
Network Coding for Facilitating Secrecy in Large
Wireless Networks
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Abstract—We study the wireless secrecy capacity scaling prob-
lem where the question of interest is how much information
can be shared among n randomly located nodes such that
the throughput is kept information-theoretically secure from m
eavesdroppers also present in the network. We present achievable
scaling results for both one-dimensional and two-dimensional
networks. We show that in a 1-D network, n nodes can share
a per-node throughput that scales as 1/n which can be kept
secure from m randomly located eavesdroppers of unknown
location as long as m grows more slowly than n/ logn. For a 2-
D network, the per-node secure throughput scales as 1/

√
n logn

for any number of eavesdroppers of unknown location which
could be arbitrarily located inside this network. These results
provide a significant improvement over previous work which
either assumed known eavesdropper locations or the number
of eavesdroppers that could be tolerated were very limited. The
key technique realizing these improvements is the application
of simple network coding methods, which were known to help
secrecy in a network but their extension to wireless physical-layer
secrecy had been limited.

I. INTRODUCTION

Consider the transmission of a message from one party
(Alice) to another (Bob), such that it is kept secret from an
eavesdropping adversary (Eve). Cryptographic solutions as-
sume that Eve will intercept the transmitted signal cleanly but
impose a hard mathematical problem on Eve that is beyond her
computational power to solve. On the other hand, information-
theoretic solutions exploit the relative signal quality achieved
at Bob compared to Eve. Specifically, if the signal quality is
better at Bob than it is at Eve, a number of secret bits can
be delivered to Bob [1] that is a function of the difference
in signal qualities. Hence, physical-layer based information-
theoretic security allows a secrecy guarantee without making
assumptions on the current and future computational capa-
bilities of the adversary. However, the advantage required
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for the transmitter-receiver channel versus the transmitter-
eavesdropper channel can be difficult to guarantee in a wireless
communication network, where the eavesdropper might be
very near to the source, might employ a highly-directive an-
tenna to obtain a signal-to-noise ratio (SNR) gain, etc. Hence,
one could argue that information-theoretic security in the wire-
less network has simply traded assumptions on the (long-term)
computational capabilities of the eavesdropper for assumptions
on the (short-term) operating environment, which may not
always match the common physical-layer assumptions. Here,
we study information-theoretic secrecy for wireless networks,
although it will be apparent that the techniques introduced here
can also be used to help traditional cryptographic security to
obscure the message from an eavesdropping adversary.

An example where the difficulty in satisfying the physi-
cal layer assumptions has made information-theoretic secrecy
challenging is in the works on “secrecy capacity scaling”,
which is the subject of this paper. Here, the question of interest
is how much secret information can be shared among nodes
in a large wireless network that also includes eavesdroppers.
This problem can be seen as a security extension of the
original problem of capacity scaling in large wireless networks
[2], where an achievable per-node throughput that scales as
1/

√
n log n is shown for a network of n nodes randomly

placed in a two-dimensional region. The studies in this area
have shown that it is in fact possible to achieve this throughput
without compromising security; however, the assumptions un-
der which security is maintained can be onerous. For example,
in [3], it is shown that the optimal throughput can be achieved
securely if one assumes (i) the locations of the eavesdroppers
are known, (ii) no eavesdropper is very close to any of
the legitimate nodes. Obviously, both assumptions are better
avoided in a more realistic scenario, especially considering
that the eavesdroppers are assumed to be passive.

In this work, we study the secrecy capacity scaling problem
under the assumption that the locations of the eavesdroppers
are unknown. The first solution to this problem was presented
in [4] by employing artificial noise generation by legitimate
nodes to enforce some minimum noise floor at the potential
locations of the eavesdroppers. This technique is also known as
cooperative jamming [5], [6], and has been considered in other
scenarios related to wireless secrecy [7]. The use of artificial
noise generation addresses the unknown eavesdropper loca-
tion problem; however, it introduces added interference and
requires an excessive amount of transmit energy. Furthermore,
this solution is still not able to address the problem of near
eavesdroppers, which severely limits the number of uniformly
distributed eavesdroppers that could be tolerated. For example,
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the scheme in [4] requires the number of eavesdroppers to
grow more slowly than log n in order to achieve a per-node
secure throughput that scales as 1/

√
n log n.

Our work of [8] significantly improves upon the result in
[4] by presenting a secrecy scheme which achieves a per-
node throughput scaling of 1/

√
n log n, while tolerating up

to n/ logn eavesdroppers of unknown location. The core
of the solution in [8] is a method called “secret sharing”
[9]. Here the secret message is divided into a number of
packets by the source node such that no information can be
obtained about the message unless all packets are received.
After generating these packets, the source sends them over
separate distant paths to the destination. This way, although
the location of the eavesdroppers are unknown, it is known
that no eavesdropper can be located close to all paths at
once, hence cannot receive all packets. It is interesting to note
that this significant improvement comes with a simple coding
operation, and it does not require cooperative jamming.

Another coding solution to a wireless secrecy problem was
introduced by us in [10], [11] for a different single source-
destination pair problem. Here, the basic idea is to employ
“two-way communication” to transfer a secret message from
Alice to Bob in two steps. In the first step Bob sends a
randomly generated message to Alice, and in the second step
Alice replies by XORing the random key with the message,
i.e., Alice uses Bob’s message as a one-time pad. This forces
Eve to be able decode both messages, and [10], [11] exploits
the fact that the fading channel between Alice and Bob has
the same gain in both directions due to reciprocity; however,
Eve essentially draws two independent channel gain values
to Alice and Bob. This solution is a second example of how
a simple coding operation in the upper layers can help with
physical-layer security.

It is important to note that the methods of secret sharing and
two-way communication have long been known to be useful
for achieving secrecy in a communication network. These
methods are nothing but special cases of “network coding”,
and “secure network coding” is a well-understood field [12],
[13]. However, its application to wireless secrecy has been
limited, as secure network coding is a graph-based approach
in which eavesdroppers tap edges (or not), which does not
map well to the wireless environment where there are no
edges but rather there is a continuum of SNRs. Motivated
by the results in [8], [10], [11], here we take a more general
look at the secrecy capacity scaling problem with a better
understanding of the full potential of network coding which
helps us further improve on the result of [8]. In particular,
for a 2-D network with n randomly placed nodes, we present
a secrecy scheme which achieves secure per-node throughput
on the order of 1/

√
n log n for any number of eavesdroppers

of unknown location, which could be arbitrarily distributed
inside the network. As in [8], our scheme uses secret sharing
at the source, and routes the packets over distant paths to ad-
dress unknown eavesdropper locations. However, this does not
prevent an eavesdropper located close to the source to receive
all packets, which is the major reason restricting the number

of (uniformly-placed) eavesdroppers that can be tolerated.
The physical challenge in addressing this “near eavesdropper”
problem is the fact that whatever the source transmits, a near
eavesdropper has a big SNR advantage. Here, we use the two-
way scheme to even out this SNR gap. In particular, at the start
of a route, the source delivers each packet by first receiving a
random key from the corresponding relay, and then by replying
with XORing the key with the packet. A near eavesdropper
has the SNR advantage for the second (outgoing) message,
but not the first (incoming) message, hence the packet can be
protected from a near eavesdropper. In short, the combination
of these two coding methods allows an arbitrary number of
eavesdroppers of unknown location to be tolerated.

We also consider 1-D networks, where n legitimate nodes
are randomly placed in an interval. We present a construction
which achieves per-node secure throughput of order 1/n as
long as the number of randomly distributed eavesdroppers
grows more slowly than n/log n. A fundamental challenge in
1-D is the fact that there is a single path for each source-
destination pair. This means even if the location of the
eavesdroppers were known, it would not be possible to route
around them to reach the destination. This leaves cooperative
jamming as the only option to connect source destination pairs
and we use it in our construction. In order to handle unknown
eavesdropper locations, secret sharing is used, where the 1-D
interval is partitioned into a number of regions and each packet
is protected from a certain region. However, the construction in
1-D is still limited by the possibility of a nearby eavesdropper,
which results in the stated number of eavesdroppers that can
be tolerated.

In the rest of the paper, the network and channel models are
given in the next section, which are used in our main results
presented in Section III for 1-D networks, and in Section IV
for the 2-D case. Section V is the conclusion.

II. MODEL

A. Network and Channel Model

The wireless network is composed of legitimate nodes and
eavesdroppers inside the interval [0, n] in the one-dimensional
case, and inside the square region [0,

√
n]×[0,

√
n] in the two-

dimensional case. Legitimate nodes are distributed according
to a homogeneous Poisson point process with intensity λ =
1. All nodes are assumed to be static. Legitimate nodes are
matched into source-destination pairs uniformly at random,
such that each node is the destination of exactly one source
node, and the source for exactly one destination node. For each
pair, we associate a stream of information that needs to flow
from the source to the destination. Eavesdroppers are assumed
to be passive and operating independently of each other, i.e.,
they do not collaborate by sharing their observations.

Only path loss is assumed for the wireless channels between
transmitter and receiver nodes. Hence, whenever a node A
transmits with some transmit power P , the received power at
node B is modeled as

Prcv,B = P/dαAB ,
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where dAB is the distance between nodes A,B, and α > 1
in 1-D, α > 2 in 2-D, is the path loss exponent. The received
signal-to-interference-plus-noise ratio (SINR) at B is then

SINRB =
Prcv,B

N0 + IB
, (1)

where N0 is the power in the additive white Gaussian noise
(AWGN) at the receiver, and IB is the interference received
at node B due to other transmissions in the network. In our
case, this interference may be due to other legitimate signal
transmissions and (for the 1-D case) artificial noise generated
by legitimate nodes.

B. Physical-Layer Secrecy Scheme

For all transmissions in the wireless network, the sender
node A employs a physical-layer secrecy scheme to deliver the
message to the receiver node B at some fixed rate. Motivated
by the results in the “wireless wiretap channel” area [14],
[15], we assume this secrecy scheme is designed to guarantee
secrecy from any eavesdropper E that has roughly the same
signal quality with B (or worse). More precisely, for some
decoding threshold γ > 0 for the signal-to-interference-and-
noise ratio (SINR), and some (small) δ such that 0 < δ < 1,
A sends bits to B at some fixed rate R bits per second, which
is kept secret from any eavesdropper E if 1) SINRB > γ,
2) SINRE 6 (1 + δ)SINRB . One example of such a secrecy
scheme is the low-complexity on-off method in [16], which
utilizes fading by sending only at instants when the gain of
the channel from A to B is larger than a certain threshold
in a given transmission period, and is shown to achieve a
positive secrecy rate even when the eavesdropper channel is
more capable than the main channel. Many other methods are
available (e.g., see [17]).

Therefore, for some region R in the network, a message is
decoded by B while being secret from eavesdroppers inside
R if node B and the eavesdroppers inside R satisfy the above
SINR condition. For multi-hop transmission from a source
node to a destination node, if this SINR condition is satisfied
at every hop, we refer to the rate of information as the secure
throughput achieved by this pair (secure from eavesdroppers
in R). Note that secrecy at each hop over a multi-hop path is
shown to be sufficient for end-to-end secrecy in [3].

III. ONE-DIMENSIONAL NETWORKS

The following theorem establishes security in the absence of
eavesdroppers near the source-destination nodes, which is then
used in Theorem 2 to establish the number of eavesdroppers
that can be tolerated.

Theorem 1: Consider the one-dimensional network inside
the interval [0, n], where the eavesdroppers are arbitrarily
distributed. The locations of the eavesdroppers are unknown,
and they are assumed not to collaborate. Legitimate nodes
can maintain a throughput of Θ

(
1/n

)
1 w.h.p. for all source-

destination pairs, for any number of eavesdroppers. For some

1f(n) = O(g(n)) w.h.p. if there exists a constant k such that P (f(n) 6
kg(n)) → 1. f(n) = Θ(g(n)) if f(n) = O(g(n)), and g(n) = O(f(n))
w.h.p.

fixed positive constant r, the throughput achieved is secure
for the source-destination pairs where both the source and
the destination are free from eavesdroppers within a distance
r logn.

Overview of the Proof

We prove Theorem 1 by providing a construction summa-
rized by the following steps:

1) In order to handle unknown eavesdropper locations, we
partition the network into a finite number t of interlaced
regions {Γi, i = 1, · · · , t}. We refer to this partitioning
as “coloring” the network, and treat each region (color)
one by one, assuming each time that eavesdroppers are
all confined to that particular region.

2) For each message to be delivered to the destination node,
the source node generates t “packets” corresponding to
the t regions. These packets are generated in a way
that ensures the message cannot be decoded by a node
unless all t packets are successfully received. Packets
are delivered in separate transmissions such that the i-
th packet is protected from eavesdroppers in Γi, thus
guaranteeing that an eavesdropper located anywhere in
the network misses at least one of the t packets.

3) We provide an algorithm that routes packets from a
source to a destination in a multi-hop fashion, and
ensures each packet is kept secure from potential eaves-
droppers inside its corresponding region at each hop.
This is achieved by legitimate nodes inside the region
acting as “jammers” by transmitting random noise to
prevent eavesdroppers in that region from decoding the
packet.

4) We use time division multiplexing, where time is con-
sidered as a sequence of “periods”. Each period con-
sists of t “frames”, and packets corresponding to color
i, i ∈ {1, 2, · · · , t}, are transmitted in the i-th frame.
Each frame is further divided into slots, where a standard
spatial reuse scheme (as in [2]) is employed.

The proof is completed by showing that this construction
achieves the stated throughput properties w.h.p.

Proof: Our construction is given in detail in the following.
This construction is then proved to achieve a per-node secure
throughput of Θ

(
1/n

)
w.h.p. for the source-destination pairs

with no very nearby eavesdroppers.

A. Coloring the Network

· · ·· · · · · · · ··
0 n

· · ···
c(n) = log n

· ·

Fig. 1. The one-dimensional network consists of legitimate nodes (rep-
resented by dots) and eavesdroppers (represented by crosses) placed in the
interval [0, n], divided into cells of length c(n) = logn, as part of the
signaling construction.

We divide [0, n] into sub-intervals referred to as “cells”,
each of length c(n) = log n (Fig. 1); hence, each cell contains
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(k + 1)(2l+1) – 1 

cells

0 n

n0

n0

0 n

c(n)

1( )nΓ

2 ( )nΓ

9 ( )nΓ

10 ( )nΓ

Fig. 2. The network is partitioned into regions (colors), where each region is
a collection of cells regularly sampled in the linear grid. Cells in a region are
spaced (k + 1)(2l + 1)− 1 cells apart (k = 1, l = 2 in the figure). Hence,
the network consists of t = (k + 1)(2l + 1) regions (t = 10 in the figure).
The network is shown here with four of these ten regions highlighted.

a legitimate node w.h.p. Let si(n) denote the i-th cell, i =
1, · · · , n/ log n, with s1(n) = [0, log n].

We partition these cells into non-overlapping subsets, which
we refer to as “coloring” the network. Specifically, we divide
the network into t = (k + 1)(2l + 1) regions (colors), where
k > 1 and l > 2 are integers to be defined later. Denote the
collection of regions as:

{Γi(n), i = 1, 2, · · · , t}

Each region is a collection of non-contiguous cells regularly
sampled in the grid as shown in Fig. 2. Specifically, cells in
Γi(n) are spaced t− 1 cells apart. In other words,

Γi(n) ,
n/ log n

t∪
j=1

si+(j−1)t(n). (2)

For convenience, we denote the j-th cell of region Γi(n) as
Cj
i (n). In other words,

Cj
i (n) , si+(j−1)t(n).

The whole network is the union of the t regions:

[0, n] =
t∪

i=1

Γi(n)

Note that the number of regions t is independent of the size
n of the network.

We refer to Γi(n) and each of its cells Cj
i (n) as belonging to

the i-th color. Also, we use the notation Γi, Cj
i in what follows,

keeping in mind that the number of cells in a region, and the
cell sizes depend on n. As will be clear in the description
of the routing algorithm, the cells in a region can be thought
of as potential locations of eavesdroppers corresponding to
that region. For each cell Cj

i , we define an interval called the
“neighborhood” of this cell, and denote it by N(Cj

i ). This

neighborhood consists of (2l + 1) cells, with Cj
i being the

middle cell (Fig. 3). These neighborhoods are separated by
k(2l + 1) cells.

n0 2l+1 cells

k(2l + 1) 

cells

j

iC

( )jiN C

( )i nΓ

Fig. 3. The network is shown with one region Γi highlighted as done in Fig.
2. Cj

i denotes the j-th cell in region Γi. Around each cell, the “neighborhood”
of that cell N(Cj

i ) is defined as the interval with (2l+1) cells (l = 2 above).
So, neighborhoods are separated by k(2l+ 1) cells (k = 1 above).

It is also useful to define the “periphery” and the “interior”
of a neighborhood. We define the periphery of N(Cj

i ) as the
two cells at the two ends of the neighborhood, and the interior
of N(Cj

i ) as the smaller interval that consists of (2l− 1) cells
centered at Cj

i .
For any source-destination pair S-D, let x be the b-bit

message to be delivered from S to D. S generates (t − 1)
random b-bit packets w1, · · · , wt−1 and then sets wt such that
the message x satisfies

w = w1 ⊕ w2 ⊕ · · · ⊕ wt, (3)

where ⊕ denotes bit-wise XOR operation. We refer to packet
wi as belonging to the i-th color. The basic idea is that wi

is transmitted such that it is protected from eavesdroppers
located in Γi. Note that any node that receives all t packets can
compute x, while any node that misses one or more packets
acquires no information about x.

B. Routing Algorithm

For the transmission of a packet of any color i from a
source node S to its destination node D, S transmits the
packet to a relay in the next cell on the route. Each relay
that receives the packet does the same until the packet reaches
the first neighborhood N(Cj

i ) on the route (Fig. 4 (a)). Inside
N(Cj

i ), we assign two nodes to act as relays, and one node
to act as a jammer: A relay node A is selected from the cell
where the route enters N(Cj

i ), a jammer node J is selected
from Cj

i , and a relay node B is selected from the cell at the
end of the neighborhood (Fig. 4 (b)). A receives the message
from outside the neighborhood, and then transmits to B while
J transmits random noise. Therefore, inside a neighborhood,
the message is transmitted across a number of cells in one
slot. A jammer is only active when there is a transmission
inside its corresponding neighborhood. Therefore, each packet
is carried in a repeating sequence of single-cell hops followed
by one multi-cell hop until it reaches D (Fig.4 (a)). When D
receives all t packets, it decodes the message by performing
the operation in (3).

Note that packets of color i are routed in a way that prevents
it from entering the interiors of neighborhoods N(Cj

i ). The
only exception is possibly at the start or the end of the route.
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To see this, consider a source node S inside Cj
i . S will generate

a packet wi of color i. This packet is first routed in single-
cell hops, and follows the above scheme only after it reaches
outside N(Cj

i ). Similarly, deliveries to destination nodes inside
neighborhoods are also done in a sequence of single-cell hops
(see Fig. 4 (a)).

n0
j

iC

S D

j

iC

( )jiN C

A BJ

(b)

(a)( )
i
nΓ

wi

Fig. 4. (a) The route followed by a packet wi from a source node S to a
destination node D is shown. At each hop, the packet is delivered to the next
cell on the route except inside the neighborhoods, N(Cj

i ), where the packet is
transmitted such that it reaches over multiple cells at once. (b) Inside N(Cj

i ),
a transmitting relay A in the first cell transmits to a receiving relay B in
the last cell, while a jammer node J in Cj

i transmits artificial noise. Hence,
packets of color i are routed in a way that avoids entering the interiors of the
neighborhoods N(Cj

i ). The only exception is possibly at the start or the end
of the route, as the source or the destination node may be located inside the
interior of a neighborhood (e.g., the destination node D is inside the interior
of a neighborhood in (a)).

C. Time Division Multiplexing Scheme

Time is considered as a sequence of “periods”. Each period
consists of t “frames”. In the i-th frame, only packets belong-
ing to the i-th color are transmitted. In each frame, a spatial
reuse scheme is employed such that in the i-th frame, every
cell in the network transmits a packet of color i once. This is
done by further dividing each frame into t time slots. In each
slot, transmitting cells are t−1 cells apart (see Fig. 5). During
the i-th frame, jammer nodes inside Γi become active only in
the time slots where multiple-cell hops take place (see Fig. 2
(b)).

The throughput achieved per stream is constrained due to the
fact that the streams arriving to a cell take turns being relayed.
Each cell has to relay information for at most a constant factor
of n streams w.h.p., hence a throughput of Θ

(
1/n

)
per stream

is achieved w.h.p.
In order to consider the secrecy of the achieved throughput,

note that the route of a packet contains the following types of
hops: (1) single-cell hop outside the neighborhoods, (2) multi-
cell hop inside a neighborhood, (3) single-cell hop inside a
neighborhood if it contains either the source or the destination
(see Fig. 4 (a)). It can be shown that (see Appendix I in [8]) the
first two types of hops are achieved securely by showing that
there exist constants k, l for coloring the network, and transmit
power values for relays and jammer nodes, such that for any
stream of color i, the destination node and the eavesdroppers

inside Γi satisfy the SINR requirement for secure transmission
for these hops. Hence, the only possible insecure transmissions
are in the close proximity of the source and destination nodes
(i.e., the third type above). For a source-destination pair, if
no eavesdropper is within a distance rc(n), with r = l, to
the source and to the destination, then these hops will also be
secure, hence the result follows.

n0
(a)

n0
(b)

n0
(c)

Fig. 5. One period is divided into t frames. In the i-th frame, packets of
color i are transmitted according to the routing protocol corresponding to Γi

(see Fig. 4). Each frame further consists of t time slots (t = 10 in the figure).
Cells transmitting simultaneously (dashed cells) in one slot are t − 1 cells
apart. For the i-th frame, three time slots are shown above: (a) shows a time
slot with single-cell transmissions outside neighborhoods, (b) shows a time
slot with multi-cell hops over the neighborhoods (with all jammers active), (c)
shows a time slot with transmissions inside the neighborhoods. Note that cells
in the periphery of the neighborhoods also do “occasional” single-cell hops
for deliveries to destinations inside neighborhoods, with all jammers passive
(not shown above).

Theorem 2: Consider the one-dimensional network inside
the interval [0, n], where the eavesdroppers are placed accord-
ing to a Poisson point process with some density λe > 0, inde-
pendent of the placement of the legitimate nodes. The locations
of the eavesdroppers are unknown, and they are assumed not
to collaborate. Then, the fraction of source-destination pairs
that can maintain a per-node secure throughput of Θ

(
1/n

)
is

arbitrarily close to one w.h.p. if λe = o(1/ log n).
Proof: We use the same construction as that used to

prove Theorem 1. For source-destination pairs free from any
nearby eavesdroppers, this construction achieves w.h.p. the
stated secure throughput. Hence, the proof follows by showing
that for λe = o(1/ log n), the fraction of source-destination
pairs that do not have any nearby eavesdroppers is arbitrarily
close to one w.h.p.

Let the random variable m(n) be the number of eaves-
droppers in the network, which has an expected value of
λen. Let yi ∈ [0, n] be the location of the i-th eavesdropper,
and define Ai(n) = [yi − l logn, yi + l log n], with length
ℓ(n) = |Ai(n)| = 2l log n, ∀i. Let A(n) be the total region
covered by the eavesdroppers, i.e., any source or destination
node inside A(n) will not be able to communicate secretly.

A(n) ,
m(n)∪
i=1

Ai(n) (4)

Let Ni(n), No(n) be the random variables denoting the
number of legitimate nodes inside and outside A(n), respec-
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tively. For some ε > 0, let the event Cε(n) be defined as

Cε(n) ,
{

Ni(n)

Ni(n) +No(n)
< ε

}
. (5)

We can write P (Cε(n)) as

P (Cε(n)) =

P (Cε(n) | {|A(n)| ≤ 2λenℓ(n)})P ({|A(n)| ≤ 2λenℓ(n)})
+P (Cε(n) | {|A(n)| > 2λenℓ(n)})P ({|A(n)| > 2λenℓ(n)}).

Define the random variable X(n) as

X(n) , Ni(n)/n

No(n)/n
.

Given λe = o(1/logn), and |A(n)| ≤ 2λenℓ(n),

Ni(n)/n → 0, No(n)/n → 1, and X(n) → 0, a.s.

Then,

P
(
Cε(n) | {|A(n)| ≤ 2λenℓ(n)}

)
=

P

(
X(n)

1 +X(n)
< ε | {|A(n)| ≤ 2λenℓ(n)}

)
→ 1, as n → ∞.

(6)

Finally,

P (|A(n)| ≤ 2λenℓ(n)) ≥ P (m ≤ 2λen)

→ 1, as n → ∞.

Thus, for any ε > 0, P (Cε(n)) → 1, as n → ∞. This
shows the fraction of nodes inside A(n) is arbitrarily close to
zero w.h.p., which readily implies that the fraction of source-
destination pairs inside A(n) is arbitrarily close to zero w.h.p

IV. TWO-DIMENSIONAL NETWORKS

The following theorem states our main result for a 2-D
network.

Theorem 3: Consider an extended two-dimensional net-
work, where legitimate nodes are placed according to a
Poisson point process with density 1 over a torus formed by
wrapping around a square region of size [0,

√
n]×[0,

√
n] at the

edges. Legitimate nodes are matched into source-destination
pairs uniformly at random. In addition to the legitimate nodes,
eavesdroppers are arbitrarily distributed with their location
unknown. Eavesdroppers are assumed not to collaborate. Each
source-destination pair can achieve a throughput that scales as
1/
√
n log n with probability one as n → ∞. The throughput

achieved is secure for any number of eavesdroppers.

Overview of the Proof

We prove Theorem 3 by providing a construction summa-
rized by the following steps. The most important differences
compared to the 1-D construction are: (i) here the packets
generated are carried over different paths utilizing the fact
that in 2-D many paths are available between a single-source
destination pair, (ii) at the start of a path, instead of simply
giving the packet from the source to the first node on the

path, the initiation is done in a special way using a two-step
protocol.

1) For each source-destination pair S–D, S generates four
“packets” for each secret message x to be conveyed from
S to D. The first three packets w1, w2, w3 are generated
randomly, and the last packet w4 is set such that x =
w1 ⊕ w2 ⊕ w3 ⊕ w4.

2) For each S–D, we define regions surrounding S and
D called the “source base”, and the “destination base”,
respectively. We define four paths between S–D and
each packet is carried on a different path. The paths
keep a certain minimum distance outside the source
and the destination bases (see Fig. 7). This ensures that
eavesdroppers outside the bases cannot be close to all
paths at once to decode all four packets.

3) To initiate the flow from S, four relays R1, R2, R3, R4

are selected, where packet wi is delivered from S to
Ri (see Fig. 6). Each packet wi is conveyed from S to
Ri using a two-way scheme: Ri first generates a random
key ki and sends to S, after which S replies with wi⊕ki.
Then, Ri extracts the packet wi. The locations of the
four relays are selected such that no eavesdropper can
be located in a position to decode all four packets (an
eavesdropper needs to hear all eight transmissions for
this). This ensures the message is protected from any
eavesdropper inside the source base.

4) The delivery to D is done by sending the four packets
to D from four directions (see Fig. 6). This ensures that
no eavesdropper inside the destination base can receive
all four packets.

5) A standard time division multiplexing and spatial reuse
scheme is employed where cells take turns transmitting
as in the 1-D case. The only difference is that there are
three distinct phases: 1) the draining phase, where the
packets are delivered to the relays from the sources, 2)
the routing phase, where the packets are carried on the
paths outside the bases, 3) the delivery phase, where the
relays deliver the four packets to the destinations.

The proof is completed by showing that this construction
achieves the stated throughput properties w.h.p.

Proof: The construction achieving the secrecy result con-
sists of a routing algorithm, and a time-division multiplexing
scheme.

A. Routing Algorithm

The routing algorithm consists of three stages: draining,
routing, and delivery.

Draining: For each source node S, we define a square
region of size 7 × 7 cells with the source cell at its center
as the “source base” (see Fig. 6). The four corner cells of the
source base are designated as the “relay cells”. Four legitimate
nodes R1, R2, R3, R4 are selected from these four relay cells,
and the packets are conveyed to the relays using a two-way
scheme. For example, the node R1 generates a random key k1
and sends it to S, and S replies with c1 = w1 ⊕ k1, and R1

extracts the packet w1 (Fig. 6).
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Fig. 6. (Left) Around each source s, a “source base” is defined, which is
a square region of size 7 × 7 cells. The four (shaded) corner cells are the
relay cells, where nodes are selected to help initiate the transmission. The four
relays do two-way exchanges with the source to receive four packets that form
the secret message. The locations of the relays ensure that (compared to the
source) no eavesdropper can be located closer to all relays at once, i.e., for
any given eavesdropper E, d(S,Ri) 6 d(E,Ri) for some i ∈ {1, 2, 3, 4}.
(Right) The delivery of the four packets to the destination is shown. As is the
case for the draining phase, due to the location of the relays, no eavesdropper
can be close enough to all relays at once to collect all four packets.

Routing: We define four paths between the source and the
destination bases (Fig. 7). Each packet wi is carried on a
different path. The paths consist of vertical or horizontal lines,
which are traversed by the packets in single-cell hops, where
the packet is delivered to a node in the next cell on the path.
Two paths leave the top two relay cells on a vertical line, and
arrive to the correponding relay cells in the destination base
on a vertical line while keeping the same spacing (Fig. 7). The
same is true for the paths leaving the bottom relay cells.

Delivery: For each destination node D, a “destination base”
is defined in the same way as the source base (see Fig. 6).
Again, the four corners are labeled as relay cells. After a
packet reaches a relay cell in the destination base, the packet
is delivered from the relay directly to D by reaching over
multiple cells as done for the draining case. Once all four
packets arrive to D, it decodes the secret message x by
XORing the packets.

Remark: Some special cases need to be considered: (i)
Source and destination bases which are roughly vertically
aligned: the paths leave the source base and arrive at the
destination base on horizontal lines. (ii) The source and the
destination bases overlap: the secret message is delivered via
a helper node. In particular, a helper node is selected, and
the secret message is delivered first to this helper node, and
then from the helper node to the destination node using the
routing algorithm described above for both stages. The helper
node is selected from a cell that is far enough away from
the source and the destination bases to allow employing the
routing algorithm as described above. Details are omitted due
to space constraints.

DD

D

S

w1

w2

w3

w4

D

Fig. 7. The source and the destination bases are connected with four paths,
each carrying one of the packets. The paths have the same minimum spacing
throughout the route; hence, no eavesdropper can be close enough to all four
paths at once.

B. Time Division Multiplexing Scheme

Time is divided into three phases corresponding to the
draining, routing, and delivery stages.

Draining: The draining phase is divided into eight frames.
The first four frames are for the transmissions of the keys
from the relays to the sources, and the last four frames
are for the responses of the sources. Each frame consists
of a constant number of time slots, where cells take turns
for signal transmissions employing a standard spatial reuse
scheme where cells transmitting in the same time slot are
regularly spaced in the network (e.g., see [18]). Hence, at the
end of each frame, it is ensured that each cell has transmitted
once.

Routing: The routing phase is divided into four frames for
each type of packet. In the ith frame, packets of color i are
routed. Each frame is further divided into time slots again
employing a spatial reuse scheme. In each time slot, relaying
nodes from the active cells deliver their packets to the next
cell on the path.

Delivery: The delivery phase consists of four frames for the
transmission of the packets of four colors. Again, each frame
is divided into time slots, and transmissions are done as in the
draining phase.

The proof completes by showing that: (i) this construction
is feasible, (ii) it achieves a per-node throughput on the order
of 1/

√
n log n, and (iii) the achieved throughput is secure.

The first two statements can be shown by standard argu-
ments used in similar works (see e.g., [8], [4], [18]), and
we omit the detailed proof here. Basically, the throughput
achieved by the construction is found by considering the
throughput constraint imposed by each phase. For the draining
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and delivery phases, the difference in our construction com-
pared to a standard construction is that transmissions require
multi-cell hops, and that these phases complete in more than
one transmissions. However, these both bring only a constant
factor to the throughput achieved and do not affect the scaling.
The difference in the routing phase is that each message
requires four packets to be carried, which again does not affect
the order. It can be shown that the performance bottleneck is
due to the routing phase, and since the relaying load in each
cell grows with

√
n logn (see e.g., Appendix II in [8]), the

overall per-node throughput scales as 1/
√
n log n. Finally, note

that the construction requires nodes to transmit with power
that is proportional to (log n)α/2, where α > 2 is the path
loss exponent of the medium.

Next we show that for each source-destination pair S–D,
each message x is delivered from s to d securely. For secrecy,
we show that an eavesdropper located anywhere in the network
is guaranteed to miss at least one packet out of the four
packets after listening to all the transmissions required for
the delivery of x. First consider the draining phase. Consider
any given eavesdropper E. Due to the relative locations of
the relays with respect to the source, E is guaranteed to
satisfy d(E,Ri) > d(S,Ri) for some i ∈ {1, 2, 3, 4} (Fig.
6). Hence, for the transmission of ki from Ri to S, the
received signal power at S is larger than the received signal
power at E. In addition, the spatial reuse scheme can be
designed such that the interference at S is low enough to
ensure SINRE 6 (1 + δ)SINRS . Therefore, ki is delivered to
S but not to E; hence, E misses the packet wi. Therefore, any
eavesdropper is guaranteed to miss at least one packet, and the
message x is not leaked during the draining phase. A similar
argument can be made for the delivery phase. The four packets
arrive to D from four directions and any given eavesdropper E
satisfies d(E,Ri) > d(D,Ri) for some i. Outside the bases,
the packets are carried on paths with some minimum spacing;
hence, no eavesdropper can be close enough to many paths
at once, thus establishing secrecy during the routing phase.
Finally, it can be easily verified that no eavesdropper can
collect the four packets by listening to all three phases.

Therefore, using this construction, as n grows, each source-
destination pair can share on the order of 1/

√
n log n secret

bits per second for any number of independent eavesdroppers
arbitrarily distributed to the network.

V. CONCLUSION

Network coding techniques have the potential to improve
information-theoretic secrecy in wireless networks, most no-
tably by enabling the secure connection of one node to another
in the presence of very nearby eavesdroppers. We address
the secrecy capacity scaling problem using network coding
techniques. Most notably, we show that, in a 2-D network, n
randomly located nodes can share per-node secret information
at a rate on the order of 1/

√
n log n, for any number of

arbitrarily distributed eavesdroppers of unknown location.
This work partially completes a line of research that orig-

inated with the secrecy-capacity tradeoffs in asymptotically

large networks of [4]. In [4], even when multi-user diversity
and cooperative jamming were employed, the near eavesdrop-
per problem severely limited the number of uniformly dis-
tributed eavesdroppers that could be tolerated in the network.
In [10] and [8], we began to realize the utility of modifications
at higher layers in resolving difficult secrecy problems, but
we still were not able to address eavesdroppers very near the
nodes originating messages. The work here addresses this last
problem and thus allows for a secure per-session throughput
of O(1/

√
n log n) in the presence of an arbitrarily located set

of non-collaborating eavesdroppers. The case of collaborating
eavesdroppers is the subject of our future work in this area.
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