasticity mechanism in which strong inputs onto the inhibitory neurons lead to strengthening of

the inhibitory output, whereas weak inputs onto the inhibitory neurons lead to weakening of the

inhibitory output. For simplicity, we choose to implement this input-dependent inhibitory plasticity

(IDIP) rule by scaling the inhibitory synaptic weights as a function of the difference between the

actual and the target synaptic input that each inhibitory neuron receives (Fig 1.A). Note that such

cell-autonomous plasticity could also be implemented through the plasticity of excitability of the

inhibitory neurons, which is not explored in this work.
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The IDIP rule allows for the emergence of active and silent place cells

in a hippocampal network

To assess whether IDIP can lead to the emergence of active and silent place cells, we build a

hippocampal network model of leaky integrate-and-fire neurons. The network model consists of the

CA3 and CA1 region (Fig 1.B). Each pyramidal cell in the CA3 region receives unique place tuned

external current (Fig S1.A-B), representing the location of a simulated mouse on a 1D annular track

with equally spaced place fields. The CA3 neurons project to the CA1 excitatory neurons, which

are divided into equally sized groups, with neurons in each group tuned to the same place field. As

the CA1 excitatory neurons are poorly recurrently connected (Deuchars & Thomson 1996, Thomson

& Radpour 1991), in our simulations we assume that there are no recurrent connections between

them. The CA1 excitatory neurons project to the CA1 inhibitory neurons and the CA1 inhibitory

neurons project back to the CA1 excitatory neurons. The CA1 inhibitory neurons have no spatial

tuning (Fig S2.A), in agreement with experiments (Dupret et al. 2013, Grienberger et al. 2017). The

excitatory synapses between the CA3 and CA1 excitatory neurons and the inhibitory synapses to

the CA1 excitatory neurons are made plastic with Hebbian plasticity and the IDIP rule respectively.

We first wanted to test whether IDIP could allow for the emergence of both active and silent

place cells in the CA1 region. The experiments suggest that the cells which later become active

or silent are differentiable even before the first exploration of the environment (Epsztein et al.

2011). We incorporate this in our model by introducing variability in the amplitude of the place

tuning of the CA1 excitatory neurons belonging to the same group (Fig 1.C-D, Fig S3.A-B). As the

initial inhibitory synaptic weights are set to low values, all the CA1 excitatory neurons are active,

covering the whole environment (Fig 1.E). We then let our simulated mouse complete 100 laps on

the track, which we term the exploration phase. During this phase, the CA1 excitatory neurons

that are highly place tuned are potentiated more. Through activity, their tuning also increases in

a positive feedback loop characteristic to Hebbian learning (Fig 1.F-G, Fig S3.C-D). This increases

the synaptic input to the CA1 inhibitory neurons, and hence increases the inhibitory synaptic

weights through IDIP (Fig S2.B). As the CA1 excitatory neurons with lower place tuning are less

active, they are unable to escape the increasing lateral inhibition. Thus stable active and silent

place cells form within each CA1 group (Fig 1.H, Fig S3.E-F). The absence of the target firing rate

for individual excitatory neurons is essential for this. Hence, we show that the IDIP rule together

with Hebbian plasticity and place tuned inputs can explain the formation of active and silent place

cells in a hippocampal network model.
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Figure 1. The IDIP rule enables emergence of active and silent place cells in a

hippocampal network. A. Diagram of the inhibitory plasticity rule. An inhibitory neuron (blue) adjusts its

projecting inhibitory synaptic weights based on the synaptic current it is receiving. Strong inputs onto inhibitory

neurons lead to strengthening of inhibitory output weights, whereas weak inputs onto inhibitory neurons lead to

weakening of inhibitory output weights. B. Hippocampal network diagram. The CA3 region consists of 10 excitatory

neurons (purple triangles). Each receives unique place-dependent external current, representing the location of a
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simulated mouse on a 1D annular track with equally spaced place fields. CA3 neurons project to 100 CA1 excitatory

neurons (green triangles). These are split in 10 equally sized groups, with neurons in each group tuned to the same

place field. CA1 excitatory neurons project to CA1 inhibitory neurons (blue circles) , which in turn project back to

the CA1 excitatory neurons. The excitatory synapses from the CA3 to the CA1 are plastic under Hebbian plasticity

and the inhibitory synapses in the CA1 are plastic under IDIP. C-E State of the network during the first lap, before

any learning. C. A diagram of a sample microcircuit found in the network B, consisting of 2 CA1 excitatory neurons

(1 and 2) with the same spatial tuning, but with neuron 2 having slightly larger CA3 to CA1 synaptic strengths.

D. The excitatory (purple), inhibitory (blue) and net (green) currents received by neurons 1 and 2 during the first

lap on the track. The higher peak net current received by neuron 2 reflects its higher place field tuning compared

to neuron 1. E. The firing rates of all the excitatory neurons in the CA1 network (y-axis) during the first lap on

the simulated track (x-axis). All the place cells are active but with varying amplitudes, reflecting differences in their

place tuning strengths. F-H Same as in B-D, but after inhibitory and excitatory learning (100 laps). F. The same

microcircuit diagram as in C but after learning. The CA3 to CA1 excitatory synaptic plasticity leads to increased

activity of both neurons. Due to the differences in their tuning, the excitatory synapses to neuron 2 are potentiatied

more. At the same time, increased activity in the CA1 excitatory neurons increases input to the inhibitory neurons,

and thus the inhibitory synaptic weights are increased as well. This increased inhibition eventually completely

overcomes excitation in the less active neuron 1 and hence it becomes a silent place cell (grey). G. Excitatory

(orange), inhibitory (blue) and net (green) currents received by neurons 1 and 2 during the last lap on the track.

The difference in the peak net currents from the first lap D is amplified with learning. H. The firing rates of all the

excitatory neurons in the CA1 network (y-axis) during the last lap on the simulated track (x-axis). The place cells

have a well defined place field and a subset of cells within each place tuned group have become silent.
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The IDIP rule enables rapid homeostatic remapping during active place

cells silencing

To assess whether the proposed IDIP rule can facilitate rapid place cell remapping, we perform

a silencing protocol as in Trouche et al. (2016) (Fig 2.A). After the exploration phase, we tag all the

established active place cells and silence them. In the networks with (Fig 2.B) and without (Fig.

2.F) IDIP, such silencing leads to a decrease in the excitatory drive to the CA1 inhibitory neurons

and subsequently a rapid decrease in the inhibition to the previously silent place cells, which then

form an alternative place map. However, the degree of the alternative place map activation will

depend on inhibitory plasticity. In the networks with IDIP during the silencing (Fig 2.B), the dy-

namics of the alternative place map activation are similar to that observed experimentally (Fig 2.C)

(Trouche et al. 2016). The firing rates of the alternative place cells are first increased almost imme-

diately after silencing onset (fast phase) and are further increased within the next 1-2 seconds (slow

phase) (Fig 2.D). Our model allows us to decompose the two phases. The fast phase is due to the

rapid decrease in CA1 inhibitory neuron firing rate (Fig S4.A), as the originally active place cells,

which were driving their activity, are no longer active. Thus the alternative place map emerges,

but at a lower firing rate than the original place map, due to the place cells forming the alternative

place map being less sharply place-tuned than the place cells that formed the original place map.

In the networks without IDIP during the silencing (Fig 2.F), the activity of the alternative place

map does not progress beyond this phase (Fig 2.G-H). However, in the networks with IDIP during

the silencing, a second, slower phase of alternative map activation occurs as the level of inhibition

gets adjusted to the lower activity and thus lower synaptic input from the alternative place cells

(Fig S4.B) . Therefore the final activity of the alternative place map matches that of the original

place map (Fig 4.E). Hence, the IDIP rule acts as a homeostatic mechanism to maintain network

activity during acute silencing.

When we turn silencing off, the original place map re-emerges (Fig 2.C), in agreement with

experiments (Trouche et al. 2016). However, repeating the silencing protocol (Fig 2.I) consolidates

the alternative place map (Fig 2.J), also in agreement with experiments (Trouche et al. 2016).

In our model this happens through the gradual activity-dependent Hebbian plasticity in the CA3

to CA1 excitatory synapses (Fig S5.A). Therefore, our model suggests that synaptic plasticity of

feedforward inputs onto the CA1 pyramidal cells is a good candidate for the mechanism underlying

place map consolidation.
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Figure 2. Place cells silencing leads to a rapid emergence of an alternative place map.

A. Silencing protocol similar to Trouche et al. (2016). All the active cells (green) are tagged (1), silenced for one

lap (2) and released in the subsequent lap (3). B-E Silencing in the network following IDIP. B. Network diagram

after the exploration phase (100 laps). C. Mean firing rate of the network just before (1), during (2), and after

silencing (3). During silencing (2) there is rapid activation of an alternative place map, consisting of the previously

silent cells (grey). After silencing (3), the original map reactivates (green). D. Alternative place map activation

just after silencing. E. The mean firing rate of the place map before (1) and during (2) silencing. Gray circles

indicate individual trials. Black circles indicate average over all 20 trials. F-H Same as in B-E but with inhibitory

plasticity turned off during silencing (2). F. Network diagram after inhbitory and excitatory learning (lap 100) with

IDIP turned off during silencing (2). G. Without IDIP during the silencing (2) there is low alternative place cell

activation. H. Without IDIP during the silencing (2) the mean firing rate of the place map decreases. Gray circles

indicate individual trials. Black circles indicate average over all 20 trials. I Consolidation protocol similar to Trouche

et al. (2016). The established place map is silenced for 4 consecutive laps, and then released for a single testing lap.

This is repeated for 10 trials. J. Mean firing rate of the active (green) and silent (grey) place map during the testing

laps at each trial. Trial 0 corresponds to the activity of the network just after the exploration phase.
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The IDIP rule establishes global E/I balance in recurrent networks

The inhibitory neurons also feature dense connectivity in the neocortical circuits (Sohya et al.

2007, Niell & Stryker 2008, Kerlin et al. 2010, Ma et al. 2010, Zariwala et al. 2011, Znamenskiy

et al. 2018, Wilson et al. 2017, Fino & Yuste 2011, Packer & Yuste 2011, Hofer et al. 2011, Bock

et al. 2011, Pfeffer et al. 2013) and there is some evidence for a network-centered control of cortical

activity through inhibition (Joseph & Turrigiano 2017, Gainey & Feldman 2017, Gainey et al. 2018).

To assess whether the proposed IDIP learning rule can homeostatically regulate such circuits, we

simulate a cortical network of leaky integrate-and-fire neurons with sparse recurrent connectivity

(Fig 3.A). Each neuron in the network receives large external excitatory input and the initial in-

hibitory synaptic weights are set to low values. Thus, without any plasticity, the network exhibits

pathologically high activity (Fig 3.B). Due to the high activity of the network, the inhibitory neu-

rons initially receive very large excitatory synaptic input, and thus the IDIP rule increases the

inhibitory synaptic weights (Fig 3.B - IDIP turned on at 15s, Fig S6.A). The network, therefore,

progresses from a high synchronous to a low asynchronous firing following the IDIP rule (Fig 3.E).

The excitatory firing rates reach a more physiological regime (Fig 3.B, Fig S6.B), with a reasonable

firing rate distribution and irregular firing rate dynamics (Fig 3.C). Inhibitory neurons in the net-

work also exhibit a diversity of firing rates and irregular firing rate dynamics (Fig S7.A-E). Hence,

IDIP can homeostatically regulate network-wide activity.

The IDIP rule proposed does not impose a unique target firing rate for each neuron in the

network. Instead, it controls the mean firing rate across the whole network. The final variability

in the net current received by each individual excitatory neuron after inhibitory learning (Fig 3.F)

results in a diversity of neuronal firing rates (Fig 3.C). This is in contrast with the network following

a neuron-centered rule, such as inhibitory spike-timing dependent plasticity (iSTDP) (Vogels et al.

2011), which effectively sets a target firing rate for the excitatory neurons (Fig S8.A-E). To assess

the range of the firing rates the IDIP rule can support in a recurrent network, we simulate the

network for various values of the inhibitory target input. Higher values of the inhibitory target

input lead to higher network activity (Fig 3.D, y-axis). Hence, the activity of the network following

the IDIP rule depends on the target input of the inhibitory neurons. Altogether, this means that

IDIP establishes a global, rather than detailed, network excitatory (E)/ inhibitory (I) balance while

allowing for network diversity.
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Figure 3. IDIP establishes global E/I balance in recurrent networks. A. A recurrent network

of 80 excitatory (white triangles) and 20 inhibitory (blue circles) leaky integrate-and-fire neurons receiving external

input from a pool of 100 Poisson excitatory neurons. Only the inhibitory synaptic weights are made plastic with

IDIP. B. The evolution of the mean excitatory firing rate (black) and the mean inhibitory weight (blue) of the

network. Shaded regions correspond to the standard deviation of individual units. IDIP is turned on at 15s (dashed

vertical line). Activity of the network decreases as inhibitory weights increase. C. The excitatory firing rate stabilises

to a mean value of 6.2 Hz (left, black triangle). The network displays an asynchronous firing pattern (right). D.

The range of mean network firing rates IDIP can support, with varying input target value (y-axis) and inhibitory

connectivity (x-axis). The orange square marks the parameters used in our simulations. E. Spike raster plots at the

time points marked in B. The network progresses from high synchronous to low asynchronous firing following the

IDIP rule. F. Mean membrane currents as a function of excitatory neuron index at the time points marked in B.
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The IDIP rule enables maintenance of neural representations

We wanted to assess whether neural representation could be maintained in the networks fol-

lowing the IDIP rule. To assess whether individual neurons can remain highly active, we increase

the external drive to a subset of neurons in the network (Fig 4.A). The selected subset sustains a

higher firing rate relative to the rest of the network following inhibitory learning with IDIP (Fig

4.B, S9.A). This effect is mediated by the highly active neural subset monopolizing the input to the

inhibitory neurons, leading to greater inhibition to the rest of the network. Thus the rest of the

network compensates for this increased activity, as seen in a slight decrease in the mean network

firing rate (Fig 4.C). As expected, the deviations from the target excitatory neuron firing rate are

suppressed in the network following iSTDP (Vogels et al. 2011) (Fig S9.B). Hence, IDIP can control

the recurrent network activity while preserving activity heterogeneity.

To assess whether the relative firing rates between neurons can be conserved across the whole

neural population, we rank the firing rates of the neurons at the beginning of our simulations, be-

fore any inhibitory plasticity (Fig 4.D). We then measure whether this rank is maintained over time

following inhibitory plasticity (Fig 4.D). In networks following IDIP, the firing rate rank correlation

is largely conserved after inhibitory learning (Fig 4.E, Fig S9.C). We compare this with the network

following iSTDP (Vogels et al. 2011), where the firing rate rank correlation is mostly lost, as all

neurons fire at similar firing rates at the end of the simulations (Fig 4.E, Fig S9.D). Hence, IDIP

can preserve heterogeneity in firing rates, both at a single neuron level and across the whole network.

The IDIP rule enables memory trace persistence and recall

We also assess the performance of the network following IDIP in a simple associative memory

task. Once the network activity stabilises, we encode a memory by increasing the recurrent excita-

tory connections within a pattern in the network (Fig 4.F), as previously done in networks following

iSTDP (Vogels et al. (2011), reproduced in Fig S10.C-D). After encoding, the neurons recruited to

the memory pattern exhibit sustained activity which is higher than the rest of the network, even af-

ter IDIP has converged (Fig 4.G-H, Fig S10.A). This is in contrast to the networks following iSTDP

(Vogels et al. 2011), in which the activity of the memory ensemble becomes indistinguishable from

the rest of the network at convergence (Fig S10.C-D). Such persistent activity of the memory cells

has been reported in some experiments (Yassin et al. (2010), Ghandour et al. (2019), but see Barron
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et al. (2017)).

We then test whether we can recall the pattern, given that IDIP made inhibition stronger in the

network. By increasing the external current to some units in the pattern, the memory can be re-

called (Fig 4.G-H, Fig S10.B). Performing the same protocol in a network following iSTDP (Vogels

et al. 2011) shows that a lower number of memory cells are re-activated with recall (Fig S10.C). Thus

recall in the network following IDIP has higher fidelity. This is in line with experiments (Pignatelli

et al. 2019), where increased activity of the memory cells facilitates greater pattern completion.

Hence, the IDIP rule allows for sustained activity of memory cells after encoding, as well as faithful

memory recall from a partial cue.

In summary, we show that our proposed inhibitory plasticity rule, IDIP, can homeostatically

regulate activity in models of hippocampal and cortical networks. Importantly, using IDIP we are

able to reproduce previously unexplained experimental findings in the hippocampus (Trouche et al.

2016) and propose its potential functional implications in the recurrent cortical networks.
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Figure 4. IDIP rule enables maintenance of neural representations and memory trace

persistence. A-C. Perfomance of the IDIP rule in networks with heterogeneous activity. A. The same network

as in Fig 3.A, but with a subset of neurons receiving increased external input. B. The average firing rates of

the networks with increased input as in A. Bold lines denote the average and the shaded area indicated standard

deviation over 20 trials. The increased activity relative to the rest of the network is sustained after inhibitory

learning with IDIP. C. The average firing rate of the networks without (left) and with (right) input heterogeneity.

Gray circles indicate individual trials and the black circles indicate average over all 20 trials. D-E. Performance of

IDIP and iSTDP (Vogels et al. 2011) in a network representation task. D. Network representation task diagram.

We calculate the preservation of the correlation with the initial rank of firing rates during the entire course of the

simulation. E. The Spearman rank correlation coefficient for the network following IDIP (black) and iSTDP (grey).

Error bars correspond to standard deviation over 20 trials. The horizontal dashed line indicates no correlation.

F-H. Perfomance of the IDIP rule in an associative memory task. F. Associative memory task protocol. Following

network stabilization (1), we increase recurrent excitatory connections between a subset of neurons (2). This leads

to increase in inhibition (3). The encoded assembly is recalled by increasing external input to a subset of neurons

within the pattern (4). G. Histograms of average firing rates of the assembly (orange) and the rest of the network

(grey) at the marked task time points F. The black triangles indicate the mean firing rates. H. The evolution of the

firing rates of the assembly (orange) and the rest of the network (grey) during the memory task. The shaded area

indicates standard deviation over all units in each network subset.

16

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 4, 2020. ; https://doi.org/10.1101/2020.08.04.236042doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.04.236042
http://creativecommons.org/licenses/by/4.0/


Discussion

Although the study of neural homeostasis is frequently neuron-centered, there is some evidence

that network-centered mechanisms are also at play (Hirase et al. 2001, Slomowitz et al. 2015,

Trouche et al. 2016). One of the candidates proposed for the implementation of such homeostasis

are the inhibitory neurons, due to their dense connectivity, both in the hippocampus (Ali et al.

1998, Freund & Buzsaki 1996, Gulyás et al. 1999, Bezaire & Soltesz 2013, Csicsvari, Czurko, Hirase

& Buzsaki 1998, English et al. 2017, Csicsvari, Hirase, Czurko & Buzsáki 1998), as well as in the

neocortex (Sohya et al. 2007, Niell & Stryker 2008, Kerlin et al. 2010, Ma et al. 2010, Zariwala et al.

2011, Znamenskiy et al. 2018, Wilson et al. 2017, Fino & Yuste 2011, Packer & Yuste 2011, Hofer

et al. 2011, Bock et al. 2011, Pfeffer et al. 2013). In this work, we take inspiration from the experi-

mental data and hypothesize that network homeostasis could be achieved through input-dependent

inhibitory plasticity (IDIP), in which the inhibition is adjusted as a function of the synaptic in-

put the inhibitory neurons receive. We show that in a hippocampal CA1 network model, IDIP

can provide a mechanistic circuit understanding and reproduce experimental data in which place

cells are optogenetically silenced, unmasking a previously silent place map (Trouche et al. 2016).

Furthermore, we show that such a learning rule can also homeostatically regulate the activity of a

recurrent neural network, while preserving flexibility important for neural coding. Altogether, our

results suggest that network activity homeostasis following external manipulation or endogenous

changes could share a common underlying mechanism.

In contrast to the commonly used neuron-centered inhibitory plasticity (Vogels et al. 2011), the

IDIP rule features an absence of a target firing rate for each excitatory neuron. Instead, with the

IDIP rule, the level of inhibition is modulated to maintain the mean firing rate of the whole network.

The importance of this is seen in our data-driven model of the CA1 network, where IDIP allows

for emergence of both active and silent place cells. In our model, these emerge as the neurons with

higher activity dominate the input to the inhibitory neurons, and thus the recruitment of lateral

inhibition. Conversely, the less active cells become silent. Thus, there is an amplification of slight

differences in activity through scaling of the tonic inhibition, indiscriminately to all cells. Such

competition for the recruitment of inhibition has previously been suggested to shape hippocam-

pal assemblies (Buzsáki 2010). Furthermore, silencing of an established place map induces rapid

compensatory adjustment of inhibition, and thus an emergence of an alternative place map (Fig

2.C), as reported experimentally (Trouche et al. 2016). We show that non-plastic inhibition is not

consistent with the experimental data (Fig 2.G). Finally, we show that repeated silencing leads to
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alternative place map consolidation (Fig 2.J), as reported experimentally (Trouche et al. 2016). In

our model, this occurs through gradual changes in the CA3 to CA1 excitatory synaptic weights

(Fig S5), facilitated by disinhibition during each silencing lap (Fig S4.A). Thus, through time, the

original place map gets destabilised, which has previously been suggested as a necessary condition

for remapping (Schoenenberger et al. 2016). Hence, network-centered homeostasis through IDIP

provides a possible explanation for the previously unexplained experimental phenomena in the hip-

pocampus.

We also assess whether IDIP can homeostatically regulate dynamics in the recurrent networks

typical of the neocortex. Due to the absence of a firing rate set-point in the networks following IDIP,

there is diversity in the neuronal firing rates within the recurrent network after inhibitory learning

(Fig 3.C). The resulting firing rate distribution is consistent with the broad and heavy-tailed distri-

bution of firing rates observed experimentally (Wohrer et al. 2013), with some neurons more active

than others (Mizuseki & Buzsáki 2013). Such range of activity is thought to be optimal for the

information storage in the brain (Laughlin 1981) and enables linear network responses over a broad

range of inputs (Sweeney et al. 2015). In our networks, highly active neurons dominate synaptic

input to the inhibitory neurons, recruit inhibition more and thus inhibit other neurons more. Hence

with the IDIP rule, highly active neurons can remain so as long as the rest of the network can com-

pensate for it, providing a more flexible control. We illustrate this when we increase the external

inputs to some neurons and they remain consistently more active than the rest of the network (Fig

4.B). Furthermore, we show the IDIP rule can also extend this stability of the firing rate rank across

the whole neural population (Fig 4.E). This is not the case with inhibitory spike-timing dependent

plasticity (iSTDP) (Vogels et al. 2011), as the ranks get shuffled following inhibitory learning, due

to the unique firing rate set-point constraint (Fig 4.E). Hence, the IDIP model can maintain the

population firing rate around a target value while preserving neural representation. Importantly,

the neural activity diversity is not imposed but emerges due to random network structure. Although

such population heterogeneity can be imposed, this has been previously shown to lead to limited

network responsiveness (Sweeney et al. 2015). Hence, IDIP provides a global control of recurrent

network dynamics, without a firing rate set-point for each neuron, which allows for flexibility and

thus conservation of network representation.

Additionally, in an associative memory task, we show that the networks following the IDIP rule

can sustain memory encoding, without disturbing the rest of the network (Fig 4.F-G). This has
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previously also been shown with iSTDP (Vogels et al. 2011). However, the key difference is that

networks following the IDIP rule exhibit persistent activity of assemblies after encoding (Fig 4.G-

H), unlike iSTDP (Fig S10.C-D), as well as higher fidelity of recall (Fig 4.G-H). Persistent activity

of the memory cells has been reported in some experiments (Yassin et al. (2010), Ghandour et al.

(2019), but see Barron et al. (2017)) and is thought to be involved in memory bindings via Hebbian

plasticity, as the increased activity further strengthens the memory trace (Han et al. 2007) and

facilitates greater recall (Tonegawa 2019). Thus, the global network control provided by IDIP may

have important functional implications in memory processing and recall.

As highlighted throughout this work, dense connectivity of the inhibitory neurons to their local

networks makes them an ideal candidate for network-centered homeostasis. However, more sparsely

connected networks would lead the inhibitory neurons to sense a subset of the network and poten-

tially affect a different subset. Thus the final network firing rate would be less constrained (Fig

3.D, Fig S11). This suggests that the network activity is differentially modulated by the IDIP

rule depending on the network architecture. In the limit of very sparse networks, IDIP may not

even act as a homeostatic mechanism and winner-take-all dynamics may dominate (Fig S12). This

may be relevant in the prevention of redundancy or in contrast enhancement (Hartline & Ratliff

1957). Furthermore, inhibitory connectivity is known to vary within (Meyer et al. 2011) and be-

tween (Tamamaki & Tomioka 2010) brain areas. Thus, IDIP rule would have different functional

consequences in different brain regions.

The basis of our proposed IDIP rule is that the inhibitory neurons, presumably fast-spiking

parvalbumin (PV+) cells, can sense and affect the network activity through their input and output

synaptic connections respectively. Input integration over the timescale used in our model could be

mediated through N-methyl-D-aspartate receptors (NMDARs), which are known to enhance the

neuronal computational repertoire (Gasparini & Magee 2006, Losonczy & Magee 2006, Poirazi &

Mel 2001, Stuart & Spruston 2015, Poirazi & Papoutsi 2020). In the hippocampus, NMDAR knock-

outs in the PV+ cells disrupt spatial representation (Korotkova et al. 2010) and NMDAR were also

shown to be preferentially localized at feedback synaptic inputs to the PV+ cells (Le Roux et al.

2013). NMDAR have also recently been shown to facilitate supralinear dendritic integration in the

PV+ cells (Cornford et al. 2019), a model of which also shows winner-take-all dynamics between

distinct assemblies (Cornford et al. 2019). Furthermore, in the prefrontal cortex, application of NM-

DAR antagonists causes disinhibition (Homayoun & Moghaddam 2007, Jackson et al. 2004, Zhang
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et al. 2008), initially caused by decrease in the inhibitory neuron activity (Homayoun & Moghaddam

2007), possibly via changes in their excitability, with prolonged exposures modulating the synthesis

of gamma-Aminobutyric acid (GABA) (Zhang et al. 2008). Inhibitory output has also been shown

to be modulated by activity, through modulation of rate limiting enzymes of GABA synthesis (Lau

& Murthy 2012) or GABA transporters (De Gois et al. 2005). Such plasticity mechanisms have

also recently been reported in the chandelier cells (Pan-Vazquez et al. 2020) and striatial inhibitory

neurons (Paraskevopoulou et al. 2019) during development. Altogether, these studies indicate that

our model of tonic inhibition modulated as a function of synaptic input to the inhibitory neurons

is a biologically plausible mechanism.

Finally, other distinct solutions have been proposed for network-centered homeostasis, such as

diffusive neuromodulation via nitric oxide (Sweeney et al. 2015) and GABA spillover (Naumann

& Sprekeler 2020). It is very likely that they all coexist, alongside other, neuron-centered homeo-

static mechanisms. Each homeostatic mechanism may control distinct aspects of neural function,

as shown in a recent computational study (Wu et al. 2019). Hence, it would be of future interest to

study the IDIP rule in conjunction with other homeostatic plasticity rules, such as synaptic scaling

(Turrigiano et al. 1998, Desai et al. 2002, Turrigiano & Nelson 2004, Goel & Lee 2007, Glazewski

et al. 2017), intrinsic plasticity (Desai et al. 1999, Gainey et al. 2018, Lambo & Turrigiano 2013,

Maffei & Turrigiano 2008), metaplasticity (Bienenstock et al. 1982, Kirkwood et al. 1996, Zenke

et al. 2013, Frank et al. 2006), diffusive neuromodulation (Sweeney et al. 2015, Steinert et al. 2008,

2011, Naumann & Sprekeler 2020), structural plasticity (Yin & Yuan 2015, Gallinaro & Rotter

2018) and inhibitory plasticity (Woodin et al. 2003, Maffei et al. 2004, 2006, Keck et al. 2011, Chen

et al. 2011, Vogels et al. 2011, van Versendaal et al. 2012, D’amour & Froemke 2015, Udakis et al.

2019, Clopath et al. 2016, Hennequin et al. 2017, Das et al. 2011, Haas et al. 2006), as their inter-

action may increase the compensatory repertoire of the networks and endow them with non-trivial

emergent properties.
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Methods

Neuron Model

We use the single compartment leaky integrate-and-fire neuron model in our simulations. The

model is defined by a resting membrane potential VREST and membrane time constant τm. If the

membrane potential surpasses the set threshold potential θm, it fires a spike and its membrane

potential is reset back to VREST . It then enters the refractory period tref , during which it cannot

be stimulated.

The sub-threshold membrane voltage Vi of neuron i follows:

τm
dVi

dt
= (VREST − Vi) +R(gE(V E

− Vi) + gI(V I
− Vi) + Iex) (1)

where R is the membrane resistance, gE/I are the excitatory and inhibitory synaptic conduc-

tances, V E/I are excitatory and inhibitory reversal potentials and Iex is any other externally supplied

current. If neuron i receives input from neuron j, the corresponding synaptic conductance gij is

follows:

τE/I
dgij

dt
= −gij + ḡWijδ(t− tspike) (2)

where τE/I is the synaptic time constant, Wij is the synaptic weight, ḡ is a basic unit of synaptic

conductance and tspike is the time of the presynaptic spike.

Input-dependent inhibitory plasticity (IDIP)

The inhibitory plasticity depends on the input current yi received by each inhibitory neuron i

over time.

τIDIP
dyi

dt
= −yi +

∑

j

gEij(t)Sj(t) (3)

where τIDIP is the input current time constant, gEij is the excitatory synaptic conductance of the

synapse from an excitatory neuron j to an inhibitory neuron i and Sj(t) is the spike train of the

excitatory neuron j. Hence the second term is the sum of all of the excitatory input currents to

the inhibitory neuron i at time t. When the inhibitory neuron i spikes, all the inhibitory synapses
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projecting from the presynaptic inhibitory neuron i to the postsynaptic excitatory neuron j are

adjusted with respect to yi as:

∆wji = ηIDIP (yi(t)− θin) (4)

where ηIDIP is the inhibitory learning rate and θin is the constant target input for each inhibitory

neuron. In our simulations, θin is the same for all inhibitory neurons.

Hippocampal Network Model

We simulate a CA1 network consisting of NE excitatory neurons and NI inhibitory neurons.

There is full and bidirectional connectivity between the excitatory and inhibitory neurons. The

initial synaptic weights from the inhibitory to the excitatory neurons (WIE) are 200 times weaker

than the synaptic weights from the excitatory to the inhibitory neurons (WEI) . The initial values

of the inhibitory synaptic weights are set to ten times weaker than the excitatory weights. The

CA1 excitatory neurons are divided in Ng equally sized groups.

Each excitatory neuron in the CA1 network is connected to NCA3 CA3 neurons. The excitatory

synaptic weights from the CA3 neurons to the CA1 excitatory neurons are made plastic with classical

Hebbian plasticity and the inhibitory synaptic weights from the CA1 inhibitory neurons are made

plastic with IDIP.

Position-modulated inputs

We model a mouse traversing a 1D annular track with Npc equally spaced place fields. We

assume the mouse moves with a constant speed and takes 3 seconds to move from a centre of one

place field to a centre of the subsequent place field.

Each CA3 neuron receives input from one unique place field in the form of an external current

Iex. The tuning curve T with place field centered at p0 is defined as:

T (p) = exp

(

−

(p− p0)
2

2σ2
pc

)

(5)

where p is the animal’s position and σpre is the tuning width.

The place field current Iex supplied to a CA3 neuron is then:

Iex(p) = AcT (p) (6)
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where Ac is the current amplitude.

Each CA1 group is tuned to a single unique CA3 neuron, with the same tuning curve T as in

Eq. 5. Within group, the tuning amplitude for each neuron is varied. To this end, we sample a

vector of NE

Ng
random number from a normal distribution with µ = 0 and σ = 0.05. We then shuffle

this vector for each group and add a single value to the synaptic tuning curve of each neuron in the

group.

The excitatory and inhibitory CA1 neurons also receive uniform external currents, IEex and IIex

respectively.

Excitatory plasticity

The excitatory synaptic weights between CA3 and CA1 excitatory neurons follow classical Heb-

bian plasticity implemented using a symmetrical spike-timing dependent learning rule. A synaptic

trace xi assigned to each neuron i and follows:

τhebb
dxi

dt
= −xi + δ(t− tspike) (7)

where τhebb is the time constant of the learning window and tspike is the spike time. We also

include a homeostatic term which takes into account the sum of all synaptic weights onto the

postsynaptic neuron. The synaptic weight wji from the presynaptic neuron j to the postsynaptic

neuron i is updated following:

dwji

dt
= (Wmax − wji)ηhebbxixj − ηhomeo

(

∑

i

wji − θhomeo

)

(8)

where Wmax is the maximum excitatory synaptic weight, ηhebb is the learning rate of the Hebbian

term, ηhomeo is the learning rate of the homeostatic term and θhomeo is the homeostatic target.

Recurrent Network Model

We simulate a recurrent network consisting of NE excitatory and NI inhibitory neurons. The

excitatory neurons are randomly connected with a probability pEE = 0.1, in line with experiments

(Harris & Shepherd 2015). The inhibitory neurons are randomly connected to the excitatory neu-

rons with a probability pIE = pEI = 0.2. Due to the small size of the network, the in degree for
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each excitatory and inhibitory neuron is kept the same. Thus each excitatory neuron has NE× pEE

excitatory inputs and 4 NI×pIE inhibitory recurrent synaptic inputs. Furthermore, each inhibitory

neuron receives NE × pEI excitatory inputs. Due to the small network size, inhibitory to inhibitory

neuron connections are omitted (pII = 0). The values for all other synaptic weights are sampled

from a log normal distribution, in line with experiments (Song et al. 2005, Loewenstein et al. 2011),

with µ = 1.0 and σ = 0.1.

The initial values of the inhibitory synaptic weights are set to ten times weaker than the excita-

tory weights. Furthermore, the inhibitory synaptic weight update ∆wji has a multiplicative weight

dependence, such that:

wji ← (Wmax − wji)×∆wji when ∆wji > 0

wji ← wji ×∆wji when ∆wji < 0
(9)

where Wmax is the is the maximum inhibitory synaptic weight. The inhibitory learning is turned

off during the first 15 seconds of the simulation.

Random neuron input generation

Each neuron in the network is randomly connected with a probability of pex = 0.2 to a subset

of the Nex external inputs, which are modelled as Poisson process with a mean firing rate F . To

generate sufficient network activity, the synaptic weights from the external inputs to the excitatory

and inhibitory neurons are 2.5 times stronger than the mean recurrent excitatory weight. For the

simulation in Fig 2.A, the values of the synaptic weights from the external inputs to two excitatory

neurons are increased by 50%.

Memory protocol

The same network as above is used in the simulation. After the network activity stabilises (600

s), the recurrent synapses between a selected subset of NE (12/80) are increased by a factor of 5.

After the network reaches steady state again (1200 s), the values of the synaptic weights from the

NE
ex to two neurons in the assembly are increased by 50%.
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Inhibitory spike-timing dependent plasticity (iSTDP)

With iSTDP (Vogels et al. 2011), the synaptic weight wji from presynaptic inhibitory neuron i

and the postsynaptic excitatory neuron j follows:

wji ← wji + ηiSTDP (xj − α) when presynaptic neuron i spikes

wji ← wji + ηiSTDPxi when postsynaptic neuron j spikes
(10)

where ηiSTDP is the learning rate, α is the depression factor and xi/j is the neuron synaptic

trace, defined as:

τSTDP

dxi/j

dt
= −xi/j + δ(t− tspike) (11)

where τiSTDP is the learning window time constant and tspike is the spike time.

Code

In all the simulations, we use Euler integration with step size ∆t of 1 ms. The Python code will

be made freely available after publication (GitHub and ModelDB) and is given to the reviewer.
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Parameters summary

Parameters common across both simulated networks.

Neuron Model

VREST - 60 mV Resting membrane potential

Θm - 50 mV Membrane potential spiking threshold

R 100 MΩ Membrane resistance

tref 2 ms Absolute refractory period

τm 20 ms Membrane time constant

Iex 0 A Default external current

Synapse Model

ḡ 1 nS Basic weight unit

V E 0 mV Excitatory reversal potential

V I - 80 mV Inhibitory reversal potential

τE 5 ms Decay constant of AMPA-type conductance

τI 10 ms Decay constant of GABA-type conductance

IDIP

τIDIP 160 ms IDIP decay constant

Simulation

∆t 1 ms Integration time step size
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Hippocampal Network Model

CA3 neurons NCA3 10 Size of the CA3 excitatory population

CA1 neurons

NE 100 Size of the CA1 excitatory population

NI 20 Size of the CA1 inhibitory population

Ng 10 Number of excitatory neuron groups

Position Npc 10 Number of place fields

modulated σpc 6.54 a.u. Tuning width

input Ac 200 pA Current amplitude

External IEex 0.01 pA Current to the excitatory neurons

current IIex 0.5 pA Current to the inhibitory neurons

Synaptic WEI 2.0 E to I synaptic weight

weights WIE 0.1 Initial I to E synaptic weight

IDIP
ηIDIP 10 IDIP learning rate

θin 200 nS Inhibitory neuron target input

Excitatory

τhebb 20 ms Learning window time constant

Wmax 1.5 Maximum E to E synaptic weight

plasticity ηhebb 0.01 s−1 Excitatory Hebbian term learning rate

ηhomeo 0.001 s−1 Excitatory homeostatic term learning rate

θhomeo 5.2 Homeostatic target sum of weights
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Recurrent Network Model

Neurons

Nex 100 Size of the input population

NE 80 Size of the excitatory population

NI 20 Size of the inhibitory population

Probability of

pex 0.2 External input to the recurrent

pEE 0.1 Excitatory to excitatory connectivity

connections
pEI 0.25 Excitatory to inhibitory connectivity

pIE 0.25 Inhibitory to excitatory connectivity

pII 0 Inhibitory to inhibitory connectivity

External input F 10 Hz Mean firing rate of external Poisson input

Synaptic µ 1.0 Mean of the sampled distribution

weights σ 0.05 s.d. of the sampled distribution

IDIP

ηIDIP 1e5 s−1 IDIP learning rate

θin 550 nS Inhibitory neuron target input

Wmax 1.0 Maximum I to E synaptic weight

iSTDP

τiSTDP 20 ms Learning window time constant

ηiSDTP 0.05 s−1 iSTDP learning rate

α 0.2 Depression factor
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Song, S., Sjöström, P. J., Reigl, M., Nelson, S. & Chklovskii, D. B. (2005), ‘Highly nonrandom

features of synaptic connectivity in local cortical circuits’, PLoS biology 3(3).

Steinert, J. R., Kopp-Scheinpflug, C., Baker, C., Challiss, R. J., Mistry, R., Haustein, M. D., Griffin,

S. J., Tong, H., Graham, B. P. & Forsythe, I. D. (2008), ‘Nitric oxide is a volume transmitter

regulating postsynaptic excitability at a glutamatergic synapse’, Neuron 60(4), 642–656.

Steinert, J. R., Robinson, S. W., Tong, H., Haustein, M. D., Kopp-Scheinpflug, C. & Forsythe, I. D.

(2011), ‘Nitric oxide is an activity-dependent regulator of target neuron intrinsic excitability’,

Neuron 71(2), 291–305.

Stemmler, M. & Koch, C. (1999), ‘How voltage-dependent conductances can adapt to maximize the

information encoded by neuronal firing rate’, Nature neuroscience 2(6), 521–527.

Stuart, G. J. & Spruston, N. (2015), ‘Dendritic integration: 60 years of progress’, Nature neuro-

science 18(12), 1713–1721.

36

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 4, 2020. ; https://doi.org/10.1101/2020.08.04.236042doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.04.236042
http://creativecommons.org/licenses/by/4.0/


Sweeney, Y., Kotaleski, J. H. & Hennig, M. H. (2015), ‘A diffusive homeostatic signal maintains

neural heterogeneity and responsiveness in cortical networks’, PLoS computational biology 11(7).

Tamamaki, N. & Tomioka, R. (2010), ‘Long-range gabaergic connections distributed throughout

the neocortex and their possible function’, Frontiers in neuroscience 4, 202.

Thomson, A. M. & Radpour, S. (1991), ‘Excitatory connections between ca1 pyramidal cells revealed

by spike triggered averaging in slices of rat hippocampus are partially nmda receptor mediated’,

European journal of neuroscience 3(6), 587–601.

Tonegawa, S. (2019), ‘Engram cell excitability state determines the efficacy of memory retrieval’,

Neuron 101, 1–11.

Trouche, S., Perestenko, P. V., van de Ven, G. M., Bratley, C. T., McNamara, C. G., Campo-Urriza,

N., Black, S. L., Reijmers, L. G. & Dupret, D. (2016), ‘Recoding a cocaine-place memory engram

to a neutral engram in the hippocampus’, Nature neuroscience 19(4), 564–567.

Turrigiano, G. G., Leslie, K. R., Desai, N. S., Rutherford, L. C. & Nelson, S. B. (1998), ‘Activity-

dependent scaling of quantal amplitude in neocortical neurons’, Nature 391(6670), 892–896.

Turrigiano, G. G. & Nelson, S. B. (2004), ‘Homeostatic plasticity in the developing nervous system’,

Nature reviews neuroscience 5(2), 97–107.

Udakis, M., Pedrosa, V., Chamberlain, S. E., Clopath, C. & Mellor, J. R. (2019), ‘Interneuron-

specific plasticity at parvalbumin and somatostatin inhibitory synapses onto ca1 pyramidal neu-

rons shapes hippocampal output’, bioRxiv p. 774562.

van Versendaal, D., Rajendran, R., Saiepour, M. H., Klooster, J., Smit-Rigter, L., Sommeijer, J.-P.,

De Zeeuw, C. I., Hofer, S. B., Heimel, J. A. & Levelt, C. N. (2012), ‘Elimination of inhibitory

synapses is a major component of adult ocular dominance plasticity’, Neuron 74(2), 374–383.

Vogels, T. P., Sprekeler, H., Zenke, F., Clopath, C. & Gerstner, W. (2011), ‘Inhibitory plas-

ticity balances excitation and inhibition in sensory pathways and memory networks’, Science

334(6062), 1569–1573.

Wang, Y., Gupta, A., Toledo-Rodriguez, M., Wu, C. Z. & Markram, H. (2002), ‘Anatomical,

physiological, molecular and circuit properties of nest basket cells in the developing somatosensory

cortex’, Cerebral cortex 12(4), 395–410.

37

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 4, 2020. ; https://doi.org/10.1101/2020.08.04.236042doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.04.236042
http://creativecommons.org/licenses/by/4.0/


Wilson, D. E., Smith, G. B., Jacob, A. L., Walker, T., Dimidschstein, J., Fishell, G. & Fitzpatrick,

D. (2017), ‘Gabaergic neurons in ferret visual cortex participate in functionally specific networks’,

Neuron 93(5), 1058–1065.

Wilson, M. A. & McNaughton, B. L. (1993), ‘Dynamics of the hippocampal ensemble code for

space’, Science 261(5124), 1055–1058.

Wohrer, A., Humphries, M. D. & Machens, C. K. (2013), ‘Population-wide distributions of neural

activity during perceptual decision-making’, Progress in neurobiology 103, 156–193.

Woodin, M. A., Ganguly, K. & Poo, M.-m. (2003), ‘Coincident pre-and postsynaptic activity mod-

ifies gabaergic synapses by postsynaptic changes in cl- transporter activity’, Neuron 39(5), 807–

820.

Wu, Y., Hengen, K. B., Turrigiano, G. G. & Gjorgjieva, J. (2019), ‘Homeostatic mechanisms regulate

distinct aspects of cortical circuit dynamics’, bioRxiv p. 790410.

Yassin, L., Benedetti, B. L., Jouhanneau, J.-S., Wen, J. A., Poulet, J. F. & Barth, A. L. (2010),

‘An embedded subnetwork of highly active neurons in the neocortex’, Neuron 68(6), 1043–1050.

Yin, J. & Yuan, Q. (2015), ‘Structural homeostasis in the nervous system: a balancing act for wiring

plasticity and stability’, Frontiers in cellular neuroscience 8, 439.

Zariwala, H. A., Madisen, L., Ahrens, K. F., Bernard, A., Lein, E. S., Jones, A. R. & Zeng, H.

(2011), ‘Visual tuning properties of genetically identified layer 2/3 neuronal types in the primary

visual cortex of cre-transgenic mice’, Frontiers in systems neuroscience 4, 162.

Zenke, F., Hennequin, G. & Gerstner, W. (2013), ‘Synaptic plasticity in neural networks needs

homeostasis with a fast rate detector’, PLoS computational biology 9(11).

Zhang, Y., Behrens, M. M. & Lisman, J. E. (2008), ‘Prolonged exposure to nmdar antagonist

suppresses inhibitory synaptic transmission in prefrontal cortex’, Journal of neurophysiology

100(2), 959–965.

Znamenskiy, P., Kim, M.-H., Muir, D. R., Iacaruso, M. F., Hofer, S. B. & Mrsic-Flogel, T. D.

(2018), ‘Functional selectivity and specific connectivity of inhibitory neurons in primary visual

cortex’, bioRxiv p. 294835.

38

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 4, 2020. ; https://doi.org/10.1101/2020.08.04.236042doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.04.236042
http://creativecommons.org/licenses/by/4.0/



