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Abstract— With the technique of random binning, the idea
of network coding is extended and applied to multiuser channel
coding problems. Specially, a two-way relay channel and a three-
way broadcast channel are considered in this paper, and the
corresponding achievable rate regions are determined.

I. INTRODUCTION

Although a relatively new research topic, network coding [1]
has attracted a lot of research interests in recent years, and is
expected to bring fundamental changes to the basic principles
of communication networks. Besides the wide variety of
potential applications, the simplicity of the essential ideas of
network coding also contributes to its success.

Fig. 1. The idea of network coding.

The basic idea of network coding can be explained with a
simple network depicted in Fig. 1, where, node A has two
bits of information b1 and b2 to transmit to nodes B and C
respectively. However, if node B already knows b2 and node
C already knows b1, then instead of transmitting two bits b1

and b2 separately, node A only needs to transmit one bit b1⊕b2

to nodes B and C, since node B can recover b1 by computing
(b1 ⊕ b2) ⊕ b2 = b1, and similarly, node C can recover b2 by
computing (b1 ⊕ b2) ⊕ b1 = b2.

An interesting observation of the above network coding
scheme is that although only one bit is transmitted by node
A, two different bits can be recovered at nodes B and C. Of
course, this works only if nodes B and C have the appropriate
side information. Hence, the success of network coding cru-
cially depends on the availability of side information. Fortu-
nately, in many communication networks, side information is a
common phenomenon. For example, in networks with multiple
routes, side information may come from other routes.

In this paper, we address a more general framework as de-
picted in Fig. 2, where, motivated by wireless communications,

the channel dynamics at the physical layer is modelled as a
broadcast channel (X0, p(y1, y2|x0),Y1 ×Y2), with one input
x0, transmitted by node A, and two outputs y1 and y2, received
by nodes B and C respectively. Obviously, this includes the
network in Fig. 1 as a special case by setting y1 = y2 = x0.

Fig. 2. A broadcast channel with side information at the receivers.

Consider the same problem where node A has two in-
dependent messages s1 and s2 to send to nodes B and C
respectively, while node B already knows s2 and node C
already knows s1. Now, an immediate question is whether the
idea of network coding can be applied to this more general
framework, and what are the corresponding achievable rates.

It turns out that in this setting, the idea of network coding
can be applied with random binning, a classical and fun-
damental technique in multiuser information theory, and the
corresponding achievable rates are{

R1 < I(X0, Y1) (1)

R2 < I(X0, Y2) (2)

for any input distribution p(x0), where, R1 is the rate of
sending s1 to node B, and R2 is the rate of sending s2 to
node C.

Similarly, an interesting observation of (1)-(2) is that inde-
pendent messages can be sent out to two receivers simulta-
neously at their respective link capacities by the same input.
In addition, more generally than the network coding scheme
used in Fig. 1, the rates R1 and R2 can be different.

The achievability of (1)-(2) will be demonstrated in a more
general setting discussed in Section II. As applications of
this generalized idea of network coding, a two-way relay
channel and a three-way broadcast channel will be discussed
in Sections III and IV.
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II. BROADCAST CHANNEL WITH SIDE INFORMATION AT

THE RECEIVERS

Consider a discrete memoryless broadcast channel with one
transmitter and m receivers:

(X0, p(y1, . . . , ym|x0), Y1 × · · · × Ym). (3)

That is, at any time instant t = 1, 2, . . ., the transmitter sends
X0(t) ∈ X0, and each receiver i ∈ {1, . . . , m} receives
Yi(t) ∈ Yi, according to p(Y1(t), . . . , Ym(t)|X0(t)).

Consider the problem where the transmitter wants to send
independent messages to different receivers, while each re-
ceiver knows a priori the messages for the other receivers.

Due to the page limit, the standard definitions of codes and
achievable rates are omitted, except a special note that each
receiver i ∈ {1, . . . , m} decodes based on (Yi(1), . . . , Yi(T ))
and W{−i} = (W1, . . . ,Wi−1,Wi+1, . . . ,Wm), i.e., the mes-
sages for the other receivers.

Theorem 2.1: For the broadcast channel (3), with each
receiver knowing a priori the messages for the other receivers,
any rates (R1, R2, . . . , Rm) satisfying the following inequal-
ities are simultaneously achievable:

Ri < I(X0;Yi), i = 1, 2, . . . ,m, (4)

for some p(x0).
Proof: For any fixed p(x0), choose any

R ≥ max
1≤i≤m

I(X0;Yi). (5)

Codebook Generation: Independently generate 2TR code-
words x0 = (x0,1, . . . , x0,T ) according to

∏T
t=1 p(x0,t), and

index them by x0(w), w ∈ {1, . . . , 2TR}.
Random Binning: Generate 2TR bins, indexed by B(k),

with k = 1, . . . , 2TR. Independently throw 2T (R1+···+Rm)

different message vectors (w1, . . . , wm) into the 2TR bins
according to the uniform distribution, where, each wi ∈
{1, . . . , 2TRi} for i = 1, . . . , m. Let k(w, . . . , wm) be
the index of the bin which contains the message vector
(w1, . . . , wm).

Encoding: For any message vector (w1, . . . , wm), send the
codeword x0(k(w1, . . . , wm)).

Decoding: For each receiver i, based on the received vector
Yi = (Yi(1), . . . , Yi(T )) and the knowledge of w{−i}, de-
termine the unique vector (w1, . . . , wm) which has the same
w{−i} and also satisfies the joint typicality check:

(x0(k(w1, . . . , wm)),Yi) ∈ A(T )
ε (X0, Yi). (6)

If there is none or more than one such vector, an error is
declared.

Analysis of Probability of Error: First, with high probability,
the true message vector (w1, . . . , wm) satisfies the typicality
check (6). Second, note that there are 2TRi −1 wrong message
vectors (w1, . . . , wm) with the same w{−i}, and for each of
them, error can result from two cases:

1) The wrong message vector lies in the same bin as the
true one, thus with the same codeword assigned. Since

the message vectors were thrown into the bins according
to the uniform distribution, this happens with probability
2−TR.

2) The wrong message vector lies in a different bin, thus
resulting in an independent codeword. According to
the basic properties of typical sequences [2, Sec. 8.6],
this wrong codeword satisfies (6) with probability upper
bounded by:

2−T (I(X0;Yi)−3ε)

Hence, the total probability of error for each wrong message
vector is upper bounded by:

2−TR + 2−T (I(X0;Yi)−3ε).

Since there are 2TRi − 1 of them with w{−i} fixed, by the
union bound, the total error probability is upper bounded by

(2TRi − 1) × (2−TR + 2−T (I(X0;Yi)−3ε))
< 2−T (R−Ri) + 2−T (I(X0;Yi)−Ri−3ε)

which tends to 0 as T → ∞, by (4)-(5) and by choosing ε
small enough such that I(X0;Yi) − Ri − 3ε > 0. �

Remark 2.1: It is interesting to note that in the proof above,
the binning rate R is flexible to choose according to (5).

Remark 2.2: By the standard technique of time-sharing [2,
Sec. 14.3.3], the achievable rate region (4) can be expanded
to

Ri < I(X0;Yi|Q), i = 1, 2, . . . ,m, (7)

for some p(q)p(x0|q).
Next, consider an extension to the case of correlated sources.
Consider m i.i.d. random processes {Si(t), t = 1, 2, . . .},

for i = 1, . . . ,m, with joint distribution p(s1, s2, . . . , sm).
Suppose each random process {Si(t), t = 1, 2, . . .} is avail-
able to all the receivers except receiver i, for i = 1, 2, . . . , m,
while the transmitter knows all the m random processes. The
communication task is for the transmitter to send to each
receiver i the information about {Si(t), t = 1, 2, . . . , }. The
following theorem characterizes the condition under which this
can be done simultaneously for all the receivers.

Theorem 2.2: For the communication problem stated above,
all the receivers can obtain their respective information through
the broadcast channel simultaneously if for some p(x0),

H(Si|S{−i}) < I(X0;Yi), i = 1, 2, . . . ,m, (8)

where S{−i} := {S1, . . . , Si−1, Si+1, . . . , Sm}.
The proof is similar to that of Theorem 2.1 and is omitted.

Similarly, the technique of time-sharing can also be applied.

III. TWO-WAY RELAY CHANNEL

Consider a network of three nodes 1, 2, 3, with the input-
output dynamics modelled by the discrete memoryless channel

(X1 ×X2 ×X3, p(y1, y2, y3|x1, x2, x3), Y1 ×Y2 ×Y3). (9)

That is, at any time t = 1, 2, . . ., the outputs y1(t),
y2(t), y3(t) received by the three nodes respectively
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only depend on the inputs x1(t), x2(t), x3(t) transmit-
ted by the three nodes at the same time according to
p(y1(t), y2(t), y3(t)|x1(t), x2(t), x3(t)).

Consider the two-way relay problem where node 1 and
node 2 communicate with each other at rates R1 and R2

respectively, with the help of the relay node 3.
We are interested in the simultaneously achievable rates

(R1, R2). Here, the standard definitions of codes and achiev-
able rates are omitted, except a special note that at any time t,
each node i can choose its input xi(t) based on the past outputs
(yi(t − 1), yi(t − 2), . . . , yi(1)) it has already received.

Theorem 3.1: For the two-way relay problem defined
above, any rates (R1, R2) satisfying the following inequalities
are simultaneously achievable:

R1 < I(X1;Y3|X2,X3) (10)

R2 < I(X2;Y3|X1,X3) (11)

R1 + R2 < I(X1,X2;Y3|X3) (12)

and

R1 < I(X1,X3;Y2|X2) (13)

R2 < I(X2,X3;Y1|X1) (14)

for some p(x1)p(x2)p(x3).
Proof: For any fixed p(x1)p(x2)p(x3), choose any

R ≥ max{I(X3;Y2|X2), I(X3;Y1|X1)}. (15)

We use Markov block coding argument. Consider B blocks
of transmission, each of T transmission slots. A sequence of
B − 1 indices, w1(b) ∈ {1, . . . , 2TR1}, b = 1, 2, . . . , B − 1
will be sent over from node 1 to node 2 in TB transmission
slots, and at the same time, another sequence of B−1 indices,
w2(b) ∈ {1, . . . , 2TR2}, b = 1, 2, . . . , B − 1 will be sent over
from node 2 to node 1.

Codebook Generation:

1) For node 1, independently generate 2TR1 i.i.d. T -
sequences x1 = (x1,1, . . . , x1,T ) in X T

1 according to
p(x1). Index them as x1(w1), w1 ∈ {1, 2, . . . , 2TR1}.

2) For node 2, independently generate 2TR2 i.i.d. T -
sequences x2 = (x2,1, . . . , x2,T ) in X T

2 according to
p(x2). Index them as x2(w2), w2 ∈ {1, 2, . . . , 2TR2}.

3) For node 3, independently generate 2TR i.i.d. T -
sequences x3 = (x3,1, . . . , x3,T ) in X T

3 according to
p(x3). Index them as x3(w3), w3 ∈ {1, 2, . . . , 2TR}.

Random Binning: Generate 2TR bins, indexed by B(k),
with k = 1, . . . , 2TR. Independently throw each index pairs
(w1, w2), w1 ∈ {1, 2, . . . , 2TR1}, w2 ∈ {1, 2, . . . , 2TR2}
into the 2TR bins according to the uniform distribution. Let
k(w1, w2) be the index of the bin which contains the index
pair (w1, w2).

Encoding: In each block b = 1, 2, . . . , B, node 1 sends
the T -sequence x1(w1(b)), and node 2 sends the T -sequence
x2(w2(b)), where w1(B) and w2(B) are set to be 1.

Node 3 sends x3(1) in block 1. At the end of each block
b = 1, . . . , B − 1, node 3 has an estimate (ŵ1(b), ŵ2(b)) of

(w1(b), w2(b)) based on the T -sequence Y3(b) it received dur-
ing the block b, and sends the T -sequence x3(k(ŵ1(b), ŵ2(b)))
in the next block b + 1.

Decoding: At the end of each block b = 1, . . . , B − 1,
node 3 determines the unique index pair (w1(b), w2(b)) which
satisfies the joint typicality check:

(x1(w1(b)), x2(w2(b)),X3(b),Y3(b)) ∈ A(T )
ε (X1,X2,X3, Y3)

where X3(b) denotes the T -sequence sent by node 3 during
block b. If there is none or more than one such pair, an error
is declared.

At the end of each block b = 2, . . . , B, node 2 determines
the unique index w1(b − 1) which, in block b, satisfies the
joint typicality check:

(x3(k(w1(b−1), w2(b − 1))),X2(b),Y2(b)) ∈ A(T )
ε (X3,X2, Y2)

and also in block b − 1, satisfies the joint typicality check:

(x1(w1(b − 1)),x3(k(w̌1(b − 2), w2(b − 2))),X2(b − 1),
Y2(b − 1)) ∈ A(T )

ε (X1,X3,X2, Y2)

where, w̌1(b − 2) is the estimate of w1(b − 2) node 2 made
at the end of block b − 1. If there is none or more than one
such w1(b − 1), an error is declared.

Similarly, node 1 decodes w2(b − 1) according to the
following two joint typicality checks:

(x3(k(w1(b−1), w2(b − 1))),X1(b),Y1(b)) ∈ A(T )
ε (X3,X1, Y1)

(x2(w2(b − 1)),x3(k(w1(b − 2), w̌2(b − 2))),X1(b − 1),
Y1(b − 1)) ∈ A(T )

ε (X2,X3,X1, Y1)

where, w̌2(b− 2) is the estimate of w2(b− 2) node 1 made at
the end of block b − 1.

Analysis of Probability of Error: First, according to the
capacity region of the multiple access channel, the bounds
(10)-(12) make sure that node 3 can decode (w1(b), w2(b))
with arbitrarily small probability of error. Second, node 2 can
decode w1(b− 1) with arbitrarily small probability of error if

R1 < I(X3;Y2|X2) + I(X1;Y2|X3,X2)

where the two mutual informations follow from the two
typicality checks respectively, and their combination leads to
(13). Similarly, for node 1, (14) is needed. �

IV. THREE-WAY BROADCAST CHANNEL

Consider the same three-node network as described in the
previous section with the channel model (9). Now, instead of
the two-way relay, consider a three-way broadcast problem:
Each node i wants to send the same information to both the
other two nodes at the same rate Ri, for i = 1, 2, 3.

Theorem 4.1: For the three-way broadcast problem de-
scribed above, any rates (R1, R2, R3) satisfying the following
inequalities are simultaneously achievable:

R1 < max{I(X1;Y2|X3,X2), I(X1;Y3|X2,X3)} (16)

R2 < max{I(X2;Y3|X1,X3), I(X2;Y1|X3,X1)} (17)

R3 < max{I(X3;Y1|X2,X1), I(X3;Y2|X1,X2)} (18)
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and

R1 + R2 < I(X1,X2;Y3|X3) (19)

R2 + R3 < I(X2,X3;Y1|X1) (20)

R3 + R1 < I(X3,X1;Y2|X2) (21)

for some p(x1)p(x2)p(xr).
Proof (outline): As the standard, random codebooks

generated according to p(xi) for each node i = 1, 2, 3, and
the Markov block coding argument are used.

We need different coding schemes for different situations
that may arise from (16)-(18). By symmetry, we only need to
consider the following seven cases.

Case 1. (R1, R2, R3) satisfy

R1 < min{I(X1;Y2|X3,X2), I(X1;Y3|X2,X3)}
R2 < min{I(X2;Y3|X1,X3), I(X2;Y1|X3,X1)}
R3 < min{I(X3;Y1|X2,X1), I(X3;Y2|X1,X2)}

In this case, actually, Markov block coding is not needed.
Each node i simply sends its own message wi, and every node
j can decode {wi, i �= j} according to the multiple access
constraints.

Case 2. (R1, R2, R3) satisfy

I(X1;Y2|X3,X2) ≤ R1 < I(X1;Y3|X2,X3) (22)

R2 < min{I(X2;Y3|X1,X3), I(X2;Y1|X3,X1)} (23)

R3 < min{I(X3;Y1|X2,X1), I(X3;Y2|X1,X2)} (24)

In each block b = 1, . . . , B, node 1 sends w1(b); node 2
sends w2(b); and node 3 sends (w3(b), w1(b− 1)) by random
binning, where, set w1(0) = 1. At the end of block b, node
1 can decode w2(b) and w3(b), and node 3 can decode w1(b)
and w2(b), according to the multiple access constraints; while
node 2 can jointly decode w3(b) and w1(b−1) based on blocks
b and b−1, due to (21) and R3 < I(X3;Y2|X2), which follows
from (21) and the first part of (22).

Case 3. (R1, R2, R3) satisfy

I(X1;Y2|X3,X2) ≤ R1 < I(X1;Y3|X2,X3) (25)

I(X2;Y3|X1,X3) ≤ R2 < I(X2;Y1|X3,X1) (26)

R3 < min{I(X3;Y1|X2,X1), I(X3;Y2|X1,X2)} (27)

In each block b = 1, . . . , B, node 1 sends (w1(b), w2(b − 1))
by random binning; node 2 sends w2(b); and node 3 sends
(w3(b), w1(b − 1)) by random binning, where, set w2(0) =
w3(0) = 1. At the end of block b, node 1 can decode w2(b)
and w3(b) according to the multiple access constraints; while
node 2 can jointly decode w3(b) and w1(b−1) based on blocks
b and b−1, due to (21) and R3 < I(X3;Y2|X2), which follows
from (21) and the first part of (25); and node 3 can decode
w1(b) and w2(b− 1) based on blocks b and b− 1, due to (19)
and R1 < I(X1;Y3|X3), which follows from (19) and the first
part of (26).

Case 4. (R1, R2, R3) satisfy

I(X1;Y2|X3,X2) ≤ R1 < I(X1;Y3|X2,X3) (28)

I(X2;Y3|X1,X3) > R2 ≥ I(X2;Y1|X3,X1) (29)

R3 < min{I(X3;Y1|X2,X1), I(X3;Y2|X1,X2)} (30)

In each block b = 1, . . . , B, node 1 sends w1(b); node 2
sends w2(b); and node 3 sends (w3(b), w1(b− 1), w2(b− 1))
by random binning, where, set w1(0) = w2(0) = 1. At the end
of block b, node 3 can decode w1(b) and w2(b) according to
the multiple access constraints; while node 1 can decode w3(b)
and w2(b − 1) based on blocks b and b − 1, due to (20) and
R3 < I(X3;Y1|X1), which follows from (20) and the second
part of (29); and node 2 can decode w3(b) and w1(b−1) based
on blocks b and b − 1, due to (21) and R3 < I(X3;Y2|X2),
which follows from (21) and the first part of (28).

Case 5. (R1, R2, R3) satisfy

I(X1;Y2|X3,X2) > R1 ≥ I(X1;Y3|X2,X3) (31)

I(X2;Y3|X1,X3) ≤ R2 < I(X2;Y1|X3,X1) (32)

R3 < min{I(X3;Y1|X2,X1), I(X3;Y2|X1,X2)} (33)

This case cannot happen, since (19) and the second part of
(31) imply that R2 < I(X2;Y3|X3), which contradicts to the
first part of (32).

Case 6. (R1, R2, R3) satisfy

I(X1;Y2|X3,X2) ≤ R1 < I(X1;Y3|X2,X3) (34)

I(X2;Y3|X1,X3) ≤ R2 < I(X2;Y1|X3,X1) (35)

I(X3;Y1|X2,X1) ≤ R3 < I(X3;Y2|X1,X2) (36)

In each block b = 1, . . . , B, node 1 sends (w1(b), w2(b − 1))
by random binning; node 2 sends (w2(b), w3(b − 1)) by
random binning; and node 3 sends (w3(b), w1(b − 1)) by
random binning, where, set w1(0) = w2(0) = w3(0) = 1.
At the end of block b, node 1 can jointly decode w2(b) and
w3(b − 1) based on blocks b and b − 1, due to (20) and
R2 < I(X2;Y1|X1), which follows from (20) and the first part
of (36); node 2 can jointly decode w3(b) and w1(b−1) based
on blocks b and b − 1, due to (21) and R3 < I(X3;Y2|X2),
which follows from (21) and the first part of (34); and node 3
can decode w1(b) and w2(b− 1) based on blocks b and b− 1,
due to (19) and R1 < I(X1;Y3|X3), which follows from (19)
and the first part of (35).

Case 7. (R1, R2, R3) satisfy

I(X1;Y2|X3,X2) ≤ R1 < I(X1;Y3|X2,X3) (37)

I(X2;Y3|X1,X3) ≤ R2 < I(X2;Y1|X3,X1) (38)

I(X3;Y1|X2,X1) > R3 ≥ I(X3;Y2|X1,X2) (39)

This case cannot happen, since (21) and the first part of
(37) imply that R3 < I(X3;Y2|X2), which contradicts to the
second part of (39). �

Remark 4.1: It is easy to check that Theorem 4.1 implies
Theorem 3.1 by setting R3 = 0.
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